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ABSTRACT. We discuss Hausdorff and packing measures of some significant subsets of Julia
sets of large classes of transcendental entire and meromorphic functions. In particular, the
class of hyperbolic entire and meromorphic functions satisfying some mild derivative growth
conditions is explored in Section 5. This class contains hyperbolic exponential and elliptic
functions dealt also with respectively in Sections 2 and 3. A substantial fraction of Section 2
and the whole Section 3 treat functions which are not hyperbolic or not necessarily hyper-
bolic. Also Walters expanding and non-expanding conformal maps are discussed in length.
Other classes of transcendental maps are also touched. Frequently there appear statements
about invariant measures, Hausdorff (especially its real analyticity), box and packing dimen-
sions. A special attention is given to the methods developing thermodynamics formalism and
conformal measures. The issues concerning the Lebesgue measure of various subsets of Julia
sets are addressed in Section 7. In Section 3.3 a positive answer to Question 1 posed in [65]
is given.
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1. INTRODUCTION (PRESENTATION OF TOPICS TO BE DEALT WITH)

The main goal of this survey is to provide an overview of methods and results which have
been used in the past five years (plus Baranski’s paper [7]) to analyse in detail the finer fractal
structure of Julia sets of some classes of transcendental entire and meromorphic functions. By
finer fractal structure we, roughly speaking, mean any knowledge about vanishing, positivity,
finiteness and infiniteness of Hausdorff and packing measures of some significant subsets of
Julia sets, which themselves are not excluded. The methods used take as a starting point the
development of appropriate versions of thermodynamic formalism, conformal measures and
(infinite) iterated function systems. Apart from discussing Hausdorff and packing measures,
we frequently mention the closely related concepts of Hausdorff, box and packing dimension,
as well as invariant measures equivalent to either Hausdorff or packing measure. Our primary
interest is in the classes of hyperbolic entire and meromorphic functions satisfying some mild
derivative growth conditions (see Section 5), exponential (A — Aexp(z)), elliptic and Walters
expanding conformal maps, although we also discuss other classes in Section 2.5, Section 3.3,
and separately in Section 4, where various subclasses of Walters expanding conformal maps
are defined and explored. We devote one separated chapter (Section 7) to address the issues
related to the Lebesgue measure of the Julia sets and some of their subsets, for instance
the set of points escaping to co. Results concerning Lebesgue measure are also scattered in
previous chapters; in Chapter 5 however they are treated more systematically and with bigger
generality. As an immediate application of results proved in [42] and stated in Section 5,
we give in Section 3.3 a positive answer to Question 1 posed in [65]. For the background
concerning the topological dynamics of transcendental entire and meromorphic functions the
reader is referred for example to [1]-[5], [8] and [55]. We would like to make it clear that
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this article has been writing over a relatively long period of time. Throughout new ideas and
directions of development have been emerging. Intending to include them, we have tried to
present the material respecting the historical development of the field and existing grouping
of classes of entire and meromorphic functions.

Acknowledgement. We thank the referee whose valuable remarks and suggestions influ-
enced the final form of our paper.

2. EXPONENTIAL FAMILY

2.1. Preliminaries. In this chapter, except for the last two sections, we deal with the family
{Ex}reaqoy of entire maps &y : €'+ € given by the formula

Ex(z) = Ae”.

All these maps are called exponential and {€x} e (o} is called the exponential family. This
family was investigated for the first time from the dynamical point of view by P. Fatou [27].
He conjectured that the Julia set of the map &; is the entire complex plane €. M. Misiurewicz
proved this conjecture about sixty years later in [54] by ingenious but rather elementary
methods. It was this event which revived anew the work on exponential family. Two other
pioneering works in this area are due to M. Rees [59] and M. Lyubich [46] who proved that the
map & is not ergodic with respect to the Lebesgue measure and the w-limit set of Lebesgue
almost every point coincides with the orbit of zero, {£;(0)}22,. The third one is due to
R. Devaney and M. Krych who introduced in [23] a symbolic representation of exponential
maps. This approach was the key point to clarify the topological picture of the Julia sets of
hyperbolic exponential maps (see [19]-[24]), and was developed in the paper [1] by classifying
hyperbolic Julia sets as Cantor bouquets and straight brushes. One should also mention at
this point the paper [6] by I. Baker and P. Rippon who provided the first proof of Sullivan’s
Non-Wandering Theorem in the class of exponential functions. We should also mention
the work of the work of C. McMullen [53], who proved that the Hausdorff dimension of
the Julia set of each exponential map is 2. In fact he proved more, that the Hausdorff
dimension of the set of points escaping to infinity is equal to 2. Although this was a good
and interesting result, it was not the end of the story since the set of points escaping to
infinity is actually dynamically insignificant: for example it cannot support any invariant
Borel probability measure, although it does exhibit some interesting geometrical features
(see [31], [32] and [33]). This situation made M. Urbaniski and A. Zdunik (see [74]-[77]) ask
whether the complement of points escaping to infinity is dynamically and geometrically more
interesting. The answer to this question is provided in all sections of this chapter. The basic
construction, working in all these sections, first time introduced in a slightly different form
in [7] (see also Section 3.2 and 4.3) whose analogs are applied to all maps considered in this
article, is this. Let ~ be the equivalence relation on €' defined by declaring that w ~ z if and
only if w — 2 € 2miZ, where Z is the set of all integers. Let Q = @/ ~ be the quotient space
of @ by the relation ~. () is an infinite cylinder, conformally equivalent to the punctured
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plane €'\ {0}. Let IT : @ — @ be the canonical projection. Since each map &, : € — €'is
constant on equivalence classes of the relation ~, it can be treated as a map from @ to .
The object we are after here, the map F) : Q — @ is defined as follows

E, =1l0¢&,.
Notice that F), oIl =1l o &), that is the following diagram commutes.
a é> a
Hl ln (2.1)
e B o0

So FE) is a factor, via a conformal, locally isometric semiconjugacy II. It is clear that all local
geometric fractal features of £, are the same as those of F), and the same refers to most of
the dynamical features. We would like to notice that, since II is a local isometry,

J(Ey) =T(J(Ey)) and J(&) =7 (J(EY)).

Let Jya(E)) be the set of all points z € J(&)), whose orbit {E7(2)}52, is bounded. The
following general result, needed in many places of the metric theory of exponential maps, has
been proved in [74] as

Proposition 2.1. For every A € €'\ {0}, HD(J,a(Ey)) > 1.

2.2. Hyperbolic Maps: Measures and Dimensions. An exponential map &, is called
hyperbolic if it has an attracting periodic orbit. It equivalently means that (see [75]) that
there are two constants ¢ > 0 and x > 1 such that

(€)' (2)] = er”

for all z € J(€,) and all n > 0. From now onwards, unless otherwise stated, fix a hyperbolic
exponential map &, denote it by £, and denote E) by E. The subfamily of all hyperbolic
exponential maps is very big, in particular it contains all parameters A € (0,1/e) C IR. The
reader may wish to consider only the case in which the map E corresponds to a parameter
from this segment (0,1/e). In this subsection we describe the results and methods worked
out in [74] and [75], although we closer follow the more matured exposition from [44]. The
main objects of our focus are the radial Julia sets J,(€) and J,(F) introduced in [74]. The
first one is defined as the complement of points escaping to infinity, that is the set of points
z € J(E) that have a finite w-limit point. Since |£(2)| = |A|ef¢), J,.(£) is the set of points
z € J(€) such that the sequence {Re(E"(2))}22, has a finite accumulation point. The set
J.(F) is also defined as the set of points in the Julia set J(E) that do not escape to infinity
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under the action of iterates of E. A point z € J,(F) if and only if z € J(E) and there exists
a point y € J(F) and an unbounded increasing sequence {ny}32, such that

y = klim E™(z) and E™(z) € B(y,0/4)
—00

for all £ > 1, where

§ = Jdist((E), {B"(TT(0))}32) 2.2)

is positive since the map E is hyperbolic. The most important feature of points z from J,.(E)
is that for every k& > 1 there exists a unique holomorphic branch E,™ : B(y,20) — @ of
E~™ sending the point E™(2) to z. What distinguishes here the points from .J,(E) from
other points escaping to oo is that the inverse branches E ™ are all defined on the same ball.

2.2.1. Pressure, Perron-Frobenius operators and generalised conformal measures.
In this subsection we gather material which will be needed to formulate and to sketch the
proof of Bowen’s formula, to get our hands on geometric measures and to discuss the proof of
real-analytic dependence of the Hausdorff dimension of the Julia sets .J.(£,) on A\. We begin
with the notion of topological pressure. The trouble is here that the phase space J(E) is not
any longer compact and the classical approach using covers, (n,€)-separated sets or (n,€)-
spanning sets fails in the context of exponential functions. We therefore adapt the pointwise
approach, equivalent in the case of open expanding maps to the classical ones (see [57]), which
for exponential maps works very well. Given ¢ > 0, the topological pressure of the potential
—tlog |E'| is given by the formula

P() = lim ~log Y |(E")(2)|™,

n—o0
L T )

where z is an arbitrary point in @ \ PC(E) and

= U £n(11(0))
n>0
It is not obvious at all that the limit defining topological pressure P(t) must exist. It can be
proved using finer properties of the corresponding Perron-Frobenius operator. Independence
of z is much easier; it almost immediately follows from Koebe’s Distortion Theorem. In
order to get closer to the meaning of this topological pressure P(t), let us look at the term
corresponding to n = 1.

P.(Lt)= > |E'(@)| =D |E(z) " = D |E(za) " = Y |2+ 27in| ™,

z€EE~1(2) neZ neZ neZ

where Z is an arbitrary point from IT7!(z) and z, € Q is the only point such that \e» =
Z+ 2min. The series P,(1,t) converges if and only if ¢ > 1. Before moving on we would like to
make two remarks. Firstly, it is straightforward to see that without projecting the dynamics
to the cylinder @, the series involved in the definition of the topological pressure would not
converge already for n = 1. And this is the main reason to project £ down to E. A different
method to resolve this ‘divergence’ difficulty is provided in Section 5. Secondly, the dynamical
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significance of the pressure function and other concept produced by thermodynamic formalism
is evident from Subsection 2.2.2. Its geometrical significance comes from Subsection 2.2.3,
notably Theorem 2.11 (Bowen’s formula).

The basic properties of the topological pressure P(t) are summarised in the following.

Lemma 2.2. The function t — P(t), t > 0, has the following properties.

(a) There exists t € (0,1) such that 0 < P(t) < +o0.

(b) P(t) < 400 for allt > 1.

(c) The function P(t) restricted to the interval (1,+00) is convex, continuous and strictly
decreasing.

(d) limg, oo P(¢) = —o0.

(e) There exists exactly one t > 1 such that P(t) = 0.

The basic concept of any version of thermodynamic formalism is the Perron-Frobenius opera-
tor and eigenvector of its dual operator, called in the sequel a generalised conformal measure.
Let Cy(J(E)) be the Banach space of all bounded complex-valued continuous functions de-
fined on J(E). Given t > 1, the (bounded) linear operator £, : Cy(J(E)) — Cy(J(E)) is
given by the formula

Li(g)(z) = > |E'(@)g(x) = >_ |2+ 2min| ™" g(za).

zEE~1(z) neZ

Let £} : Cy(J(E)) — Cy(J(FE)) be the operator dual to L, i.e.
Li(w)(g) = v(Li(9))-

Following the classical thermodynamic formalism, and what is extremely important for a

geometrical purposes, one would like to find an eigenvector of the operator £; corresponding

to a positive eigenvalue. The classical approach (see [12], comp. [57]) is to consider the map
£i(v)

7 L) (23)
defined on the convex space of Borel probability measures on J(E). This mapping is eas-
ily seen to be continuous and in the classical case of open distance expanding maps, ones
applies Schauder-Tichonov fixed point theorem, to get a fixed point of the map (2.3), and
consequently, the demanded eigenvector of the operator £;. In our case however this method
fails since the space of all Borel probability measures on J(F) is not compact. So, one must
proceed in a different way. A Borel probability measure m; is called (¢, o;)-conformal (with
t > 1and oy > 0) if my(J(E)) = 1 and for any Borel set A C @ restricted to which E is
injective, one has

my(E(A)) = /A | E|'dm,. (2.4)
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Note that a measure is (¢, ay)-conformal if and only if it is an eigenmeasure of the dual operator
L} corresponding to the eigenvalue ;. One proceeds to construct an m; measure by taking
fruits of K (V')-methods described in Appendix 1. Namely, for every n > 1 put

K,=()E’({z € J(E) : Rez < n}).
§=0
Then each set K, is a compact subset of the cylinder @ and E(K,) C K,. So, Lemma 8.1
applies to produce for every ¢ > 0, a number P, (¢) and a measure m,, supported on K, with
the following two properties. If A C K,, is a Borel set and E|4 is one-to-one, then

ma(E(A)) > / PO | B |'m,. (2.5)

A

If in addition AN {z € Q@ NRez =n} =0, then
mn(E(A)) = / PO B |'m,,. (2.6)

A

It is easy to see that in our context one can replace the inclusion A C K, by A C {z €
() : Rez < n} and the two above formulae still hold. It follows from the definition of the
numbers P, (t) that P,(¢) < P(¢). Making use of the flexibility involved in this definition,
one can arrange for the sequence {P,(¢)}%, to be non-decreasing (P,(t) < P,(t)). If the
cylinder () were compact, the next step would be obvious and rather straightforward. Take
as a candidate for a (¢, a;)-conformal measure any weak limit of the sequence {m,}>°,. Since
however the cylinder @ and the Julia set J(E) are not compact, one needs to show that the
sequence {m,}22, is tight, what in our setting means that the measures of this sequence do
not accumulate at +0o. And this has been done in [74] and [75]. Now, taking any weakly con-
verging subsequence of the sequence {m,}22, and using (2.5) along with (2.6), one relatively
easily checks that its weak-limit m; satisfies formula (2.4) with a; = exp(lim,,_,o P, (¢)). This
means that m, is (¢, a;)-conformal and L;(m;) = aym,. Its basic property, obtained without
making use of the properties of the Perron-Frobenius operator is the following. Put

L) = {z € €5 Jim /() = o).

Then we have the following.

Proposition 2.3. For every t > 1 there exists M > 0 such that for my-a.e. © € J(FE)
lim inf Re(E" () < M.
In particular, my(I(E)) = 0 or equivalently m,(J,(E)) = 1.

This is the first signal that J,.(E) is the right object to deal with. There will be more. In
order to study the Perron-Frobenius operator L;, it is convenient to consider its normalised
version £, = a7 'L,. As relatively soft facts (although obtained with some non-obvious tricks)
one proves there the following.
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Lemma 2.4. supn21{||ﬁ?(]1)||oo} < 0.
and

Lemma 2.5. inf,> {inf{£}(1)(z) : 2 € {w € Q : Rew < z}}} > 0 for every x > 0 large
enough.

These two facts are the main ingredients in the proof linking the topological pressure P(t)
and the eigenvalue ;. Namely

Oy = €P(t).
To obtain further and harder properties of the Perron-Frobenius operator L, we have to define
the Banach space H,, of locally a-Hélder bounded continuous functions. Fix a € (0,1]. Given

g:J(E) = C, let
va(g) =Inf{L >0:|g9(y) — g(z)| < Lly — x|* for all x,y € J(E) with |y —z| <}

be the a-variation of the function g, where § > 0 was defined in formula (2.2). Any function
with bounded a-variation will be called a-Ho6lder or simply Holder continuous if we do not
want to specify the exponent of Hélder continuity. Let C, = Cy(J(E)) be the space of all
bounded continuous complex valued functions defined on J(E) and let

llglla = valg) + lg]l-

Clearly the space

Ho = Ha(J(E)) = {g € J(E) : [|gla < oo}
endowed with the norm || - ||, is a Banach space densely contained in C}, with respect to
the || - ||oo norm. Any member of the space H, will be called a bounded Hélder continuous
function with exponent o and any member of the space U,.oH, will be simply called a
bounded Hblder continuous function. Proving the inequality ||£7]|o < tva(g) + ¢/|g|| (for

all n > 1 large enough), noting that images of bounded subsets in H, under L, are relatively
compact as subsets of Cy(J(FE)) and applying the Ionescu-Tulcea and Marinescu Theorem,
the final (at least for our purposes) properties of the Perron-Frobenius operator are collected
in the following.

