RECURRENCE RATES FOR
LOOSELY MARKOV DYNAMICAL SYSTEMS

MARIUSZ URBANSKI

ABSTRACT. The concept of loosely Markov dynamical systems is introduced. It is shown that
for these systems the recurrence rates and poinwise dimensions coincide. The systems gen-
erated by hyperbolic exponential maps, arbitrary rational functions of the Riemann sphere,
and measurable dynamical systems generated by infinite conformal iterated function systems
are all checked to be loosely Markov.

1. INTRODUCTION AND PRELIMINARIES

Let (X, p) be a metric space, let u be a Borel probability measure on X and let T': X — X be
a p-invariant measurable map. Given x € X one defines lower and upper pointwise dimensions
of p at the point x respectively as follows.

log (B y log 1(B
d, () = timinf BB E) 4G ) = lim sup 28LBE ).
0 logr r—0 log r

Given in addition 7 > 0 one defines
o (z) =inf{n > 1:T"(x) € B(z,r)} =inf{n > 1: p(T"(z),z) < r}.

The lower and upper recurrence rates of x are respectively defined as

R(z) = lim infw and R(z) = lim sup w.
r—0  —logr r»0 —logr
Let HD(u) be the Hausdorff dimension of the measure p (inf{HD(Y")} taken over all Borel
sets Y with p(Y) = 1). It is well known that if X is a subset of a Euclidean space and p is the
corresponding Euclidean metric, then HD(u) = esssup(d,). The pointwise dimensions and
recurrence rates seem to be apriori absolutely unrelated. The former are purely geometric
notions whereas the latter are rather dynamical. However M. Boshernitzan in his pioneering
work [4] has been able to prove the remarkable inequality R(z) < HD(u) for p-a.e. z € X.
Since then a number of papers devoted to find closer relations (under various additional
assumptions) between recurrence rates and dimensions have appeared. In the remarkable
paper [2] the authors have provided a sufficient condition for R(z) = d,,(z) and R(z) = d,,(z)
to hold p-a.e. Their condition involved uniform expanding property and a kind of a strong
mixing property with respect to the reference partition. We also provide a sufficient condition
for these two equalities to hold. In contrast to [2] we do not assume any expanding property
and instead of assuming a mixing condition with respect to a reference partition, we impose
an assumption on the rate of convergence of the Perron-Frobenius operator associated to

the measure . We do not have to therefore care too much about a good partition, and in
1



2 MARIUSZ URBANSKI

particular, about mixing with respect to such a partition. Our general condition, Theorem 2.1
applies for example to the dynamical systems such as hyperbolic exponential maps, arbitrary
rational functions of the Riemann sphere and measurable dynamical systems generated by
infinite conformal iterated function systems. Let us now introduce and describe some technical
notions and results needed in the proof of Theorem 2.1. Given two points z € X and
y € B(x,r), the return time of the point y into X is defined as

7-(y,x) = min{k > 1: p(T*(y),z) < r}.
For each x € X and all r,e > 0, consider the set
A (z,r) ={y € B(x,r) : 7, (y,x) < u(B(z,r)) =} (1.1)

The measure p is said to have long return time with respect to 1" if

. ogp(Al(x,1)

limin

r—0 logu(B(x, 7"))

for p-a.e. x € X and all ¢ > 0 sufficiently small. The following fact has been proved in [3].

Proposition 1.1. Let X be a subset of a Fuclidean space, let u be a Borel probability measure
on X and let T : X — X be a p-invariant measurable map. If p has long return time and
d,(v) >0 for p-a.e. v € X, then

4,(x) = R(z) and 4,(x) = R(z)
for p-a.e. v € X.

A Borel probability measure on a Euclidean space IR? is said to be weakly diametrically
regular if for p-a.e. x € IR? and every £ > 0, there exists § > 0 such that if r < §, then

/L(B(l‘, 27“)) < /L(B(l‘, 7"))7“_5.

The following result also comes from [3].

Proposition 1.2. Every Borel probability measure on a Euclidean space is weakly diametri-
cally regular.

