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Abstract

We study the case of an Axiom A holomorphic non-degenerate (hence non-invertible) map
f : P2C → P2C, where P2C stands for the complex projective space of dimension 2. Let Λ
denote a basic set for f of unstable index 1, and x an arbitrary point of Λ; we denote by
δs(x) the Hausdorff dimension of W s

r (x)∩Λ, where r is some fixed positive number and W s
r (x)

is the local stable manifold at x of size r; δs(x) is called the stable dimension at x. In [5],
Mihailescu and Urbański introduced a notion of inverse topological pressure, denoted by P−,
which takes into consideration preimages of points. In [9], Verjovsky and Wu studied the case
of Henon diffeomorphisms for which they proved that the stable dimension is given by a Bowen
equality, hence it is independent of the point in the invertible case. Our non-invertible situation
is different since the local unstable manifolds are not uniquely determined by their base point,
instead they depend in general on whole prehistories of the base points. Hence our methods are
different and are based on using a sequence of inverse pressures for the iterates of f , in order to
give upper and lower estimates of the stable dimension (Theorem 2). As a Corollary, we obtain
an estimate of the oscillation of the stable dimension on Λ. When each point x from Λ has the
same number d′ of preimages in Λ, then we show in Theorem 3 that δs(x) is independent of x; in
fact δs(x) is shown to be equal in this case with the unique zero of the map t→ P (tφs− log d′).
We also prove the Lipschitz continuity of the stable vector spaces over Λ; this proof is again
different than the one for diffeomorphisms (however, the unstable distribution is not always
Lipschitz for conformal non-invertible maps).
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1 Introduction and notations. Inverse topological pressure

For the case of hyperbolic automorphisms on C2 (Henon maps), Verjovsky and Wu ([9]) showed
that the Hausdorff dimension of the intersection between local stable manifolds and the Julia set is
given as the unique zero of a pressure function. For non-invertible conformal maps f (for example
holomorphic maps on the projective complex space P2) which are hyperbolic on a basic set Λ, the
situation is completely different, and as shown in [2] and [4], this stable dimension (precise definition
will be given later) is not equal to the unique zero of the corresponding pressure function. At the
same time, we do not have a uniquely determined unstable manifold going through a given point
of the basic set Λ. In order to deal with the non-invertible case, Mihailescu and Urbanski have
introduced a notion of inverse pressure ([5]), which takes into consideration all the inverse iterates
of points (instead of the forward iterates from the case of usual topological pressure). In this paper
we will obtain a theorem (Theorem 2) giving lower estimates of the stable dimension by using zeros
of inverse pressures of iterates of f . As a Corollary we obtain an estimate of the maximum possible
oscillation of the stable dimension on Λ.

Then, when the map is open on the basic set Λ, we will prove (Theorem 3) that the stable
dimension is independent of the point; in the proof we use again ideas and concepts related to
inverse pressure. Although these proofs and results may work for a more general setting (finite-to-
one conformal maps with hyperbolic structure on a basic set, and with the real dimension of the
stable vector spaces equal to 2), we preffer to state them in the case of holomorphic maps on P2,
hyperbolic on a basic set Λ. Note also that in Theorem 1 we actually use the holomorphicity at the
end of the proof; Theorem 1 is used later in the proof of Theorem 2. As a final remark, we notice
that all the proofs work when Λ is just a compact connected invariant set, f is hyperbolic on Λ, f
is transitive on Λ and Λ has local product structure.

In this section we recall some definitions and properties of inverse pressure, which will be used
later. We consider the following setting:

X is a compact metric space, f : X → X is a continuous surjective map on X, and Y ⊆ X is a
subset of X. Due to the surjectivity of f , for any point y of X, and any positive integer m, there
exists y−m ∈ X such that fm(y−m) = y. By prehistory of length m (or m-prehistory, or branch of
length m) of y, we will understand a collection of consecutive preimages of y, C = (y, y−1, ..., y−m),
where f(y−i) = y−i+1, i = 1, ..,m, y0 = y. Given a prehistory C, we shall denote by n(C) its length.
Fix ε > 0. Denote by Cm the set of all m-prehistories of points from X. For such an m-prehistory
C, let X(C, ε) be the set of points ε-shadowed by C (in backward time) i.e:

X(C, ε) := {z ∈ B(y0, ε) : ∃z−1 ∈ f−1(z)s.t. d(z−1, y−1) < ε, ...,∃z−m ∈ f−1(z−m+1)s.t. d(z−m, y−m) < ε}

Given the m-prehistory of y, C = (y, y−1, ..., y−m) and a real continuous function φ on X, (we
denote the set of real continuous functions on X, by C(X,R)), one can define the consecutive sum
of φ on C,

S−mφ(C) = φ(y) + φ(y−1) + ...+ φ(y−m)

We may also use the notation S−mφ(y−m) instead of S−mφ(C). We will define now the inverse
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pressure P− by a procedure similar to that used in the case of Hausdorff outer measure. Let φ be
an arbitrary continuous function, φ ∈ C(X,R); let also λ a real number and N a positive integer.
Denote by C∗ := ∪

m≥0
Cm. We say that a subset Γ ⊂ C∗, ε-covers X if X = ∪

C∈Γ
X(C, ε). Then define

the following expression

M−
f (λ, φ,Y,N, ε) := inf{

∑
C∈Γ

exp(−λn(C) + S−n(C)φ(C)), n(C) ≥ N,∀C ∈ Γ,

and Γ ⊂ C∗ s.t Y ⊂ ∪
C∈Γ

X(C, ε)}

When N increases, the set of acceptable candidates Γ which ε-cover X gets smaller , therefore
the infimum increases in the previous expression. Hence lim

N→∞
M−

f (λ, φ, Y,N, ε) exists and will be

denoted by M−
f (λ, φ, Y, ε). Now, let P−

f (φ, Y, ε) := inf{λ : M−
f (λ, φ, Y, ε) = 0}. Consider two

positive numbers ε1 < ε2 and let us compare P−
f (φ, Y, ε1) and P−

f (φ, Y, ε2). Given any prehistory
C, we have that X(C, ε1) ⊂ X(C, ε2), so if Γ ⊂ C∗ ε1-covers Y , then Γ also ε2-covers Y . There-
fore there are more candidates Γ in the expression of M−

f (λ, φ, Y,N, ε2) than in the expression of
M−

f (λ, φ, Y,N, ε1). This shows that for any N

M−
f (λ, φ, Y,N, ε2) ≤M−

f (λ, φ, Y,N, ε1)

Hence 0 ≤M−
f (λ, φ, Y, ε2) ≤M−

f (λ, φ, Y, ε1), and then from definition, P−
f (φ, Y, ε2) ≤ P−

f (φ, Y, ε1).
This proves that, when ε decreases to 0, P−

f (φ, Y, ε) increases, so the limit lim
ε→0

P−
f (φ, Y, ε) does exist

and is denoted by P−
f (φ, Y ). P−

f (φ, Y ) is called the inverse pressure (or inverse upper pressure) of
φ on Y . P−

f (φ, Y, ε) is called the ε-inverse pressure of φ on Y . This notion has been introduced in
[5], although here we have used different notations. When the map f will be clear from the con-
text, we may drop the index f from the notations for P−

f (φ, Y ), P−
f (φ, Y, ε),M−

f (λ, φ, Y,N, ε), etc.
Also, we will denote by P−

f (φ), P−
f (φ, ε),M−

f (λ, φ,N, ε), etc., the quantities P−
f (φ,X), P−

f (φ,X, ε),
M−

f (λ, φ,X,N, ε), etc., respectively. The following proposition provides some properties of P−.

Proposition 1. Let f : X → X be a continuous surjective map on the compact metric space X, ε
a positive number and φ a function from C(X,R).

i) If Y1 ⊂ Y2 ⊂ X, then P−
f (φ, Y1) ≤ P−

f (φ, Y2) and P−
f (φ, Y1, ε) ≤ P−

f (φ, Y2, ε).

ii) If Y = ∪
j∈J

Yj is a finite or countable union of subsets of X, then P−
f (φ, Y, ε) = sup

j∈J
P−

f (φ, Yj , ε)

and P−
f (φ, Y ) = sup

j∈J
P−

f (φ, Yj).

iii) If f is a homeomorphism on X, then P−
f (φ) = Pf (φ), where Pf (φ) denotes the usual (forward)

topological pressure of φ with respect to the map f .

iv) P−
f (φ, Y ) is invariant to topological conjugacy, i.e if f : X → X, g : X ′ → X ′ are continuous

surjective maps and Ψ : X → X ′ is a homeomorphism such that Ψ ◦ f = g ◦ Ψ, then
P−

f (φ, Y ) = P−
g (φ ◦Ψ−1,Ψ(Y )), for any subset Y ⊂ X.
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Proof. We will prove only part ii), the others are straightforward. Assume that Y = ∪
j∈J

Yj is a

finite or countable union of subsets of X. We will show that, given some ε > 0, P−
f (φ, Y, ε) =

sup
j
P−

f (φ, Yj , ε), for any function φ ∈ C(X,R); the other equality, P−
f (φ, Y ) = sup

j
P−

f (φ, Yj)

will follow similarly. First, directly from the definition of P−, it follows that P−
f (φ, Y, ε) ≥

sup
j
P−

f (φ, Yj , ε). Take now t > sup
j
P−

f (φ, Yj , ε). Then there exists some number α > 0 so small

that t− α > P−
f (φ, Yj , ε),∀j ∈ J . So M−

f (t− α, φ, Yj , ε) = 0 for all j ∈ J . But from the fact that
M−

f (t − α, φ, Yj , N, ε) grows with N , we obtain that M−
f (t − α, φ, Yj , N, ε) = 0,∀j ∈ J, ∀N > 0.

So, if N is fixed, then for any j ∈ J there exists a set Γj ⊂ C∗ such that Yj ⊂ ∪
C∈Γj

X(C, ε) and

n(C) ≥ N,∀C ∈ Γj and we have∑
C∈Γj

exp(−(t− α)n(C) + S−n(C)φ(C)) ≤ 1
2j

Now, if we consider the collection Γ := ∪
j∈J

Γj , then Y = ∪
j∈J

Yj ⊂ ∪
C∈Γ

X(C, ε), n(C) ≥ N,∀C ∈ Γ,

and ∑
C∈Γ

exp(−(t− α)n(C) + S−n(C)φ(C)) ≤ 1

This means that M−
f (t−α, φ, Y,N, ε) ≤ 1, hence M−

f (t, φ, Y,N, ε) ≤ e−αN . Thus M−
f (t, φ, Y, ε) = 0

and t ≥ P−
f (φ, Y, ε). In conclusion, since t has been taken arbitrarily larger than sup

j∈J
P−

f (φ, Yj , ε),

we obtain the required equality, P−
f (φ, Y, ε) = sup

j∈J
P−

f (φ, Yj , ε).

Here are also some additional properties of P−, whose proofs can partly be found in [5]; the
proofs of the properties for ε-inverse pressures are similar.

