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Abstract

We show that the theory of graph directed systems can be used to study exceptional
minimal sets of some foliated manifolds. A C1−smooth embedding of a contractible
parabolically Markov system into a holonomy pseudogroup of codimension one foliation
allows us to describe in details the h-dimensional Haussdorff and packing measures of
the intersection of the complete transversal with the exceptional minimal sets.

1 Introduction

Cantwell and Conlon [3] observed that there exists a special class of pseudogroups, called
Markov pseudogroups, which are semiconjugated to subshifts of finite type. Markov pseu-
dogroups appeared in natural way in the theory of foliations as holonomy pseudogroups of
some closed, transversaly oriented, C2−foliated manifolds of codimension one. A detailed
introduction to the foliation theory the reader can find in [4]. However, for a convenience of
the reader we shall recall few definitions.

Given a topological space X denote by Homeo(X) the family of all homeomorphisms between
open subset of X. If g ∈ Homeo(X), then Dg is its domain and Rg = g(Dg) is its range.

Definition 1. Let M be a Riemannian manifold. A Cr pseudogroup Γ on M is a collection
of Cr diffeomorphisms h : Dh → Rh between open subsets Dh and Rh of M such that

1. If g, h ∈ Γ then g ◦ f : f−1(Rf ∩Dg) → g(Rf ∩Dg) is an element of Γ.
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2. If h ∈ Γ, then h−1 ∈ Γ.

3. idM ∈ Γ

4. If h ∈ Γ and W ⊂ Dh is an open subset, then h|W ∈ Γ.

5. If h : Dh → Rh is a Cr diffeomorphism betwen open subsets of M and if, for each point
p ∈ Dh, there exists a neighborhood N of p in Dh such that h|N ∈ Γ, then h ∈ Γ.

For any set G ⊂ Homeo(M) which satisfies the condition⋃
g∈G

{Dg ∪Rg : g ∈ G} = M,

there exists a unique smallest (in the sense of inclusion) pseudogroup Γ(G) which contains
G. Notice that γ ∈ Γ(G) if and only if γ ∈ Homeo(M) and for any x ∈ Dγ there exist maps
g1, g2, ...., gk ∈ G, exponents e1, e2, ..., ek ∈ {−1, 1} and an open neighbourhood U of x in M
such that

U ⊂ Dγ and γ|U = ge1
1 ◦ ... ◦ gek

k |U
The pseudogroup Γ(G) is said to be generated by G. If the set G is finite, we say that the
pseudogroup Γ(G) is finitely generated.

Following [13] we write:

Definition 2. A finite system S = {h1, ..., hm} of Homeo(M), hj : Dj → Rj, together with
nonempty compact sets Kj ⊂ Rj is called a Markov system if

1. Ri ∩Rj = ∅ when i 6= j.

2. either Ki ⊂ Qj or Ki ∩Dj = ∅,

where Qj = h−1
j (Kj).

If S is a Markov system and
⋃m

i=1(Dhi
∪Rhi

) = M, then the pseudogroup Γ(S) generated by
the finite set S is called a Markov pseudogroup.

Notice that Markov pseudogroups are generated by maps hi, hj ∈ S such that either Dhi◦hj
=

Dhi
or Dhi◦hj

= ∅. Therefore, the following definition is very useful:

Definition 3. For any Markov system S = {h1, ..., hm} one defines its transition matrix
P = [pij]i,j=1,...m, as follows

pij ∈ {0, 1} and pij = 1 iff Kj ⊂ Qi.

The Markov invariant set Z0 is defined as

Z0 = Z \ int(Z), where Z =
∞⋂

n=1

⋃
g∈Sn

Kg, Sn = {hi1 ◦ ... ◦ hin : i1, ..., in ≤ m},

and Kg = g(Qin) when g = hi1 ◦ ... ◦ hin .
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Examples of Markov pseudogroups and its minimal sets abound in the literature on foliation
theory, let us list only few papers [12], [6], [7], [8]. From our point of view, the importance
of Markov pseudogroups for foliation theory can be derived from the result of Cantwell and
Conlon [5] which states that any one dimensional Markov pseudogroup can be realized as
a holonomy pseudogroup of some foliated manifold. More precise formulation of this result
and detailed proof is due to Walczak [13] :

Theorem 1. (Thm 1.4.8 in [13]) If Γ is a Markov pseudogroup on a circle such that its
Markov invariant set Z0 contains a Γ−invariant minimal set C, then there exists a closed
foliated 3-manifold (M, F ), dimF = 2, an exceptional minimal set E ⊂ M, a complete
transversal T and a homeomorphism h : E ∩ T → C which conjugates Γ|C to H|E ∩ T, H
being the holonomy pseudogroup of F acting on T.