Theorem 2.6. Ift > 1 then we have the following.

(a) The number 1 is a simple isolated eigenvalue of the operator ﬁt :H, — H,.

(b) The eigenspace of the eigenvalue 1 is generated by nowhere vanishing function ¢, € Hy,
such that [ 1pydmy; =1 and limge, s 100 ¥i(z) = 0.

(¢) The number 1 is the only eigenvalue of modulus 1.

(d) There exists S : H, — H,, such that

ﬁt - Ql + 57
where Qq : Hy — @)y is a projection on the eigenspace Tipy, Q105 = S o Q1 =0 and
15™]lo < C€"
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for some constant C > 0, some constant £ € (0,1) and all n > 1.

2.2.2. Invariant measures. Mostly as a consequence of Theorem 2.6 we get the following.

Theorem 2.7. Ift > 1, then the measure p = pu; = Yymy is E-invariant, ergodic with respect
to each iterate of E and equivalent to the measure my. In particular u(J.(E)) = 1.

Due to Theorem 2.6 the F-invariant measure p has much finer stochastic properties than
ergodicity of all iterates of E. Here these follow.

Theorem 2.8. The dynamical system (E,u;) is metrically exact i.e., its Rokhlin natural
extension is a K-system.

The proof of this fact is the same as the proof of Corollary 3.7 in [17]. The next two theorems
are standard consequences of Theorem 2.6 (see [15] and [57] for example). Let ¢g; and g, be
real square-; integrable functions on J,.(E). For every positive integer n the n-th correlation
of the pair g1, ¢go, is the number

Culg1, 92) == /91 (g2 o E") dpy — /91 d#t/QQ dpu,
provided the above integrals exist. Notice that due to the F-invariance of ;1 we can also write
Culg1,92) = /(91 - /gldut)((gz - /QZd,ut) o B") dpy.

We have the following.

Theorem 2.9. There exist C > 1 and p < 1 such that for all g, € Ho(Q), g2 € L' (1)

Culg1,92) < Cp'llgs = [ grdpnllallgs = [ godpulr

Let g : J.(E) — IR be a square-integrable function. The limit
n—1

1 . 2
o*(g) = lim — (Z go kLB — N/gdut> dput
j=0

n—oo n,

is called the asymptotic variance or dispersion of g, provided it exists.
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Theorem 2.10. If g € H,(Q), o € (0,1), then o*(g) exists and, if 0*(g) > 0, then the
sequence of random variables {g o E™}°°, with respect to the probability measure p; satisfies
the Central Limit Theorem, i.e.

" igoE — d 1 .
|z € J(E): i=09° nlg b / et gt
\/ﬁ oV 21 J—oc0

2.2.3. Bowen’s Formula, Hausdorff and packing measures. It was stated in Lemma 2.2
that there exists exactly one value ¢ > 1 such that P(¢) = 0, and we call this value h. Then
the measure my, is h-conformal in the sense of Sullivan meaning that

mu(E(4) = [ |B'dm, (2.7)

for every Borel set A C J(E) such that E|4 is one-to-one. By the analogy with the classical
situation of hyperbolic rational functions (see [73]), one may guess that h is the Hausdorff
dimension of J,.(F) and my, up to a multiplicative constant, the Hausdorff and packing
measure on J,.(E). The first guess turns out to be entirely true, the later one only partially.

Theorem 2.11. (Bowen’s formula) The number h, the unique zero of the pressure function
t — P(t),t > 1, is equal to HD(J,(E)).

Since the definition of the pressure function P(t) has a priori nothing to do with the set J,(E),
this theorem in particular indicates that J.(E) is the right object to deal with.

Theorem 2.12. 0 < H"(J,(F)) < co.

This indicates that the h-dimensional Hausdorff measure H” on J,(E) is the right geometric
measure. In particular, the purely dynamically defined, h-conformal measure m; gets its
geometrical interpretation as the normalised Hausdorff measure.

Concerning the h-dimensional packing measure P", the situation seems to be much worse.
We have the following.

Proposition 2.13. We have P"(J,.(E)) = co. In fact P*(G) = oo for every open nonempty
subset of J.(E).

It might seem that a measure with such strange properties is completely useless. However
since the 2-dimensional packing measure on ' is proportional to the 2-dimensional Lebesgue
measure and this latter one is not locally infinite, we immediately get from Proposition 2.13
the following.
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Corollary 2.14. It holds that h = HD(J,(E)) < 2.
Since J.(E) D Jy(E), as an immediate consequence of Proposition 2.1, we get the following.
Corollary 2.15. It holds that h = HD(J,(E)) > 1.

Note that in our case every compact FE-invariant set is hyperbolic. So, the Shishikura’s
Hausdorff dimension, being by definition the supremum over all hyperbolic sets, is equal to
the supremum over all E-invariant compact sets. Since any FE-invariant Borel probability
measure y on J(E) is supported on J,(E) (u(J.(E) = 1), and since each compact E-invariant
subset of J(F) is contained in J,(E), we thus get the following

Theorem 2.16. The hyperbolic dimension of J(E) and the supremum of Hausdorff dimen-
sions of all Borel probability E-measures, both being bounded above by HD(J,.(E)), are strictly
less than HD(J(E)) = 2.

The two suprema appearing in Theorem 2.16 are in fact equal (see [57]). Note that it is
still an open question whether there exists a rational function with the hyperbolic dimension
smaller than the Hausdorff dimension of the Julia set.

2.2.4. Real-analyticity of the Hausdorff dimension function. Since this article pri-
marily concerns measures, and dimensions are treated more briefly, we shall provide a very
short description of how to prove that the Hausdorff dimension of the radial Julia set .J,(E))
depends in real-analytic fashion on hyperbolic parameters A. The full proof, technically
rather complicated can be found in [75] and [44]. One starts of with the trivial observa-
tion that we can restrict our attention to an arbitrary fixed component W of the set of
all hyperbolic parameters. Fix one parameter Ay € W. It is known (see[26], comp.[76])
that each function £\ : € — (' is topologically conjugate to E), via a quasi-conformal
homeomorphism h, : € — €. This allows us to define new Perron-Frobenius operators

L3, Ho(J(Ex)) = Ho(J(Eyy)), (A1) € W x (1,400) as follows
L3.9(z) = 3 |Ex(ha(@)| g(x).

—1
IEE/\O,t(Z)

The most technically involved task is now to demonstrate that given t; > 1, there ex-
ists a polydisc ID((Ag,tp); R) C @ x @ such that the operator-valued function (\,t) —
L3, € L(Hy(J(E),))), (\,t) € W x (1,400) has a holomorphic extension to this polydisc
ID((Mo,t9), R). The rest is the right combination of Theorem 2.6 (that e® is a simple iso-
lated eigenvalue of ,COM), the perturbation theory for linear operators, Theorem 2.11 (Bowen’s
formula) and the inverse function theorem.
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2.3. Hyperbolic Maps: Thermodynamic Formalism and Multifractal Analysis. In
this section our intention is to provide a relatively compact, nevertheless comprehensive sum-
mary of the article [72], which provides a systematic account of the thermodynamic formalism
and multifractal analysis of hyperbolic exponential maps and, natural in this context, 1™-tame
Holder continuous potentials. We keep the notation and terminology from the previous sec-
tion.

2.3.1. Pressures, potentials, transfer operators and conformal measures.
Given n > 0 let

Snp=¢+¢poE+ - +poE".

The following simple distortion fact is necessary for nearly all the results presented below.

Lemma 2.17. For every a > 0 there ezists Lo, > 0 such that if ¢ : J(E) — € is an a-Hélder
function, then

1Snp(E, " () = Sud(E, " (2))] < Lava(9)ly — [*
for alln > 1, all z,y € J(E) with |x —y| < 3§ and all v € E~"(x).

Put Q¢ = {# € Q : Rez > inf{Re(J(F))}}. Given x € IR a Hélder continuous function
¢ : Q5 — IR is called k-tame (and we put k = k(¢)) if

Ay = sup{|p(z) + kRez| : 2 € QL } < +00.

A Hélder continuous function ¢ : Q5 — IR is called x*-tame if it is a-tame with some a > &.
Especially important will turn out to be the 17-tame functions. Any s-tame function with
any £ € IR is called a tame function. The above introduced tameness notions refer to any
Hoélder continuous complex-valued function if its real part satisfies the respective conditions.
Note that iff ¢ : J(f) — €' is a 0*-tame or O-tame function, then e? is a bounded Hélder
continuous function with the same exponent.

The topological pressure of the tame potentials is defined by the pointwise method. It can
be proved that for ¢ : J(E) — IR, a 0"-tame potential, the following limit

1
P.6) = lim ~log 3 exp(Sud(x))
n—oo n,
zeE~"(z)
exists and is independent of z € J(E). Its common value is denoted by P(¢) and is called
the topological pressure of the potential ¢. Assume now ¢ to be a 17-tame potential. The
Perron-Frobenius operator Ly : C, — () is defined by the formula

+o00o

Log(z) = 3 exp(p(x))glz) = D exp(o(zr))g(ze), (2.8)

zEE~1(z) k=—o00
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where z;, is the only point of the singleton 77(5_1(2 + 2m'k)) and Z is an arbitrary point from
7 '(2) and Q. The dual operator L}, : Cy — Cj is given by the formula L5u(g) = u(Lyg).
Applying the K (V') method from [17] (see Appendix 1) and the tightness argument, one can
show that there exists mg, a unique Borel probability measure on J(E) that is an eigenmeasure
of Lj. The corresponding eigenvalue is equal to eP@) . This equivalently means that

my(E(4)) = [ exp(P(9) = 6)dm,

for every Borel set A C () restricted to which F is injective. The measure my is called ¢-
conformal. Applying the famous Tulcea-lonescu and Marinescu Theorem, using Lemma 2.17
and (2.8), one eventually ends up with the following properties of the Perron-Frobenius op-
erator L.

Theorem 2.18. If ¢ : J(E) — (0,00) is a 1T -tame potential, then we have the following.

(a) The number 1 is a simple isolated eigenvalue of the operator e*P(‘b)EAq; : Hy — H,.

(b) The eigenspace of the eigenvalue 1 is generated by a nowhere vanishing function g, € Hy,
such that [ gsdmg =1 and limge,—, 40 g4(2) = 0.

(¢) The number 1 is the only eigenvalue of modulus 1.

(d) With S :H, — H, as in Theorem 2.6, we have

67P(¢)ﬁ¢ =1+ S,
where Q1 : Hy — @gy is a projector on the eigenspace gy, Q105 =S o =0 and
15™la < C€"

for some constant C > 0, some constant £ € (0,1) and all n > 1.

2.3.2. Ergodic theory of invariant measures. As a fairly straightforward consequence of
of Theorem 2.18, one links conformal measures with ergodic theory. More precisely:

Theorem 2.19. If ¢ : J(E) — (0,00) is a 1T-tame potential, then the measure p = fip =
geme s E-invariant, ergodic with respect to each iterate of E and equivalent to the measure
my. In particular p(J,(E)) = 1. In addition the dynamical system (E, uy) is metrically exact
i.e., its Rokhlin natural extension is a K-system.

The measure ji4 is called the invariant Gibbs state of the potential ¢. Due to Theorem 2.18 the
E-invariant measure /14 has additional stochastic properties than listed in the theorem above.
Namely, the correlations of Hélder continuous bounded potentials decay (with respect to the
dynamical system (E, i5) exponentially fast, and for every g € H,, the sequence {go E™"}>°,
of identically distributed random variables (with respect to the measure ;) converges in
distribution to a Gauss distribution provided that the asymptotic variance (dispersion) of g
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is positive. As it was proved in [78] (and the proof is repeated in [72]), the Gibbs state p is
an equilibrium state for the potential ¢. As a matter of fact, the following, nearly classical
version of the Variation Principle holds.

Theorem 2.20. If £ : @ — C is hyperbolic and ¢ : J(E) — €' is a 1" -tame potential, then
the invariant measure py is an equilibrium state of the potential ¢, that is

P(¢) = sup{hu(E) + [ odp},

where the supremum is taken over all Borel probability E-invariant ergodic measures p with
J odp > —o0, and

P(8) = hy, + [ oo

2.3.3. Analytic properties of the pressure function. The sections 7 and 8 of [72] contain
a detailed analysis of differentiability properties of the topological pressure function. Let
¢,¢ : J(E) — IR be arbitrary two tame functions. Consider the sets

X1(9,¥) = {q € T: Re(q)r(9) + K(¢) > 1}
and
Yo(p, 1) := {(q,t) € T x C: Re(q)k + Re(t)y > 1}.

The key ingredient to all further analytic properties of various ‘thermodynamical objects’ is
the following.

Proposition 2.21. If ¢,¢ : J(E) — IR are arbitrary two tame functions, then the function
q = Lopry € L(Hy), q € 1(0,v), is holomorphic.

Using the perturbation theory for linear operators (Kato-Rellich Theorem, see Theorem XII.8
in [58]), as fairly straightforward consequence of Proposition 2.21, we get the following.

Lemma 2.22. If ¢ and 1 are arbitrary tame functions, then the function q — P(qo + 1),
q € X1(p,0) N IR, is real-analytic, and likewise, the function (q,t) — P(qp + t), (¢,t) €
Yo(p, 1), is real-analytic.

In the classical theory of distance expanding maps (see [57]) the first and the second derivative
of the pressure function are calculable although the calculations leading to the formula for the
second derivative are rather tedious. Even more tedious calculations, performed in Section 8
of [72] resulted in the following.



FRACTAL MEASURES AND ERGODIC THEORY 15

Theorem 2.23. Suppose that ¢ : J(E) — IR is a 1T -tame function and ¢ : J(E) — R is a
tame function. Then

2l _oP@+ 1) = [ wdu,
and

Theorem 2.24. Suppose that ¢ : J(E) — IR is a 1T -tame function and ,¢ : J(E) — IR
are tame functions. Then

82
050t ‘(0,0)P(¢ + 51+ 1) = 0*(1,¢),
where
1
o*(¥, () = lim ~ Sn(l/) - M«s(w))sn (g _ %(g))d%

= [ = ns@) (- w(())duwg [ = s (€ = 1a(€)) 0 Edps +

> [ (€= 06 = po(w) 0 B
(if ¥ = ¢ we simply write o*(¢) for a?(, 1))

2.3.4. Cohomologies. Of course the natural question arises of when the two 1T-tame po-
tentials have the same Gibbs (equilibrium) states. The problem is completely solved in The-
orem 9.1 from [72], and although the solution is the same as in the classical case, some of
its constituents, especially item (3) are rather unexpected. Let F be any class of real-valued
functions defined on J(E). Two functions ¢, : J(E) — IR are said to be cohomologous in
the class of function F if there exists a function u € F such that

p—1Y=u—uok.

Our solution is this.

Theorem 2.25. If ¢, : J(E) — IR are two arbitrary 17 -tame functions, then the following
conditions are equivalent:

(1) o = iy
(2) There exists a constant R such that for each n > 1, if E"(z) = z (2 € J(F)), then
Snd(2) — Spip(z) = nR.