Proposition 2. Let f : X → X be a continuous surjective map on the compact metric space X,
Y a subset of X and φ, ψ ∈ C(X,R). Then:

i) P−
f (φ+ α, Y ) = P−

f (φ, Y ) + α.

ii) If φ ≤ ψ on Y and ε is a positive number, then P−
f (φ, Y ) ≤ P−

f (ψ, Y ) and P−
f (φ, Y, ε) ≤

P−
f (ψ, Y, ε).

iii) P−
f (·, Y ) is either finitely valued or constantly ∞.

iv) |P−
f (φ, Y )−P−

f (ψ, Y )| ≤ ||φ−ψ|| if P−
f (·, Y ) is finitely valued; a similar inequality holds for

the corresponding ε-inverse pressures.

v) P−
f (φ+ ψ ◦ f − ψ, Y ) = P−

f (φ, Y ).

vi) If φ is a strictly negative function on X, then the mapping t→ P−
f (tφ, Y ) is strictly decreasing

if P−
f (·, Y ) is finitely valued. Also the mapping t→ P−

f (tφ, Y, ε) is strictly decreasing.
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The inverse entropy h− obtained by definition as P−(0) is smaller or equal than the preimage
entropy hi ([5]) and actually, in the case of homeomorphisms, they both coincide with the usual
topological entropy (definitions and useful properties of hi are given, for example, in [6], [5], etc).
Another interesting property of P− gives an alternative way of calculating the inverse pressure, by
using prehistories of the same length at each step:

Proposition 3. [[5]]
Let f : X → X be a continuous surjective map on a compact metric space X, and φ ∈ C(X,R).

Denote by

Q−
m(φ, ε) := inf{

∑
C∈Γ

exp(S−mφ(C)),Γ ⊂ Cm,Γ ε− covering X},

Then P−(φ) = lim
ε→0

lim
m→∞

1
m · logQ−

m(φ, ε).

So, Proposition 3 says that we can also obtain P−(φ) if in the original definition we consider
at step m only m-prehistories, then let m converging to ∞, etc. This is due to the way in which
X(C, ε) was defined and also to the possibility of concatenating two prehistories in order to obtain
a longer prehistory.

In the sequel, we will focus on the case of a holomorphic non-degenerate map f : P2 → P2, where
P2 represents the 2-dimensional complex projective space P2C. Any holomorphic map f on P2 is
given as f([z : w : t]) = [P (z, w, t) : Q(z, w, t) : R(z, w, t)], with P,Q,R homogeneous polynomials
in z, w, t, all having the same degree d. If d ≥ 2, then f is called non-degenerate; in this case f is
non-invertible.

We shall assume in the sequel that f : P2 → P2 is non-degenerate and has Axiom A; let Λ
be one of its basic sets of unstable index 1, meaning that Df has on Λ both stable and unstable
directions. For definitions and discussions of Axiom A for non-invertible maps [7] or [2] are good
references. An important point to remember is that, since f is not invertible on the invariant set
Λ, one has to define hyperbolicity with respect to the natural extension of Λ. We recall briefly this
notion and also how to define hyperbolicity in this non-invertible case.

Denote first by Λ̂ := {x̂ = (x, x−1, ...)where x−i ∈ Λ and f(x−i−1) = x−i, i ≥ 0, x0 = x} and
call this set the natural extension of Λ with respect to f . Λ̂ is a compact metric space endowed
with the metric

d(x̂, ŷ) =
∑
i≥0

d(x−i, y−i)
2i

More general, we can define a metric dK on Λ̂ for any K > 1 by setting

dK(x̂, ŷ) =
∑
i≥0

d(x−i, y−i)
Ki

.

As above, we will not specify the constant K in the notation dK when K = 2. Also, it can be
noticed that for all K > 1, dK gives the same topology on Λ̂, namely the topology induced on the
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subset Λ̂ by the product topology on the larger space ΛN. We denote by π : Λ̂ → Λ the canonical
projection π(x̂) = x and by f̂ the homeomorphism f̂ : Λ̂ → Λ̂, f̂(x̂) = (fx, x, x−1, ...).

The hyperbolicity of f on Λ means that there exist constants C > 0, λ′ > 1, and for every x̂ ∈ Λ̂,
a vector space Eu

x̂ ⊂ TxP2, and a vector space Es
x ⊂ TxP2 such that Df(Eu

x̂) ⊂ Eucfx
, Df(Es

x) ⊂ Es
fx

and we have the inequalities

||Dfk
x (v)|| ≤ C(λ′)−k||v||, ||Dfk

x (w)|| ≥ C(λ′)k||w||

for every x ∈ Λ, k ≥ 0 and all vectors v ∈ Es
x, w ∈ Eu

x̂ . In the definition of hyperbolicity on Λ̂
we assume also that Es

x ⊕ Eu
x̂ = TxP2,∀x̂ ∈ Λ̂ and that Es

x depends continuously on x, while Eu
x̂

depends continuously on x̂. Es
x is called the stable tangent vector space (or the stable space) at x.

Eu
x̂ is called the unstable tangent vector space (or unstable space) corresponding to the prehistory x̂.

Like in the diffeomorphism case, it is possible ([7]) to show that, if r is small enough (for example
0 < r < r0), there exist stable and unstable local manifolds passing through x:

W s
r (x) := {y ∈ P2, d(f ix, f iy) < r, i ≥ 0}

W u
r (x̂) := {y ∈ P2,∃ ŷ ∈ π1(y) with d(y−i, x−i) < r, i ≥ 0}.

If moreover f is holomorphic on P2, the local (un)stable manifolds on a basic set of unstable index
1, are analytic disks.

Now, given a point x ∈ Λ and a small fixed number 0 < r < r0 <
diamΛ

2 , denote by δs(x) :=
HD(W s

r (x) ∩ Λ), where HD stands for the Hausdorff dimension of a set. We shall call δs(x), the
stable dimension at x. In the sequel we shall suppose also that Cf ∩ Λ = ∅, where Cf denotes the
critical set of f . Hence, one can define the negative function φs(y) := log |Df |Es

y
|, y ∈ Λ; as a

notational remark, Es
y is a one-dimensional complex space and |Df |Es

y
| denotes the norm of Df

restricted to this stable space.
We studied the stable dimension in [2], [4], [5]. In [2], the first author showed that δs(x) ≤ ts∗,

where ts∗ is the unique zero of the pressure function t → P (tφs) (the topological pressure being
calculated with respect to the map f |Λ). However in the above inequality we do not have equality
in general. Indeed the gap between δs(x) and ts∗ is influenced by the number of preimages that a
point from Λ has in Λ, as was explained in [4], where we obtained a better upper estimate ts0:

Theorem. In the above setting, assume that the map f |Λ has the property that every point x ∈ Λ
has at least d′ ≤ d preimages in Λ. Then δs(x) ≤ ts0, where ts0 is the unique zero of the function
t→ P (t log |Df |Es

y
| − log d′) and as a consequence, δs(x) ≤ h(f |Λ)−log d′

| log sup
y∈Λ

|Df |Es
y
|| .

Another estimate for δs(x) was given in [5], by using the unique zero ts of the inverse pressure
function t→ P−(tφs), calculated again with respect to f |Λ:

Theorem. In the same setting as before, δs(x) ≤ ts. Moreover, in case Λ can be written as
the union of countably many compact, pathwise connected and simply connected subsets, ts =
δs(x),∀x ∈ Λ.
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Let us focus now on the zeros tsn(ε) of the ε-inverse pressure functions for the iterates fn|Λ.
If Λ is a basic set for f , then f(Λ) = Λ, hence fn(Λ) = Λ,∀n > 0 integer. Let us denote
by Dfs(y) the linear map Df |Es

y
, which can be identified with a complex number since Es

y has
complex dimension 1; similarly, Dfn

s (y) denotes Dfn|Es
y
, y ∈ Λ. Since f is holomorphic, |Dfn

s (y)| =
|Dfs(y)| · |Dfs(fy)| · ... · |Dfs(fn−1y)|,∀y ∈ Λ. φs

n(y) := log |Dfn
s (y)|, y ∈ Λ, so φs

n is a strictly
negative function on Λ, which has finite values since Cf ∩Λ = ∅. From Proposition 2 vi) applied to
fn|Λ : Λ → Λ, it follows that the function t→ P−

fn(tφs
n, ε) is strictly decreasing; since P−

fn(0, ε) ≥ 0,
and P−

fn(tφs
n, ε) < 0 for t > 0 large enough, it follows that this strictly decreasing function has a

unique zero, denoted by tsn(ε). The same is true for the function t→ P−
fn(tφs

n) which has a unique
zero tsn. When n = 1 we denote ts1(ε) by ts(ε), and ts1 by ts. We shall prove in the sequel that
tsn(ε) ≥ tsnp(ε) and tsn = ts, for any positive integers n, p and any ε > 0.

First, we will prove that the stable spaces Es
y depend Lipschitz continuously on y ∈ Λ. In

addition we will show the Lipschitz continuity of y → Es
y when y ranges in W s

r (x) ( x ∈ Λ), and
moreover, that the Lipschitz constant on these stable leaves can be chosen independently of the point
x ∈ Λ. Remark also that the unstable spaces do not depend Lipschitz on their base points since
in general they depend on whole prehistories. In [2], one of the authors showed that the unstable
spaces Eu

x̂ depend Holder continuously on x̂, with respect to a fixed metric dK on Λ̂; the respective
Holder exponent depends on the chosen constant K > 1. The following theorem was known in
the case of conformal diffeomorphisms, but up to our knowledge it has never appeared in the case
of non-degenerate holomorphic maps on P2 (which are non-invertible). As it turns out below, the
non-invertible case requires its own proof, different than the one given for diffeomorphisms. (for
example, in this case we cannot use the inverse iterate f−1, and on the natural extension Λ̂ we
cannot use a differentiable structure).

Theorem 1. Consider f : P2 → P2 a holomorphic Axiom A map, and let Λ be one of its basic sets
of unstable index 1, such that Cf ∩Λ = ∅. Then the map x→ Es

x is Lipschitz continuous as a map
from Λ to the bundle G1(Λ) of spaces of complex dimension 1 in the tangent bundle over Λ, i.e.
there exists a positive constant Υ such that for all x, y from Λ, d(Es

x, E
s
y) ≤ Υd(x, y). In particular,

if φs(y) := log |Df |Es
y
|, y ∈ Λ, then φs is Lipschitz continuous. Moreover, there exist a small r > 0

and Ξ > 0 such that for any x ∈ Λ and any points y, z ∈W s
r (x), we have |φs(y)−φs(z)| ≤ Ξ·d(y, z).

Proof. For every K > 1 consider the metric dK on Λ̂, given by the formula

dK(x̂, ŷ) := d(x, y) +
d(x−1, y−1)

K
+
d(x−2, y−2)

K2
+ ...

Notice that the topology given by dK on Λ̂ is independent of K and is induced by the product
topology on a countable product of Λ’s. In the sequel we shall use a Pointwise Hölder Section
Theorem from [10].

