
INSTABILITY OF EXPONENTIAL COLLET - ECKMANN MAPS

MARIUSZ URBAŃSKI AND ANNA ZDUNIK

Abstract. Given λ ∈ CI \ {0} let the entire function fλ : CI → CI be defined by the formula

fλ(z) = λez.

The question of structural stability within this family is one of the most important problems
in the theory of iterates of entire functions. The natural conjecture is that fλ is stable iff fλ is
hyperbolic, i.e. if the only singular value 0 is attracted by a an attracting periodic orbit. We
present some results positively contributing towards this conjecture. More precisely, we give
some sufficient conditions of summability type which guarantee that the map fλ is unstable.

1. Introduction

Structural stability is one of the most important issues in the theory of dynamical systems.
It is well-known that systems with strongly hyperbolic features of dynamics are structurally
stable. It is widely believed that in a sense these are only structurally stable systems. More
precisely, the hyperbolic systems are frequently expected to form a dense subset in an ap-
propriate class of systems in question. In this paper we deal with the class of exponential
functions on the complex plane, i.e. with maps fλ(z) = λez, where λ ∈ C \ {0} is a fixed
complex parameter, whereas z ∈ C is a variable. We want to contribute positively to the con-
jecture that the parameters λ for which fλ is hyperbolic (there is an attracting periodic cycle)
coincide with those λ’s for which fλ are structurally stable (within this class). It is known
that exponential maps either with a rationally indifferent periodic point, a Siegel disk, and
those with finite orbit of zero are unstable. We aim to show that Collet-Eckmann exponential
maps, systems which exhibit some weak hyperbolicity features are still unstable. Our general
approach is motivated by the works [Le], [M1], [M2] and [DMS]. We make an extensive use
of the Beltrami, Ruelle and Perron-Frobenius operators and we prove the following.

Theorem. If the series
∑∞
k=1

1
|(fk

λ
)′(0)| converges and either Oλ(0), the closure of the orbit of

0, is a nowhere dense set with Leb(Oλ(0)) = 0 or if the orbit of 0 is non-recurrent, then the
parameter λ is unstable.

We would like to add that Makienko at al have always dealt with transcendental functions
having critical singularities and they made use of hyperbolic behaviour of trajectories of
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critical singularities only. We find it interesting that the operator method (construction of
a fixed point of Ruelle’s operator) works also for trajectories of essential singularities. Our
concluding arguments are entirely different than those used in [Le], [M1], [M2] and [DMS].
Making use of the existence of invariant line field they lead to a contradiction by showing
that an exponential function would be globally holomorphically conjugate to an affine map.

2. Numerical condition for (in)stability

Definition 2.1. A parameter λ0 is called stable if there exists a neighbourhood U of λ0 in C
such that for every λ ∈ U , the map fλ is topologically conjugate to fλ0.

For every λ ∈ C and every z ∈ C put

Oλ(z) = {fnλ (z) : n ≥ 0}.

Set also

gn(λ) = fnλ (0).

We shall prove the following

Proposition 2.2. If λ0 ∈ C \ {0}, limn→∞(fnλ0
)′(0) = ∞ and the series

∑∞
n=0

1
(fn

λ0
)′(0)

does

not converge to 0, then the parameter λ0 is unstable.

Proof. First, notice that we can assume that the point 0 is not eventually periodic under
iterates of fλ0 . Indeed, if 0 is eventually periodic and the parameter λ0 is stable then the
equation fnλ (0) − fkλ (0) = 0 is satisfied on some open neighborhood of λ0 with some fixed
positive integers n and k. But, since the left hand side of the above equation defines a
holomorphic function of λ ∈ C, we conclude that the equation above is satisfied in the whole
C, which is impossible.

Abusing notation slightly, put f(λ, z) = fλ(z) and, more generally, fn(λ, z) = fnλ (z). Then
fn+1(λ, z) = f(λ, fn(λ, z)) and, differentiating with respect to λ, we get

∂

∂λ
fn+1(λ, z) =

∂f

∂λ
(λ, fn(λ, z)) +

∂

∂w |fn(λ,z)
f(λ,w) · ∂

∂λ
fn(λ, z)

=
1

λ
fn+1(λ, z) + fn+1(λ, z)

∂

∂λ
fn(λ, z) = fn+1(λ, z)

(
1

λ
+

∂

∂λ
fn(λ, z)

)
Setting z = 0, this gives

g′n+1(λ) =
(

1

λ
+ g′n(λ)

)
fn+1
λ (0)

or, equivalently,

λg′n+1(λ) = (1 + λg′n(λ))fn+1
λ (0) (2.1)
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We claim that for every n ≥ 1,

λ(gn)′(λ) = (fn)′(0)
n−1∑
k=0

((fkλ )′(0))−1, (2.2)

where f 0 is the identity map. Indeed, for n = 1 this equality follows by a trivial computation.
So, suppose it is true for some n ≥ 1. Then, using (2.1), we get

λg′n+1(λ) =

(
1 + (fnλ )′(0)

n−1∑
k=0

((fkλ )′(0))−1

)
fn+1
λ (0)

= (fnλ )′(0)fn+1
λ (0)

(
1

(fnλ )′(0)
+

n−1∑
k=0

(fkλ )′(0))−1)

)

= (fn+1
λ )′(0)

n∑
k=0

((fkλ )′(0))−1.

Hence, (2.2) is proved by induction. Since the series
∑∞
k=0

1
(fk

λ0
)′(0)

does not converge to 0 and

lim 1
(fk

λ0
)′(0)

= 0, there exist θ > 0 and an increasing to ∞ sequence {nj}∞j=1 of positive integers

such that ∣∣∣∣∣
nj∑
k=0

(
(fkλ0

)′(0)
)−1

∣∣∣∣∣ ≥ θ

for all j ≥ 1. Since limn→∞(fnλ0
)′(0) = ∞, using (2.2) we conclude that

lim
j→∞

|g′nj
(λ0)| = +∞ and lim

j→∞
|g′nj−1(λ0)| = +∞ (2.3)

Let log be a holomorphic branch of logarithm defined in B(λ0, |λ0|). It follows from (2.3) that

lim
j→∞

(gnj
+ log)′(λ0) = ∞. (2.4)

Now, we consider two cases. If for every r ∈ B(0, λ0) the family of maps {gnj
+log : B(λ0, r) →

C} is not normal, then, by Montel’s theorem, for every r > 0 there are j = j(r) ≥ 1 and
λr ∈ B(λ0, r) such that

gnj
(λr) + log(λr) = log(2π) + 2πil + i

π

2
(2.5)

for some l ∈ Z. If, on the other hand, there exists R < |λ0|
2

such that the sequence {gnj
+log :