(3) The difference 1 — ¢ is cohomologous to a constant R in the class of bounded Hélder
continuous functions.

(4) The difference 1 — ¢ is cohomologous to a constant in the class of bounded continuous
functions.
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(5) The difference 1» — ¢ is cohomologous to a constant in the class of all functions defined
everywhere in J(E).
(6) There exist constants S and T such that for every z € J(E) and every n > 1

If these conditions are satisfied, then R =S = P(¢) — P(¢).

As its complement we list the following result whose proof uses Rokhlin’s natural extension
and the concept of canonical conditional measures.

Proposition 2.26. If ¢ : Q5 — IR is a 17-tame function and v : Q5 — IR is a tame
function, then azd)(w) =0 if and only if 1 is cohomologous to a constant function in the class
of bounded Hélder continuous functions on J(E).

2.3.5. Hausdorff dimension of Gibbs states.
Given a Borel probability measure 1 on a metric space, we define for a point x in this space,
the number (called the local dimension at the point z)

provided that the limit exists. Recall that HD(u), the Hausdorff dimension of the measures u
is the infimum of the numbers HD(Y") taken over all Borel sets Y such that (YY) = 1. If d, ()
is constant a.e. (denote it by d,), then HD(u) = d,. If ;1 is a Borel probability E-invariant
measure on J(F), then the number

Xp = /IOgIE'Idu

is called the Lyapunov exponent of the map E with respect to the measure . Note that
this exponent is always positive. The proof of the following only result stated in this section
appeared first time [71] and was repeated in [72].

Theorem 2.27. If€ : €' — C'is a hyperbolic exponential map and ¢ : J(E) — TCis a 1" -tame
potential, then the local dimension d, () exists for pg-a.e. 2 € J(E), and is equal to by, /X, -

In particular

h
HD (1) = —*.
Xug

2.3.6. Multifractal analysis of 1*-tame functions. Fix a 17-tame potential ¢ : Q¢ — IR.
Subtracting P(¢) from ¢, we can assume without loss of generality that P(¢) = 0 and call ¢
normalised. Consider the two-parameter family of potentials ¢,, : P, — IR, q,t € IR, defined
as follows.

Pgr = —tlog |El| + q9.
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Note that ¢, is a t + gr(¢)-tame function. We have the following.

Lemma 2.28. For every q € IR there exists a unique t = T(q) € IR such that P(¢4;) = 0.
In addition, (q,T(q)) € Xo(p, — log |E'|).

The mapping T : IR — IR is called the temperature function. The multifractal analysis of
a Borel probability measure p scrutinise the level sets of the pointwise dimension function
d,. Although defined in an entirely "fractal manner”, this function exhibits frequently very
regular features. This is also the case in our situation, and we will discuss them now in
the context of Gibbs (equilibrium) states . For technical reasons our analysis will be
performed on a subset J..(E) of J.(E), which will also turn out to be fairly large, and
whose, somewhat technical definition, we provide now. Given an integer s > inf (ReJ (E))
and a point z € J(E) let {t7(2)}2, denote the sequence of consecutive visits of the point
zto Qs = {z € J(E) : Rez < s} under the action of F, i.e. this sequence is strictly
increasing (perhaps finite, perhaps empty), E%()(z) € Q, for all n > 1 and E7(2) ¢ Q, for
all t%(z) < j < t""'(z). Now, define the sets

2t (2)—t7 (2 ! th(z
ey o) g
My=<z¢€ J.(F): lim p =0 and lim

n—00 [log|(B#()) (2)] oo 11 (2)

log

=1

and
Jrr(E) = U Msa

where the union is taken over all integers s > inf(ReJ(E)). The robustness of the set J,..(E)

is reflected in the fact that p(J..(E)) = 1 for every Borel probability E-invariant ergodic
measure on J(E) with finite Lyapunov exponent, in particular if g = p,, where ¢ is a 17-
potential).

Given a 1*-tame function ¢ : Q¢ — IR, and a real number o > 0, we define the following two

sets.
e = {= e Jim G = o)

and

Dy(a) = {z € Jo-(E) : lim log 15 (B(2, 7)) = a}.

r—0 log r
The firs relation between the sets ICy(«) and Dy(cv) is that

D(@) = Ko(0) N I (E). (2.9)

We set
k;; = HD(IC¢(a)) and k;¢ = HD(D¢(a)).
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By (2.9), we have
- +
k, s < k, 5"
The first result of this section establishes, as the most transparent feature, real analyticity

of the functions k,  and k:& As a byproduct a closer relations between the sets KCy(a) and
Dy(c) is obtained.

Theorem 2.29. Suppose that ¢ : Q5 — IR is a 17-tame function. Then the functions k;d)
and ki coincide in their natural domain (an, oz) produced in item (c). Denote their common
value by k. Then the following statements are true.

(a) The pointwise dimension d,,(v) exists for jg-almost every x € J(E) and

~ Pl¢) — [ dduy
B ) = g [ By

(b) The function q — T(q), ¢ € R is real-analytic, T(0) = HD(J,(E)), T'(q) < 0 and
T"(q) > 0. In addition T" wvanishes in one point if and only if it vanishes at all points,
if and only if py = p_niog (&), if and only if ¢ and —hlog|E'| are cohomologous modulo
constant in the class of all (bounded) Hélder continuous functions.

The function —T'(q) attains values in an interval (o, as) where 0 < a; < ay < o0.
For every q € IR, k,,(=T"(q)) = T(q) — qT"(q)-

The function k,, is real-analytic throughout its whole domain (g, ).

If g # pniog |, then the functions k,,(a) and T'(q) form a Legendre transform pair.

A~ N
R O
S N e N

This theorem has been established assuming only that ¢ is Holder continuous (and 17-tame).
Assuming more, that ¢ is harmonic on a half-cylinder containing the Julia set J(E), and
performing a more involved analysis of analytic properties of the relevant Perron-Frobenius
operators, we were able to show that the function k,, also depends in a real-analytic fashion
on the parameter . This can be regarded as an extension of the real analyticity of the
Hausdorff dimension of the Julia set J,(E) discussed in Section 2.2.4. Let us now explain in
greater detail what we mean when saying that k,, depends real-analytically on A. Fix a € IR
and set

Hyp(a) = {)\ € Hyp: Re(inf{J(ﬁ,\)}) > a} :
Clearly Hyp(a) is an open set. Put
Usp =" U {A} x(a1(}),02(2)),
AeHyp(a)

where «q(A) and aq(A) are the numbers coming from items (c¢) and (f) of Theorem 2.29. The
set Uy, is open and vertically connected, the latter meaning that for every A € Hyp(a), the set
({A} X IR) N U, is connected. Given A € Hyp(a), let uj be the Gibbs state corresponding to
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the potential ¢ and the dynamical system E : J(Ey) — J(E)). The function &y : Uy s — [0, 2]
is defined by the formula

ks(A\, o) = k%(a).

The second main theorem of this section is the following.

Theorem 2.30. If ¢ : Q5 — IR is a harmonic 17 -tame potential, then the function ky :
Uasp — IR is real-analytic.

In view of item (b) of Theorem 2.29 the function k, is non-degenerate provided that the
function ¢ is not cohomologous to —HD(J,(E))) log |E}| for any A € Hyp(a) in the class of
all (bounded) Hoélder continuous functions. The potential ¢ is then called essential. The last
result proved in [72] provides an easy sufficient condition for a harmonic 1*-tame potential
to be essential. One requires that x(¢) > 2.

2.4. &1/ and Parabolic Implosion. In this section we describe the results obtained in
[76] and [79]. We first, summarising [76], deal with the map &/, : € — ' alone, and then,
describing [79], we look what happens if A converges to 1/e from the left and from the right
along the real axis. It turns out that in the former case the Hausdorff dimension of the radial
Julia set J,.(E)) behaves continuously at the point 1/e, and in the latter case it behaves
‘highly’ discontinuously at the parameter A = 1/e.

2.4.1. The map &,/ alone. We again work with the map Fy/. : Q — Q. The set J.(E1.)
must be however now slightly modified. First notice that Ey/.(1) = 1,E},(1) = 1 and
{’/8(1) = 1 # 0 so that 1 is a parabolic fixed point with one petal. Since the Julia set
near the fixed point 1 lies entirely in the repelling petal, there exists # > 0 such that if
z € J(Eve) N B(1,0) \ {1} then ET) (2) ¢ B(1,0) for some n > 1. Since in addition E7,(0)

converges to 1 through the attracting petal at 1, we see that there exists 0 > 0 such that
U B(z,40) N {ET,.(0)}52, = 0. (2.10)

zeJ(El/e)\B(laa)

Now, almost as in the case of hyperbolic parameters, a point z € J,(£;/.) is said to belong
to J,(E) if and only if there exist y € J,(Ey/.) \ B(1,0) (note here the difference with the
hyperbolic case) and an unbounded increasing sequence {ny}2, such that y = limy,_, EY}, (2)
and E/,(2) € B(y,40) for all k > 1. Note that because of (2.10), for every k > 1 there exists a
unique holomorphic branch EI_/Z’“ : B(y,20) = Q of El_/zk sending E?/"e(z) to z. Note that also
Jr(E1 ) coincides with the radial set defined exactly as in the hyperbolic case after removing
the inverse image of 1, i.e. the set U,>o £ " (1). Given ¢ > 0, a t-conformal measure for
Eije : Jo(Evje) = Jr(Ehe) is defined in the same way as in the hyperbolic case (see beginning
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of Section 2.2.3) with h replaced by t in (2.7). Let h = HD(J,(Ey/)). Some properties of
t-conformal measures are described by the following theorem:.

Theorem 2.31. The following hold.

(1) h is the unique t for which an atomless conformal measure ezists.

(2) There exists a unique h-conformal measure m for Ey e : J(Ey/.) — J(E4).). The measure
m 18 atomless.

(3) The h-conformal measure m is ergodic and conservative.

(4) Ifv is at-conformal measure for By andt > 1,t # h, thent > h and I/(Unzo El_/é(l)) =
1.

The geometric, Hausdorff, and packing measures have features analogous to the hyperbolic
case (although the proofs about Hausdorff measures are even more involved).

Theorem 2.32. 0 < H"(J,(Ey/.)) < .

Proposition 2.33. We have P"(J,(E/.)) = co. In fact P*(G) = oo for every open nonempty
subset of J.(E1e).

Based on this proposition and Proposition 2.1, the same arguments as in the hyperbolic case
give the following.

Corollary 2.34. 1 < HD(J,(Ey/.)) < 2.

2.4.2. Left-hand side continuity. In this section we present the idea and single out the
basic steps of the proof of the following.

Theorem 2.35. limy /. HD(J,(Ey)) = HD(J:(E1/e)).

To start the short discussion of the proof take an arbitrary sequence {\,}>°, converging to 1/e
from the left. Let h,, = HD(J,(E,,)) and let m,, be the h,, conformal measure for E,, . The
first thing is to prove that the sequence {m,}2° , is tight. Let u be an arbitrary accumulation
point of the sequence {h,}>°,. We know that u € [1,2]. Passing to a subsequence we may
assume without loss of generality that v = lim,,_,. h,. Passing to yet another subsequence
we may assume (due to tightness of {m,}2 ) that the sequence {m,}>, converges weakly
to a measure m. It is not too difficult to show that m is u-conformal and m(J,(E;,.)) = 1. In
fact, inspecting carefully the proof of Proposition 2.1, we see that there exists s > 1 such that
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HD(J,(Ey)) > s for all A € (0,1/e) sufficiently close to 1/e. Consequently 1 < s < u < 2.
It now follows from Theorem 2.31 that u > HD(J,(Ey/.)). It also follows from this theorem
that in order to conclude the proof, that is to show that v < HD(J.(E,/.)), it suffices to
demonstrate that the u-conformal measure m is atomless. Conjugating the map F) by affine
transformations so that their attracting fixed point becomes 0 (so, independent of parameter
A) one carefully checks that the measures m, (actually their images under conjugacies) do
not charge too much arbitrarily small neighbourhoods of zero.

2.4.3. Parabolic implosion for E;/.. The question we want to discuss in this short section
is what happens if A Y\, 1/e along the real axis. Since the Julia set J(&/.) is a nowhere
dense Cantor bouquet and since J(&,) = € for all A > 1 (this follows from the fact that the
trajectory of 0, {E7(0)}52,, escapes to infinity (see [6]), we have obvious discontinuity of the
Julia set of £, if A\, 1/e but no discontinuity of Hausdorff dimension, all these sets are known
(see[53]) to have the Hausdorff dimension 2. In order to observe more interesting phenomena
on the level of the Hausdorff dimensions, one considers the dynamically more significant sets
J.(E)). So far, we have defined these sets only in hyperbolic and parabolic cases. Now, the
time comes to do it in full generality. So, we bring down here Definition 3.7 from [77].

Definition 2.36. J,(£) C € is the set of those points z € @ for which there exists an un-
bounded sequence {ny(2)}%2, such that

dist ({£") () 1321, {3 (0)}o2g) > 0

and the set Re({é’”’“(z)(z)}z‘;l) is bounded. The set J, = J.(E) C Q is defined to be I1(.J,(£)).

Note that if the trajectory of 0, {E}(0)}22, is dense, then J.(E) = (). Note also that, as
in hyperbolic and parabolic case, all points in J,.(FE) allow univalent holomorphic pull backs
from a bounded region. Precisely, it means that if z € J,(E) then there exist y € J,.(E),
d(z) > 0 and unbounded increasing sequence {s;}32; (which could be extracted from the
sequence {ng(z)}72, guaranteed by Definition 2.36 with some z € IT"!(z)) such that

1 Sk — Sk 1 —
and for every k£ > 1 there exists a unique holomorphic branch E % : B(E®:(z),2(2)) — Q
of E~% sending E®(2) to z. Finally note that the radial Julia set defined in Definition 2.36
coincides in the hyperbolic and parabolic case with the respective sets defined in Section 2.2
and 2.2.3. The ultimate results, which will be called global dimensionwise parabolic implosion
phenomena, obtained in [79] are these.
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Theorem 2.37. For every o € IR there exists a sequence {€x}32, of positive reals converging
to 0 such that (—m/\/€x) = o(mod 1) as k — oo, and

lilggglfHD(Jr(El/eJrek)) > HD(J,(E1/e)).
and its consequence:

Corollary 2.38. We have that

lim sup HD(J,(Ey)) > HD(J,(E\/.)).
AN\d1/e

The structure of proof of Theorem 2.37 is this. First, it was proved in [77], (compare Sec-
tion 2.5) that for every A > 1/e there exists a unique HD(J,.(E)))-conformal measure m, for
the map E). Let u be the value of the lower limit appearing in Theorem 2.37. Using the
concept, characteristic for any parabolic implosion, of Lavaurs maps, one shows as the first
step that the sequence {my, }32,, A\ = %+ek, is tight, and any of its weak-limits is a measure,
u-conformal for both E/. : € — € and g, : €'\ J(E,).) — € where g, is the Lavaurs map
corresponding to the parameter o. The second step is to prove that the series

5 > (B (@)

"=laek M (\UpZ, By L)

converges. Since, by Theorem 2.31(2), the same series, with u replaced by HD(J,(Ey/.))
diverges (otherwise, we would get apparently atomic HD(J, (£} .))-conformal measure sup-
ported on U,o E7/5(1) C J(E1y.)), we conclude that u > HD(J,(E1/.)). So, we are done.