More results and a list of still open problems on Markov pseudogroups the reader can find in
[1]. Another realization of a Markov pseudogroup, obtained by a hyperbolic Markov system,
as a holonomy pseudogroup of codimension one foliation on a compact three manifold was
provided by Bís, Hurder and Shive [2] in their construction of generalized Hirsch foliations.

2 Contracting and Parabolic Markov Systems

Let S = {hj : j ∈ I}, where I is a countable set, be a Markov system in the sense of Definition
2. Suppose X is a, not necessarily connected, 1-dimensional smooth manifold and all Djs
and Rjs are its proper subarcs. Suppose further that all homeomorphisms hjs have C1+ε

extensions to D̄j, the closures of their domains. We call the Markov system S contractible
provided that

s = sup{||h′ij||∞ : Fij = 1} < 1, (1)

where Fij = 1 if and only if Ki ⊆ Qj = h−1
j (Kj), is equal to zero otherwise, and hij = hj|Ki

.
The associated Markov pseudogroup is also called contractible. We want to associate to
S a (conformal) graph directed Markov system Ŝ in the sense of [9]. Indeed, take V =
{1, 2, . . . ,m} to be the set of vertices, and E = {(i, j) : Fij = 1} to be the set of edges.
Define the incidence matrics A : E × E → {0, 1} by the formula

A(i,j)(k,l) =

{
1 if i = l,
0 if i 6= l.

Put further
ϕ(i,j) = hij

for all (i, j) ∈ E. Ŝ = {ϕe}e∈E is our graph directed Markov system. In order to fulfill all
the formal conditions from [10] we extend all the maps ϕe, e ∈ E, in a C1+ε fashion to some
open intervals ∆j ⊃ Kj such that all the components of ∆j \ Kj, j = 1, . . . ,m, have the
same lengths and |ϕ′

(i,j)(x)| ≤ s for all (i, j) ∈ E and all x ∈ ∆i. It is easy to notice that the

limit set of the graph directed Markov system Ŝ is equal to Z0 = Z (this equality being a
consequence of (1)), the Markov invariant set of S introduced in Definition 3.
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Assume that the incidence matrix A is finitely primitive, meaning that there exists a finite
set Λ of A-admissible words of the same length such that any for any two elements a and
b of E there exists γ ∈ Λ such that the word aγb is A-admissible. Let h = HD(Z) be the
Hausdorff dimension of the invariant set Z. Invoking appropriate theorems from [10], we can
list the following:

Theorem 2. If S is a contracting Markov system, then 0 < h < 1, Hh(Z) < ∞ and
Ph(Z) > 0, where Hh denotes the h-dimensional Hausdorff measure and Ph denotes h-
dimensional packing measure. If S is finite, then in addition Hh(Z) > 0 and Ph(Z) < ∞.
Furthermore, the measures Hh|Z and Ph|Z are equal up to a multiplicative constant.

From now we assume that our contractible Markov system is finite, I = {1, ...,m}.

Theorem 3. If S is a contracting Markov system, then there exists a constant c ≥ 1 such
that for all r ∈ (0, 1] and all z ∈ Z,

c−1 ≤ Hh(B(z, r))

rh
≤ c.

Theorem 4. BD(Z) = PD(Z) = HD(Z), where BD(Z) and PD(Z) are respectively the
box counting and packing dimensions of Z.

Now, replace in the above considerations, condition (1) by the following. For all i, j ∈
{1, . . . ,m} with Aij = 1 and all x ∈ Ki,

|h′ij(x)| ≤ 1,

and if |h′ij(x)| = 1, then hij(x) = x. Such point x is called parabolic. The set Ω of parabolic
points is asumed to be nonempty and Ki ∩ Ω contains at most one point, for all i ∈ I.
Asumme also that the maps hij are C2. Call any such system S parabolic Markov. Then,
Theorem 2, Theorem 3 and Theorem 4 take on the following form:

Theorem 5. If S is a parabolic Markov system, then the h-dimensional Hausdorff measure
of Z vanishes whereas the h-dimensional packing measure is finite and positive.

Theorem 6. Suppose that S is a parabolic Markov system. Then for any z ∈ Z, we have

lim inf
r→0

Ph(B(z, r))

rh
∈ (0, +∞] and lim supr→0

Ph(B(z,r))
rh = +∞,

where Ph denotes the h-dimensional packing measure on Z.

Theorem 7. If S is a parabolic Markov system, then BD(Z) = PD(Z) = HD(Z).