B(λ0, 2R) → C} is normal, then it follows from (2.4) that limj→∞ gnj
= ∞. This in turn

implies (using fλ(z) = λ exp(z)) that Re(gnj−1(λ) + log λ) converges uniformly to +∞ on
B(λ0, R). By Bloch’s theorem, for every r ∈ (0, |λ0|) and every j ≥ 1 sufficiently large
(depending on r), the image (gnj−1 + log)(B(λ0, r)) contains a disc D ⊂ {z : Rez > 0} of
radius 2π. Therefore, there exist λ ∈ B(λ0, r) and j = j(r) such that

gnj−1(λ) + log λ = log(2kπ) + 2πil + i
π

2



4 MARIUSZ URBAŃSKI AND ANNA ZDUNIK

where k ≥ 1 and l are integers. Notice that (2.5) has the same form with k = 1 and nj − 1
replaced by nj. So, in the first case we get

gnj+1(λ) = λ exp(gnj
(λ)) = λ exp(− log λ+ log(2kπ) + i

π

2
+ 2πil) = 2kπi.

Hence, fnj+2(0) = fλ(gnj+1(λ)) = λe2kπi = λ. In the second case we end up with the same
conclusion, with nj replaced by nj − 1. Since fλ(0) = λ, we see that 0 is eventually periodic
for fλ. Since we have assumed that 0 is not eventually periodic for fλ0 , we conclude that λ0

is an unstable parameter.

3. The operator T and its fixed point ϕ

From now on, to simplify the notation, we put f = fλ.
Given any function g : C → C, we put

Tg(z) =
1

z

∑
w∈f−1(z)

g(w)

w
(3.1)

for all those z ∈ C \ {0} for which the series
∑
w∈f−1(z) |g(w)

w
| converges. For every a ∈ C \ {0}

define the function ϕa : C → C by

ϕa(z) =
1

z − a
.

Then, formally, without taking care of the convergence of the series defining Tϕa, we can
write

Tϕa(z) =
1

z

∑
w∈f−1(z)

1

w(w − a)
.

Notice that, since f−1({z}) = {w0 + 2kπi}k∈Z, the function Tϕa is well-defined in C \
{0, f(0), f(a)}, because the corresponding series converges absolutely in C \ {0, f(0), f(a)}.
We shall prove

Lemma 3.1. The function Tϕa extends to a meromorphic function in C given by the formula

z 7→ 1

a

(
1

z − f(a)
− 1

z − f(0)

)
.

Proof. Since limz→0 Re(f−1(z)) = −∞, we see that limz→0
∑
w∈f−1(z)

1
w(w−a) = 0. So, the

function z 7→ ∑
w∈f−1(z)

1
w(w−a) extends holomorphically to some neighbourhood of zero and

it takes the value 0 at 0. This implies that our function z 7→ 1
z

∑
w∈f−1(z)

1
w(w−a) also extends

holomorphically to some neighbourhood of 0. Let f−1
0 be the holomorphic branch of f−1

sending f(0) to 0. Then

lim
z→f(0)

(z − f(0))ϕa(z) = lim
z→f(0)

z − f(0)

z

 1

f−1
0 (z)(f−1

0 (z)− a)
+

∑
w∈f−1(z)\f−1

0 (z)

1

w(w − a)

 .
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Now,

lim
z→f(0)

z − f(0)

zf−1
0 (z)(f−1

0 (z)− a)
= lim

z→f(0)

1

z(f−1
0 (z)− a)

f(f−1
0 (z))− f(0)

f−1
0 (z)− 0

=
f ′(0)

f(0)(−a)
= −1

a
.

If a /∈ f−1(f(0)), then

lim
z→f(0)

∑
w∈f−1(z)\f−1

0 (z)

1

w(w − a)
=

∑
w∈f−1(f(0))\{0}

1

w(w − a)
∈ C.

and consequently,

lim
z→f(0)

(z − f(0))Tφz(z) = −1

a
∈ C.

If, on the other hand, a ∈ f−1(f(0)), then let f−1
a : B(f(0), |f(0)|) be the holomorphic inverse

branch of f−1 mapping f(a) to a. Then

lim
z→f(0)

z − f(0)

zf−1
a (z)(f−1

a (z)− a)
= lim

z→f(0)

1

zf−1
a (z)

f(f−1
a (z))− f(a)

f−1
a (z)− a

=
f ′(a)

f(0)a
=

f ′(0)

f(0)a
=

1

a
.

Since

lim
z→f(0)

∑
w∈f−1(z)\{f−1

0 (z),f−1
a (z)}

1

w(w − a)
=

∑
w∈f−1(f(0))\{0,a}

1

w(w − a)
∈ C,

we conclude that

lim
z→f(0)

(z − f(0))Tφa(z) = −1

a
+

1

a
= 0.

So, in either case, Tφa has a simple pole at f(0) and

Resf(0)Tφa =


1
a

if f(a) 6= f(0)

0 if f(a) = f(0).
(3.2)

Dealing with the behavior of the function Tφa around the point a, let f−1
a : B(f(a), |f(a)|) →

C be the holomorphic inverse branch of f sending f(a) to a. We then have

lim
z→f(a)

(z − f(a))
1

zf−1
a (z)(f−1

a (z)− a)
= lim

z→f(a)

1

zf−1
a (z)

· f(f−1
a (z))− f(a)

f−1
a (z)− a

=
f ′(a)

f(a)a
=

1

a
.

Suppose now that f(0) 6= f(a). Then

lim
z→f(a)

∑
w∈f−1(z)\{f−1

a (z)}

1

w(w − a)
=

∑
w∈f−1(f(a))\{a}

1

w(w − a)
∈ C.

Consequently,

lim
z→f(a)

(z − f(a))Tφa(z) =
1

a
.
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If, on the other hand, f(0) = f(a), denote by f−1
0 the holomorphic branch sending f(a) = f(0)

to 0. Then

lim
z→f(a)

z − f(a)

zf−1
0 (z)(f−1

0 (z)− a)
= lim

z→f(a)

1

z(f−1
0 (z)− a)

· f(f−1
0 (z))− f(0)

f−1
0 (z)− 0

=
f ′(0)

f(a)(−a)

=
f ′(0)

−af(0)
= −1

a
.

Since

lim
z→f(a)

∑
w∈f−1(z)\{f−1

a (z),f−1
0 (z)}

1

w(w − a)
=

∑
w∈f−1(f(a))\{0,a}

1

w(w − a)
∈ C,

we conclude that in this case

lim
z→f(a)

(z − f(a))Tφa(z) =
1

a
− 1

a
= 0.