2.5. Non-Hyperbolic Exponential Maps. In [77] a class of exponential maps was con-
sidered whose members all had Julia sets equal to the whole complex plane. In particular, 0
belongs then to the Julia set and the maps are not hyperbolic (see beginning of Section 2.2).
The lack of hyperbolicity was to some extent compensated by extremely fast convergence to
oo of forward iterates of zero. Namely, a parameter A € €'\ {0} is called a super-growing
parameter if lim,_,,, Re(£™(0)) = 400, and there exists ¢ > 0 such that for all n > 1,
[Re£3 ™1 (0)] = cexp(Re(£3(0)) = |—§||5§+1(0)|-

Now fix an arbitrary super-growing parameter A\. Put £ = &, and £ = E),. We have observed
at the beginning of Subsection 2.2.3 that J(E) = €. The radial Julia set J,(E) defined in
Definition 2.36 turns out to be as ‘nice’ as in the hyperbolic and parabolic case. Indeed,
although the Perron-Frobenius operator method does not seem to be naturally applicable for
a map whose Julia set contains 0, using K (V)-methods (see Appendix 1) and the tightness
of the sequence of semi-conformal measures this method produces, it was possible to prove
the existence and uniqueness of an h-conformal measure m for the map F : Q — @), where
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h = HD(J,(E)). In addition this measure was proved to be ergodic, conservative (meaning
that 3,50 1p 0 E"(2) = oo for m-a.e. z € €) and m(J.(E)) = 1. As in the hyperbolic case
the conformal measure turns out to be a normalised version of the h-dimensional Hausdorff
measure H", and in fact we have this.

Theorem 2.39. 0 < H"(J,(F)) < cc.

Proposition 2.40. We have P"(J,.(E)) = 0. In fact P*(G) = oo for every open nonempty
subset of J.(E).

This proposition in the same way as in Section 2.4.3 implies that h < 2. Since J,.(F) contains
Jpa(E), using Proposition 2.1, we have therefore the following.

Theorem 2.41. 1 < HD(J,(F)) < 2.

This theorem has the following rather unexpected corollary, proved for the first time in [46]
by a different method.

Corollary 2.42. If X\ is a super-growing parameter then for Lebesque almost every point
2 €, w(z) ={EX(0)}72 U {oo}.

We show how to prove Corollary 2.42. Let £ = &,. Since HD(J;(€)) < 2, the complement of
J.(€) is a set of full measure. Fix a point z ¢ J,(£). By the definition of .J,(€), this implies
that w(z) C {€3(0)}2°, U {oo}. We only have to check that, actually, the equality holds for
almost every point. So, assume that w(z) = 0o. The set of such points has Lebesgue measure
0; actually, this is true for a large class of maps, see e.g. [53] or [26]. Next, assume that
w(z) = {oco} U{EX(0)}52, for some k > 0. Then, there exists an infinite sequence of integers
s; such that £%(z) — £¥(0). Then, denoting n; = s; — 1, we see that Re£™ (2) — Re&f(0)
and, moreover, dist(£™ (z), {EX(0)}22,) > 0. Consequently, z € J,.(£), a contradiction.

By the tightness argument the following fact was also established in [77].
Theorem 2.43. The function A — HD(J,(E))),\ € (1/e,+00) is continuous.

An open problem is whether this function is real-analytic.

Leaving geometric measures and dimensions, let us have a closer look at the dynamical prop-
erties of the h-conformal measure m for the (super-growing) map F : € — €. Ergodicity
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and conservativity of the measure m along with the fact that the orbit of zero escapes to
00, make it possible to apply M. Martens’ method (see Appendix 2) to construct (up to the
multiplicative constant) a o-finite E-invariant Borel measure p equivalent to m. The method
of M. Martens leaves open a natural procedure of checking whether the measure is finite or
infinite. One must carefully control the distortion when going down to singularities, the orbit
of zero, +00 and —oo. By fairly technical and rather complicated arguments this was done
in Theorem 4.6 in [77]. The result is this.

Theorem 2.44. There exists a unique Borel probability E-invariant measure p absolutely
continuous with respect to the HD(J,.(E))-conformal measure m. In addition p is ergodic and
equivalent to m.

2.6. Fatou Functions, Sine and Cosine Families and Further. In the paper [44] the
family fi(2) = e7* + 2z + A\, ReX > 1, of Fatou’s functions was investigated in great detail.
Although all of them have a Baker domain at oo, this turned out not to preclude the possibility
of analysing those maps from geometrical (fractal) and (measure-theoretical) dynamical point
of view. The paper [44] provides a uniform treatment of issues dealt with in [74] and [75]
in the setting of the technically more complicated Fatou’s functions f). The results here are
the same as those discussed in Section 2.2. Also the family of functions fy(z) = A\(1 — e**) !
consisting of transcendental meromorphic functions was studied in detail with its own methods
in [43]. The appropriate results about conformal, Hausdorff, packing and invariant measures
have been obtained there.

Also I. Coiculescu and B. Skorulski undertook in [13] and [14] the issues signalised in [74]
and [75], by extending the results proved there to the case of the family H of hyperbolic
maps of the form >7_a;e¥ "7 where 0 < k < n. The Julia sets of these maps contain
Cantor bouquets. Note that this family includes exponential \exp(z), sine (Asin(z)) and
cosine (A cos(z)) families.

3. BELLIPTIC FUNCTIONS

3.1. General Facts. If w;,ws € €'\ {0} are such that Im(ws/w;) # 0, then the set
A= {mw, +nwy:m,n € Z}

is called the lattice generated by the numbers w; and wz. A non-constant meromorphic
function f : @' — 'is called elliptic (with respect to the lattice A) if and only if

fz4+w) = flz+w) = f(2)
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for all z € @. This equivalently means that f is A-invariant, f(z + w) = f(z) for all z € €
and all w € A. The Fatou set of a meromorphic function consists of points z € € which
admit neighbourhoods restricted to which all iterates of our meromorphic functions are well-
defined and form a normal family. The Julia set is by definition the complement (in ) of the
Fatou set. Since f~!(c0), the set of poles is an infinite set, J(f) is the closure of all prepoles
Un>o f™(00). For every pole b of f let g, > 1 denote its multiplicity. Define

q=max{g: b€ f(o00)} > 1.

Associating with the elliptic function f an infinite conformal iterated function system in the
sense of [52] and determining its # number introduced in [52], we were able to prove in [41]
the following.

Theorem 3.1. If f : @ — @ is an elliptic function, then

2q

HD(J(f)) > T4 > 1.

The obvious consequence of Theorem 3.1 is that if f has poles of large multiplicities, then the
Hausdorff dimension of the Julia set of f is close to 2. It may suggest that this dimension is
always equal to 2. In section 3.3 we will describe a large class of examples with Julia set of
dimension less than 2. Here we will give a simple construction showing that for each lattice A
there exists an elliptic A-invariant function whose Julia set is not the entire complex plane .
Indeed, let A be a lattice and let g : @ — € be an elliptic A-invariant function for which some
zero, call it b, is not a critical point of g. Consider the family of functions {gx = Ag+b}rca(03-
This family consists of A-invariant elliptic functions and gy (b) = Ag(b)+b=0+b =10, ¢}(b) =
Ag'(b) for all A € @'\ {0}. So, if |A| < 1/|¢'(b)], then b is an attracting fixed point of g. The,
non-empty, basin of attraction to b under g, is contained in the Fatou set, and consequently

J(gr) # C.

We would like to mention that using the same methods as in [41] it was shown in [49] that the
Hausdorff dimension of the Julia set of any function of the form expof, where f is elliptic,
is equal to 2. These functions are doubly periodic but have essential singularities. We would
also like to mention that in the papers [28]-[29] elliptic functions, actually Weierstrass elliptic
p-functions, were found with Julia sets of various topological types.

As the reader may recall, we dealt in Section 2 with the set of points not escaping to oo, and
despite of the fact that set of points escaping to oo was large (of Hausdorff dimension 2), its
complement turned out to be geometrically and dynamically sound. For elliptic functions,
the situation is in some sense better. We have the following.
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Theorem 3.2. If f : @ — @ is an elliptic function, then
2q

HD(L(f) < 2

And as its immediate consequence, we get the following.

Corollary 3.3. If f : @ — @ is an elliptic function, h := HD(J(f)), then H*(Io(f)) = 0,
and consequently ls(Io(f)) = 0.

3.2. Gibbs and Equilibrium States. Keeping in this section the assumption that f : ¢'—
(' is an arbitrary elliptic function, our aim is to discuss the results concerning Gibbs and
equilibrium states obtained in [50]. Let "= @/A be the torus generated by the lattice A and
let IT : @ — @/A be the canonical projection. Let P = TI(f~'(c0)) be the set of ‘poles’ on
the torus 7. The map f : @'\ f~'(c0) — € uniquely projects down to the holomorphic map
F:T\P — Tsothat Foll =Ilo f, i.e. the following diagram commutes

o\ fl) Ly @

Hl ll‘[ (3.1)
e L 1

Notice that we have a little bit more. Since the function f is constant on fibres of II, there
exists a unique holomorphic map f : T — @ such that f(II(z)) = f(z) for all z € C.
Analogously as in Section 2, the dynamical system F' : T\ P — T will be our our primary
object of interest in this section.

Following the classical case of subshift of finite type [12] (more generally the case of open
distance expanding maps) or, more appropriately in this context, the approach initiated
in [18], one is tempted to develop the theory of Gibbs and equilibrium states for Holder
continuous potentials ¢ : T' — IR. To be really general suppose that ¢ : T" — IR is an arbitrary
function; no other assumptions. The basic tool of any known version of thermodynamic
formalism is an appropriate Perron-Frobenius operator which in our context would take on
the form

Log(z) = > e®Wg(y).

yeF—1(x)

Notice that the series defining the Perron-Frobenius operator L, is infinite and in order to
make it well-defined and bounded on the Banach space C'(T) of continuous functions on 7
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one should demand that with a universal constant C' > (
Ly(1) = Z W) < O
yeF~1(z)

for all z € T'. Let us examine what this requirement really means. First of all we immediately
see that ¢ cannot be uniformly bounded from below. To get a deeper insight fix 7 € IT"(x).
Then y € F~'(z) if and only if there exists w € A such that f(y) = Z + w. Therefore

Ly(M)=3> 3 W

weA ye f-1(F+w)
If |w] is big, then y € f (& 4 w) is near the pole b of f : T — @, where we can write that

F+w=f(y)= 7(ff(?;))qb

with Gy, a holomorphic function defined near b, such that G,(b) # 0 and where, let us recall,
gy > 1 is the multiplicity of the pole b. Since the set of poles P C T is finite the series

SN + w| )

beP weA

converges with arbitrarily chosen ¢, > 0. Trying to apply the comparison test, we would
therefore require that with some constant L > 0

|y—m%>“%
Gu(w)]

for all poles b € P and all y € f‘l(:i + w) being close to b. Or equivalently

d(y) <log L — (2 + €,) log |Gy (y)| + (2 + &) g log |y — b

near b. This inequality suggests us that we deal with the class of potentials ¢ : T" — ; called
in the sequel summable, satisfying the following two conditions.

emw@»SLﬁ+m*”“:L<

(a) For any open set V' containing P, ¢ is Holder continuous on 7'\ V.
(b) For every pole b € P there are ¢, > 0 and Holder continuous function Hj, such that
d(z) = Hp(2) + (2 + €5)qp log |2 — b| on a sufficiently small neighbourhood of b.

Of course the most significant potentials of the form —tlog|F’|, (¢t > 0). If the map F is
hyperbolic then these potentials are summable and Bowen’s formula holds. If however F
is not hyperbolic, in particular if the Julia set contains critical points, then the potentials
—tlog |F'| are not any longer summable, and as in the case of rational functions, the theory
described in this subsection does not apply to them. However, as long as the critical points are
not recurrent a lot can be said about conformal, invariant and geometric measures associated
to the potential —hlog|F’| (see Subsection 3.3).
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Given a measurable function ¢ : T — [0, +00], a Borel probability measure m on T is said to
be t-conformal if and only if m(J(F)) =1 and

m(F(4) = [ wdm

for every Borel set A C T such that Fj4 is one-to-one. Unlike the case of hyperbolic ex-
ponential functions, due to compactness of the torus 7', it is much easier here to construct
(generalised) conformal measures. Namely, the map

;‘51/
ov(1)
discussed in Subsection 2.2.1 is in our space continuous on the compact convex set of Borel
probability measures on 7. So, the Schauder-Tichonov theorem applies and we obtain a ke ?-
conformal measure with some constant £ > 0. The problem of defining pressure is however

the same as in Subsection 2.2.1 and we resolve it in the same way as there by employing the
pointwise definition.

vV —

1 n—1 ) 1
P(¢,z) =limsup—log > exp (Z ¢ o F’ (y)) = lim sup — log £3 (1) ().
n—oo T =0 n—oo T

yeEF—"(z)

The key point to obtain all the results discussed below is a very detailed analysis of the
behaviour of the normalised Perron-Frobenius operator L5 = £ 'L4. Apart from (a) and (b)
the third general assumption is that

sup{P(¢,z) : x € T} > sup(¢p).

Concerning the operator ﬁ¢ itself, it turns out to be almost periodic and admits a continuous,
everywhere positive function p: T'— IR such that

Ly(p) = p.

As a result of an extensive analysis of its behaviour, one gets the following.

Lemma 3.4. For every x € T, P(¢,x) is the same, and the common value P(¢), called the
topological pressure of ¢, is given by the following formula

.1 n 1 n
P(¢) = lim —log Li(z) = lim —log||£5(1)]|ec-

n—oo n,

Theorem 3.5. There exists a unique exp(P(p)—¢)-conformal measure my onT and a unique
Borel probability F-invariant measure 14 absolutely continuous with respect to the measure

mg. The measure g is in fact equivalent to m, and 5—5& = p, the fixed point of the Perron-

Frobenius operator ﬁ¢, normalised so that [ pduy = 1. The measure py is called the Gibbs
state of the summable potential ¢.
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Passing to equilibrium states, denote by My (M) the space of all F-invariant (ergodic)
Borel probability measures on J(F') for which [¢dy > —oo. Let x, = [log|F'|du be the
characteristic Lyapunov exponent of the measure p. A simple observation (based on similar
behaviour of ¢ and log |F'| near poles) is that if 4 € Mg then x,, < 4+00. A more involved
argument (more difficult than in the case of rational functions since F' : T\ P — T is not
Lipschitz continuous) leads to the following

Theorem 3.6. (Ruelle’s inequality) If p € M, then h,(F) < 2max{0, x,}. In particular if
h,(F) >0, then x, > 0.

Another technical fact needed to establish the variational principle and to identify all equi-
librium states (which are defined just below) of ¢, is this.

Proposition 3.7. If u € Mg and x,, > 0, then there exists a countable generating partition
a (modp) such that its entropy H,(a) is finite. In particular, h,(F) = [logJ,du, where J,
15 the Jacobian (d‘;ZF) of F with respect to the measure p, well-defined on the complement of
a set of measure zero.

Armed with these last two results and Theorem 3.5, one proves the following

Theorem 3.8. (Variational Principle) We have

A measure p € M, is called an equilibrium state of ¢ if h,(¢) + [ ¢dp = P(¢). The following
result can be therefore treated as a completion of Theorem 3.8.

Theorem 3.9. The Gibbs state i, (proved to exist in Theorem 3.5) is the unique equilibrium
state of the potential ¢.

Addressing referee’s questions we would like to remark that in Theorem 3.6 and Proposi-
tion 3.7 the assumption p € M, can be relaxed and as, a consequence, one gets similarly as
in the case of rational functions, the following

Theorem 3.10. If u is a Borel probability F-invariant ergodic measure with positive Lya-
punov exponent, then
hy
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and moreover,
- logu(B(z, 1))
r—0 log r

= HD(n)

for py —a.e. x € J(F).