3 Contracting and Parabolic Markov systems versus

codimension-one foliations

Denote the unit disc, the unit circle, a circle and an open ball in the complex plane respec-
tively by:

D = {w ∈ C : |w| ≤ 1}
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S1 = {w ∈ C : |w| = 1}

S(z, r) = {w ∈ C : |w − z| = r}

B(z, r) = {w ∈ C : |w − z| ≤ r}

Choose an integer n > 1 and an analytic embedding ϕ : S1 → S1 ×D so that its homotopy
class is equal to ng, where g is a generator of the fundamental group of the solid torus.

Now we recall the construction of a generalized Hirsch foliation in codimension one, which was
presented in details in the Section 2 of [2], in the following way. Choose a non-zero interior
point z0 ∈ D (such that 0 < |z0| < 1) and positive ε > 0 such that 0 < 2ε < min{|z0|, 1−|z0|}.
Now define n-punctured disc

P = D \ (B(z0, ε) ∪B(z1, ε) ∪ ... ∪B(zn−1, ε))

where for any 0 ≤ m < n the complex number zm = ρmz0 and ρ = e
2π
n

i.

The analityc 3-manifold N1 with boundary is defined as the quotient of R × P by the
equivalence relation ∼ that identifies the points (x, z) and (x + 1, ρz). Notice that N1 is
diffeomorphic to the solid torus S1 ×D from which an open tubular neighborhood of ϕ(S1)
was removed. Remember that the embedding ϕ : S1 → S1 × D winds n times around the
core. The boundary of N1 consists of two disjoint tori, ∂N1 = ∂+N1 ∪ ∂−N1, where

∂+N1 = (R× S1)/ ∼

and
∂−N1 = (R× ((S(z0, ε) ∪ S(z1, ε) ∪ ... ∪ S(zn−1, ε)))/ ∼

The manifold N1 admits a foliation FN1 = {{x}×P : x ∈ [0, 1)} by compact 2-manifolds with
boundary. Notice that the intersection of the leaves of FN1 with the boundary tori consists
of circles, therefore each boundary torus is foliated by circles. Gluing the boundary ∂+N1

with the boundary ∂−N1 by a properly chosen diffeomorphism f : ∂+N1 → ∂−N1, which
maps the foliations of the boundary tori each to the other, we get a foliated c manifold N
with foliation F . To construct such a diffeomorphism f choose an immersion H : S1 → S1

of degree n. Notice that the choice of H is equivalent to the choice of a diffeomorphism
h : R → R such that h(x + 1) = h(x) + 1. So, H = h mod(1).

Lemma 1. ( [2], p. 76-77) Given diffeomorphism h : R → R such that h(x + 1) = h(x) + n,
the map f̃ : R×D → R×D described by the formula

f̃(x, z) = (h(x), z1 + εze
2πxi

n )

induces a map f : ∂+N1 → ∂−N1.

Finally, define
N = N1/ ∼f ,

where ∼f identifies the points (x, z) anf f(x, z). Then, the leaves of FN1 ∩∂+N1 are mapped
to leaves FN1 ∩ ∂−N1, which yields that N has a foliation FN whose leaves are the union of
n-punctured discs.
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The foliation FN on N is called a generalized Hirsch foliation.

The foliation FN on N admits a complete transversal T : S1 → N. Observe that the foliation
FN1 on N1 is defined by fibration, therefore FN1 has no holonomy. So, all the holonomy of
FN is introduced by the identyfication of the outer boundary ∂+N1 with the inner boundary
∂−N1 via the diffeomorphism f.

The immersion H : S1 → S1 of degree n induces an equivalence relation on S1: two points
x, y ∈ S1 are said to be in the same ”grand orbit” of H if there exist positive integers k and l
such that Hk(x) = H l(y) (cf. Milnor [11]). The grand orbit of a point x is denited by O(x).

Recall that a subset K ⊂ S1 is said to be H-invariant if for all x ∈ K the grand orbit O(x)
is contained in K.

Definition 4. An invariant set K is called minimal if it is closed and for all x ∈ K the
H-orbit O(x) is dense in K. A minimal set K is exceptional if it is nowhere dense and is
not finite.

Our first, obvious application to the theory of foliations is the following.

Theorem 8. Suppose F is a smooth codimension 1 foliation on a Riemannian manifold
M and T is a complete transversal for F . If the holonomy pseudogroup of F acting on
T is generated by a contracting (parabolicalic) Markov system then there is an expectional
minimal set E for F such that the theorems Theorem 2, Theorem 3 and Theorem 4 (Theorem
5, Theorem 6 and Theorem 7) are true with Z = E ∩ T.