Theorem (Pointwise Hölder Section Theorem). Let E = X × Y be a vector bundle over a
metric space X, where Y is a closed, bounded subset of a Banach space, and let π : E → X be the
canonical projection. Let F : E → E be a bundle map covering a homeomorphism h : X → X, i.e
π ◦ F = h ◦ π. Suppose that F satisfies the following conditions:
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1) F contracts the fibers of E in the sense that, for all x ∈ X there exists a constant 0 ≤ λx < 1
such that

d(F (x, y), F (x, z)) ≤ λxd(y, z),∀y, z ∈ Y.

2) There exist constants L ≥ 1 and α > 0 such that for all x, x′ ∈ X and y ∈ Y ,

|F (x, y)− F (x′, y)| ≤ L · d(x, x′)α.

3) There exists some positive number η such that sup
x∈X

λx · µ−α
x =: ρ(α) < 1 where µx denotes:

µx := inf{d(hx, hx
′)

d(x, x′)
, x, x′ ∈ X,x 6= x′, d(x, x′) < η}

Also, let us denote by µ := inf
x∈X

µx and assume that µ > 0.

Then we have the following:

i) there exists a unique section σ : X → E whose image is invariant under F , i.e σ ◦ h(x) =
F ◦ σ(x), x ∈ X.

ii) σ is Hölder continuous with exponent α, i.e

|σ(x)− σ(x′)| ≤ Hd(x, x′)α,∀x, x′ ∈ X.

iii) Assume that the diameter of Y is bounded by R, then we can bound the Hölder constant H
by:

H ≤ LR

µηα(1− supλxµ
−α
x )

Let us now return to our setting and see how we can apply this theorem. By definition of
hyperbolicity of f , there exists a continuous splitting of the tangent bundle to P2 over Λ̂, given
by TΛ̂P2 = Es ⊕ Eu, where Es

x depends continuously on x ∈ Λ and Eu
x̂ depends continuously on

x̂ ∈ Λ̂. The stable space Es
x and the stable manifold of size r > 0 at x depend only on the forward

iterates of x, whereas the unstable space Eu
x̂ and the unstable manifold W u

r (x̂) depend on the
entire prehistory x̂ of x. Let us take an arbitrary constant K > 1 and consider the metric dK on Λ̂.
Since continuous maps can be approximated by Lipschitz continuous maps, there exists a splitting
F s ⊕ F u(K) of TΛ̂P2 such that the linear subspaces of complex dimension 1, F s

x , depend Lipschitz
continuously on x ∈ Λ and the subspaces of dimension 1, F u

x̂ (K) depend Lipschitz on x̂ ∈ Λ̂; also we
assume that F s

x approximates Es
x, and F u

x̂ (K) approximates Eu
x̂ uniformly in x, respectively x̂. As

a remark, the spaces F u
x̂ (K) depend in general on K since they have to vary Lipschitz continuously

with respect to the metric dK , whereas the spaces F s
x are Lipschitz only with respect to the usual

euclidian metric induced on Λ, therefore they do not depend on K.
Let us assume that d(F s

x , E
s
x) < ε, d(F u

x̂ (K), Eu
x̂) < ε, for all x̂ in Λ̂, where ε is a small positive

number. From the above Lipschitz conditions, there exist positive constants τ and τK such that

d(F s
x , F

s
y ) ≤ τd(x, y),∀x, y ∈ Λ
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and d(F u
x̂ (K), F u

ŷ (K)) ≤ τKdK(x̂, ŷ),∀x̂, ŷ ∈ Λ̂

In this case, Es
x can be interpreted as the image of a linear map from F s

x to F u
x̂ (K), for any

prehistory x̂ of x ∈ Λ. Consider therefore Lx̂(K) := L(F s
x , F

u
x̂ (K)) be the space of linear maps

from F s
x to F u

x̂ (K). L(K) will denote the vector bundle over Λ̂ given by Lx̂(K), x̂ ∈ Λ̂, where
we consider the metric dK on Λ̂. The space X of the Hölder Section Theorem will be Λ̂ endowed
with dK and the homeomorphism h from the statement of the same theorem is the map f̂−1 :
Λ̂ → Λ̂. We will also consider the bundle map Ψ : L(K) → L(K) induced by the graph transform
associated to the derivative Df−1(x̂) : F s

x⊕F u
x̂ (K) → F s

x−1
⊕F u

f̂−1x̂
(K), where x̂ = (x, x−1, ....) ∈ Λ̂.

The mapping Df−1(x̂) represents the derivative at x of the local branch of f−1 which takes x
into x−1, in case x̂ = (x, x−1, ...) is an arbitrary point of Λ̂; this derivative does exist because
we assumed that the critical set of f does not intersect Λ. In the sequel we shall use also the
notation Df−1

s (x̂) as being the inverse of the isomorphism Dfs(x−1) : Es
x−1

→ Es
x; similarly for

the notation Df−1
u (x̂). The notion of graph transform used above is explained in [8]. If we assume

that Df−1(x̂) =

(
Ax̂ Bx̂(K)

Cx̂(K) Gx̂(K)

)
, then Ax̂ : F s

x → F s
x−1

, Bx̂(K) : F u
x̂ (K) → F s

x−1
, Cx̂(K) :

F s
x → F u

f̂−1x̂
(K), Gx̂(K) : F u

x̂ (K) → F u
f̂−1x̂

(K); let us notice that from the decomposition above,
Bx̂(K), Cx̂(K) and Gx̂(K) depend on K, but Ax̂ does not, since the bundle F s is independent of
K. From the definition of graph transform,

Ψx̂(g) = (Cx̂(K) +Gx̂(K)g) ◦ (Ax̂ +Bx̂(K)g)−1, (1)

for any linear map g ∈ Lx̂(K). So it can be noticed that Ψx̂(g) ∈ Lf̂−1x̂(K), for any x̂ ∈ Λ̂.
From construction, Ax̂ and Gx̂(K) approximate Df−1

s (x̂), respectively Df−1
u (x̂), while |Bx̂(K)| <

a1(ε), |Cx̂(K)| < a1(ε), where a1(·) is a positive continuous function with a1(0) = 0. Hence, if ε is
small enough, then the Lipschitz constant of Ψx̂ is smaller or equal than λx̂(K), where:

λx̂(K) := |Df−1
u (x̂)| · |Dfs(x−1)|+ a2(ε) =

|Dfs(x−1)|
|Dfu(x−1)|

+ a2(ε) < 1, (2)

and where a2(ε) is a positive continuous function in ε, with a2(0) = 0. Let us recall now that the
metric on Λ̂ is dK which depends on the constant K > 1. In the same spirit as in [8], we can also
assume that the bundle E := L(K) is trivial, otherwise we can replace it with E ⊕ E′, for some
complementary bundle E′. This replacement does not depend on the metric dK , since the metric
on E is already induced by the product of the metric dK on Λ̂ and the usual euclidian metric on
the spaces of linear maps. We will estimate the local Lipschitz constant µx̂(K) of h at x̂ ∈ Λ̂, where
h = f̂−1 is our base homeomorphism. Thus, as in the statement of the Pointwise Hölder Section
Theorem, let µx̂(K) := inf{dK(hx̂,hŷ)

dK(x̂,ŷ) , x̂ 6= ŷ, x̂, ŷ ∈ Λ̂ and dK(x̂, ŷ) < η} for some small η > 0.
Denote also by µ(K) := inf

x̂∈Λ̂
µx̂(K). Then we have:

dK(x̂, ŷ) = d(x, y) +
d(x−1, y−1)

K
+
d(x−2, y−2)

K2
+ ... =

= d(x, y) +
1
K
d(f̂−1x̂, f̂−1ŷ)

(3)
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Let us denote by ε0 a positive constant depending only on f such that f is injective on balls of
radius ε0(inf

Λ
|Dfs|)−1 centered on Λ and such that we can apply the Mean Value Inequality on balls

of radius ε0(inf
Λ
|Dfs|)−1 . Suppose that 0 < η < ε0. If dK(x̂, ŷ) < η, and dK(f̂−1x̂, f̂−1ŷ) > η, then

dK(x̂, ŷ) < (|Dfu(x−1)| + 1
K )dK(f̂−1x̂, f̂−1ŷ) since |Dfu(x−1)| + 1

K > 1. So, with the assumption
that dK(x̂, ŷ) < η, let us suppose also that dK(f̂−1x̂, f̂−1ŷ) < η. Hence d(x−1, y−1) < η and, from
our assumption it follows also that d(x, y) < η, so, using the Mean Value Inequality, we obtain
that:

dK(x̂, ŷ) ≤ (|Dfu(x′−1)|+
1
K

)dK(f̂−1x̂, f̂−1ŷ) = (|Dfu(x′−1)|+
1
K

)dK(hx̂, hŷ), (4)

where x′−1 is some point with d(x−1, x
′
−1) < η. This implies that the constant µx which appears in

the Pointwise Hölder Section Theorem is represented in our situation by µx̂(K) and, as we saw in
( 4),

µx̂(K) ≥ (|Dfu(x−1)|+
1
K

+ ω(|Dfu|, η))−1, (5)

where ω(|Dfu|, η) is the maximum oscillation of |Dfu| on a ball of radius η centered at an arbitrary
point of Λ, and we used above that |Dfu(x′−1)| ≤ |Dfu(x−1)|+ ω(|Dfu|, η).

Next, we show that Ψx̂ is Lipschitz in x̂; recall that we assumed that L(K) is a trivial bundle,
so we can identify all the 1-dimensional complex spaces Lx̂(K) with C, and do this independently
of K. We wish to prove that there exists a constant ΘK > 0 such that

|Ψx̂(g)−Ψŷ(g)| ≤ ΘKdK(x̂, ŷ),∀x̂, ŷ ∈ Λ̂,∀g ∈ C, |g| ≤ 1 (6)

From the fact that f is smooth and F s depends Lipschitz in x ∈ Λ, while F u
x̂ (K) depends Lipschitz

in x̂ ∈ Λ̂, it follows that Ax̂ depends Lipschitz in x (with respect to the euclidian metric induced
on Λ) and Bx̂(K), Cx̂(K), Gx̂(K) depend Lipschitz in x̂ (with respect to the metric dK). Recall
from ( 1) that Ψx̂(g) = (Cx̂(K) + Gx̂(K)g) · (Ax̂ + Bx̂(K)g)−1, for any linear map g ∈ Lx̂(K).
But in our case, g,Ax̂, Bx̂(K), Cx̂(K), Gx̂(K) are just complex numbers. It is enough to show
that x̂ → (Ax̂ + Bx̂(K)g)−1 is Lipschitz. But since we work with complex numbers we have
|(Ax̂ + Bx̂(K)g)−1 − (Aŷ + Bŷ(K)g)−1| =

∣∣∣ (Aŷ−Ax̂)+(Bŷ(K)−Bx̂(K))g
(Ax̂+Bx̂(K)g)(Aŷ+Bŷ(K)g)

∣∣∣. Now we use the fact that

Ax̂, Bx̂(K) depend Lipschitz in x̂ and |Bx̂(K)| < a1(ε) << 1,∀x̂ ∈ Λ̂. Thus, for |g| ≤ 1 we get that
|Ax̂ + Bx̂(K)g| is uniformly (in x̂) bounded away from 0, since |Ax̂| approximates |Df−1

s (x̂)| (and
we know that |Df−1

s (x̂)| ≥ (sup
Λ
|Dfs|)−1 > 0), and |Bx̂(K)| is very small in comparison to |Ax̂|. In

conclusion we obtained the Lipschitz continuity of Ψ, hence inequality ( 6).
Let us check now the condition 3) of the Pointwise Hölder Section Theorem with α = 1. Using

the relations in ( 2) and ( 5), we have that:

ρ(1,K) := sup
x̂∈Λ̂

λx̂ · µx̂(K)−1 ≤ (
|Dfs(x−1)|
|Dfu(x−1)|

+ a2(ε)) · (|Dfu(x−1)|+
1
K

+ ω(|Dfu|, η)) =

= (
|Dfs(x−1)|
|Dfu(x−1)|

+ a2(ε)) · (
1
K

+ ω(|Dfu|, η)) +
|Dfs(x−1)|
|Dfu(x−1)|

· |Dfu(x−1)|+ a2(ε)|Dfu(x−1)| ≤

≤ |Dfs(x−1)|+M(ε, η,K) < 1,
(7)
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where M(ε, η,K) is a positive continuous function in ε, η, and K with M(0, 0,∞) = 0. This is
why in the last inequality of ( 7) we were able to take M(ε, η,K) < 1− sup

Λ
|Dfs|, for ε and η small

enough and K large enough. The values of such ε, η,K depend only on f . Therefore, we found
that in this case condition 3) of the Pointwise Section Theorem is satisfied for α = 1.