The return time 7(A) of a set A into itself is defined as
7(A) =min{n > 1: T"(A) N A # 0}.

Given a partition o of X and a point x € X, denote by a(z) the only element of « containing
z. Given in addition an integer n > 1, the refined partition a VT (a) V...V T" }(«) is
denoted by «,,. The basic property joining the above notions is captured by the following
result proven in [11].
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Proposition 1.3. Suppose that T : Y — Y is a measurable transformation preserving an
ergodic probability measure p. If o is a finite or countable partition of Y with positive entropy
h,(T, ), then
limm jnf (@)
n— 00 n

> 1

for p-a.e. €Y.

2. LOOSELY MARKOV MAPS

Let (X, p) be a metric space and let f : X — X be a Borel map which is at most countable-to-
one. Let p be a Borel probability f-invariant measure on X. Suppose that f is non-singular
with respect to y, i.e. that pu(f(A)) = 0 if u(A) = 0. Consider J,, the Jacobian of the map
f with respect to the measure ;1. The Perron-Frobenius operator £, of f with respect to the
measure is given by the formula

Lu(9) )= > T Wa(y).
yef~1(z)
Since the measure p is f-invariant, £,(1) = 1. Suppose that J, : X — (0, 400) is a bounded
locally Holder continuous function with an exponent & > 0. Denote the class of all such
functions by He. Denote also by C,(X) the Banach space of all bounded real-valued functions
on X endowed with the supremum norm || - ||. H¢ becomes a Banach space when equipped
with the norm || - ||¢ defined as follows.

llglle = ve(g) + 11911,

where

ve(g) = sup{% cx € X,y € B(x,0)\ {x}}

and ¢ is small enough. Suppose that the Perron-Frobenius operator £, preserves C,(X) and
H¢. Assuming from now on that X is Borel subset of a Euclidean space and p is the standard
Euclidean metric, the dynamical system (f, 1) is said to be loosely Markov provided that the
following conditions are satisfied. There exists a continuous function C; : X — (0, +00) such
that

a) There exists v € (0, 1) such that for all ¢ € H¢, all n > 0, and all x € X
3

1£5:(9)(z) — u(g)] < Cr(@)7"[lglle

(b) For u-a.e v € X there exists x(x) > 0 and a countable partition o of X (by Borel
sets) such that h,(f, @) > 0 and

a,(r) O B(z,exp(—x(7)n))

for p-a.e. ¥ € X and all n > 0 large enough.
(c) 0<d,(z) <dy(r) < oo for paercX.
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We shall now prove a general theorem (which in some sense corresponds to Theorem 6 in [2])
such that all the concluding results stated in the next sections will follow from it after some
appropriate preparations.

Theorem 2.1. If (f, i) is a loosely Markov dynamical system, then
R(z) = du(x) and R(z) = dp(z)
for p-a.e. v € X.

Proof. Fix a Borel set W C X such that x(W) =1 and conditions (b) and (c) are satisfied
for all z € W. Combining condition (b) and Proposition 1.3, we see that

7(B(, exp(—x(z)n))

B . 1
lim infw — liminf > lim infT(a (x)) > .
r—0 —logr n—00 X(x)n n—00 X(l‘)’n X(UU)
This implies that
B(z,r)n f*(B(x,r) =0 (2.1)

for all » > 0 small enough and all £ < —i logr, where x := x(z). It follows from condition
(c) that for every s > 0 sufficiently small (depending on z), we have

§2hu(@) < w(B(x, s)) < s%u@/2, (2.2)

Put B, = B(xz,r) for all r € (0,1). Given in addition x > 0 define the function (., :
[0, 4+00) — [0,1] by the following formula.
1 ifo<t<r
Grlt)=ar " (r+r—t) ifr<t<r+4rs
ift >r+r-

Define then g,, : X — [0, 1] by putting
9r(2) = Gwlp(z, 7).