So, in either case, Tφa has a simple pole at f(a) and

Resf (a)Tφa =


1
a

if f(a) 6= f(0)

0 if f(a) = f(0)
(3.3)

Since a 6= 0, it follows from (3.2) and (3.3) that in either case

Tφa(z)−
1

a

(
1

z − f(a)
− 1

z − f(0)

)

is an analytic function in C, and, since

lim
z→∞

(
Tφa(z)−

1

a

(
1

z − f(a)
− 1

z − f(0)

))
= 0

(the limit of each term is zero) we therefore conclude from Liouville’s theorem, that Tφa(z)−
1
a
( 1
z−f(a)

− 1
z−f(0)

) is identically equal to zero.

Since T is a linear operator, it follows from Lemma 3.1 that for all k ≥ 1,

T

(
1

(fk−1)′(0)

1

z − fk(0)

)
=

1

(fk−1)′(0)

1

fk(0)

(
1

z − fk+1(0)
− 1

z − f(0)

)

=
1

(fk)′(0)

(
1

z − fk+1(0)
− 1

z − f(0)

)
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Hence, using linearity again, we get for every n ≥ 1 that

T

(
n∑
k=1

1

(fk−1)′(0)

1

z − fk(0)

)
=

n∑
k=1

1

(fk)′(0)

1

z − fk+1(0)
− 1

z − f(0)

n∑
k=1

1

(fk)′(0)

=
n+1∑
k=1

1

(fk−1)′(0)

1

z − fk(0)
− 1

z − f(0)

n∑
k=0

1

(fk)′(0)
.

(3.4)

We want to let n→∞ and to obtain a similar equation for the infinite sum. To do this, we
prove first lemmas 3.2 and 3.3 below.

Lemma 3.2. If ξ ∈ C\Oλ(0), then dist(f−1(B(ξ, r)), Oλ(0)) > 0 for every r < dist(ξ, Oλ(0))

Proof. Because of the choice of the radius r we have

B(ξ, r) ∩Oλ(0) = ∅. (3.5)

Suppose now that dist(f−1(B(ξ, r)), Oλ(0)) = 0. Then there exists a sequence {xn}∞n=1 ⊂
f−1(B(ξ, r)) such that limn→∞ dist(xn, Oλ(0)) = 0. Consequently, there exists a sequence
{zn}∞n=1 ⊂ Oλ(0) such that

lim
n→∞

|zn − xn| = 0 (3.6)

Since f({xn}∞n=1) ⊂ B(ξ, r), passing to subsequence we may assume that

lim
n→∞

f(xn) = y (3.7)

for some y ∈ B(ξ, r). But then, for every n ≥ 1 there exists yn ∈ f−1(y) such that
limn→∞ |xn − yn| = 0. Combining this and (3.6), we see that limn→∞ |zn − yn| = 0. But
Reyn = log |y| − log |λ| for all n ≥ 1. Then for all n ≥ 1 so large that zn ∈ B(yn, 1), we get

|y − f(zn)| = |f(yn)− f(zn)| ≤ exp(log |y| − log |λ|+ 1)|yn − zn|.

Therefore, y = limn→∞ f(zn), and consequently y ∈ Oλ(0). This however contradicts (3.5)
and (3.7). We are done.

Let ∼ be an equivalence relation on C × C determined by the requirement that w ∼ z iff
z − w ∈ 2πiZ. Denote by [z] the equivalence class of z. For every R > 0 let

w(R) = {(a, z) ∈ C× C : dist(0, [z]) ≥ R and dist(a, [z]) ≥ R}.
Define the function α : w(R) → [0,∞) by the formula

α(a, z) =
∑
w∈[z]

1

|w‖w − a|
.

We shall need the following technical lemma. The proof is rather straightforward, but tech-
nically involved. It is therefore postponed to Section 6.
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Lemma 3.3. For every R > 0 the supremum

M(R) = sup{α(a, z) : (a, z) ∈ w(R)}

is finite.

Since f−1(C \ Oλ(0)) ⊂ C \ (Oλ(0)), we can consider the ”operator” T defined by formula
(3.1) acting on functions g : C \Oλ(0) → C. We shall prove the following.

Lemma 3.4. If
∑∞
n=0 |(fn)′(0)|−1 <∞,

∑∞
n=0((f

n)′(0))−1 = 0 and Oλ(0) is a nowhere dense
subset of C, then the function

φ(z) =
∞∑
k=1

1

(fk−1)′(0)

1

z − fk(0)

is well-defined on C \Oλ(0), T (φ) is also well-defined on C \Oλ(0) and T (φ) = φ.

Proof. The fact that φ is well-defined on C \ Oλ(0) follows from absolute convergence of
the series

∑∞
k=1((f

k−1)′(0))−1 and from the fact that if z ∈ C \Oλ(0), then dist(z, Oλ(0)) > 0.
Suppose now that z ∈ C \ Oλ(0), and let r = dist(z, Oλ(0)). Then r > 0 and, in view of
Lemma 3.2, R = dist(f−1(z), Oλ(0)) > 0. It therefore follows from Lemma 3.3 and our first
assumption that the series

∞∑
k=1

∑
w∈f−1(z)

1

(fk−1)′(0)

1

w(w − fk(0))

converges absolutely. Hence, for every n ≥ 1 we can apply the operator T to the function∑∞
n+1

1
(fk−1)′(0)

· 1
z−fk(0)

, and we get

T

 ∞∑
n+1

1

(fk−1)′(0)
· 1

z − fk(0)

 =
1

z

∑
w∈f−1(z)

1

w

∞∑
k=n+1

1

(fk−1)′(0)

1

w − fk(0)

=
1

z

∑
w∈f−1(z)

∞∑
k=n+1

1

(fk−1)′(0)

1

w(w − fk(0))

=
1

z

∞∑
k=n+1

∑
w∈f−1(z)

1

(fk−1)′(0)

1

w(w − fk(0))
.

Since the sum
∑
w∈f−1(z)

1
w(w−fk(0))

is bounded by a constant (depending on z), we conclude

that

lim
n→∞

T (
∞∑

k=n+1

1

(fk−1)′(0)

1

z − fk(0)
) = 0. (3.8)
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Combining this along with (3.4), linearity of T , and our second assumption (
∑∞
n=0((f

n)′(0))−1 = 0),
we see that

Tφ(z) = T

( ∞∑
k=1

1

(fk−1)′(0)

1

z − fk(0)

)

= T

(
n∑
k=1

1

(fk−1)′(0)

1

z − fk(0)

)
+ T

 ∞∑
k=n+1

1

(fk−1)′(0)

1

z − fk(0)


=

n+1∑
k=1

1

(fk−1)′(0)

1

z − fk(0)
− 1

z − f(0)

n∑
k=0

1

(fk)′(0)
+ T

 ∞∑
k=n+1

1

(fk−1)′(0)

1

z − fk(0)

 .
Passing to the limit with n→∞ and using (3.8), we get

T

( ∞∑
k=1

1

(fk−1)′(0)

1

z − fk(0)

)
=

∞∑
k=1

1

(fk−1)′(0)

1

z − fk(0)
− 1

z − f(0)
= φ(z)

We are done.