Now, according to ( 6), it follows that condition 2) from the statement of the Pointwise Section
Theorem is satisfied as well, so all the conditions of the Pointwise Hölder Section Theorem hold
and we get that the unique invariant section σ is Lipschitz. But in our case this unique invariant
section σ is just the stable bundle, σ(x̂) = Es

x,∀x̂ ∈ Λ̂, hence there exists a constant CK depending
on K such that:

d(Es
x, E

s
y) ≤ CKdK(x̂, ŷ),∀x̂, ŷ ∈ Λ̂ (8)

Let us denote now by λs := inf
z∈Λ

|Dfs(z)|, and take ε̃0 := λsε0, where the number ε0 has been

introduced earlier; clearly ε̃0 6= 0 since the critical set of f avoids Λ.
We want to prove that ( 8) implies that, in fact, x→ Es

x is Lipschitz.
Case 1:
Let us then assume first that x, y ∈ Λ with d(x, y) ≥ ε̃0. If ∆0 denotes the diameter of Λ, then

dK(x̂, ŷ) ≤ d(x, y) +
2∆0

K
≤ d(x, y) +

2∆0

K
· d(x, y)

ε̃0
≤

≤ d(x, y)(1 +
2∆0

Kε̃0
) < d(x, y)(1 +

2∆0

ε̃0
) ≤ C ′d(x, y),

(9)

with C ′ > 0 a constant independent of K.
Case 2:
Now suppose that 0 < d(x, y) < ε̃0 for some x, y ∈ Λ. We consider here the map f re-

stricted to Λ. We will say that (x, x−1..., x−n) are consecutive preimages of x in Λ if f(x−1) =
x, f(x−2) = x−1, ..., f(x−n) = x−n+1 and x−j ∈ Λ,∀j = 1..n. Consider n = n(x, y) to be the
largest positive integer such that there exist consecutive preimages of x and of y, (x, x∗−1, ..., x

∗
−n)

and (y, y∗−1, ..., y
∗
−n) with d(x∗−i, y

∗
−i) < ε0, i = 1, .., n. Since n is the largest such integer, it follows

that, for some x∗−n−1 ∈ f−1(x∗−n) and y∗−n−1 ∈ f−1(y∗−n), with d(x∗−n−1, y
∗
−n−1) < ε0λ

−1
s , we have:

ε0 < d(x∗−n−1, y
∗
−n−1) ≤ λ−1

s d(x∗−n, y
∗
−n) (10)

We also obtain
d(x∗−i, y

∗
−i) ≤ λ−i

s d(x, y), i = 1, .., n (11)

From ( 10) and ( 11), we obtain that d(x∗−n−1, y
∗
−n−1) ≤ λ−n−1

s d(x, y). This implies that, for any
complete prehistories x̂∗, ŷ∗ of x, y, which start with the consecutive preimages (x, x∗−1, ..., x

∗
−n),

(y, y∗−1, ..., y
∗
−n) considered above, we have

dK(x̂∗, ŷ∗) = d(x, y) +
d(x∗−1, y

∗
−1)

K
+ .... ≤

≤ d(x, y) +
1

λsK
d(x, y) + ...+

1
λn

sK
n
d(x, y) +

2∆0

Kn+1

(12)
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Assume that K is fixed such that K > λ−2
s and such that M(ε, η,K) < 1 − sup

Λ
|Dfs| for some

ε < 1 and some η < ε0. Then , from ( 10) and ( 11), ε0 < λ−n−1
s d(x, y) < Kn+1d(x, y), which

implies that 1
Kn+1 <

d(x,y)
ε0

. Introducing this inequality in ( 12), one sees that there exists a positive
constant C ′′ such that for our chosen prehistories x̂∗, ŷ∗, of x, respectively y,

dK(x̂∗, ŷ∗) ≤ C ′′d(x, y) (13)

By considering now both Case 1, ( 9), and Case 2, ( 13), together with ( 8), we obtain the Lipschitz
continuity of the stable spaces with respect to their base points – i.e there exists a positive constant
Υ such that for all x, y from Λ, d(Es

x, E
s
y) ≤ Υd(x, y). This implies immediately that also φs is

Lipschitz on Λ.
Now, we will prove the uniform Lipschitz continuity of the stable distribution and of φs along

the stable leaves. We notice that, since Λ is compact, one can construct local stable manifolds of
size r at all points of Λ, if r > 0 is small enough. If y is a point in a manifold W s

r (x), but y is not
necessarily in Λ, we shall call stable space at y, denoted by Es

y, the tangent space at W s
r (x) at y. We

see that the spaces Es
y vary smoothly when y moves inside W s

r (x) for x fixed. So the existence of a
constant Ξ like in the statement is conditioned only on the boundedness of the “curvature” of these
local stable manifolds. Assume then that there exists a sequence zn ∈ Λ such that the Lipschitz
constants Ln of the maps gn converge to infinity, where gn(y) := Es

y, y ∈ W s
r (zn). Since Λ is

compact, the sequence (zn)n has at least one convergent subsequence and without loss of generality
we can assume that this subsequence is again (zn)n and zn → z. If x is an arbitrary point in Λ,
then W s

r (x) is an analytic disk which is given as the image of an analytic map hx from the unit
disk ∆ to C2. We denote by hn the map hzn , for n positive integer. But from the hyperbolicity
condition, the analytic maps hx vary continuously in x ∈ Λ, hence also hn vary continuously in n.
The norm on ∆ of the second derivative of hn bounds the Lipschitz constant Ln of the map gn, for
all n. Notice however that, since hn are holomorphic and vary continuously in n, also the second
derivatives of the maps hn vary continuously in n. Therefore, since we assumed zn → z ∈ Λ, we
obtain that Ln are bounded by some finite positive constant L. So the map y → Es

y is L-Lipschitz
on W s

r (x),∀x ∈ Λ. Then, due to the smoothness of f , there exists a small r > 0 and Ξ > 0 such
that for any x ∈ Λ and any points y, z ∈W s

r (x), we have |φs(y)− φs(z)| ≤ Ξ · d(y, z).

We will study now the consecutive sums of the function φs. Given a prehistory C, a positive
number ε < min{diamΛ/2, ε0}, and the corresponding set Λ(C, ε), we will prove that the consec-
utive sums of two points in Λ(C, ε) are the same, up to a constant independent of the length of
C.

Proposition 4. Let f : P2 → P2 holomorphic, with Axiom A and such that Cf ∩ Λ = ∅ for a
basic set Λ of unstable index 1. Let also a prehistory C of a point x in Λ, with respect to f . If
m := n(C), C = (x, x−1, ..., x−m) and y is an arbitrary point in Λ(C, ε), with the corresponding
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prehistory (y, y−1, ..., y−m) ε-shadowed by C, then we have:

1
C1

≤ |Dfm
s (y−m)|

|Dfm
s (x−m)|

< C1,

where C1 > 1 is a constant independent of m and C.

Proof. From the fact that (y, ..., y−m) is an m-prehistory of y in Λ we know in particular that
y−m ∈ Λ, hence there exists a local stable manifold through y−m of size ε. Let us take also x̂ be
any complete prehistory in Λ of x, starting with (x, x−1, ..., x−m). Set x̂−m := f̂−m(x̂). In this case
W u

ε (x̂−m) intersects W s
ε (y−m) in a unique point z. It follows from the local product structure of

Λ that z belongs to Λ. From the fact that y belongs to Λ(C, ε) and (y, ..., y−m) is its prehistory
ε-shadowed by C, we know that d(f ix−m, f

iy−m) < ε for all i = 0, 1, ...,m. Also from the fact that
z ∈W s

ε (y−m) it follows that d(f iz, f iy−m) < ε for all i = 0, 1, ...,m. From the last two inequalities
we get that d(f ix−m, f

iz) < 2ε for all i = 0, 1, ...,m. But, since z ∈W u
ε (x̂−m)∩W s

ε (y−m), we have
that there exist constants c̃ > 0 and γ ∈ (0, 1) such that for all i = 0, 1, ...,m,

d(f ix−m, f
iz) < c̃γm−i and d(f iy−m, f

iz) < c̃γi. (14)

Now from Theorem 1, φs(y) depends Lipschitz continuously on y ∈ Λ and, also φs is uniformly
Lipschitz continuous on local stable manifolds over Λ. This, together with ( 14), implies that there
exists a constant K ′ > 0 such that:∣∣∣∣∣∣

m∑
j=0

φs(y−j)−
m∑

j=0

φs(x−j)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

m∑
j=0

φs(y−j)−
m∑

j=0

φs(fm−jz)

∣∣∣∣∣∣+
∣∣∣∣∣∣

m∑
j=0

φs(fm−jz)−
m∑

j=0

φs(x−j)

∣∣∣∣∣∣
≤ K ′(

m∑
j=0

d(y−j , f
m−jz) +

m∑
j=0

d(fm−jz, x−j)) ≤ 2K ′c̃ ·
m∑

j=0

γj < K ′′,

(15)
where K ′′ is a constant independent of m and ε. Hence the statement of the proposition follows
immediately from the previous inequalities.

Proposition 5. Let f : P2 → P2 holomorphic, with Axiom A and such that Cf ∩Λ = ∅ for a basic
set Λ of unstable index 1. Denote χu := sup

Λ
|Dfu|.

(a) Then we have that tsn(ε) ≥ tsnp(ε) and that ts = tsn, for any positive integers n, p and any
ε > 0.

(b) For ε < ε0, and ρ an arbitrary number in the interval (0, χ−1
u ), denote by ρn := ε ·ρn, n > 1.