Since the function z — p(z,x) is Lipschitz continuous with the Lipschitz constant equal to 1,
and since ¢, is Lipschitz continuous with the Lipschitz constant equal to =", the composite
function g, : X — [0,1] is Lipschitz continuous with the Lipschitz constant equal to r—".
In particular g,, € He and ||grx|l¢ < r~". We shall show now that the measure ; has long
return time at the point x. Since C; : X — (0,+00) is continuous, we may assume r > 0

to be so small that that Ci(z) < 2C(x) for all z € B,. It follows from condition (a) of the
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loosely Markov property and Proposition 1.2 that for every £ > 0
M(B(x,r) ﬂf’k(B(x,r))) §/ Ek(]lBT dp §/ EZ(gm)du

</ 1) + C1Y* (g slle) dps (2.3)
</ p(gri) + 2C (x)r— fyk)d,u.
Assuming that r € (0, 1) is sufficiently small and using (2.2), we get with f = —-=log~ and
some universal constant Cy > 0, that
2:_25_: log v
r=p Z 7k < OZT—ﬁrfﬁlogV — 0270*&102;7 < CZM(BT)stEﬂ(x)
k:—%logr
X
and
(a:) d (a:) du(:c)_min{l,ﬁ}
1(gr8) < 1(Brirs) < p(Byymininr) < 25 A @ min{1) < 9% (g )T )
Combining these two last formulas, (2.3) and (2.2), we obtain
2lag7
> (B0 fBY) <
k:—%logr
< X[ (lges) + 200 @) ) d
k=—5 L logr "
< 1 . 20 -8 *1 (B,
< ((logv 0g(r)1ugr) + 2C (z)r 21: 7| w(Br) (2.4)
k=— X logr
M du(z)_min{l,ﬁ} __logy
= ((logv ) log(r)2™ ju(B,) % + 201 (2)Cop(B,) W“) u(B,)
du(m)mm{l B} _ lgg'y
< (u(By)" e 420 (x)Cop(B,) % ) u(B,)
< (1+2C1(2)Co) (B,
where
1 log ~y
= —= min min{1 .
e et i 1, -2
Using (2.2) we also get
w(By) T logr log rlogy -
Pt Y AP < Gyt = Cyrexp (2 1 ) = Cyr < Cyp(By) >
0g7y

k= ZE_T
log v
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with some universal constant C3 > 0. Applying (2.3) and Proposition 1.2, we thus get for all
r > 0 small enough that

w(Br)~tte w(Br)~tte

> u(BniHBy)) < > [ (igr) +2C1 (@)™ di
k= 2%3—: k= 1og7 B
M(Br) 1+e
< —lte p(gr) +2C (x)r~ Z ¥ wW(By)
k= 213—5—:
S 1

j(B,) "1 1u(Byy) + 20 (x )Cau(Br)—ﬁ“(“> u(B,)

(
- (u (BT 4200 ) Co BB ) (B,)
s 1

(B )re/? 4+ 20 (w )03/1(37")23”@)) 1(By)

1+2C'1( )C3)u(B;) ',

where n = £ min{e, 1/d,(2)}. Combining now this, (1.1), (2.1) and (2.4), we obtain for all
r € (0,1) sufficiently small that

w(Br) e

plA ) £ X p(Be fHBY) < (L4 20 @)C(B) I + (14201 @) Con(B,)

k=0
<20 (x)(14 Cy + 03)M(Br)1+min{9m}‘
Thus
log(M(Ag(x, T))) . log(201 (z)(1+Cy + 03))

log(u(B;))  — log(p(Br))
and consequently

+ (1 + min{0,n})

log(u(A-(x,7)))
lim inf > (1 4+ min{f,n}) > 1.
R oglutzy) = (Lm0
Hence, the measure p has long return time and the theorem follows by applying Proposi-

tion 1.1. |

3. RATIONAL FUNCTIONS OF THE RIEMANN SPHERE ('

In this short section f : @ — @'is an arbitrary rational function of degree > 2. Denote by J(f)
the Julia set of the function f. A function ¢ : J(f) — IR is assumed to be Holder continuous
and to satisfy inequality P(¢) > sup(¢), where P(¢) is the topological pressure of ¢ (see [17]
and [13] for its definition and a fairly thorough exposition of its properties). It was shown in
[5] that in this situation there exists a unique equilibrium state (see also [17] and [13]) p4 of
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¢ and f: J(f) — J(f). Our aim is to show that the dynamical system (J(f), ps) is loosely
Markov. And indeed, it was proved in [13] (see Theorem 9.4.2) that