4. The Ruelle operator R and its fixed point ψ

Given any function g : C \Oλ(0), put

Rg(z) =
1

z2

∑
w∈f−1(z)

g(w)

for all those z ∈ C \Oλ(0) for which the series
∑
w∈f−1(0) g(w)) converges. The function

ψ(z) =
1

z
φ(z) =

1

z

∞∑
k=1

1

(fk−1)′(0)

1

z − fk(0)
(4.1)

is well-defined throughout C \Oλ(0). Lemma 3.4 easily implies the following.

Corollary 4.1. The function Rψ is well-defined on C \Oλ(0)and R(ψ) = ψ

Proof. Take z ∈ C \Oλ(0). Applying Lemma 3.4, we get

Rψ(z) =
1

z2

∑
w∈f−1(z)

φ(w)

w
=

1

z
φ(z) = ψ(z).

The proofs of the following important propositions are postponed to Section 6.

Proposition 4.2. If the series
∑∞
k=1

1
(fk−1)′(0)

converges absolutely and its sum is equal to

zero, then the function ψ : C \ Oλ(0) → C given by formula 4.1 is integrable with respect to
the Lebesgue measure on C \Oλ(0).
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Proposition 4.3. Assume that the series
∑∞
n=1

1
(fn−1)′(0)

converges absolutely and its sum is

equal to zero. If Oλ(0) is a nowhere dense set with Leb(Oλ(0) = 0 or the trajectory of 0 is
non-recurrent then the function ψ : C \Oλ(0) → C is not equal to zero identically.

5. Conclusion: Instability

We show the instability in two cases: if the trajectory of 0 is non-recurrent or if Oλ(0) is a
nowhere dense set with Leb(Oλ(0)) = 0. In both cases we show that the function ψ cannot
exist. This implies that the sum

∑∞
k=1

1
(fk−1)′(0)

is not equal to zero, thus, by Proposition 2.2,

the parameter λ is unstable. Let us modify the function ψ slightly. Put

ψ̂ =

ψ(z) if z ∈ C \Oλ(0)

0 if z ∈ Oλ(0)

We see that if z ∈ C \ Oλ(0), then R(ψ̂)(z) = ψ(z) = ψ̂(z), while for z ∈ Oλ(0) we have

|R(ψ̂(z))| ≥ |ψ̂(z)|. Let |R| be the usual Ruelle operator given by the formula

|R|(g)(z) =
1

|z2|
∑

w∈f−1(z)

g(w).

Since |R(ψ̂)| ≥ |ψ̂|, we conclude that |R|(|ψ|) ≥ |ψ|. But, on the other hand, the Ruelle oper-
ator |R| preserves the integral, thus |R|(|ψ|) = |ψ| a.e. Since |ψ| and |R|(|ψ|) are continuous
in C \ Oλ(0), we have |R|(|ψ|) = |ψ| everywhere in C \ Oλ(0). Let z ∈ C \ Oλ(0). Since
ψ(z) = 1

z2
∑
w∈f−1(z) |ψ(w)| for every z /∈ Oλ(0) and

|ψ(z)| = 1

|z2|
∑

w∈f−1(z)

|ψ(w)|

almost everywhere, thus (by continuity) everywhere in C \Oλ(0), we conclude that

ψ(w) = z2ψ(z)k(w) (5.1)

with some 0 ≤ k(w) ≤ 1, for every z /∈ Oλ(0) and for every w ∈ f−1({z}).
Let us assume that ψ(z) = 0 for some z /∈ Oλ(0). Then using (5.1) we conclude that

ψ(w) = 0 for every w such thatf(w) = z and, by induction, ψ ≡ 0 on the set Λ =
⋃
n f

−n({z}).
But, since z 6= 0, the set Λ is dense in C = J(fλ), which implies that ψ ≡ 0 everywhere in
C \Oλ(0). By Proposition 4.2 this is impossible. Now, we are ready to prove the following

Proposition 5.1. If the trajectory of 0 is non recurrent and the series
∑∞
k=1

1
(fk−1)′(0)

converges

absolutely then the parameter λ is unstable.

Proof. We shall show that the function ψ cannot exist. Indeed, by the above reasoning we
would have

k(w)z2ψ(z) = ψ(w),
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where z = f(w) and the function k(w) takes only real values. On the other hand the equa-
tion (5.1) shows that the function k is holomorphic on every component of C \ f−1(Oλ(0)).
Therefore k is constant on every component of C \ f−1(Oλ(0)). Since

z2ψ(z) =
∑

w∈f−1(z)

ψ(w) =
∑
w

k(w)z2ψ(z),

we see that ∑
w∈f−1(z)

k(w) = 1. (5.2)

Now, since the trajectory of 0 is non-recurrent there exists ε > 0 such that for z ∈ B(0, ε)
the set {w : w ∈ f−1({z})} is contained in the same component of C \ f−1(Oλ(0)). Thus,
the number k(w) is the same for all w ∈ f−1(z). Obviously, this implies that (5.2) cannot be
satisfied, since the set f−1(z) is infinite.

Proposition 5.2. If the series
∑∞
k=1

1
|(fk)′(0)| converges and Oλ(0) is a nowhere dense set with

Leb(Oλ(0)) = 0, then the parameter λ is unstable.

Proof. Again, we check that the function ψ cannot exist. Since ψ(z) 6= 0 for every z ∈
C \ Oλ(0), the harmonic function η(z) = argψ(z) is defined (locally) in a neighbourhood of
every point z0 ∈ C \Oλ(0).

Lemma 5.3. For every z0 ∈ Oλ, z0 6= 0 there exists a point w such that fn(w) = z0 for some
n and w /∈ Oλ(0).

Proof. Indeed, the set
⋃
f−n(z0) is dense in C \Oλ(0) while Oλ(0) is nowhere dense.

Next, we show that the function η can be extended in a nice way.

Proposition 5.4. For every z0 ∈ Oλ(0) there exists a neighbourhood V = V (z0) and a
harmonic function θ defined in V such that θ(z)−η(z) = 2l(z)πi where l(z) is an integer and
the function l(z) is constant on every component of V ∩ (C \Oλ(0)).