Then P−
fn(tφs

n, ρn) = P−
fn(tφs

n), for any t; consequently tsn(ρn) = tsn = ts, n > 1.

Proof. (a) First we make the following notations. If m is a positive integer, denote by

Cn
m := {(y, yn

−1, ..., y
n
−m) ∈ Λm+1, such that fn(yn

−i) = yn
−i+1, i = 1, ..,m, and y0 = y}

Let also Cn
∗ := ∪

m≥0
Cn

m be the set of prehistories of finite length for fn in Λ. Now, if n, p and ε > 0

are fixed, we consider an arbitrary number t ∈ (tsn(ε), tsn(ε) + 1). From the definition of tsn(ε), we
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get that, for N large, there exists an ε-covering Γ of Λ, Γ ⊂ Cn
∗ with n(C) ≥ N,∀C ∈ Γ and:∑

C∈Γ

exp(S−n(C)(tφ
s
n(C))) < exp(−(tsn(ε) + 1)n(2p− 1) sup

Λ
|φs|) (16)

For every C ∈ Γ, let us divide n(C) by p, and obtain n(C) = p ·m(C)+ k(C), where 0 ≤ k(C) < p.
If C = (y, yn

−1, ..., y
n
−n(C)), then denote by C ′ the m(C)-prehistory of y with respect to fnp given

by C ′ = (y, znp
−1, ..., z

np
−m(C)), where znp

−1 := yn
−p, ..., z

np
−m(C) := yn

−pm(C). Then it is easy to see that
Λ(C, ε) ⊂ Λ(C ′, ε), for all C ∈ Γ. Denote by Γ′ the collection of all the prehistories C ′ associated
by the above procedure to the prehistories C from Γ. We calculate now the consecutive sum

S−n(C)φ
s
n(C) = φs

n(y) + ...+ φs
n(yn

−m(C)p) + φs
n(yn

−m(C)p−1) + ...+ φs
n(yn

−n(C))

= log |Dfn(pm(C)+1)
s (yn

−m(C)p)|+ log |Dfnk(C)
s (yn

−n(C))|.

On the other hand

S−m(C)φ
s
np(C

′) = φs
np(y) + ...+ φs

np(z
np
−m(C))

= φs(yn
−m(C)p) + φs(fyn

−m(C)p) + ...+ φs(y) + φs(fy) + ...+ φs(fnp−1y)

= log |Dfnp(m(C)+1)
s (yn

−m(C)p)|.

These last two relations show that

S−n(C)φ
s
n(C) = S−m(C)φ

s
np(C

′) + log |Dfn
s (y)|+ log |Dfnk(C)

s (yn
−n(C))| − log |Dfnp

s (y)|.

Using that k(C) < p and the last equality, we obtain that

|S−n(C)φ
s
n(C)− S−m(C)φ

s
np(C

′)| ≤ n(p− 1) · sup
Λ
|φs|+ | log |Dfnk(C)

s (yn
−n(C))|| ≤ n(2p− 1) · sup

Λ
|φs|

Therefore
inf{

∑
C′∈Γ′

exp(S−m(C)(tφ
s
np(C

′))),Γ′ ⊂ Cnp
∗ ε− covers Λ} ≤

≤ [
∑
C∈Γ

exp(S−n(C)(tφ
s
n(C)))] · exp(tn(2p− 1) sup

Λ
|φs|) < 1.

(17)

The last inequality follows since t < tsn(ε) + 1 and from the way we chose Γ in the begining of the
proof. But from the definition of P−

np, we obtain then that t ≥ tsnp(ε). However since t was taken
arbitrarily in the finite interval (tsn(ε), tsn(ε) + 1), it follows that tsn(ε) ≥ tsnp(ε).

The inequality ts(ε) ≥ tsn(ε) implies that ts ≥ tsn, n ≥ 1. We want to prove now the opposite
inequality, i.e ts ≤ tsn (actually the same proof shows more generally, that P−

fn(tφs
n) = nP−

f (tφs)).
Indeed, let us consider an arbitrary t > tsn, for a fixed integer n. For a given ε > 0, let ε̄n > 0
satisfying the following conditions: for any y, z with d(y, z) < ε̄n we have d(f jy, f jz) < ε, 0 ≤ j ≤ n,
and also P−

fn(tφs
n, ε̄n) < 0. Hence for all m large, there exists an (m, ε̄n)-cover Γn

m of Λ (i.e Γn
m

is a collection of m-prehistories C ′ with respect to fn, so that Λ = ∪
C′∈Γn

m

Λ(C ′, ε̄n)), satisfying:∑
C′∈Γn

m

eS
−
m(tφs

n)(C′) < 1. Now, out of every C ′ we will form a prehistory C with respect to f in
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the canonical way, i.e if C ′ = (y, y−n, ..., y−nm), then C = (y, fn−1y−n, ..., y−n, ..., f(y−nm), y−nm).
Also, from the condition satisfied by ε̄n, we see that Λ(C ′, ε̄n) ⊂ Λ(C, ε); so, if Γnm denotes the
collection of prehistories C of length nm (with respect to f) obtained as above from the prehistories
C ′ of Γn

m, we obtain that Γnm is an (nm, ε) cover of Λ. Moreover, as found above, S−nm(tφs)(C) =
S−m(tφs

n)(C ′) + log |Dfs(y)| − log |Dfn
s (y)|. These facts imply that

∑
C∈Γnm

eS
−
nm(tφs)(C) < Mn, where

Mn is a constant depending only on n. Therefore if we let m→∞ (and keep n fixed), we see that
P−

f (tφs, ε) ≤ 0 ⇒ t ≥ ts(ε). But 0 < ε < ε0 was arbitrary and t was taken arbitrarily larger than
tsn, hence tsn ≥ ts. This proves the equality ts = tsn, n ≥ 1.

(b) First from the proof of Proposition 4 we know that for allm ≥ 1, and prehistory (x, x−1, ..., x−m)
of x in Λ, 1

C1(ε) ≤
|Dfm

s (y−m)|
|Dfm

s (x−m)| ≤ C1(ε), for (y, y−1, ..., y−m) an m-prehistory of y, ε-shadowed by
(x, x−1, ..., x−m). The proof of Proposition 4 implies also that C1(ε) ≤ C2 · ε, 0 < ε < ε0, for
some constant C2 > 0. Let us consider now the situation for fn for some fixed n ≥ 1. Consider
(x, x−n, ..., x−np) a p-prehistory of x in Λ (with respect to fn), and let (y, y−n, ..., y−np) be another
p-prehistory in Λ which is ρn-shadowed by (x, x−n, ..., x−np). Then, if d(y−np, x−np) < ρn < ερn, we
get that d(f j(y−np), f j(x−np)) < ε, 0 ≤ j ≤ n, and similarly we obtain that d(f j(y−np), f j(x−np)) <
ε, 0 ≤ j ≤ np. Therefore the np-prehistory with respect to f , (y, y−1, ...., y−np) is ε-shadowed by
(x, x−1, ..., x−np). So we can apply Proposition 4 in this case to obtain similar inequalities for
prehistories of fn:

1
C1(ε)

≤ |Dfnp
s (y−np)|

|Dfnp
s (x−np)|

≤ C1(ε), (18)

for any p ≥ 1. Next, take C an arbitrary p-prehistory in Λ, with respect to fn, for n fixed. If ε′

is an arbitrary number in the interval (0, ρn), we see that the set Λ(C, ρn) can be covered with at
most (ρnC1(ε)

ε′ )4 sets of the form Λ(C ′, ε′), where C ′ are p-prehistories with respect to fn. Thus,
recalling the definition of P−

fn(tφs
n, ρn), P−

fn(tφs
n, ε

′) and inequality (18), we conclude that:

P−
fn(tφs

n, ρn) = P−
fn(tφs

n, ε
′) = P−

fn(tφs
n)

The last equality above follows from the fact that P−
fn(tφs

n, ε
′) → P−

fn(tφs
n) when ε′ → 0. Hence,

recalling also the conclusion of part (a), we get tsn(ρn) = tsn = ts, n > 1.

2 Estimates from above and below for the stable dimension in the

general holomorphic case using the inverse pressure of iterates

Given a map f and a basic set Λ as in Proposition 4, define λs := inf
ω∈Λ

|Dfs(ω)| and χs :=

sup
ω∈Λ

|Dfs(ω)|. Remark that λs > 0 since we assumed that Λ ∩ Cf = ∅. For every positive inte-

ger n and small positive number ε, let tsn(ε) (respectively tsn) be the unique zero of the function
t→ P−

fn(tφs
n, ε) (respectively t→ P−

fn(tφs
n)), where φs

n(y) := log |Dfn
s (y)|, y ∈ Λ.

15



Theorem 2. Let f : P2 → P2 be a holomorphic non-degenerate map with Axiom A and Λ a basic
set of f with unstable index 1. Assume also that the critical set of f , Cf does not intersect Λ.

(a) Then for every x ∈ Λ, we have δs(x) ≤ tsn(ρn) = ts, where ρn > 0 are small numbers of
the form ερn, n ≥ 1, where χu := sup

Λ
|Dfu|, ρ > 0 is an arbitrary number smaller than χ−1

u , and

ε < min{ε0, r0}.
(b) For all positive numbers ε < ε0, and η > 0, we get δs(x) + η ≥ tsn(ε), where n ≥ n(ε, η) and

n(ε, η) is a positive integer satisfying n(ε, η) > 4 log 1
ε

η·log χ−1
s

. In particular, if η = ε small enough, we

get δs(x) + ε ≥ tsn(ε), for n ≥ (1
ε )1.1.

Proof. (a) According to Proposition 5, we have tsn(ρn) = ts. From the Theorem of [5], recalled also
in the Introduction, we have that δs(x) ≤ ts. Hence δs(x) ≤ tsn(ρn), n > 1.

(b) We prove now the inequality δs(x) + η ≥ tsn(ε) for ε > 0 small enough (to be determined
next), η > 0 small, and n ≥ n(ε, η).

First let us notice that, from definition, δs(x) ≤ 2. Let us take an arbitrary t with δs(x) < t < 3.
Recall also that ε0 has been introduced earlier as a positive constant so that we can apply the Mean
Value Inequality for f on balls of radius ε0(inf

Λ
|Dfs|)−1, and also such that f is injective on balls

of radius ε0(inf
Λ
|Dfs|)−1 centered on Λ.

Consider now N0(ε) to be the smallest cardinality of a covering of Λ with balls of radius ε.
Then if β = dimB(Λ) denotes the upper box dimension of Λ, and β0 < β < β1, we have that

(1
ε )β0 < N0(ε) < (1

ε )β1 , for ε > 0 small enough.
With ε > 0 and η > 0 fixed, consider n(ε, η) be the smallest positive integer n such that

N0(ε) · χnη
s < 1 (19)

This implies then n(ε, η) > 4 log 1
ε

η·log 1
χs

.

In the sequel we consider ε with 0 < ε < min{ε1/2, r, d(Λ, Cf )/4}. We shall prove that, for such
an ε and η > 0, the inequality t+ η > tsn(ε) holds for n ≥ n(ε, η).