_ h
dy, (x) = dy, (x) = HD(ug) = —_—a (3.1)
Xuo
for pg-a.e. x € J(f). In particular, condition (c) of the definition of a loosely Markov map
is satisfied. Condition (b) was established in the proof of Theorem 9.4.2 from [13]. Finally,
condition (a) is exactly the content of Theorem 10 in [8]. Hence, applying Theorem 2.1 and
using (3.1), we get the following,.

Theorem 3.1. If f : @ — @ is a rational function of degree > 2 and if ¢ : J(f) — IR is a
Hdlder continuous potential such that P(¢) > sup(e), then for py-a.e. z € J(f), the number
R,,(2) exists and moreover
h
Rw (Z) = HD(M¢) =

Xpug

4. HYPERBOLIC EXPONENTIAL MAPS
In this section we consider the maps f) : €' — @, A € €'\ {0}, given by the formula
(z) = Ae”.

We assume that fy is hyperbolic, that is that f) has an attracting periodic cycle (this is always
the case if A € 'is in a sufficiently small neighborhood of the interval (0,1/e). We will be
interested in the recurrence rates for the mapping F), canonically associated with fy, which
carries essentially all significant information about the dynamics of f\ and is more suitable
for measure theoretic considerations. So, the equivalence relation “~” on @' x 'is defined as
follows: z ~ w if and only if w — 2 € 2m¢Z. The map f, projects down to the holomorphic
map F) of the cylinder @Q = @/~ such that if [T : € — @ denotes the canonical projection,
then f) oIl =1l o F). From now on we will skip the subscript A and will simply write f and

F. Let

5= %min {%,dist(J(F), {F"(I1(0)) : n. > 0})}

Since the map f : J(f) — J(f) is hyperbolic, we see that § > 0. For every n > 1 and every
v € J(F) the map

F":B(F"(v),20) = P
is then defined to be the holomorphic inverse branche of F™ on B(F"(v),20) sending F"(v)
to v. Let ¢ be a real-valued Holder continuous function defined on some Euclidean R-
neighbourhood of the Julia set J(F) C @, R € (0,0/2). Hoélder continuous means here
that

EI(04>0) vre(o,R) du, >0 if |y - $| <r, then |¢(y) - ¢(x)| < Hr|y - x|a-
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One can prove (see [15]) that for every z € J(F') the following limit exists and is independent
of the point z.

P(¢) = lim llog > exp(5n¢(x)).

n—00
n TrEF~"(2)

The number P(¢) is called the topological pressure of the potential ¢. The following easy
technical fact is also established in [15].

Lemma 4.1. For every a-Hélder function ¢ : J(F) — @ there exists a constant Ly, > 0 such
that

|[Sng(F7" () = Sn(F, " (2))] < Lgly — [
for alln > 1, all z,y € J(F) with |x —y| <6 and all v € F"(x). In particular

exp(Su(F;"(y)) < T exp(Suo(Fy " (7)),
where T' = exp (Lé“).

A Haélder continuous function ¢ : J(F) — IR is called 17-tame if there exists x > 1 such that
Ay = sup{|¢(z) + kRez| : z € J(F)} < +0o0.

The following three basic facts have been proved in [15].

Theorem 4.2. If f : @ — @ is hyperbolic and ¢ : J(F) — € is a 1*-tame potential, then
there exists a unique Borel probability measure my on J(F) such that

m¢(Fv_"(B(z, 6)) = /B(z,a) exp(anﬁ(Fv_"(w)) - P(¢)n)dm¢(w)
for alln>1, all z € J(F) and allv € F7"(z).

Theorem 4.3. There exists a unique Borel probability F-invariant measure ji4s absolutely
continuous with respect to my. In addition p4 is ergodic, equivalent to my and the Radon-
Nikodym derivative dju,/dmy has a continuous everywhere (on J(F)) positive and uniformly
bounded version.