Proof. Let z0 ∈ Oλ(0) and assume that there exists a point w0 such that f(w0) = z0 and
w0 /∈ Oλ(0). Let f−1

0 be the branch of f−1 mapping the point z0 to w0. Then the equation
(5.1) shows that the formula

η(z) = η(f−1
0 (z))− 2Argz (5.3)

defines the harmonic function in a neighbourhood of z0 such that

Argψ(z) = [η(z)] mod 2π (5.4)
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In general, let k be the smallest positive integer for which there exists a point w0 such that
fk(w0) = z0 and w0 /∈ Oλ(0). Using consecutive branches of f−i, i ≤ k we define the function
η in a neighbourhood of f i(w0), i ≤ k such that (5.3) and (5.4) are satisfied. Thus, the
conclusion is the following: For every z0 ∈ C, z0 6= 0 there exists a neighbourhood (a ball
with center at z0) Vz0 and a function η defined in Vz0 such that for every z ∈ (C\Oλ(0))∩Vz0 ,
η(z) is an argument of ψ(z). Looking at the equation (5.1) again, we see that the formula
(5.3) defines also the function η in the neighbourhood of 0; for w close to 0 we put η(w) =
η(f(w)) + 2Argf(w) (f(w) is close to f(0) so the argument is well-defined). Let γ be the
harmonic conjugate to η; more precisely: for every z0 and the corresponding neighbourhood
Vz0 we consider the holomorphic function τz0 = γ + iη defined in Vz0 . Now, if Vz0 ∩ Vz1 6= ∅
then we have two functions on Vz0 ∩ Vz1 : τz0 = γ0 + iη0 and τz1 = γ1 + iη1. Consider the
difference τz0 − τz1 . Since each function η is an argument of ψ we conclude that

Im(τz1 − τz1) ∈ {2kπ, k ∈ Z}.
But this implies that τz0 − τz1 is constant in Vz0 ∩Vz1 . Using the Monodromy Theorem we see
that there exists a globally defined function τ : C → C such that for z ∈ C \ Oλ(0), Imτ(z)
is an argument of ψ(z). Consider the function G = exp(1

2
τ). Notice that there is a close

relation between G and ψ. Namely,

G2

ψ
=

exp(τ)

ψ
=

exp(γ + iη)

|ψ| exp(iArgψ)
=

exp(γ)

|ψ|
· exp(iη − iArgψ) =

exp(γ)

|ψ|

Thus, the function G2

ψ
takes only real values. Consequently, it is constant on every connected

component of C \Oλ(0). This also implies, using the formula (5.1), that the function

w 7→
(
G(f(w))

G(w)
· f ′(w)

)2

=

(
G(f(w))

G(w)
· f(w)

)2

(5.5)

takes only real values in C \ Oλ(0). Since this function is globally holomorphic and the set

C \Oλ(0) is dense, we conclude that the function G(f(w))
G(w)

· f ′(w) is, actually, constant. Let Ĝ

be the the primitive function of G. Then Ĝ′(z) 6= 0 for every z ∈ C. We shall consider two
cases:

Case I. Ĝ(C) = C. Then Ĝ is a conformal covering, thus a conformal homeomorphism and it

must be of the form Ĝ(z) = Cz +D for some C,D ∈ C. However,

(
(Ĝ ◦ f ◦ Ĝ−1)′(z)

)2
=

(
G(f ◦ Ĝ−1(z))

G(Ĝ−1(z))
· f ′(Ĝ−1(z))

)2

and we see that (Ĝ◦f ◦ Ĝ−1)′(z) would be constant and, consequently, Ĝ◦f ◦ Ĝ−1(z) = az+b
for some a, b ∈ C. Clearly, this is impossible.

Case II. Ĝ(C) 6= C. The only possibility is that Ĝ(C) = C \ {p} for some p. Again, Ĝ is
a covering. The map π : C → C \ {p}, π(z) = exp(z) + p is another covering. Thus, there

exists a lift G̃ : C → C such that π ◦ G̃ = Ĝ. Again, G̃ is a conformal homeomorphism, thus
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G̃(z) = Cz +D and Ĝ(z) = π ◦ G̃(z) = exp(Cz +D) + p. Thus, Ĝ′(z) = C exp(Cz +D) =
exp(Cz +D+ logC) = exp 2(Cz +D′) for some constants C,D′ ∈ C. On the other hand, by

construction, Ĝ′ = exp(1
2
τ) and we conclude that τ(z) = Cz + D for some constants C,D.

But we already know that the function G(f(w))(f ′(w))2

G(w)
is constant. This cannot be true in this

case since

G(f(w))(f ′(w))2

G(w)
=

exp(1
2
τ(f(w)))(f ′(w))2

exp(1
2
τ(w))

=
exp(1

2
(Cλ exp(w) +D))(λ exp(w))2

exp(1
2
(Cw +D))

is, obviously, not constant. This contradiction ends the proof.

6. Postponed proofs

Proof of Lemma 3.3. The proof is rather straightforward (although technically involved).
First notice that if (a, z) ∈ w(R) then [a]× [z] ⊂ w(R). Then observe that the function α is
constant on each set of the form {a} × [z], (a, z) ∈ w(R). Therefore

M(R) = sup{α(a, z) : (a, z) ∈ w̃(R)},

where

w̃(R) = {(a, z) ∈ C×Q : dist(0, [z]) ≥ R and dist(a, [z]) ≥ R

and Q = R× [−π, π]. Now, fix R ∈ R and z ∈ Q with dist(0, [z]) ≥ R. Define

A+(v, z) = {t ∈ [Rez,+∞) : dist(t+ iv, [z]) ≥ R}

and

A−(v, z) = {t ∈ [−∞,Rez) : dist(t+ iv, [z]) ≥ R}.
Notice that A+(v, z) and A−(v, z) are infinite intervals:

A+(v, z) = [a+(v, z),∞), A−(v, z) = (−∞, a−(v, z)] (6.1)

The function t 7→ α(t+ iv, z), t ≥ a+(v, z) is decreasing and the function t 7→ α(t+ iv, z),
t ≤ a−(v, z) is increasing. So, defining M(v, z) to be the maximal value of α(a, z), where
dist(a, [z]) ≥ R and the imaginary part of a is fixed (and equal to v), we see that

M(v, z) = sup{α(t+ iv, z) : t ∈ R} = max{α(a+(v, z), z), α(a−(v, z)z)} (6.2)

and both points (a+(v, z), z), (a−(v, z)z) belong to w̃(R). Now, given z ∈ Q+ = [0,+∞) ×
[−π, π], define