3.3. Critically Non-Recurrent Elliptic Functions.

3.3.1. Preliminaries. Throughout this whole section except at the very end, we discuss
the content of [42]. In the previous section an elliptic function was exclusively treated as
a dynamical system. Trying to say something finer than in Section 3.1 about the fractal
geometry of the Julia set of an elliptic function, some restrictions on the class of functions to
be analysed are needed. In [42] this class was defined by analogy with the case of rational
functions of the Riemann sphere treated in [69], [70]; comp. [73].

Definition 3.11. An elliptic function f : @ — @ is called critically non-recurrent if and only
iof the following three conditions are satisfied
(a) ¢ ¢ w(c) for every critical point ¢ of f lying in J(f)
(b) w(c) is a compact set for every critical point ¢ of f lying in J(f)
(c) every critical point ¢ in the Fatou set belongs to the basin of attraction of either an
attracting or rationally indifferent periodic point

Denote by Q(f) the set of rationally indifferent periodic points of f. Let

Crit(J(f))

be the set of all critical points of f that are contained in the Julia set J(f). The result which
permits us to start off and to continue our analysis of critically non-recurrent elliptic function
is the following result bringing Mané’s theorem from [47] to the context of elliptic functions.

Theorem 3.12. Let f : @ — @ be a non-recurrent elliptic function. If X C J(f)\ Q(f) is
a closed subset of @, then for every e > 0 there exists 6 > 0 such that for every x € X and
every n > 0, all the connected components of f~"(B(x,0)) have Fuclidean diameters < e.

Let
Sing™(f) = |J () U Crit(J(f)) U f ' (0)).
n>0
The following proposition is a consequences of Theorem 3.12. It is important for further
considerations in [42], and is interesting in itself as it gives a very precise description of radial
points.
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Proposition 3.13. If z € J(f) \ Sing (f), then there exist a positive number n(z), an in-
creasing sequence of positive integers {nj}jzl, and a point

v = x(2) € w(z) \ () Uw(Crit(z)))
such that x # oo if z ¢ Io(f), lim; e ™ (2) = = and

Comp(z, f*(2), f",n(2)) N Crit(f) =0

for every j > 0, where Comp(z, f™(2), f™,n(2)) denotes the connected component of
[ (B(f"(2),n(2))) that contains z and Crit(z) = {c € Crit(J(f)) : ¢ € w(z)}.

3.3.2. Hausdorff, packing and conformal measures. As in Section 2 the link between
dynamics and geometry of elliptic functions is provided by Sullivan’s conformal measures.
Recall that given ¢ > 0, a Borel probability measure m; on J(f) is called ¢-conformal if and

only if
:/ | f*"dms,
A

whenever A C J(f) is a Borel set such that fj4 is one-to-one and f* is the derivative of f
with respect to the spherical metric on €. If we give up the finiteness assumption of mg but
we replace f* by the standard Euclidean derivative f' of f, we denote the resulting conformal
measure by m,. and call it the Euclidean ¢-conformal measure for f. The relation between
these two measures is that

dm,

() = (14 [<PY

In fact, several weaker versions of conformal measures are needed in [42], but we will not
discuss them here. Let h = HD(J(f)) be the Hausdorff dimension of the Julia set of f. The
h-conformal measure for f is constructed by the K (V')-method described in Appendix 1. The
bad set here, called crossing in [42], is any finite set

Y C {0} UR(H)U | F1(Cri( (1)

such that the following conditions are satisfied

(yl) o €Y.

(y2) YN {f™(x):n > 1} is a singleton for all z € Crit(J(f)).
(v3) YﬂCrlt( ) =10

(y4) Q(f) €

Now, we can choose any sequence {r,}>°, of posmve reals converging down to zero and such
that 0B,(Y, r,)NCrit(f) = (), where the subscript ‘s’ indicates that the ball is considered with
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respect to the spherical metric on €. Following the general scheme outlined in Appendix 1,
one defines now the compact forward invariant sets

Ko=(VJ(NH\NT(BE,m), n>1,
5=0
and one applies Lemma 8.2 to get semi-conformal measures. This is the beginning of the route.
Introducing a special order in Crit(.J(f)), a stratification of the closure of the postcritical set,
fighting with rationally indifferent periodic points, critical points and poles of f, which are
potential candidates for atoms of the described conformal measure, we eventually arrive at
this.

Theorem 3.14. There exists a unique h-conformal measure m for f : @ — @. This measure
18 atomless.

Using this conformal measure m to gain information about Hausdorff and packing measure,
after lengthy and fairly technical considerations, we end up with the following.

Theorem 3.15. Let f : @ — @ be a critically non-recurrent elliptic function. If h =
HD(J(f)) = 2, then J(f) = C. So suppose that h < 2. Then

(a) HMJ(f)) =0,

(b) P*(J(f)) >0,

(c) P(J(F)) = oo if and only if A(f) # 0,

where H” and P" are defined by the means of spherical metric on .

So, it HD(J(f)) < 2, then the Hausdorff measure always vanishes, whereas packing measures
turns out to be the right geometric measure exactly when there are no parabolic periodic
points. If Q(f) # 0 then H*(J(f)) = 0,P"(J(f)) = oo (even locally) and no geometric
interpretation of the h-conformal measure has been so far found in this case.

Note that a similar phenomenon has been observed by D. Sullivan in the context of geomet-
rically finite Kleinian groups withs cusps of different ranks (see [67]) and in [52] in the case
of conformal irregular infinite iterated function systems.

3.3.3. Invariant measures equivalent to h-conformal measure. Since it is not difficult
to show that the h-conformal measure m of the postcritical set vanishes, the method of M.
Martens (see Appendix 2) applies and leads to the following.

Theorem 3.16. There exists a o-finite f-invariant measure p that is absolutely continuous
with respect to the h-conformal measure m. In addition, p is ergodic and conservative.
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The most intriguing problem here is to determine whether the o-finite invariant measure u
is finite or infinite. In order to deal with this problem, it is useful to recall from [70] the
concepts of finite and infinite condensations. Namely, a point z is of finite condensation with
respect to a Borel measure v if there is an open neighbourhood U of z such that v(U) < oo;
otherwise z is said to be of infinite condensation of measure v. Our strategy to cope with
the problem of finiteness of the measure p was to identify the points of its finite and infinite
condensation. To our surprise, careful estimates permitted us to prove the following.

Theorem 3.17. oo is a point of finite condensation of the measure .
We were able to go further to establish the following.

Theorem 3.18. The set of points of infinite condensation of p is contained in the set of
parabolic points Q(f).

As an immediate consequence of this theorem, we get the following.

Corollary 3.19. If Q = (), then there exists an f-invariant probability measure p equivalent
to m.

Since the case J(f) = € rules out parabolic points, as an immediate consequence of this
corollary we get

Corollary 3.20. If J(f) = @, then there is a unique probability measure p equivalent to the
Lebesgue measure on .

It follows from the above that in order to understand the problem of finiteness of the o-finite
f-invariant measure p, one must analyse in detail the parabolic points. Such analysis has been
done in [70] and moves unchanged to the case of critically non-recurrent elliptic functions to
give the following.

Proposition 3.21. If w € Q\ O, (Crit(J(f))), then u has infinite condensation at w if and

; 2p(w)
only if h < IR

As an immediate consequence of this proposition and Theorem 3.1, we get the following
remarkable corollary.
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Corollary 3.22. If QN O, (Crit(J(f))) =0 and
max{q, : b € RN f~'(00)} > max{p(w) : w € Q(f)},

then the invariant measure p is finite.

Proposition 3.23. Ifw € Q and h < pz(i()‘jr)l, then p has infinite condensation at w.

Theorem 3.24. Ifc € J(f) is a critical point of f of order s, w = f(c) € Q, and h < ;éf)(i)l,

then u has infinite condensation at w.

4. WALTERS EXPANDING CONFORMAL MAPS

In this chapter we present the theory developed in [39]. The chapter begins with a very general
setting and then we gradually narrow it down to applications to very concrete meromorphic
functions.

4.1. Basic Facts and Definitions. We first define Walters expanding mappings and collect
their selected properties needed in the sequel. For a full account of Walters theory see [80].

So, let Xy be an open and dense subset of a compact metric space X endowed with a metric
p. We call a continuous map 7' : Xy — X Walters expanding provided that the following
conditions are satisfied:

(la) The set T~'(x) is at most countable for each r € X.

(1b) There exists 6 > 0 such that for every z € X and every n > 0, T7"(B(z,20)) can
be written uniquely as a disjoint union of open sets {B,(z)}yer-n(s) such that y €
By(z) and T" : By(x) — B(z,20) is a homeomorphism from B, (z) onto B(z,26). The
corresponding inverse map from B(x, 2d) to By(z), y € T~"(z), will be denoted by T, ™.

(1c) There exist A > 1 and n > 1 such that for every x € X, every y € T "(x) and all
21,22 € By(x)

d(Tn(Zl), Tn(Zg)) Z )\d(Zl, 22).

(1d) Ve > 03s > 1Vz € X T~%(x) is e-dense in X.

Recall that a function g : Y — IR, where (Y, p) is a metric space, is Holder continuous if
there exist 5 > 0 and L > 0 such that for all y1,y2 € Y, |g(y1) — g(v2)| < Lp(y1,y2)?. The
parameter [ is called the Holder exponent of the function g and L is called its Holder constant.
A function ¢ : Xy — IR is called dynamically Holder if there exists § > 0 and L > 0 such
that for every n > 1, every 2 € X and every y € T~"(x), the restriction ¢|Ty—n(B(x75)) is Holder
continuous with exponent 8 > 0 and constant L. For every n > 1 put

Sub(a) = z b0 Ti(z).
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Using (1c), the standard argument in thermodynamic formalism shows that there exists a
constant C' > 0 such that

Ve e X, Yy,z € B(x,0), Yn>0, YueT ™(x)

|Sud (T () — Sud (T (2))| < Cdl(y, 2)°. (4.1)
The function ¢ : Xg — X is called summable if

sup{ > eXp(cb(y))} < oo,

TEX \ yeT—1(z)

Given x € X, similarly as in the case of elliptic functions, we set

i 1
P,(¢) =limsup—log > exp(Sn(o(y))).
n—oo T _
yeT~"(x)

It is not difficult to prove that if ¢ : X, — IR is dynamically Holder, then P,(¢) = P,(¢) for
all z,y € X. The common value is called the topological pressure of ¢ with respect to 7" and
is denoted by P(¢). We should notice that P(¢) < oo if and only if ¢ is summable. From the
results of P. Walters in [80] one can extract the following.

Theorem 4.1. If T : Xy — X is a Walters expanding map and ¢ : Xg — X is a dynamically
Hoélder summable function, then there exist mg and g, Borel probability measures on X such
that

(a) Vn>1, Vo € X, Yy € T"(x) and for every Borel set A C T,7"(B(w,0))
my(T"(A)) = / e (@=5n ) g,
A

(b) e is T-invariant which means that py o T™' = py, ergodic and equivalent to my with
continuous Radon-Nikodym derivative bounded away from zero and infinity.

The reader familiar with thermodynamic formalism, for example with Sections 2.2.1 or 3.2,
may notice that the property (a) means that the measure my is an eigenmeasure of the
operator dual to the appropriate Perron-Frobenius operator with eigenvalue e(®). Many
additional stochastic properties of the dynamical system (T, 11,) can be found in [80].

A Walters expanding map F' : Xy — X is called conformal if X C € and if for every
r € X, every n > 1 and every y € F~"(x) the inverse map F, " : Bx(v,20) — Xy has
a (unique) holomorphic extension to the ball Bg(z,2). This extension will be denoted by
the same symbol F, ™. From now and throughout this entire section we assume that F' is
a Walters expanding conformal map. Of special importance will be the following functions
g:: Xo — IR,t > 0 given by the formulae

gi(x) = —tlog|F'(x)|.
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It immediately follows from Koebe’s distortion theorem that each function g; is dynamically
Hoélder with the Holder exponent 1/3. Following [52] we define 6 to be the infimum of all
t > 0 for which the function g; is summable. Due to Proposition 2.4 in [39],

O =inf{t > 0: P(g;) < oo}.

The following proposition is a straightforward standard consequence of the definition of pres-
sure and property (1c).

Proposition 4.2. The function P : (0p,00) — IR is convez, continuous, strictly decreasing
and limy_, o, P(t) = —o0.

We define
hrp =h =inf{t: P(t) < 0}.
Obviously hr > 0(F). Following the terminology of [52] we call the map F regular if P(h) = 0,
strongly regular if there exists ¢ > 0 such that 0 < P(t) < oo and hereditarily regular if
P(0r) = oo (which due to (1c) and (1d) implies that lim; »y, P(t) = +00). In view of
Proposition 4.2 each strongly regular map is regular and each hereditarily regular map is
strongly regular. If F' is regular, then m = my, is called the h-conformal measure for F. Its
F-invariant version will be denoted by p. Let
X =[] F "(Xo).
n>0

The following statement is an immediate consequence of Theorem 4.1

Theorem 4.3. If F' is a reqular Walters expanding conformal map, then there exists a unique
F-invariant Borel probability measure puy, absolutely continuous with respect to the h-conformal
measure my. The measure py, is ergodic and the Radon-Nikodym derivative is bounded away
from zero and oo.

4.2. Hausdorff and Box Dimensions, Hausdorff and Packing Measures. In this entire
section we will be primarily interested in the dynamical system F': X, — X and geometry
of the set X,. The first result in this direction, a version of Bowen’s formula is this.

Theorem 4.4. If F : Xg — X is a Walters expanding conformal map, then HD(X) < h.
If, in addition, F is strongly regular, then HD(Xy) = h and, in particular, HD(X) > Op.

Passing to the upper ball-counting dimension (occasionally called box-counting or Minkowski
dimension), we let X be an arbitrary metric space and A an arbitrary subset of X. We denote
by N,(A) the minimal number of balls with centres in the set A and of radius r > 0 needed
to cover A. The upper ball-counting dimension of A is defined to be

BD(A) = limsup w.

r—0  —logr

The formula for the upper ball-dimension of the set X is given by the following.
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Theorem 4.5. If F is a reqular Walters expanding conformal map and if W is a finite d-net
of X, then
BD(X) = max{HD(X,,), BD(F~'(W))}

= max{HD(X ), max{BD(F~'(w)) : w € W}}.

We would like to bring the reader’s attention to the fact that although the set F~1(1W) is
countable, its box dimension can be positive. We would also like to emphasise the fact that in
Theorem 4.5 only the first inverse iterate F~!(TW) is involved and higher inverse iterates are
not needed. The problem of determining whether Hausdorff (H") and packing (P") measures
of the set X, are finite and positive is a more delicate issue. However the following general
result holds.

Theorem 4.6. If F is a reqular Walters expanding conformal map, then H"(X,) < oo and
Ph(X,) > 0. In addition H* < my, and m;, < P".

The general tools, applied for example to jump-like conformal maps, to deal with the problem
whether H"(X ) is positive or vanishes or P"(X) is finite or infinite are collected in the
following theorems.

Theorem 4.7. Suppose F' is a reqular Walters expanding conformal map. Assume there
exist v > 1 and L > 0 such that for every x € Xy and for every r satisfying the condition
r > ydiam(F_'(B(F(x),0))), we have m(B(z),r)) < Lr*. Then H"(X4) > 0.

Theorem 4.8. Suppose F is a reqular Walters expanding conformal map. If there exist a
sequence of points z; € X,j > 1, and a sequence of positive reals {r;}2 such that r; < 6/2

and B
hmj%omh( (fjﬂ"j)) o
i

then H'(X ) = 0.

Theorem 4.9. Suppose that F is a reqular Walters expanding conformal map. Assume that
there exist v > 1 and 0 < & < § such that for every x € Xy and for every r satisfying the
condition ydiam(F_1(B(F(x),0)))) < r < &, we have my,(B(x,7)) > Lrh. Then P*(X ) < oc.