Define now a constant 0 < α̃ < 1 which depends only on f and on Λ, such that for all x′ ∈ Λ
and 0 < r′ << diamΛ , we have that W s

r′(y
′) intersects W u

r′(ẑ
′) for all points y′, z′ ∈ B(x′, α̃r′) and

all prehistories ẑ′ ∈ Λ̂ of z′. The existence of such a constant follows from the transversality of
stable and unstable manifolds.

Next let us cover the compact set Λ with a finite number of balls B(y1, α̃ε/4), ..., B(ys, α̃ε/4)
which are centered at points of Λ. Let us choose one such ball and denote its intersection with Λ
by Y .

We will show now that there exists a positive integer m such that all local unstable manifolds
W u

ε (ŷ) intersect the set f−m(W ), for all prehistories ŷ ∈ Λ̂ of all points y ∈ Y , where we recall that
W := W s

r (x) ∩ Λ.
Indeed, from the transitivity of f on Λ, there exists a positive integer m and a point z ∈ Y ∩Λ

such that fm(z) ∈ B(x, α̃ε/2) ∩ Λ. Take now a complete prehistory ŷ ∈ Λ̂ of an arbitrary point
y from Y . From the fact that Y is contained in a ball of radius α̃ε/4, we can conclude that
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W s
ε/2(z)∩W

u
ε/2(ŷ) 6= ∅ and denote this intersection (which is a point) by ξ. From the local product

structure ξ belongs to Λ. We have also that fm(ξ) ∈ W s
ε (fmz) ∩ Λ. Take now f̂mξ to be the

prehistory in Λ of fmξ given by (fmξ, fm−1ξ, ..., ξ, ξ−1, ...), where ξ̂ := (ξ, ξ−1, ...) is the prehistory
of ξ ε/2-shadowed by ŷ; such a prehistory of ξ exists since ξ ∈ W u

ε/2(ŷ). So, we get that there

exists a local unstable manifold W u
ε/2(f̂

mξ) which intersects W s
ε/2(x) in a point ζ; again from the

local product structure, ζ ∈ Λ and since ζ ∈ W s
ε/2(x), we obtain that ζ ∈ W . If we consider ζ−m

the m-th preimage of ζ obtained from the fact that ζ ∈ W u
ε/2(f̂

mξ), we will have d(ζ−m, ξ) < ε/2.
Combining with the fact that ξ̂ corresponds to a prehistory of ξ ε/2-shadowed by ŷ, it follows that
ζ−m ∈W u

ε (ŷ)∩ f−mW . We may denote the point ζ−m also by ζ−m(ŷ) when we want to emphasize
its dependence on ŷ.

Therefore, we proved that the set f−mW intersects all unstable manifolds W u
ε (ŷ) for all prehis-

tories ŷ ∈ Λ̂ of points y from Y .
From the fact that ζ ∈W u

ε/2(f̂
mξ), it follows that d(ζ−m, ξ) < ε/2, d(fζ−m, fξ) < ε/2, ..., d(ζ, fmξ) <

ε/2. But ξ ∈ Λ and Λ is f - invariant, hence

d(ζ,Λ) < ε/2, ..., d(ζ−m,Λ) < ε/2 (20)

Let us denote by Jm the set of these points ζ−m(ŷ) obtained for all the prehistories ŷ of points
y ∈ Y . Relation (20), together with the fact that ζ ∈ Λ ∩ W u

ε/2(f̂
mξ) imply that ζ−m(ŷ) ∈ Λ,

therefore Jm ⊂ Λ. The relations in ( 20) imply also that fm is injective on a neighbourhood of
Jm, since ε < d(Λ, Cf )/4 and f j(Jm)∩ Cf = ∅, j = 0, ...,m. And, from our construction, fm(Jm) ⊂
W . But from above fm is injective on a neighbourhood of Jm and it is bi-Lipschitz on that
neighbourhood, hence HD(Jm) ≤ HD(W ) = δs(x). Recall also that t > δs(x), so t > HD(Jm).
This means that for any γ, 0 < γ < ε, there exists an open cover of Jm with balls, U = (Ui)i∈I ,
such that diamUi < γ and ∑

i∈I

(diamUi)t < εt+1 · λ4n
s χn

s , (21)

for a fixed n, n ≥ n(ε, η).
Let us choose now an arbitrary i ∈ I and assume that Card(Ui ∩ Jm) > 1. Let us denote by Yi

the set of points y of Y which have some prehistory ŷ with W u
ε (ŷ)∩ Jm ∩Ui 6= ∅; denote by Fi the

set of prehistories ŷ ∈ Λ̂ with this property.
For each point z′ ∈ Ui ∩ Jm, there exists then a point y ∈ Yi and a prehistory ŷ ∈ Λ̂ such that

z′ ∈W u
ε (ŷ), and actually z′ = ζ−m(ŷ). Therefore z′ has a prehistory ẑ′ given by that procedure, i.e

which is ε-shadowed by ŷ; this prehistory may also be denoted by ẑ′(ŷ) if we want to emphasize its
dependence on ŷ. Let also F ′

i := {ẑ′(ŷ), ŷ ∈ Fi}. Let us now take a prehistory ẑ′ ∈ F ′
i . Since ε was

assumed sufficiently small, we can define local branches of f−1 on balls of radius ε. Let us denote
by f−1

∗ the branch of f−1 defined on B(z′, ε) such that f−1
∗ (z′) = z′−1. It may happen that the

diameter of f−1
∗ Ui increases. In case diamf−1

∗ Ui < ε, define afterwards the inverse iterate f−2
∗ such

that f−2
∗ (z′) = z′−2, etc. Let us denote by ni(ẑ′) the largest integer n′ which is a multiple of n and

for which diamf−k′
∗ (Ui) < ε, 0 ≤ k′ ≤ n′, where ẑ′ = ẑ′(ŷ) for some ŷ ∈ Fi ⊂ Λ̂ as above. We do

this for all the points of Ui ∩ Jm and denote by ni the largest integer ni(ẑ′) for all z′ ∈ Ui ∩ Jm and
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all prehistories ẑ′ from F ′
i . Obviously we cannot stretch the open set Ui in backward time forever,

while keeping the diameter of its inverse iterates smaller than ε, hence ni is finite. Also, ni, ni(ẑ′)
are multiples of n, so they can be written as ni = nmi, ni(ẑ′) = nmi(ẑ′). In addition, for a point
z′ ∈ Ui ∩ Jm and a prehistory ẑ′ ∈ F ′

i , we will define also the integer n̄i(ẑ′) as the smallest integer
(not necessarily a multiple of n) such that diamf−n̄i(ẑ

′)
∗ Ui > ε. We remark that the definitions

imply the inequalities
ni(ẑ′) ≤ n̄i(ẑ′) ≤ ni(ẑ′) + n,

for any point z′ ∈ Jm ∩ Ui and any prehistory ẑ′ ∈ F ′
i .

We shall cover now the set Yi with sets of type Λ(C ′, ε), where C ′ ∈ Cn
∗ (i.e C ′ are prehistories

with respect to fn). In order to do this, take an arbitrary z′ ∈ 1
2Ui ∩ Jm and a prehistory ẑ′ =

ẑ′(ŷ) ∈ F ′
i , which corresponds to some complete (infinite) prehistory C = ŷ ∈ Fi; by 1

2Ui we
understand the ball with the same center as Ui and with half its radius. Then consider the mi(ẑ′)-
prehistory C ′ of y (prehistory with respect to fn), coming from the prehistory C, i.e we have C ′ =
(y, y−n, ..., y−nmi(ẑ′)). Recall that z′ ∈ W u

ε/2(ŷ). From the definition of ni(ẑ′) we see immediately
that Ui ⊂ P2(C ′, ε), and also y ∈ Λ(C ′, ε). Recall that C ′ is an mi(ẑ′)- prehistory with respect to
fn. Hence, since N0(ε) is the smallest cardinality of a cover of Λ with balls of radius ε, and since
ni = nmi is the largest integer of the form ni(ẑ′), we can cover the set Yi with at most N0(ε)mi sets
of the form Λ(C ′, ε), where C ′ are prehistories for fn of length n(C ′), with n(C ′) ≤ mi. We will
denote by Γi the set of prehistories C ′ used for the last covering. So we have Yi ⊂ ∪

C′∈Γi

Λ(C ′, ε),

and Γi ⊂ Cn
∗ , n(C ′) ≤ mi,∀C ′ ∈ Γi. This construction can be done for every i ∈ I and, for each

such i, we have CardΓi ≤ N0(ε)mi .
But we proved that, for all ŷ ∈ Λ̂, the local unstable manifold W u

ε (ŷ) intersects Jm; on the
other hand Jm ⊂ ∪

i∈I
Ui. In conclusion, Y ⊂ ∪

i∈I
Yi, hence Y ⊂ ∪

i∈I
∪

C′∈Γi

Λ(C ′, ε). Using this cover of

Y with sets Λ(C ′, ε), C ′ ∈ Cn
∗ , we will estimate M−

fn(0, (t + η)φs
n, Y,N, ε) for some large integer N

chosen so that n(C ′) ≥ N,∀C ′ ∈ ∪
i∈I

Γi:

M−
fn(0, (t+ η)φs

n, Y,N, ε) ≤
∑
i∈I

∑
C′∈Γi

exp(S−n(C′)(t+ η)φs
n(C ′))

Let us investigate now what is the relation between diamUi and exp(S−n(C′)(t+η)φ
s
n(C ′)), C ′ ∈ Γi.

From the definition of ni(ẑ′) we know that it represents the largest integer n′, multiple of n, such
that diamf−k′

∗ (Ui) < ε, 0 ≤ k′ ≤ n′, with f−k′
∗ being the inverse branch determined by ẑ′. Also,

n̄i(ẑ′) represents the smallest integer (not necessarily multiple of n) such that diamf−n̄i(ẑ
′)

∗ Ui > ε,
where the inverse branches f−k

∗ were defined along the prehistory ẑ′ = ẑ′(C).
We consider now what happens to Ui when taking inverse iterates. Let z” be another point in

1
2Ui∩Λ, and ζ” the intersection between W s

r (z”) and the unstable manifold W u
r (ẑ′); from the local

product structure ζ” ∈ Λ. Then, since Ui is a ball, we get diamf−n̄i(ẑ
′)(W s

r (z′) ∩ Ui) = constant ·
|Df n̄i(ẑ

′)
s (z′−n̄i(ẑ′)

|−1 · diamUi, and diamf−n̄i(ẑ
′)(W s

r (z”) ∩ Ui) = constant · |Df n̄i(ẑ
′)

s (ζ”−n̄i(ẑ′))|−1 ·
diamUi, due to the bounded distortion property from Proposition 4. But since ζ” ∈W u

r (ẑ′) and ζ̂” is
the prehistory of ζ” following ẑ′, we see that the distance d(z′−j , ζ”−j) decreases exponentially when
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j increases; thus due to the fact that |Dfs|(z) depends Lipschitz continuously on z (Theorem 1),
we get that |Df n̄i(ẑ

′)
s (ζ”−n̄i(ẑ′))| and |Df n̄i(ẑ

′)
s (z′−n̄i(ẑ′)

)| are the same up to a constant independent
of z′.