B+(z) = {t ∈ [0,+∞) : dist(0, [t+ iImz]) ≥ R}
and

b+(z) = inf
(
B+(z)

)
∈ [0, R].
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Consider now the function t 7→ α(a + t − Rez, t + iImz), t ∈ B+(z). A straightforward
calculation shows that it is decreasing. If dist(0, [z]) ≥ R then b+(z) ≤ Rez. Therefore,
putting t = Rez and using the monotonicity mentioned above, we conclude that

α(a, z) =α(a+ Rez − Rez,Rez + iImz) ≤M+(a, z)

= sup{α(a+ t− Rez, t+ iImz)) : t ∈ B+(z)}
= α(a+ b+(z), b+(z) + iImz))

(6.3)

Similarly, given z ∈ Q− = (−∞, 0]× [0, 2π], we define

B−(z) = {t ∈ (−∞, 0] : dist(0, [t+ iImz]) ≥ R}

and

b−(z) = supB−(z) ∈ [−R, 0].

In the same way, we obtain similar inequalities:

α(a, z) ≤M−(a, z) := sup{α(a+ t− Rez, t+ iImz) : t ∈ B−(z)}
= α(a+ b−(z)− Rez, b−(z) + iIm(z))

(6.4)

Note that both pairs (a+b±(z)−Rez, b±(z)+iIm(z)) are in w̃(R). Indeed, b±(z) was chosen so
that dist([b±(z)+iImz], 0) > R and (a+b±(z)−Rez)−(b±(z)+iImz) = Rez+iImz−a = z−a.
The latter implies that dist([b±(z) + iImz], a+ b±(z)− Rez) = dist([z], a) > R.

Combining (6.3) and (6.2), for all (a, z) ∈ W (R) with Rez ≥ 0, we get

α(a, z) ≤ α(a+ b+(z)− Rez, b+(z) + iImz) ≤

≤ max
{
α
(
a+(Ima, b+(z) + iImz), b+(z) + iImz

)
, α
(
a−(Ima, b+(z) + iImz), b+(z) + iImz

)}
.

Similarly, if Rez ≤ 0, then

α
(
a, z) ≤ max

{
α
(
a+(Ima, b−(z) + iImz), b−(z) + iImz

)
, α
(
a−(Ima, b−(z) + iImz), b−(z) + iImz

)}
Obviously, |Re(b±(z) + iImz)| ≤ R and, therefore, |Re(a±(Ima, b±(z) + iImz))| ≤ 2R (see

(6.1) ).
Hence, we have checked that the following holds:

Lemma 6.1.

M(R) = sup{α(a, z) : (a, z) ∈ w̃(R) such that −R ≤ Rez ≤ R and − 2R ≤ Rea ≤ 2R}
(6.5)

Now, we shall prove the following.

Lemma 6.2. If w, a ∈ C and k ∈ Z with |k| ≥ 1
π
|Im(w − a)|, then

|w(w − a)| ≤ |w||w − (a+ 2kπi)|.
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Proof. This is a straightforward computation. Indeed, we have 2|k|π ≥ 2|Im(w − a)|.
Therefore, (2kπ)2 ≥ 2(2kπIm(w − a)). Consequently,

(Im(w − a)− 2kπ)2 = Im2(w − a)− 2(2kπIm(w − a)) + (2kπ)2 ≥ Im2(w − a)

Hence

|w − a|2 = Re2(w − a) + Im2(w − a) ≤ Re2(w − a) + (Im(w − a)− 2kπ)2

= Re2(w − (a+ 2kπi)) + Im2(w − (a+ 2kπi)) = |w − (a+ 2kπi)|2

Our second claim is the following.

Lemma 6.3. If (a, w) ∈ w̃(R) with a ∈ [0, 2π] × [0, 2π] and k ∈ Z with |k| ≤ 1
π
|Im(w − a)|

then

|w − (a+ 2kπi)| · |w| ≥ C|(w − 2kπi)− a| · |w − 2kπi|, (6.6)

where C =
(
2 · (1 + (1 + 2π

√
2R−1))

)−1
.

Proof. Indeed, after cancelations, this inequality means that

|1− 2kπi

w
| ≤ 2 ·

(
1 + (1 + 2π

√
2R−1)

)
. (6.7)

Since |w| ≥ R and |a| ≤ 2
√

2π, we get

|Im(w − a)|
|w|

≤ |w − a|
|w|

= |1− a

w
| ≤ 1 +

|a|
|w|

≤ 1 +
2π
√

2

R

So, using our hypothesis, we get that

|1− 2kπi

w
| ≤ 1 +

2|k|π
|w|

≤ 1 + (1 + 2π
√

2R−1)
2|k|π

|Im(w − a)|
≤ 2 ·

(
1 + (1 + 2π

√
2R−1)

)
Thus, (6.7) and, consequently also (6.6) are proved.

Take now an arbitrary point (b, z) ∈ w̃(R) with Reb ∈ [−2R, 2R], z ∈ [−R,R]× [0, 2π]. Write
b = a + 2πik, k ∈ Z, with Im(a) ∈ [0, 2π]. Note that (a, z) ∈ w̃(R). Making use of (6.6), we
obtain

α(b, z) =
∑

w∈[z],|Im(w−a)|<πk

1

|w||w − (a+ 2πik)|
+

∑
w∈[z],|Im(w−a)|≥πk

1

|w||w − (a+ 2πik)|

≤
∑

w∈[z],|Im(w−a)|<πk

1

|w||w − a|
+ C

∑
w∈[z],|Im(w−a)|≥πk

1

|w − 2kπi| · |(w − 2kπi)− a|

≤ α(a, z) + Cα(a, z) = (1 + C)α(a, z)

(6.8)
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Therefore, we get that

M(R) ≤ (1 + C) sup {α(a, z) : (a, z) ∈ w̃(R) ∩ ([−2R, 2R]× [0, 2π])× ([−R,R]× [0, 2π])} .

Since the function α(a, z) is continuous and since the set over which the supremum is taken
in the last formula is compact, we conclude that M(R) < ∞ and the proof of Lemma 3.3 is
finished.

Next, we prove Propositions 4.2 and 4.3.

Proof of Proposition 4.2. We need some preparation. Fix a ∈ C \ {0} and b ∈ C, b 6= a.
Let

ga(b) =
∫ ∫

C

|b− a|
|z||z − b||z − a|

dA(z).

Since
∫∞
1

dr
r2
< ∞, it is easy to calculate, using polar coordinates, that ga(b) is finite for all

b ∈ C \ {0, a}. Notice that (using a new coordinate v = z/a)

ga(b) =

∣∣∣∣∣1− b

a

∣∣∣∣∣
∫ ∫

C

1

|v||v − 1||v − b
a
|
dA(v).