Theorem 4.10. Suppose F' is a reqular Walters expanding conformal map. If there exists a
sequence of points z; € X,j > 1 and a sequence of positive reals {r;}> such that
mp(B(z;,7;
li—mjﬂoo h( (h]’ y)) =0,

T
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then Ph(X,) = co.

Let Asymp(f) denote from now on the set of asymptotic values of the function f under
consideration. Concluding this rather abstract section we would like to write that if f : ' — T
is a meromorphic mapping for which

J()n L) f2(Crita(f) U Asymp(f)) = 0,

n=0
where J(f) is the Julia set of f, Crite(f) is the set of general critical points (i.e. the set
of critical points or multiple poles of f), then it is not difficult to prove that if M : €' — @
is a Mobius transformation such that M(oco) ¢ J(f), then the Julia set of the map f =

M=o foM : @\ M~'(co) — @ is a compact subset of € and f restricted to its Julia set
is a conformal Walters expanding map. In particular all the theorems proved in this section

apply to f .

4.3. Baranski and Post-Baranski Maps, I. In this section based on Section 4 from [39] we
give a brief account of the class of Baranski and post-Baranski maps. The latter are all Walters
expanding conformal maps and provide a good motivation for dealing in the next section
with the larger class of jump-like conformal maps. We consider a class of transcendental
meromorphic functions of the form

f(2) = H(exp(Q(2))) and  f(2) = exp(Q(H(2))),

where @ and H are non-constant rational functions. Let Q7 '(co) = {d; : j = 1,...,m} be
the set of poles of (). Then

F(2) = Hlexp(Q(=)) : T\ {d;j = L,... ,m} = T
and
f(2) = exp(Q(H(2))) : €\ H "({d; : j = 1,...,m}) = @\ {0,00}.

We additionally assume that there is at least one pole d; of ) such that d; # H(0), H(o0).
We may assume without losing generality that d; = d;. Then the set

Essoo(f) == f"({d; :i=1,...,m})
n=0
contains infinitely many points. Since {0,00} N H*(d;) = 0, the set
Esso(f) = U F"(H '({d; :==1,...,m}))
n=0

contains infinitely many points. Using Montel’s criterion it can be easily proved that

J(f) = Bss(l) and J(f) = Essuo(J).
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Notice that Asymp(f) = {H(0), H(co)} and Asymp(f) = {0,000} are respectively the sets of
asymptotic values f and f. We say that f is a Barariski map if the following conditions are
satisfied

(1) J(f) N UnZo f™ (Crit(f) U Asymp(f)) =0,

(2) if a € Crit(Q), then exp(Q(a)) is not a pole of H,

(3) if H has a multiple pole, then Q(00) # oc.

The map f is then called a post-Barafiski map. Baranski himself in his pioneering paper
[7] considered the case where @) is the identity map. The maps f and f are closely related,
namely as the following two formulae show, one is a factor of the other.

foH(z)=Ho f(z) =z¢ Fss(f). (4.2)

exp(Q)o f=foexp(Q) =z ¢ Ess(f). (4.3)
These relations allow us to deduce lots of valuable dynamical and geometrical properties of
the map f from the corresponding properties of the map f. This is why the rest of this section
is devoted to the post-Baranski map f The first observation is that there is a x € (0, +00)
such that
J(f) c{z:e7" < |2 < e}
The second one is that

770 U 7 (Gt () U Asymp (/) = 0.

Armed with these two observations, one can prove the following first basic results about
post-Baranski maps.

Theorem 4.11. [ : J(f) \{b; : g =1,...,p} = J(f) is a Walters expanding conformal
map.

Here
{bj:5=1,2,...,p} = (Qo H) ().
For every j =1,...,plet ¢ > 1 be the order of b; treated as a pole of () o H. Note that for

every z € J(f), each holomorphic branch of f~1 defined on the ball B(z,26) can be expressed
in the form

f]_aln(w) =(Qo H);;(log(w) + 2min), (4.4)
where j =1,...,p,a=1,...,¢;, logw is the value of the logarithm of w lying in the rectangle
[—k, k] x [0,27] and (Q o H);, is a local holomorphic inverse branch of @ o H. For n with
sufficiently large modulus each such inverse branch can be interpreted as a branch of (Qo H) !
defined on some vertical strip either of the form [—k, x| x [T, +o0] or [—k, k] X [—o0, =T,
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T >> 1, depending up on whether n is positive or negative and sending oo to the pole b; of
Q o H. Let (X,d) be a compact metric space. For every A, B C X define

dist(A, B) ;= inf{d(a,b) :a € A, b € B}
and
Dist(A, B) := sup{d(a,b) :a € A, b € B}.

Tedious technical calculations lead to the following basic facts about post-Baranski map.

Theorem 4.12. The map ﬁJ(f) is a jgump-like conformal map, i.e. there exist C' > 1 and
A > 2 such that the following conditions are satisfied:

(2a) {b;:j=1,..., }mf Y (f)):(/).
(2b) For every x € J(f) the set f~ Y(x) can be uniquely represented as

{xj,a,n: HGZ, 1§]§p7 1SGSQJ}
(2¢) max<jcp maXi cacy, SUPye sy {liMnsoo Dist (b, f0 (B(x,0)))} =

(2d) Vz € J(f), V1<j<p Vi<a<g, Vn€Z, |n|>A

T gt
C7Hnl ™ < |(fran) ()] < Cln| 5.

(2¢) Yw,z € J(f), V1 <j<p, Va,be€{l,...,q}, Vk,n€Z, |k|—|n|]| > A,
In| = A, [k = A

dist( ;4. (B(w,0)), fip(B(2,6) > C~!

(2f) Yw,z € J(f), V1<j<p, Vaec{l,...,q}, Vk,n€Z kn>0, ||kl —|n||> A,
In| > A, [k| > A

1
n| 1.

Dist(f; 3 (B(w.0)). Fin(B(2,8))) < C Ik 75 = Jnl 5]

As an immediate consequence of (2d), with a bigger constant C' perhaps, we get the following
Vo € J(f), Vicjp, V1<a<gqj, Vn€Z, |n|> A

a;+1 aj+1

CMn|™"%" < diam(f;,.,,(B(x,6))) < Cln| %" (4.5)
Letting k — oo, it immediately follows from (2¢), (2e) and (2f) that

VI<j<p, Voeyjyr V1<a<g;, V|n[>24

Cln| W < dist(b;, f; on(B(2,6))) < Dist(b;, f; on(B(2,6))) < Cln| 7. (4.6)
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We end this section with large classes of examples of Baranski maps. The family fy\(z) =
Atan(z), 0 < |z| < 1 was explored in [7]. In fact the map Atan(z) is a Baranski map as
long as both asymptotic values £\ lie in basins of attraction to attracting periodic cycles. If
(Q(z) is a polynomial different than identity, we have a transcendental meromorphic function
f of the complex plane with one essential singularity at co. The most transparent class of
examples is provided by the following.

Example 1. Let

_ Aexp(2?) + Bexp(—2P)
/(z) = C exp(zP) + D exp(—2zP)’

Thus Crit(f) = {0}, Critg(f) = Crit(f) and Asymp(f) = {2, 2}. If 2, 2 +£ oo, then f is

not entire. Notice that conditions (2) and (3) of the deﬁnitiofl (?f Barargsk?maps are always
satisfied for the map f. If in addition, condition (1) is satisfied, then f is a Baranski map
and all the results stated in the forthcoming Section 4.5 apply. If @ is not a polynomial,
then f has more then one essential singularity. Let us analyse in detail the following concrete

example of this type.

AD — BC #0.

Example 2. Let H(z) = z,Q(z) = 2. Then f: @'\ {-1} — @'\ {0, o0},
f(2) = exp (Z — 1) :

z+1

and f = f. Since the pole of Q is not an omitted value of f, we see that U, f(-1)
contains infinitely many points and consequently

1) = U (1)

Since f~1(S') € S, we have f"(—1) € S! for all n € IN. Therefore J(f) C S'. We shall
prove that f is a Baranski map and its Julia set .J(f) is a topological Cantor set. Note that
Critg(f) = 0 and Asymp(f) = {0,00}. One can check that f(1) = 1 and f'(1) = 1/2, so
the number = 1 is an attracting fixed point of f. Thus J(f) is a topological Cantor set
contained in the circle S'. In order to conclude the proof it is now sufficient to demonstrate
that 1 attracts both asymptotic values 0 and oco. Since f'(z) > 0 for z € R\ {—1}, the
function f is strictly increasing on (—oo,—1) and (—1,4+00). Now, if x € (1,00), then
f(1) < f(x) < x. This implies that lim, , f"(x) = 1 for all x € (1,00). In particular
lim,, o f™(00) = 1 since f(oc0) = e € (1;00). If z € (—1,1), then z < f(x) < f(1) = 1.
This implies that lim, . f"(z) = 1 for all z € (—1,1). In particular lim,_,,, f*(0) = 1 since
f(0)=1/e € (—1,1). We are done.

4.4. Jump-like Conformal Maps. It turns out that the properties established in Theo-
rem 4.11 and Theorem 4.12 are themselves sufficient to provide a fairly complete description
of dynamics and geometry of the maps appearing in these theorems. This motivated us to
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single them out and to introduce the class jump-like conformal maps. We call a Walters ex-
panding conformal map F': Xy — X jump-like if the following requirements are met. There
exist C > 1,p>1,A>2,b; € X and ¢; > 1 for every j = 1,...,p such that the following
conditions are satisfied:
(3a) {b1,...,b,} NF1(X)=0.
(3b) For every z € X, the set F~!(z) can be uniquely represented as
{xj,a,n: HGZ, 1§]§p7 1SGSQJ}
(3¢) max; <<, Maxi<a<y; SUPgex {liMny o0 Dist(by, ! (B(,0)))} = 0.
Bd) Ve e X, V1<j<p, Vi<a<yg, YneZ, |n|>A,
4+t 4+t
C7lnl % < |F'(wj00)] < Clnf
(3e) Vy,z € X, V1<j<p, Va,be{l,...,q}, Vk,ne Z, ||k|—|n|| > A,
In| = A, |k| = A,

a1 1
k[ = |n|

dist(F," (B(y,9)),F,, (B(2,0))) > C"

b,

(3f) Vy,z€ X, V1<j<p, Vae{l,...,q;}, Vk,ne Z, kn >0, ||k|—|n|| > A
In| = A, [k] > A,

Dist(F;, (B(y:0)), F! (B(.9))) < C [k =[] .

Zj,a,n

The name ‘jump-like’ is motivated by a fairly strong formal similarity of those maps and the
jump maps considered in the theory of parabolic rational functions. It is a matter of relatively
simple calculation to prove the following

Proposition 4.13. Suppose that F' : Xg — X s a jump-like conformal map and let ¢ =

max{q; : 1 < j < p}. Then the map F is hereditarily reqular and 6p = q+L1'

As an immediate consequence of this proposition and Theorem 4.3, we get the following.

Theorem 4.14. If F is a jump-like conformal mapping, then there exists a unique F-invariant
Borel probability measure py, absolutely continuous with respect to the h-conformal measure
my,. The measure yy, is ergodic and the Radon-Nikodym derivative is bounded away from zero
and oo.

Since it is easy to see that if F' is a jump-like conformal map, then for every z € X,

BD(F~!(z)) = -4, where ¢ = max{g; : 1 < j < p}, as an immediate consequence of

Proposition 4.13 and Theorem 4.5 we get the following.

Theorem 4.15. If F': Xqg — X is a jump-like conformal map, then
BD(X) =HD(X4)-
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Based on the assumptions (3a)-(3f) one can verify by very technical considerations the suf-
ficient conditions established in Section 4.2. As the result we get the following complete
description of geometric measures, and simultaneously, geometric characterisation of dynam-
ically defined, conformal measure my,.

Theorem 4.16. Suppose that F': Xqg — X is a jump-like conformal map. Then
(a) If h <1, then 0 < P"(X ) < oo and H*(X,) = 0.
(b) If h =1, then 0 < P"(X), H"(X4) < oco.
(¢) If h>1, then 0 < H"(X ) < oo and P"(X) = .

4.5. Baranski and Post-Baranski Maps, II. In view of Theorem 4.11 and Theorem 4.12
from Section 4.3, all post-Baranski maps are jump-like. Therefore, their fractal and dynamical
properties proved in [39] can be briefly comprised in the following.

Theorem 4.17. Proposition 4.13, Theorem 4.15, Theorem 4.14 and Theorem 4.16 are true
with jump-like conformal maps replaced by post-Baranski maps.

Since H(J(f)) = J(f), where f is a Baranski map and H is the rational function involved in
the formula defining it, one can deduce relatively easily the following.

Theorem 4.18. If f is a Bararnski map, then:
(a) If h <1, then P"(J(f)) > 0 and P"| ;) is o-finite, while H*(J(f)) = 0.
(b) If h = 1, then P"(J(f)) > 0,H"(J(f)) > 0 and both measures restricted to J(f) are
o-finite.
(¢) If h > 1, then H"(J(f)) > 0 and H"| ;s is o-finite, while P"*(J(f)) = oo,
where the Hausdorff measure and packing measure are defined by means of Fuclidean metric.

Theorem 4.19. If f is a Bararnski map, then:

(a) If h < 1, then 0 < P*(J(f)) < oo and H*(J(f)) = 0.

(b) If h =1, then 0 < PR(J(f)), HM(J(f)) < oo.

(c) If h> 1, then 0 < H*"(J(f)) < oo and P"(J(f)) = oo,
where the Hausdorff measure and packing measure are defined by means of spherical metric.
Call Hausdorff or packing measure on J(f) geometric if it is finite and positive. Using the

semi-conjugacy H o f = f o H established in Section 4.3, the following result is an immediate
consequence of Theorem 4.17.
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Theorem 4.20. If f is a Baranski map then there exists a unique f-invariant probability
measure equivalent to a conformal measure.

5. HYPERBOLIC MEROMORPHIC AND ENTIRE FUNCTIONS

The paper [51], whose contents we briefly describe in this section, presents a new uniform
approach to the theory of thermodynamic formalism for a very wide class of meromorphic
functions of finite order. The key point is to associate to a given meromorphic function
f : @ — (€ a suitable Riemannian metric do = |dz|. One then uses Nevanlinna’s theory
to construct conformal measures for the potentials —tlog|f’|, and control the corresponding
Perron—Frobenius operator’s. Here

vo f(2)

[F'(2)e = 1£(2)] 7

is the norm of the derivative of f with respect to the metric do. With this tool in hand one
is able to obtain geometric information on the Julia set J(f) and on the radial (or conical)
Julia set

() = {z € I() ¢ limin ()] < o}

In [51], in contrast to the works reported on in the previous sections, no periodicity is needed
nor Walters expanding property is assumed to be satisfied. We now give a fairly precise
description of the results obtained in [51].

5.1. Thermodynamical Formalism. The main idea, which among others allows one to
abandon periodicity, is to associate to a given meromorphic function f a Riemannian con-
formal metric do = 7|dz| with respect to which the Perron-Frobenius-Ruelle (or transfer)
operator

Lip(w) = > [ ()7 6(2) (5.1)
z€f~1(w)

is well defined and has all the required properties that make the thermodynamical formalism
work. Such a good metric can be found for meromorphic functions f : € — € that are of
finite order p and do satisfy the following growth condition for the derivative:

Rapid derivative growth: There are ap > max{0, —ay} and x > 0 such that
[f'()] =6 1+ [2™) A+ [ f(2)]™) (5:2)
for all finite z € J(f) \ f~'(00). Throughout the entire paper we use the notation
a = o1 + Qo.