Therefore up to a constant factor independent of n,C ′, we will obtain for every i ∈ I that:

diamUi > ε exp(S−n̄i(ẑ′)
φs(C ′′)) ≥ ε exp(S−mi(ẑ′)

φs
n(C ′))λn

s , (22)

where we considered first the n̄i(ẑ′)-prehistory C ′′ := (y, y−1, ..., y−n̄i(ẑ′)), (prehistory with respect to
f , induced by the full prehistory C := ŷ), and then themi(ẑ′)-prehistory C ′ := (y, y−n, ..., y−nmi(ẑ′)),
(prehistory with respect to fn, induced by the same complete prehistory C). We used also in ( 22)
the fact that n̄i(ẑ′) ≤ ni(ẑ′) + n.

We make also the observation that, from the definition of n(C ′), for any two prehistories C ′, C̃ ∈
Γi, we have exp(S−n(C′)φ

s
n(C ′)) is the same as exp(S−

n(C̃)
φs

n(C̃)), up to a factor of less than χ−n
s .

Thus in the estimate below, we may as well use for C ′ a prehistory where ni is attained (called
maximal ni- prehistory), i.e such that ni(ẑ′) = ni = nmi. Therefore by employing also ( 22) and
the fact that CardΓi ≤ N0(ε)mi , we can estimate M−

fn(0, (t+ η)φs
n, Y,N, ε) as follows:

M−
fn(0, (t+ η)φs

n, Y,N, ε) ≤
∑
i∈I

∑
C′∈Γi

ε−t−η(diamUi)t · exp(S−mi(ẑ′)
φs

n(C ′))ηλ−n(t+η)
s

≤
∑
i∈I

[N0(ε)mi · exp(S−mi(ẑ′)
φs

n(C ′))η]ε−t−η(diamUi)tλ−n(t+η)
s χ−nη

s

≤
∑
i∈I

[N0(ε) · χnη
s ]miχ−nη

s ε−t−η(diamUi)tλ−n(t+η)
s

(23)

where we used in the second inequality a maximal ni-prehistory, i ∈ I.
In the above sequence of inequalities, we used also that 0 < η < 1, 0 < t < 3. But ni = nmi, so

( 23) implies that

M−
fn(0, (t+ η)φs

n, Y,N, ε) ≤ ε−t−1
∑
i∈I

(diamUi)t[N0(ε)χηn
s ]miλ−4n

s χ−n
s

≤ ε−t−1λ−4n
s χ−n

s

∑
i∈I

(diamUi)t[N0(ε)χηn
s ]mi

(24)

But from (19) and since n ≥ n(ε, η), we see that N0(ε)χ
ηn
s < 1. From the way of choosing the

cover U in ( 21), we have also
∑
i∈I

(diamUi)t < εt+1 · λ4n
s χn

s . In conclusion inequality ( 24) becomes

M−
fn(0, (t+ η)φs

n, Y,N, ε) < 1 (25)

Since γ and consequently diamUi, i ∈ I can be taken as small as we wish, we see that n(C ′) can
also be made arbitrarily large, for C ′ ∈ ∪

i∈I
Γi. Therefore if γ → 0, N can be taken arbitrarily large,

and ( 25) implies that M−
fn(0, (t+η)φs

n, Y, ε) = 0. Thus one can conclude that P−
fn((t+η)φs

n, Y, ε) ≤
0, for 0 < η < 1 and n ≥ n(ε, η). But let us also remember that Y was just the intersection between
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Λ and one of the balls B(y1, α̃ε/4), ..., B(ys, α̃ε/4) which cover Λ. Therefore by Proposition 1 ii),
it follows that

P−
fn((t+ η)φs

n,Λ, ε) ≤ 0, for n ≥ n(ε, η).

This implies that t + η ≥ tsn(ε), for n ≥ n(ε, η). Since t was chosen arbitrarily larger than δs(x),
we obtain δs(x) + η ≥ tsn(ε), for n ≥ n(ε, η).

Corollary 1. In the same setting as in the previous Theorem, if x, y are arbitrary points from Λ,
then |δs(x)− δs(y)| ≤ (dimBΛ)·log χu

log χ−1
s

, where χu := sup
z∈Λ

|Dfu(z)|.

Proof. First, let us notice that dimBΛ ≤ 4 since Λ ⊂ P2, so even if dimBΛ cannot be calculated
explicitly, the statement of the corollary still gives a good estimate of the maximum possible
variation of δs(·) on Λ.

Let us take an arbitrary η with η > (dimBΛ) log χu

log χ−1
s

. Then there exists β1 > dimBΛ and χ′u > χu

such that η > β1·log χ′u
log χ−1

s
. Now, if β1 > dimBΛ, then there will exist a large integer n1 = n1(β1)

depending on β1 such that for any n ≥ n1, we get ρn = ρn small enough so that N0(ρn) ≤ ( 1
ρn

)β1 ,
where N0(·) and ρn were introduced in the proof of Theorem 2. Hence N0(ρn) · χnη

s ≤ (ρn)−β1χnη
s .

But we assumed η > β1 log χ′u
log χ−1

s
, so there exists n1 large enough and a certain number ρ ∈ (0, χ−1

u )

close enough to χ−1
u , such that (ρn)−β1χnη

s < 1 for n > n1. This implies that:

N0(ρn) · χnη
s < 1 (26)

Now we can use inequalities (26) and (24) to prove that M−
fn(0, (t + η)φs

n, Y, ρn) < 1; this implies
then that

P−
fn((t+ η)φs

n, ρn) ≤ 0, for n > n1

Thus we conclude from above that t+ η ≥ tsn(ρn). But from Proposition 5, tsn(ρn) = ts, n ≥ 1. So
t + η ≥ ts. Since t is arbitrarily larger than δs(x) and η is arbitrarily larger than (dimBΛ) log χu

log χ−1
s

, it

follows that δs(x) + (dimBΛ) log χu

log χ−1
s

≥ ts ≥ δs(y), y ∈ Λ, where the inequality ts ≥ δs(y) follows from

Theorem 2. Therefore, |δs(x)− δs(y)| ≤ (dimBΛ)·log χu

log χ−1
s

,∀x, y ∈ Λ.

We do not have yet examples of Axiom A holomorphic maps for which the stable dimension is
not constant along a basic set of saddle type Λ, although such examples may exist a priori.

3 Independence of δs(x) when the map f is open on Λ

In this section we show that, for an Axiom A holomorphic map f on P2 which, in addition, is also
open on a connected basic set Λ, the stable dimension δs(x) becomes independent of x ∈ Λ.

It is easy to prove that the condition f |Λ : Λ → Λ open, is equivalent to saying that the
cardinality of the set f−1(x) ∩ Λ is constant when x ranges in Λ.
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Fornaess and Sibony have introduced and studied in [1] a type of holomorphic maps g on P2

which are Axiom A and such that the saddle part S1 of the non-wandering set has a neighbourhood
U with the property that g−1(S1) ∩ U = S1 (among other properties). Such maps were called
s-hyperbolic. Notice that any s-hyperbolic map is in particular open on any basic set Λ of saddle
type. Examples of s-hyperbolic maps were given in [1].

In the sequel we will prove that the openness of f on Λ is a sufficient condition in order to
guarantee that δs(x) does not depend on x ∈ Λ. The proof will use ideas and notations (the sets
Λ(C, ε), and their concatenations, for example), related to the concept of inverse pressure.

Theorem 3. Consider a holomorphic Axiom A map f : P2 → P2 and a connected basic set of
saddle type Λ which does not intersect the critical set Cf . Moreover assume that f |Λ : Λ → Λ is
open, in particular any point x ∈ Λ has the same number of preimages in Λ (this number being
denoted by d′). Then for any x ∈ Λ, δs(x) = ts0, where ts0 is the unique zero of the pressure function
t→ P (tφs − log d′).

Proof. In [4], we proved that δs(x) ≤ ts0, so it remains to prove now only the opposite inequality.
Denote W := W s

r (x) ∩ Λ. As in the second part of the proof of Theorem 2, we find an integer
m ≥ 1 and a set Jm ⊂ f−mW ∩ Λ such that all local unstable manifolds of size ε/2 intersect Jm

(for some small fixed 0 < ε < ε0). Take also t > δs(x) arbitrary. Then there exists a finite open
cover U = (Ui)i∈I of Jm with balls of diameter less than γ << 1, and so that

∑
i∈I

(diamUi)t < 1
2 .

Recall from the proof of Theorem 2 the definition of F ′
i , the set of prehistories in Λ of points from

Ui ∩ Jm. In the sequel, for the clarity of notation, we will denote the set Ui ∩ Jm by Ui too.
Assume ẑ is a prehistory in Λ of a point z ∈ Ui; denote by n(ẑ) the largest integer such that

diamf−k
∗ Ui < ε/2, 0 ≤ k ≤ n(ẑ), where f−k

∗ is the branch of f−k determined by the prehistory ẑ.
For the prehistory ẑ, denote by C(ẑ) the n(ẑ)-prehistory (z, z−1, ..., z−n(ẑ)) which is obtained by
truncating ẑ.

Now for each i ∈ I, let us fix a point zi ∈ 1
2Ui ∩ Λ and then consider the set F̃i of all finite

prehistories C(ẑi) obtained as above, for all prehistories in Λ of zi. Notice that we consider in this
case all d′ f -preimages in Λ of the given point zi ∈ Ui; it is easy to see also that F̃i is finite.

Denote also by U∗
i := ∪

C∈F̃i

Λ(C, ε); then Λ = ∪
i∈I

U∗
i . For later reference, it is useful to note

that for any prehistory ŷ ∈ Λ̂, there exists j ∈ I such that W u
ε/2(ŷ) ∩ Uj 6= ∅; but then there exists

a certain prehistory ẑj of zj such that W u
ε (ŷ) ∩ Λ ⊂ Λ(C(ẑj), ε) (this follows from the definition

of C(ẑj) and the fact that f |Λ is open). Therefore, all unstable manifolds of prehistories in Λ̂
(intersected with Λ ) are contained in some Λ(C, ε), C ∈ ∪

i∈I
F̃i.

Now, for i ∈ I, C ∈ F̃i, write C as (zC , ..., zC
−n(C)) (notationally zC = zi). Denote also by

Gi := {n(C), C ∈ F̃i}, (recall that n(C) denotes the length of C), and write Gi as {ni1, ..., niqi},
where ni1 < .. < niqi . Now, let Nij be the number of prehistories C ∈ F̃i with n(C) = nij , 1 ≤ j ≤
qi, i ∈ I.