Thus, in order to estimate ba(b) it is enough to look at

g(b) := g1(b) = |b− 1|
∫ ∫

C

1

|z||z − b||z − 1|
dA(z)

with b /∈ {0, 1}. Notice that (using a new coordinate w = 1/z) we get

g(b) = |1− b|
∫ ∫ dA(w)

| 1
w
| 1
w
− 1|| 1

w
− b|

· 1

|w|4
=

∣∣∣∣∣1− b

b

∣∣∣∣∣
∫ ∫ dA(w)

|w||1− w||1
b
− w|

= g
(

1

b

)

Thus, it is enough to consider b with |b| ≤ 1. For every ε > 0 the function g(b) is continuous
in the compact set Lε = B(0, 1) \ (B(0, ε) ∪B(1, ε)). So, for every ε > 0, g|Lε is bounded by
some constant Cε and we are to estimate g(b) for b close to 0 and b close to 1. Take b ∈ B(0, ε).
Write g(b) as a sum of integrals over three regions: {|w| < 10|b|}, {10|b| ≤ |w| < 2}, and
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{|w| ≥ 2}. We shall estimate these summands separately. First,

|1− b|
∫ ∫

|w|<10|b|

1

|w|
1

|w − 1|
1

|w − b|
dA(w) =

=
∫ ∫

|w|<10|b|

1

|w|

∣∣∣∣ 1

w − 1
− 1

w − b

∣∣∣∣ dA(w)

≤
∫ ∫

|w|<10|b|

1

|w||w − 1|
dA(w) +

∫ ∫
|w|<10|b|

1

|w||w − b|
dA(w)

≤ 1

1− 10|b|
· 2π ·

∫ 10|b|

r=0

1

r
rdr +

1

|b|

∫ ∫
|w|<10|b|

∣∣∣∣ 1w − 1

w − b

∣∣∣∣ dA(w)

≤ 2π

1− 10ε
· 10|b|+ 1

|b|

(∫
|w|<10|b|

1

|w|
dA(w) +

∫
|w|<10b

1

|w − b|
dA(w)

)

≤ 2π

1− 10ε
· 10|b|+ 1

|b|
· 2π · (10|b|+ 11|b|) ≤ const,

(6.9)

where the constant can be made independent of ε if, say, ε < 1
20

. Next, we estimate the
second integral:

|1− b|
∫ ∫

10|b|<|w|<2

dA(w)

|w||w − 1||w − b|
=
∫ ∫

10|b|<|w|<2

dA(w)

|w|

∣∣∣∣ 1

w − 1
− 1

w − b

∣∣∣∣
≤
∫ ∫

10|b|<|w|<2

dA(w)

|w||w − 1|
+
∫ ∫

10|b|<|w|<2

dA(w)

|w||w − b|
.

The first integral in the above sum is bounded by∫ ∫
10|b|<|w|<2

dA(w)

|w||w − 1|
≤
∫ ∫

|w|<2

dA(w)

|w|
+
∫ ∫

|w|<2

dA(w)

|w − 1|

≤
∫ ∫

|w|<2

dA(w)

|w|
+
∫ ∫

|w|<3

dA(w)

|w|
= 4π + 6π = 10π.

Write the second integral as∫ ∫
10|b|<|w|<2

dA(w)

|w||w − b|
=
∫ ∫

10|b|<|w|<2

dA(w)

|w|2
∣∣∣1− b

w

∣∣∣ .
Now, since |w| > 10|b|, we see that |1− b

w
| > 9

10
, and finally we can estimate this integral by

10

9

∫ ∫
10|b|<|w|<2

dA(w)

|w|2
≤ 10

9
· 2π

∫ 2

r=10|b|

dr

r
≤ C1 + C2 log

1

|b|
.

where C1, C2 are some constants. It remains to estimate the integral over the region {|w| > 2}.
This is simple: if, say |b| < 1, we can write

|1− b|
∫ ∫

|w|>2

1

|w||w − 1||w − b|
≤ 2

∫ ∫
|w|>2

1

|w|3|1− 1
w
||1− b

w
|
≤ 2 · 4 ·

∫ ∫
|w|>2

1

|w|3
= 8π.
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Thus, we can write the following estimate, valid in the ball b ∈ B(0, ε):

g(b) ≤ C1 + C2 log
1

|b|
,

where C1 and C2 are constants. It remains to look at the behaviour of the function g(b) in
the ball B(1, ε). It is easy to see that g(b) is bounded in the neighbourhood of 1 since, again,
the integral ∫ ∫

|w|>2

dA(w)

|w||w − 1||w − b|
is bounded uniformly, while the remaining part

|1− b|
∫ ∫

|w|≤2

dA(w)

|w||w − b||w − 1|
can be written as∫ ∫

|w|≤2

1

|w|

∣∣∣∣ 1

w − b
− 1

w − 1

∣∣∣∣ dA(w) ≤
∫ ∫

|w|≤2

1

|w|

∣∣∣∣ 1

w − b

∣∣∣∣ dA(w)+
∫ ∫

|w|≤2

1

|w|

∣∣∣∣ 1

w − 1

∣∣∣∣ dA(w).

Since both integrals above are bounded independently of b ∈ B(1, ε), we are done.

We summarize the above considerations in the following lemma.

Lemma 6.4. There are constants C1, C2 such that

g(b) ≤ C1 + C2 |log |b|| .
Similarly,

ga(b) ≤ C1 + C2

∣∣∣∣∣log

∣∣∣∣∣ ba
∣∣∣∣∣
∣∣∣∣∣ .

Now, integrability of the function ψ : C \Oλ(0) is easy. Indeed, since
∑∞
k=0(f

k−1)′(0))−1 = 0,
it follows from (4.1) that

ψ(z) =
1

z

∞∑
k=1

1

(fk−1)′(0)

(
1

z − fk(0)
− 1

z − f(0)

)
=

∞∑
k=2

1

(fk−1)′(0)

fk(0)− f(0)

z(z − fk(0))(z − f(0))
.