This condition is very general and forms the second main idea of [51]. It is comfortable to
work with and relatively easy to verify for a large natural class of functions which include the
entire exponential family A\e®, certain other periodic functions (sin(az + b), Atan(z), elliptic
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functions...), the cosine-root family cos(v/az + b) and the composition of these functions with
arbitrary polynomials. The Riemannian metric o we mentioned above is this.

do(z) = (1 +]2]°2)7"|dz|.

The third and fourth basic ideas in [51] were to revive the old method of construction of
conformal measures from [16] (which itself stemmed from the work of Sullivan [66], [67], [68]
and Patterson [56]) and to employ results and methods coming from Nevanlinna’s theory.
These allow to perform the construction of conformal measures and to get a good control of
the Perron-Frobenius-Ruelle operator, resulting in the following key result of [51].

Theorem 5.1. If f : @ — @ is an arbitrary hyperbolic meromorphic function of finite order
p that satisfies the rapid derivative growth condition (5.2), then for every t > £ the following
are true.

(1) The topological pressure P(t) = lim,_,o0 = log L(1L)(w) ezists and is independent of w €
J(f)ndc.

(2) There ezists a unique \| f'|% -conformal measure m; and necessarily X = e¥®). Also, there
exists a unique Gibbs state g, i.e. py is f-invariant and equivalent to my. Moreover,
both measures are ergodic and supported on the radial (or conical) Julia set.

(3) The density v = duy/dmy is a continuous and bounded function on the Julia set J(f).

Note that for the existence of e"®|f’|*-conformal measures the assumption of hyperbolicity
is not needed. Note also that even in the context of exponential functions (Ae?) and Walters
expanding conformal maps, this result is strictly speaking new since it concerns the map f
itself and not its projection onto infinite cylinder. An important case in Theorem 5.1 is when
h is a zero of the pressure function ¢ — P(¢). In this situation, the corresponding measure
my, is |f'|"-conformal, also called simply h-conformal. Such a (unique) zero h > p/a exists
provided the function f satisfies the following two additional conditions:

Divergence type: The series X(t, w) = 3, p-1() |2| 7" diverges at the critical exponent (which
is the order of the function ¢ = p; w is any non Picard exceptional value).

Balanced growth condition: There are ap > max{0, —ay} and x > 0 such that
LA+ ™) A+ £ (2)]*) < ()] < k(1 [2]™)(1 +]f(2)]*) (5:3)
for all finite z € J(f) \ f~'(00).

Indeed, we have the following.

Theorem 5.2. (Bowen’s formula) If f : @ — @ is a hyperbolic meromorphic function that is
of finite order p > 0, of divergence type and of balanced derivative growth with oy > 0, then
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the pressure function P(t) has a unique zero h > p/a and

HD(J.(f)) = h .

In addition, one easily proves that HD(.J,(f)) < 2.

5.2. Real Analyticity. In the paper [51] the authors developed a new approach to the
issue of real analyticity of the hyperbolic dimension of hyperbolic meromorphic functions. It
allowed them to employ the method of holomorphic extensions of generalised Perron-Frobenius
operators worked out in [75] (comp. [14], [44] ). As the most transparent outcome of this
work, the following theorem (extending the results from [74], [44] and [14]) has been proved.

Theorem 5.3. Let f : @ — @ be either the sine, tangent, exponential or the Weierstrass
elliptic function and let f\(z) = f(Mgz?+ Xa—1297 + ..+ X0), A = (Mg, A1, ..oy Aog) € T X T
Then the function

A= HD(J:(f2))

is real-analytic in a neighbourhood of each parameter \° giving rise to a hyperbolic function

fro.

This result is an example of an application of the general Theorem 5.4 that we present below.
Recall that the Speiser class S is the set of meromorphic functions f : @ — € that have
a finite set of singular values Sing(f~!). We will work in the subclass S, which consists in
the functions f € S that have a strictly positive and finite order p = p(f), and that are of
divergence type. Fix A, an open subset of @, N > 1. Let

My={freS; A€ A}, ACa”,

be a holomorphic family such that the singular points sing(fy') = {ai,-..,aq) depend
continuously on A € A. Consider furthermore H C &), the set of hyperbolic functions from &,
and put

HMy = My NH.
We say that My is of bounded deformation if there is M > 0 such that for all j =1,..., N

‘82)\)\(_2) <Mfi(2)] , AeA and z € J(fy). (5.4)
j

We also say that M, is of uniformly balanced growth provided every f € M, satisfies the
condition (5.3) with some fixed constants x, aq, as.
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Theorem 5.4. Suppose ¢yo € HM and that U C A is an open neighbourhood of \° such
that My, is of uniformly balanced growth and of bounded deformation. Then the map

A HD(Jr(f)\))

is real-analytic near \°.

6. NON-HYPERBOLIC BARANSKI MAPS

In this section we report on the class R of function of the form
f(2) = Roexp(z), (6.1)

where R is a non-constant rational function and the singular set Sing(f~") of f~' is allowed
to intersect the Julia set. The results we described were obtained by Kotus and Skorulski
in [36],[37], [38] [63]. Note that formally the above function f is of the form of Baranski
functions explored in the last three sections of Chapter 4, with R = H and @ being the
identity map. The singular set Sing(f ') clearly consists of (finitely many) critical values of
f and two asymptotic values R(0), R(co). The class R is defined to consist of those functions
given by (6.1) for which there exists an integer ¢ > 0 such that

% € f1({R(0), R(=<)}).

The class H instead consists of those functions defined by (6.1) for which oo ¢ {R(0), R(c0)}
and the forward orbit of the set {R(0), R(c0)} under iterations of f stays within a positive
distance from the Julia set J(f). In what follows, we will consider the classes R and #H
separately.

6.1. The Class R. First, single out from R the family P of all its entire functions, f € P
if and only if R7'(c0) € {0,00}. Set then @ := R\ P. Let Q; be the family of all those
functions in Q for which exactly one of the asymptotic values R(0) or R(co) is eventually
mapped onto co. Put Qp := Q\ Qy, i.e. both R(0) and R(c0) eventually land at co. Put

Py(f) := ©%(Sing(f~1)) \ ©F ({R(c0)}) (6.2)

and

Py(f) == ©*(Sing(f~1)) \ 0+ ({R(0), R(c0)}). (6.3)
Let y denote the chordal metric on the Riemann sphere @. Set
P ={f € P :dist,(P(f), J(f)) > 0},
Q1 :={f € Qi :dist, (P1(f), J(f)) > 0},
Q; :={f € Q@ : disty (P»(f), J(f)) > 0}.
and
R :=P"UQiUQs;. (6.4)
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Exactly as in Section 2, the map f is projected down to the map F' of the cylinder C = @/ ~
and J,.(F) is defined to be composed of all those points z € J(F') whose w-limit set w(z) is
not contained in the union of {—o0, +00} and the closure of the postsingular set of f. Using
method of K (V') set (see Appendix 1) the following two theorems have been proved in [63]
(comp.[62]).

Theorem 6.1. Let f € R*. Then
a) There ezists h-conformal measure m on J(F') for F' such that m is atomless and

m(J.(F)) = 1.
b) If m' is a probabilistic measure on J(F) which is t-conformal for some t > 1, then
m' =m.

c) F is ergodic with the respect to the measure m.
d) 1 <HD(J,(F))=h<2.

and

Theorem 6.2. If f € R* and t > 1, then there exist a unique oy and a unique (t,ay)-
conformal measure my for F': J(F) — J(F)U{oo}. In addition, m(J,(F)) =1 and the map
F' is ergodic with respect to the measure my.

Restricting our attention to the class Q5 C R*, we would like to report that J.Kotus, making
use of Theorem 6.1, was able to prove the following.

Theorem 6.3. If f € Q3, then 0 < H*(J,(F)) < oo, and, in particular, H* and the conformal
measure m (coming from Theorem 6.1) coincide up to a multiplicative constant.

Theorem 6.4. The packing measure P", restricted to J,.(F), is locally infinite at every point

of J.(F).

Theorem 6.5. For every function [ € Q3 there exists exactly one Borel probability F'-
wnwvariant measure p absolutely continuous with respect to the h-conformal measure m. More-
over p is ergodic and equivalent to m.

6.2. The Class H. Let B = TI(f~'(c0)), where TI is the canonical projection from €' onto
the cylinder €/ ~. Notice that if f € H, then there exists K > 0 such that

K <ReJ(F) < K. (6.5)
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Observe that every point in B is a discontinuity point of F'. We call the points of B the poles
of F'. The set of critical points of F' we denote by

Crit(F) := 7(Crit(f)).

Let
Il F) = {z € J(F) s sup[Re("(2))| < K, inf{|/"(2) = bl} > 0, b € BY.

Let ¢ be a critical point of f eventually mapped onto oo, i.e. there exists £ > 2 and a pole
b € B such that f*!(c) = b. Then there exist A = A(f*!,¢) > 1 and p > 2 such that

ATz =P < |71 2) = S O] < Alz = P (6.6)

Then p = p(f*~',¢) we call the order of f*=! at the critical point ¢. Let ¢, denote the
multiplicity of the pole b. Define

p:=sup{p.: c € Crit(f) s.t. f¥(c) = oo for somek € IV }
q:=sup{q : b € B s.t. 3c € Crit(f), Ik € IN and f*(c) = b}.

Let J.(F) be the set of the points in J(F') whose w-limit set is not contained in B. The
following results have been proved in [37].

Theorem 6.6. If f € H then HD(Jy(F)) > 2L

pg+1

Theorem 6.7. If f € H, then HD(J.(f)) = HD(J,(F)) = h € (2%, 2).

pq+1’°

Theorem 6.8. If f € H, then the h-conformal measure m is a unique t-conformal probability
measure, with t > L9 for F' : J(F) — J(f) U {cc}. In addition, m is conservative and

: pg+17
ergodic.

Concerning Gibbs and equilibrium states, we would like to end this section by bringing reader’s
attention to the fact that, as it was shown in [36], with the same methods as those worked
out in [50], one can prove all the same results for the functions in the class H and appropriate
potentials, as those stated in Section 3.2 for elliptic functions.

7. TRANSCENDENTAL ENTIRE AND MEROMORPHIC FUNCTIONS - THE LEBESGUE
MEASURE OUTLOOK

7.1. The Lebesgue Measure of Points Escaping to co. In the previous chapter we have
explored in detail the fractal and dynamical properties of some significant classes of tran-
scendental entire and meromorphic functions. We have frequently supplied the reader with
the information concerning the Lebesgue measure of Julia set and points escaping to infinity.
In this chapter we would like to deal with much bigger classes (S and B) of transcendental
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functions and to discuss the Lebesgue measure of corresponding Julia sets and points escaping
to co. Recall that

S ={f: @ — ' transcendental meromorphic s.t. Sing(f) is finite}

and
B={f:@— @: transcendental meromorphic s.t. Sing(f) is bounded},

where
Sing(f ) = {z € @: z is a finite singularity of f'}.
Recall also that
P(f) ={z € €' z is a finite singularity of f~" for some n > 1}

and for every n > 1 define
L(f) = {z € € Jim /™ () = oo}

Let [ be the Lebesgue measure on €. For a long time, it was expected in conformal dynamics
that either J(f) = @ or ly(J(f)) = 0. Whereas this is still an open problem in the class of all
rational functions, for transcendental functions this dichotomy fails. This failure was already
established in 1987 by C. McMullen who proved in [53] the following remarkable fact.

Theorem 7.1. Let for all a,b € @, fo(2) = sin(az +b). If a # 0, then lo(I1(fap)) > O.
Consequently lo(J(fap)) > 0.

We would like however to add that (see Section 2.5) I. Coiculescu and B. Skorulski proved
in [13] that the set of points not escaping to infinity under the action of f,;,a # 0 has
Hausdorff dimension less than 2. In the opposite direction A. Eremenko and M. Lyubich in
[26] formulated a rather general sufficient condition for the set I;(f) to have zero Lebesgue
measure. Given r, R > 0 let ©(r, f) denote the linear measure of the set {6 : | f(re??)| < R}.
Let f : @ — @ satisfy the following condition.

B(f, R) = lim inf —— [ entr f)% > 0. (7.1)

r—oo Inr
The sufficient condition of A. Eremenko and M. Lyubich is this.

Theorem 7.2. If f € B is a transcendental entire function and E(f, R) > 0 for all R > 0,

The assumption of this theorem has been checked for all entire functions of finite order

which have at least one finite logarithmic singularity, in particular for all exponential maps
z € Aexp(z), A € €'\ {0}, studied in Chapter 2.
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Theorem 7.2 was extended in [34] to the class of meromorphic functions (in B) under some
additional conditions on the orders of poles, their residual and principal parts. In particular,
these assumptions are satisfied for all elliptic functions. However in [41] (see Section 3.1) we
have proved for these maps much stronger result, that HD(/,(f)) < 2 with completely different
methods. Another important class of meromorphic functions fulfilling the assumptions of
Keen and Kotus from [34] is formed by the maps Atan(z), A € €'\ {0}.

By other methods, results of a different kind were obtained by Bock in [11]. First, for every
n > 1, he introduced the class

n—1
B, :={f:@— € transcendental meromorphic s.t. | J f*(Sing(f~')) N @ is bounded}.
i=0
Notice that {B,}52, is a descending sequence and B; = B. A plane set E is called thin at
oo if its density is bounded away from 1 in all sufficiently large disks, that is, if there exist
a positive R and € such that for all complex z and every disc B(z,r) of centre z and radius
r>R
lo(E N B(z,71))
D(z,r)

density(E, B(z,r))) = <l-—e

Bock’s first result is this.

Proposition 7.3. Let w € €'\ {0} and let f € B, be periodic with period w. If there is r > 0
such that the set f~"(B(0,r)) is thin at oo, then ly(I,(f)) = 0.

It easily follows from this proposition that the Lebesgue measure of the set of points escaping
to infinity under any fixed member of the exponential or tangent family is equal to zero.

Let us now formulate Bock’s results going in the opposite direction. For any s € (—m,7),
a>0and K >0 let

War(s) :={2€ D(0,1): 3v € {-1,0,1} Jarg(z) — s — 2vm| < K/(—log(|z]))*}.

The announced theorem is this.

Theorem 7.4. Let f € B,, n > 1. Suppose that there exist o > 0,tg > 0, Ry > 1,N > 1,
and angles sy, ... ,Sy_1 € [—m,m) such that for all t > t,

B(0, Ro) \ [ U{War(sy): ve{0,...,N—1}} C f ™(B(0,€")).
Then ls(I,(f)) > 0.

This theorem along with Proposition 7.3 has rather unexpected consequences for the tangent
family. Let g)(z) = Atan(z), A € @'\ {0}. For every p > 1 let

¢, ={Ae @\ {0}, gh(Ni) = oo}.
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It follows from Theorem 7.4 that if A € C,, then l5(I,11(gx)) > 0, whereas we already noted,
that l5(Z1(gx)) = 0 by Proposition 7.3.

7.2. Milnor’s Metric Attractors. Let (M, p) be a compact Riemann manifold, let X be
an arbitrary subset of M and let T : X — M be a continuous map. Put X, = N2, T "(M).
Then T'(Xo) C Xoo. A closed set A C M is called a Milnor’s metric attractor of T provided
that there exists a Borel set B C X, with the same Lebesgue measure as X,, and such that
lim, oo p(T™(2), A) = 0 or equivalently w(z) C A for all z € B. Notice that any countable
intersection of Milnor’s attractors is a Milnor’s attractor. A is called a minimal Milnor’s

attractor if it does not contain any proper subset which is a Milnor’s attractor.