We will make the connection between the sets Λ(C, ε) (obtained as above in the process of
covering Λ) and the Bowen balls needed in the definition of the (forward) pressure. In general by
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a Bowen ball Bk(z, ε), z ∈ Λ, we mean the set {y ∈ Λ, d(f jy, f jz) < ε, 0 ≤ j ≤ k}. Therefore,
if C ∈ F̃i, i ∈ I, we have Λ(C, ε) = fn(C)(Bn(C)(zC

−n(C), ε)); for simplicity of notation, denote
the Bowen ball Bn(C)(zC

−n(C), ε) by B(C), C ∈ F̃i, i ∈ I. From the above discussion, we know that
Λ = ∪

i∈I
U∗

i = ∪
i∈I

∪
C∈F̃i

fn(C)(B(C)). However since the integers n(C) are different among themselves,

it does not follow directly that the Bowen balls B(C) cover Λ. In order to get a covering of Λ with
Bowen balls, we will make a construction using concatenations of sets of type Λ(C, ε); it will be
possible then to take the lengths of these concatenations arbitrarily large.

Let in general C and C ′ be two prehistories of points in Λ, C = (z, z−1, ..., z−n(C)) and C ′ =
(w,w−1, ..., w−n(C′)). Assume also that there exists a point z′ ∈ Λ(C, ε), so that z′−n(C) ∈ Λ(C ′, ε),
where z′−n(C) represents the n(C)-preimage of z′ which is ε-shadowed by z−n(C). If z′−n(C) ∈ Λ(C ′, ε),
it follows that it has a prehistory (z′−(n(C)+1), ..., z

′
−(n(C)+n(C′))) which is ε-shadowed by C ′. So we

can form the set Λ(CC ′, ε) := {y ∈ Λ(C, ε), y−n(C) ∈ Λ(C ′, ε)}, and from above, if this set is non-
empty, then Λ(CC ′, ε) ⊂ Λ(C ′′, 2ε), where C ′′ is an (n(C)+n(C ′))-prehistory. This process will be
called concatenation.

We will use concatenation repeatedly in order to obtain a cover of Λ with sets Λ(C ′′, 2ε) with
n(C ′′) arbitrarily large. For all n large enough, define now the collection Γn := {C̄ = C1...Cs, Ck ∈
F̃jk

, jk ∈ I, 1 ≤ k ≤ s, n ≤ n(C1) + ... + n(Cjs) < n + N}, where here N := max
i∈I,C∈F̃i

n(C). Since

Λ = ∪
i∈I

∪
C∈F̃i

Λ(C, ε), we see, from the method of concatenating, that

Λ = ∪
C̄∈Γn

Λ(C̄, 2ε)

If C̄ ∈ Γn, and C̄ = C1...Cs, denote by n(C̄) := n(C1)+...+n(Cs). But as noticed before, if C̄ ∈ Γn,
there exist points zC̄

−n(C̄)
such that Λ(C̄, 2ε) = fn(C̄)(Bn(C̄)(z

C̄
−n(C̄)

, 2ε)), and n ≤ n(C̄) < n + N .

Therefore Λ = ∪
C̄∈Γn

fn(fn(C̄)−nBn(C̄)(z
C̄
−n(C̄)

, 2ε)).

Let us recall now the remark made earlier, after the definition of U∗
i . We saw that any set

W u
ε/2(ŷ) ∩ Λ, ŷ ∈ Λ̂ is contained in Λ(C, ε) for some C ∈ ∪

i∈I
F̃i (where F̃i is finite for any i ∈ I).

But, we collected in F̃i the corresponding C(ẑi) for all prehistories ẑi ∈ Λ̂; therefore we will obtain
that any fn-preimage in Λ of a point from Λ belongs to the union ∪

C̄∈Γn

fn(C̄)−nBn(C̄)(z
C̄
−n(C̄)

, 2ε)).

So we can conclude that Λ = ∪
C̄∈Γn

fn(C̄)−nBn(C̄)(z
C̄
−n(C̄)

, 2ε)).

On the other hand, notice that fn(C̄)−nBn(C̄)(z
C̄
−n(C̄)

, 2ε) ⊂ Bn(zC̄
−n, 2ε).

Denote then Fn := {zC̄
−n, C̄ ∈ Γn}. From the previous considerations it follows that Fn is an

(n, ε)-spanning set for Λ, in the classical (forward) sense. We will use this particular spanning set
Fn in order to estimate

Pn(tφs − log d′) := inf{
∑
z∈F

eSn(tφs)(z)−n log d′ , F (n, ε)− spanning set for Λ}

Let us recall the construction of the set Fn and the points zC̄
−n(C̄)

. If C̄ = C1...Cs, Ck ∈ F̃jk
, 1 ≤

k ≤ s, then from the proof of Proposition 4, we have that there exists a positive constant σ so that
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|Dfn(Cs)
s (zC̄

−n(C̄)
)| ≤ eσε · diamUjs , ..., |Df

n(C1)
s (zC̄

−n(C1))| ≤ eσε · diamUj1 , (since C1 ∈ F̃j1 , ..., Cs ∈
F̃js). Hence since n ≤ n(C̄) < n+N , there will exist a positive constant T1 independent of n such
that |Dfn(C̄)

s (zC̄
−n(C̄)

)| ≤ T1 · enσε · (diamUj1) · ... · (diamUjs). But recall that |Dfn(C̄)
s (zC̄

−n(C̄)
)| =

|Dfn(C̄)−n
s (zC̄

−n(C̄)
)| · |Dfn

s (zC̄
−n)|. Thus, for a positive constant T2 we obtain the inequality:

|Dfn
s (zC̄

−n)| ≤ T2 · enσε · (diamUj1) · ... · (diamUjs), (27)

for all C̄ ∈ Γn and all integers n > 1.
Now given n, and j1, ...js ∈ I, we will estimate how many prehistories C̄ = C1...Cs there exist,

with Ck ∈ F̃jk
, 1 ≤ k ≤ s and C̄ ∈ Γn.

For i ∈ I and 1 ≤ j ≤ qi, we denoted by Nij the number of prehistories C ∈ F̃i with n(C) =
nij , nij ∈ Gi. Hence for each s, j1, ..., js ∈ I, and integers njkpk

∈ Gjk
, 1 ≤ k ≤ s, satisfying

n ≤ nj1p1 + ...+njsps < n+N , there exist at most Nj1p1 · ... ·Njsps prehistories of type C̄ = C1...Cs

in Γn with Ck ∈ F̃jk
and n(Ck) = njkpk

, 1 ≤ k ≤ s. If i ∈ I, denote by

Σi :=
Ni1

(d′)ni1
+ ...+

Niqi

(d′)niqi

To start with, let us compare Ni1 and Ni2. Since ni1 < ni2, the prehistories stopping at ni1

cannot be continued to ni2-prehistories; hence using the fact that each point in Λ has at most
d′ preimages in Λ, it follows that Ni2 ≤ [(d′)ni1 − Ni1] · (d′)ni2−ni1 . Similarly one can show that
Nij ≤ (d′)nij − Ni1(d′)nij−ni1 − ... − Ni(j−1)(d′)nij−ni(j−1) , 2 ≤ j ≤ qi. This implies that, for each
i ∈ I, we obtain:

Σi ≤
Ni1

(d′)ni1
+

Ni2

(d′)ni2
+ ...

Ni(qi−1)

(d′)ni(qi−1)
+

(d′)niqi −Ni1(d′)niqi
−ni1 − ...−Ni(qi−1)(d′)

niqi
−ni(qi−1)

(d′)niqi

≤ (1− Ni1

(d′)ni1
− ...−

Ni(qi−1)

(d′)ni(qi−1)
) +

Ni1

(d′)ni1
+ ...+

Ni(qi−1)

(d′)ni(qi−1)
= 1

(28)
Therefore from the last inequality it follows that Σi ≤ 1, i ∈ I and hence Σj1 · ... · Σjs ≤

1, j1, ..., js ∈ I. This implies then
∑

1≤p1≤qj1
,...,1≤ps≤qjs

Nj1p1
...Njsps

(d′)
nj1p1

+...+njsps
≤ 1. In particular, if j1, ..., js ∈

I, we get
′∑ Nj1p1 · ... ·Njsps

(d′)n
≤ Θ, (29)

where Θ > 0 is a constant independent of n, j1, ..., js and where the sum
′∑

is taken over all integers
njkpk

∈ Gjk
, 1 ≤ k ≤ s satisfying n ≤ nj1p1 + ...+ njsps < n+N .

We will use the above conclusions in order to estimate now
∑

z∈Fn

eSn(tφs)(z)−n log d′ ; first notice

that for each j1, .., js ∈ I, there exist at most
∑
Nj1p1 · ... · Njsps prehistories C̄ = C1...Cs ∈ Γn,

with Ck ∈ F̃jk
, 1 ≤ k ≤ s, where the last sum is taken over all integers njkpk

∈ Gjk
, 1 ≤ k ≤ s
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satisfying n ≤ nj1p1 + ...+ njsps < n+N . Then using (27) and (29), we will obtain:

Pn(tφs − log d′) ≤
∑
z∈Fn

eSn(tφs)(z)−n log d′

≤
′′∑

(
∑

Nj1p1 · ... ·Njsps) · (d′)−n · T2e
nσε · (diamUj1)

t · ... · (diamUjs)
t

≤ ΘT2 · enσε ·
′′∑

(diamUj1)
t · ... · (diamUjs)

t,

(30)

where the sum
′′∑

is taken over all integers s > 0 and s-uples j1, ..., js ∈ I having some prehis-
tories C1, ..., Cs in F̃j1 , ..., F̃js respectively, which satisfy: C1...Cs ∈ Γn. But the cover (Ui)i∈I

has been taken such that
∑
i∈I

(diamUi)t < 1
2 , therefore

∑
s>0

(
∑
i∈I

(diamUi)t)s < 1. This implies that∑
s>0

∑
j1,...,js∈I

(diamUj1)
t · ... · (diamUjs)t < 1. Therefore using (30) it follows that

Pn(tφs − log d′) < ΘT2 · enσε

The constants Θ, T2, σ do not depend on n, ε, if ε < ε1 is small enough. So we get P (tφs− log d′) =
lim
n

1
n logPn ≤ σε, and since ε > 0 is arbitrarily small, we get P (tφs − log d′) ≤ 0. But this means

that t ≥ ts0, where ts0 denotes the unique zero of the function t → P (tφs − log d′). Now recall
that t has been taken arbitrarily larger than δs(x), hence δs(x) ≥ ts0. Recalling that the opposite
inequality was proved in [4], we get finally that δs(x) = ts0, x ∈ Λ. So, in case f |Λ is open, the stable
dimension is independent of the point.

In particular Theorem 3 shows that in the case of s-hyperbolic maps studied in [1], the stable
dimension along basic sets of saddle type, is independent of the point .

Finally, notice that the proof of Theorem 3 shows more generally that δs(x) ≥ ts0 if each point of
Λ has at most d′-preimages in Λ (one may also denote ts0 by ts0(d

′) when emphasizing its dependence
on d′). The number of preimages d(x) that a point x from Λ has in Λ, is not necessarily constant.
The above remark and Theorem 1.2 of [4] prove the following:

Corollary 2. In the setting of Theorem 2, if d′ ≤ d(y) ≤ d′′, y ∈ Λ, then for each x ∈ Λ it follows
that ts0(d

′′) ≤ δs(x) ≤ ts0(d
′).

It is important to remark that this Corollary does not require f |Λ to be open; it gives estimates
of the stable dimension, for example in the case of quadratic maps from [4].
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