So,
∫
C |ψ|dA can be estimated by

∞∑
k=1

1

|(fk−1)′(0)|
· ga(fk(0)),

where a = f(0). Using Lemma 6.4, we can write ga(f
k(0)) ≤

(
C1 + C2 log |fk(0)|

)
. But

|fk(0)| = |λ|| exp(fk−1(0))| = |λ| exp Re(fk−1(0))|. So,

log |fk(0)| = log |λ|+ Re(fk−1(0))

and ∣∣∣log |fk(0)
∣∣∣ ≤ | log |λ||+

∣∣∣Refk−1(0)
∣∣∣ ≤ | log |λ||+ |fk−1(0)|.
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This gives us the following estimate

ga
(
fk(0)

)
≤ C1 + C2

(
| log |λ||+ |fk−1(0)|

)
≤ C3 + C2|fk−1(0)|,

where C3 is another constant. Finally,∫ ∫
|ψ|dA ≤

∞∑
k=1

| 1

(fk−1)′(0)
|
(
C3 + C2|fk−1(0)|

)
=

∞∑
k=1

(
C3

|(fk−1)′(0)|
+

C2

|(fk−2)′(0)|

)
.

Since the sum
∑∞
k=1 | 1

(fk−1)′(0)
| is finite, the proof of integrability is finished.

Proof of Proposition 4.3. The proof of Proposition 4.3 is particularly simple in the case of
non-recurrent trajectory of 0, so we give it separately:

Proposition 6.5. If the series
∑∞
n=1

1
(fn−1)′(0)

converges absolutely, its sum is equal to zero

and the point 0 is non-recurrent i.e. 0 /∈ Oλ(0), then the function ψ is not identically equal
to zero.

Proof. Recall that φ(z) =
∑∞
k=1

1
(fk−1)′(0)

1
z−fk(0)

. So,

φ(0) = −
∞∑
k=1

1

(fk−1)′(0)

1

fk(0)
= −

∞∑
k=1

1

(fk)′(0)
= 1

since
∑∞
k=0

1
(fk)′(0)

= 0. Thus, ψ has a simple pole with residuum equal to 1 at zero and,

obviously, it is not identically equal to zero.

Now, we present the proof of Proposition 4.3 in the case when Oλ(0) is a nowhere dense set

with Leb(Oλ(0)) = 0. Define φ̂ : C \Oλ(0) → R by

φ̂(z) =
∞∑
k=1

1

|(fk−1)′(0)|
1

|z − fk(0)|

and put ψ̂(z) = 1
|z| φ̂(z). Extend the functions φ, φ̂,ψ, ψ̂ to the whole complex plane by declar-

ing them to be identically equal to zero on Oλ(0). Since the series
∑∞
n=1

1
(fn−1)′(0)

converges

absolutely, we see that ∫ ∫
B(0,|f(0)|)

φ̂(z)|dz|2 <∞. (6.10)

and there exists k ≥ 1 such that
∞∑

j=k+1

1

|(f j−1)′(0)|
≤ 1/9. (6.11)

Since f(0) is not a periodic point of f , there exists R ∈ (0, |f(0)|) so small that

B(f(0), R) ∩Oλ(0) ⊂ {f(0)} ∪ {f j(0) : j ≥ k + 1}. (6.12)
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For every n ≥ 1 put

φn(z) =
n∑
k=1

1

(fk−1)′(0)

1

(z − fk(z))

for all z ∈ C \ Oλ(0) and φ̂n(z) = 0 for all z ∈ Oλ(0). It follows form (6.10) and Fubini’s
theorem that there exists a measurable set L ⊂ [0, R] such that the linear measure of L equals
R and ∫

∂B(f(0),r)
φ̂(z)|dz| <∞ (6.13)

for every r ∈ L. Since |φn(z)| ≤ φ̂(z) and φn converges pointwise to φ in C, in particular in
B(F (0), R), applying (6.13) and Lebesgue dominated convergence theorem, we conclude that

lim
n→∞

∫
∂B(f(0),r)

|φn(z)− φ(z)|dl(z) = 0. (6.14)

It also follows from Fubini’s theorem that there exists a measurable set T ⊂ (0, R) of full
measure so that

Leb1(Oλ(0)) ∩ ∂B(f(0), r)) = 0 (6.15)

for all r ∈ T , where Leb1 is the the 1-dimensional Lebesgue measure on the circle ∂B(f(0), r).
Fix a radius r ∈ L ∩ T such that

Oλ(0) ∩ ∂B(f(0), r)) = ∅. (6.16)

By (6.14) there exists n ≥ 1 such that∫
∂B(f(0),r)

|φn(z)− φ(z)|dl(z) ≤ π

2
. (6.17)

Now, in view of (6.12) there exists a set In ⊂ [k+1, k+2, . . . , n] such that f j(0) ∈ B(f(0), r)
for all j ∈ In and∫

∂B(f(0),r)
φn(z)dz =

∫
∂B(f(0,r)

dz

z − f(0)
+
∑
j∈In

1

(f j−1)′(0)

∫
∂B(f(0),r)

dz

z − f j(0)

= 2πi

1 +
∑
j∈In

1

(f j−1)′(0)

 . (6.18)

Since In is a finite set and since the intersection Oλ(0) ∩ ∂B(f(0), r) is compact, it follows
from (6.15) that there exists a set Oλ(0) ∩ ∂B(f(0), r) ⊂ ∆ ⊂ ∂B(f(0), r), being a finite
union of closed arcs and such that ∫

∆

|dz|
|z − f j(0)|

≤ π

4
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for all j ∈ In ∪ {1}. Hence, using (6.18) and (6.11), we get that∣∣∣∣∣
∫
∂B(f(0),r)\∆

φn(z)dz − 2πi

∣∣∣∣∣ =
∣∣∣∣∣
∫
∂B(f(0),r)\∆

φn(z)−
∫
∂B(f(0),r)

dz

z − f(0)

∣∣∣∣∣
=

∣∣∣∣∣∣−
∫
∆

dz

z − f(0)
+
∑
j∈In

1

(f j−1)′(0)

(
2πi−

∫
∆

dz

z − f j(0)

)∣∣∣∣∣∣
≤
∫
∆

|dz|
|z − f(0)|

+
∑
j∈In

9π

4|(f j−1)′(0)|

≤ π

4
+
π

4
=
π

2
.

Thus ∫
∂B(f(0),r)\∆

|φn(z)||dz| ≥ |
∫
∂B(f(0),r)\∆

φn(z)dz| ≥
3

2
π.

Therefore, using (6.17), we get∫
∂B(f(0),r)\∆

|φ(z)|dl(z) ≥
∫
∂B(f(0),r)\∆

|φn(z)|dl(z)−
∫
∂B(f(0),r)\∆

|φn(z)− φ(z)|dl(z)

=
∫
∂B(f(0),r)\∆

|φn(z)||dz| −
∫
∂B(f(0),r)\∆

|φn(z)− φ(z)|dl(z)

≥ 3

2
π − π

2
= π.

Since ∂B(f(0), r) \∆ ⊂ C \Oλ(0), we are therefore done.
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