The structure of Milnor’s attractors for transcendental meromorl)hic functions was described
fairly completely in [11]. Let us formulate it here. We treat € as a compact Riemannian
manifold with the spherical metric. Bock’s result is this.

Theorem 7.5. Let f be a transcendental meromorphic function. Then at least one of the
following statements holds:

(a) the set P(f)U{oo} is a Milnor’s attractor for f : J(f) — @
(b) J(f) = @ and @ is the minimal Milnor’s attractor for f : J(f) — @. Furthermore, the
map f : @ — @ is conservative with respect to the Lebesque measure.

We would like to note that an analogous result in the class of rational functions has been
proved by M. Lyubich in [45]. In [40] we have provided an alternative proof of a part (b) of
Bock’s theorem. The precise formulation of our result is the following.

Proposition 7.6. Let f : @ — @ be a transcendental meromorphic function such that J(f) =

C. If l,({z :w(z) C P(f)u{oo}}) =0, then f is ergodic and conservative with respect to the
Lebesgue measure.

As an immediate consequence of Theorem 7.5, we get the following result noted in Bock’s
paper [11].

Corollary 7.7. If the set Sing(f~") is finite and each singularity of =1 is preperiodic but
not periodic then the statement (b) holds for f. In particular @' is the minimal attractor for

f.

For an entire transcendental function f it is impossible to satisfy the assumption of this
criterion because in this case oo is a transcendental singularity which does not belong to the
domain of f and therefore can not be a preperiodic point of f. However Bock proved in [10]
the following.
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Corollary 7.8. Let f be non-constant entire function. Suppose that Sing(f__l) s finite and
each singularity of f=' is preperiodic but not periodic. Then either oo or @ is a minimal
Milnor’s attractor for f : @' — @. In the later case it even holds that w(z) = @ for Lebesgue
a.e. z € (.

The first example of a transcendental function for which P(f) is a metric attractor is due to
M. Rees who proved in [59] that if F(z) = e*, then {E™(0)}5°,U {oco} is a Milnor’s attractor
for f. She also proved that the exponential map is not recurrent, i.e. that there exists a Borel
set B C @ with positive Lebesgue measure such that BN f*(B) = () for all n > 1. M. Lyubich
has clarified the situation completely by proving in [46] the following (see also Section 2.1)

Theorem 7.9. {E"(0)}°°, U {oo} is the minimal Milnor’s attractor’s for the exponential
function E(z) = e*. In addition, E is not ergodic with respect to the Lebesgue measure.

J.M. Hemke has provided in [30] several sufficient conditions for the alternative (a) from
Theorem 7.5 to hold. We present now some of his results. The most general of Hemke’s
sufficient conditions is this.

Theorem 7.10. Let f : @ — @ be a meromorphic function, A C @ finite and G C @, such
that

(a) there exists € > 0, such that the map

s if dse A:|f(z) — s| < exp(|z]9)
0 if |f(2)] > exp(]2|)

is well defined and there are 1,09y € IR, such that for all z € G,

E:G%AU{O}:z%{

] < 2]

< ‘7f =)
f(z) —3(2)

(b) there exists B > 1 and B € (—o0, 1), such that for every measurable set
D C {z :dist(z,0'\ G) < 2|2|7%},

I(D) < Bdiam(D) sup |z|?;
2€D

(c) limy, 00 f™(s) = 00 and B(f™(s),2|f™(s)|") C G for some T > B3, almost all m € IN
and all s € A.

Then the set T(f) := {z : w(z) C O©T(A)} has positive measure. In particular, if A = P(f),

then P(f) is a Milnor’s attractor for f.
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A point z € €'is said to escape exponentially, if lim,_,, f"(z) = oo and

[f™(2)] = exp(|f"'(2)]°)
for some § > 0, and all integers n > 1. Theorem 7.10 was applied in [30] to the class of
function of the form

£2) = [ Py exp(@®)dt + ¢ (72)

with polynomials P and @) and ¢ € , such that () is non-constant and P not identically zero.
These functions have at most deg(®) finite asymptotic values and deg(P) critical points.
Namely:

Theorem 7.11. Let f be a meromorphic function of the form (7.2). Suppose that all finite
asymptotic values escape exponentially. Then the Julia set J(f) has positive Lebesgue measure
and P(f) is a Milnor’s attractor for f: J(f) — J(f)Uoo. In addition, if deg(Q) > 3, then
l(F(f)) < oo.

The function f(z) = exp(2*® + az + b), where a = (2122)1/3 and b = log(y/a/3) was proved in
[30] to satisfy all the assumptions of Theorem 7.10. Under additional assumption Hemke was

able to identify the Milnor’s minimal attractor by proving the following.

Theorem 7.12. Let f satisfy the assumptions of Theorem 7.11. Suppose also that every
critical point either escapes exponentially, is pre-periodic or is contained in an attractive
Fatou-component. Then ©1(A) is the minimal Milnor’s attractor for f, where A denotes the
set of finite asymptotic values of f.

All the functions defined by (7.2) are entire and have a rational Schwarzian derivative. The
asymptotic behaviour of such functions is understood fairly well. Theorem 7.11 continuous
to be true for all such functions satisfying some additional natural assumptions (see [30]).

It is well-known and easy to see that if f is a transcendental meromorphic function and
Unso f " (00) contains at least three distinct points, then
J(f) = fm(c0).
n>0
[t may in particular happen that if all singular values of f belong to J(f), then after finitely

many iterates all these singular values land on poles. Such situation was thoroughly studied

for functions of the form
aexp(zP) + bexp(—2P)

J(z) = cexp(z?) + dexp(—2zP)’
p € IN, a,bc,d € T, ad — bc # 0. All these functions are said to form the class F. Given

z € ' we put
07 (z) = {/" ()}
We say that f € F satisfies condition (C1) if the following statements are satisfied
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(i) The asymptotic values ¢ and s are finite and eventually mapped onto oo i.e. there are

¢1,¢2 € IN such that f2 (%) = f*!(%) =
ii) If zero is a critical point, then either the trajectory of zero is bounded or zero is eventua
ii) If zero is a critical point, then either the trajectory of zero is bounded is eventually
mapped onto oo and

" (0)n (6 (%) ue* (%)) = (o).

We say that a function f € F satisfies condition (C2) if condition (C1) holds and, if zero is
a critical point and it is not eventually mapped onto infinity, then

lo({z € J(f) :w(z) C ©F(0)}) = 0.
B. Skorulski proved in [61] and [62] the following.

Theorem 7.13. If f satisfies condition (C1), then

(i) there exists a set E C J(f) with a positive Lebesgue measure such that w(z) = Pasymp(s) :=
o0F (%) U @*(g) for all z € E, and the action of f is not ergodic on J(f) with respect to
the Lebesgue measure.

(ii) if @1 # qo then I5(1,(f)) = 0 for every n > 1.

Moreover, if condition (C2) is satisfied, then in particular Pasymp(s) is the Milnor’s attractor

of f.

Corollary 7.14. Letp > 1,k € Z and

Fa) = {2 4 oy Z2UZ) = (2]

2 exp(z?) + exp(—2zP)
Then the Fatou set F(f) is nonempty since zero is a superattracting fized point. The asymp-
totic values & = {/mi/2 + kmi, & = —/mi/2 + kmi are mapped onto oo i.e. f(&) = f(&) =
0o. The Julia set J(f) has positive measure and for almost all z € J(f), w(2) = Pasymp(s)-

In particular, Pasymp(s) ts the Milnor’s attractor of f. Moreover, f is not ergodic with respect
to the Lebesgue measure on J(f).

Theorem 7.13 has been recently extended by Skorulski in [63] to the large class R thoroughly
treated in Section 6.1. Sticking with the class of functions dealt with in Section 6.1, note that
each function f € P can be represented in the following form

f(z) = 21: aje’”.
j=—n2

So, if ny,ny > 0, then f has no finite asymptotic values. Denote the class of those functions
by P, and its complement (in P) by P;. Put also

R1:Q1UP1 and RZZQZUPQ.



56 JANINA KOTUS AND MARIUSZ URBANSKI

For every f € R, put
Pasymp(f) = O ({R(0), R(c0)}).
The combined results of Skorulski from [62] and [63] give the following.

Theorem 7.15. If f € Ro, then Pasymy(f) is a Milnor’s attractor for f. In particular, the
Lebesgue measure of J(f) is positive.

Let
R; = {f € Ry : dist (P(f), J(f)) > 0}.
B. Skorulski has proved in [63] the following.

Theorem 7.16. 1. If f € R}, then Pasymp(f) is the minimal Milnor’s attractor for f.
2. If q1 # qo, then the Lebesgque measure of the set

L(f) = {z: Jim () = oo}

is equal to zero for alln € IN.

3. If f € RyN Q, then there does not exist any f-invariant measure on J(f) which is
absolutely continuous with the respect to the Lebesque measure and finite on all compact
subsets of J(f).

4. If f € RS and ny = ny, then f is not ergodic on J(f) with the respect to the Lebesgue
Measure.

7.3. The Lebesgue Measure of Julia Sets. It is by now a standard fact (see [68] for the
first proof) that the Julia set of an expanding rational function has Lebesgue measure zero.
As shows Theorem 7.1 with a, b # 0 sufficiently small in moduli, this property already fails in
the class of expanding sine maps. Let us however see what can be said assuming in addition
that the Julia set is thin at co. In order to avoid any confusion let us introduce the following
two classes of functions.

E:={f:C— C: fis entire such that dist(P(f),J(f)) > 0}

and

Ey:={f:C— C: f is entire such that P(f) is compact, P(f)NJ(f) =0}.

Obviously & C &. The following theorem was first proved by C. McMullen in [53] for the
class & and by G. Stallard in [64] for the class &.

Theorem 7.17. If f € £ and B is a measurable completely invariant subset of J(f) such
that B is thin at oo, then ly(B) = 0. In particular if J(f) is thin at oo then lo(J(f)) = 0.
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Going beyond hyperbolicity but still keeping a rather general setting, we formulate the fol-
lowing two remarkable results, the first one proved by A. Eremenko and M. Lyubich in [26]
and the second proved by B. Skorulski in [61]

Theorem 7.18. Suppose that f € S is a transcendental entire function such that E(f, R) > 0
for all R > 0. Assume that the orbit of every finite singularity of f~! is either absorbed by
a repelling cycle or converges to an attracting or to a neutral rational cycle. Then either

J(f) =T or lr(J(f)) =0.

Theorem 7.19. Let f € F. If one of the two asymptotic values of f is mapped onto oo, while
the second asymptotic value and the critical point of f are in the Fatou set, then lo(J(f)) = 0.

8. ApPENDIX 1: (K(V) METHOD OF CONSTRUCTING SEMICONFORMAL MEASURES)

Given a continuous map 7' : X — X from a topological space X into itself, the map T is said
to be non-open at the point x € X if and only if for every open neighbourhood V' of = there
exists an open set U C V such that T(U) is not open. The set of all points in X at which T
is not open, is denoted by NO(T). A point ¢ € X is said to be critical of T if there is no open
neighbourhood W of ¢ such that the map T}y is one-to-one. The set of all critical points of
T is denoted by Crit(T).

Now let X be a compact subset of the extended complex plane €. We say that f € A(X)
provided that f : X — X is a continuous map which can be meromorphically extended to a
neighbourhood U(f) = U(f, X) of X in €. Denote by M. (f) the set of all Borel probability
ergodic f- invariant measures on X with positive entropy and for any Borel measure p on X
we denote HD(u) the Hausdorff dimension of the measure p. Finally, define

DD(X) = sup{HD(u) : p € M. (f)}-

Obviously DD(X) < HD(X). Proceeding as in [17] (comp. Chapter 10 of [57]) for more
mature exposition) with the set K (V') replaced by X, one can prove the following two useful
auxiliary results.

Lemma 8.1. Suppose that X is a compact subset of T, f € A(X) and f : X — X has no
critical points. Then for all t > 0 there exist P(t) € IR and a Borel probability measure my; on
X with the following two properties:

m(f(4)) > [ 017

A
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and, if in addition A C U(f)\ NO(f), then

mil(f(4)) = [ O 'm

Lemma 8.2. Suppose that X is a compact subset of €, f € A(X) and f : X — X has no
critical points. Then there exists s(X) € [0, DD(X)] and a Borel probability measure m called
s(X)-semi-conformal on X with the following two properties:

(@ )= [ 1

for any Borel set A C U(f) such that fia is one-to-one

®  mfA) = [ 1

for any Borel set A C U(f)\ NO(f) such that fa is one-to-one.

Given two compact sets X C Y C € and a function f € A(Y), we say that X is a branch-
wise contained in Y provided that the following condition is satisfied. There is 6 > 0 such
that for every x € X and for every n > 0 there exists a holomorphic inverse branch
. o B(f*(x),0) — @ of f™ sending f"(x) to z and such that f/(f,"(B(f"(z),)) C
U(f,Y)\NO(f) forall j =0,1,...,n

Proceeding similarly as in the proof of Lemma 3.2 in [77] with the same obvious modifications,
one gets the following.

Lemma 8.3. Suppose that Y is a compact subset of € and f € A(Y). If f has no critical
points in'Y and X is a compact set branchwise contained in'Y (notice that we do not assume
X to be a forward invariant under f), then HD(X) < s(Y).

These two lemmas are most frequently applied in the context when f : S — S is a holomor-
phic map of a Riemann surface S (usually €, @, €'\ {0}) into Riemann surface S such that
Unso f "(V) D (S\ S) UCrit(f). Next one defines the set

ﬂf (S\V).

Then f(K(V)) C Ky and if S\ V is compact, then so is the set K(V). One can ap-
ply Lemma 8.1 and Lemma 8.2 with X = K(V) and U(f|K(V)) = S\ V. Notice that
NO(f|kwy) C OV. In order to get a conformal measure one lets V' decrease to a set which
is usually finite and one takes an arbitrary weak limit measure of semi-conformal measures
produced in Lemma 8.1 or Lemma 8.2. It requires a separate proof (sometimes easy, some-
times difficult) to show that such a limit measure is conformal for f : S — S. Finally, one
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may control the exponent with the help of Lemma 8.2 and Lemma 8.3. However, the latter
lemma is not always applicable and then one must undertake another approach in order to
determine the exponent of the conformal measure produced as that weak limit.

9. APPENDIX 2: MARTENS’ METHOD OF CONSTRUCTING 0-FINITE INVARIANT MEASURES

Suppose that X is a o-compact metric space, v is a Borel probability measure on X, positive
on open sets, and that a measurable map f: X — X is given with respect to which measure
v is quasi-invariant, i.e. v o f~! << v. Moreover, we assume the existence of a countable
partition o = {A,, : n > 0} of subsets of X which are all o-compact and of positive measure
v. We also assume that v(X \ U,>9 4,) = 0, and if additionally for all m,n > 1 there exists
k > 0 such that -
v(fF(An) N A,) >0,

then the partition « is called irreducible. Martens’ result comprising Proposition 2.6 and
Theorem 2.9 of [48] reads as follows.

Theorem 9.1. Suppose that « = {A,, : n > 0} is an irreducible partition for T : X — X.
Suppose that T is conservative and ergodic with respect to the measure v. If for every n > 1
there exists K, > 1 such that for all k > 0 and all Borel subsets A of A,

—k
) A g rA)
v(An) ~ v(f7H(An)) v(Ay)
then T has a o-finite T-invariant measure p that is absolutely continuous with respect to v.

In addition, i 1s equivalent to v, conservative and ergodic, and unique up to a multiplicative
constant. Moreover, for every Borel set A C X

— lim Yo v(fF(A))
i) = i, s R )

K*l

This theorem is widely used in conformal dynamics in the context where v is a conformal
measure. The distortion assumption, the higher displayed formula above, is usually derived
from Koebe’s distortion theorem.
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