Theorem 9. If S = {h1, ..., hm} is either a contracting or parabolic Markov Cr−system on
the circle S1, r ≥ 1, such that all maps hi are defined on on the closed interval I0 ⊂ S1, then
there exists a generalized Hirsch foliation (N,F), codimF = 1, an exceptional minimal set
E ⊆ N , a complete transversal T and a Cr-diffeomorphism, f : E ∩ T → JG (the Markov
invariant set of the pseudogroup G generated by a Markov system S).

Proof. Take a contracting or parabolic Markov Cr−system S = {h1, ..., hm} and a closed
intervals Ij = [aj, bj], j = 0, 1, ...,m, such that

1. hi : I0 → Ii ⊂ I0,

2. Ii ∩ Ij = ∅ for i 6= j,

3. |hi
′
(x)| 6 1 for any x ∈ I0 and the equality |hi

′
(x0)| = 1 holds at most for one point

x0 of Ii.

We may assume that the interval I0 = [0, c], where c < 1. Denote the unique fixed point of
hi by x∗i . Let a0 = min{x∗i : 1 6 i 6 m}, b0 = max{x∗i : 1 6 i 6 m}.
Without loosing the generality of considerations, we can assume that the interval Ii = [ai, bi],
1 ≤ i ≤ m and

0 = a0 = a1 < b1 < a2 < ... < bm−1 < am < bm = b0

Following the Example 6.1 in [2] we define a Cr−diffeomorphism h : [0, 1] → [0, m] in the
following way:
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1. h|[ai,bi] = (i− 1) + hi for any 1 ≤ i ≤ m− 1.

2. h|[bi,ai+1] = fi where fi : [bi, ai+1] → [i− 1 + c, i] is a Cr−diffeomorphism chosen so that
h is Cr at the points bi and ai+1, 1 ≤ i ≤ m− 1.

3. h|[c,1] = fm where the Cr−diffeomorphism fm : [c, 1] → [c, 1] satisfies the conditions:

(a) fm has a unique attracting fixed point at x0 = 1+c
2

,

(b) fm(c) = c and fm(1) = 1,

(c) fm|(c,1) is a contraction of the open interval (c, 1) to the attracting fixed point x0.

(d) h is Cr at the points bm = c and 1.

Let H : S1 → S1 be the immersion of degree m, defined by H = h(mod1), and define
the open set U ⊂ S1 to be the union of the H−orbits of the open interval (c, 1). Putting
K = S1 \ U we get that K ⊂ I1 ∪ .... ∪ Im. Modifying slightly the proof of Lemma 2.1 in [2]
we get

Lemma 2. Let H : S1 → S1 be the immersion of degree m, defined by H = h(mod1). Then
there exists a unique minimal set JG ⊂ S1 with respect to H. Moreover, JG = K.

Gluing the outer boundary ∂+N1 to the inner boundary ∂−N1 via the diffeomorphism h
we obtain a three dimensional manifold N . The foliation FN on N admits a complete
transversal. It can be constructed by the embedding

t̂ : R → R× P

where t̂(x) = (x, 0). Notice that

t̂(x + 1) = (x + 1, 0) ∼ (x, ρ0) = (x, 0) = t̂(x)

Passing to quotient manifold we get t : S1 → N1. By construction we obtain that for any
leaf L ∈ FN1 the intersection L ∩ t(S1) 6= ∅. Therefore, after the process of gluing outer and
inner boundary we get a complete transversal T : S1 → N. The construction of the foliation
FN on N yields that for the exceptional minimal set E of FN we have

E ∩ T (S1) = K = JG,

which completes the proof.

�

Corollary 1. Consequently all the above theorems (Theorem 2)– (Theorem 7) apply with
the set Z replaced by E ∩ T.

Similarly, making the construction in the proof of Theorem 1.4.8 [13] C1-smooth, we get the
following
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Theorem 10. If G is a contractible (parabolically) Markov pseudogroup on a circle, then
there exists a closed foliated 3-manifold (M,F),dimF = 2, an expectional minimal set E ⊆
M , a complete transversal T and a C1-diffeomorphism M : E∩T → JG (the Markov invariant
set of G). Consequently all the above theorems (Theorem 2)– (Theorem 7) apply with the set
Z replaced by E ∩ T.

Now, if E is an expectional minimal set for a codemension 1 foliation F and T is a complete
transversal for F , then E is locally diffeomorphic to the Cartesian product of E ∩ T and
an interval. Consequently, Theorems 8 and Theorem 9 remain true with E ∩ T replaced
by ”sufficiently small” open subsets of E. The dimension h then stands for HD(E) =
HD(E ∩ T ) + 1.
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