Theorem 4.4. The invariant measure g is an equilibrium state of the potential ¢, that is

The following two more technical facts have been also proved in [15].
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Theorem 4.5. The entropy h,, (F) is positive.
and
Theorem 4.6. The Lyapunov exponent x,, = [log|F'|du, is finite.

We shall verify that the dynamical system (F, ur) is loosely Markov starting with the follow-
ing.

Theorem 4.7. If f : @' — @ is a hyperbolic exponential map and ¢ : J(F) — € is a 1" -tame
potential, then for pg-a.e. z € J(F), the local dimension d,,,(z) evists and is equal to by, /X,
In particular

h
HD(pp) = =%

XW)

Proof. In view of Birkhoff’s ergodic theorem there exists a Borel set X C J(F') such that
pe(X) =1 and

lim ~ log |(F") ()] = x,, and lim s¢> /¢du¢ (4.1)

n—oo n,

for every x € X. Fix x € X and ¢ > 0. There then exists £ > 1 such that

1
g | (F7)' ()| = x| <= (42)
for every n > k. Fix r € (0,96) and let n = n(r) > 0 be the largest integer such that
B(z,r) C F;"(B(F"(x),0)). (4.3)

Then B(z,r) is not contained in F, "*V(B(F"*!(z),4)) and it follows from the {-Koebe’s
distortion theorem that

r > Ol @) (1.4)

Taking r > 0 sufficiently small, we may assume that n > k. Applying Theorem 4.2 and
utilizing (4.3) along with Lemma 4.1, we get that

B(z,r) </ — exp S poF, ”—P(¢)n)dm¢

< Texp (Sngb(x) — P(¢)n)my(B(F"(x),0)) < T exp(Spe(x) — P(¢)n).
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Applying now (4.4) and (4.2), we obtain
log mgy(B(z, 1)) S logT + S,é(x) — P(o)n S logT + S,é(x) — P(o)n
log r - log r ~ logd — log4 — log |(F™*1)(z)]
logT + S,é(z) — P(é)n
~logd —logd — (xu, —)(n+1)

Dividing now the numerator and the denominator of the last quotient by n = n(r), letting
r \( 0 (which implies that n(r) — oc) and using the second part of (4.1, we therefore get that

L (> — L0+ P(6)

_m¢
X/L¢

Since, by Theorem 4.3, the measures pg and mg are equivalent with positive continuous
Radon-Nikodym derivatives , we obtain for all x € that

= oo .

For every s > 0, let J; = {2 € J(F) : |Re(2)| < s}. Take M so large that j,(Jps) > 0. Since
the measure m,, is positive on non-empty open subsets of J(F'), we get that

W = inf{my(B(z,0) : z € Jy} > 0.

d

(4.5)

In view of ergodicity of the measure p4 and Birkhoff’s ergodic theorem, there exists a Borel
set Y C X such that ;4(Y) =1 and

.1
Jimn 5, (1, ) (2) = pg(Jar) > 0

for all x € Y. In particular, if {nj};’il is the unbounded increasing sequence of all integers
n > 1 such that F"(x) € Jy, then

lim 9+ =1, (4.6)

j—oo My
Keep x € Y and let [ > 0 be the least integer such that
B(x,r) D F,(B(Fi(x),0))
for all ¢ > [. Taking r > 0 small enough, we may assume that [ > max{k,n;}. There then
exists a unique j > 2 such that
nj1 <l <n,;. (4.7)
Also F-(=1) (B(Fl_l(a:), 6)) is not contained in B(z,r), and it therefore follows from Koebe’s

distortion theorem that

r < K6|(FY (x) 7L, (4.8)
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It follows from the definition of [ and formula (4.7) along with Lemma 4.1 that
(Bl ) = ma(F (BE@0)) = [ exp(S,00 7 = Plo)n,)dm,
> T~ exp(S,, ¢(x) — P(¢)n;)my(B(F™ (x),9))
> W exp(Sy,6(x) — P(6)n;).
Applying now (4.2), (4.4) and (4.7), we obtain
log mgy(B(z, 1)) < logW —logT + Sy, ¢(x) — P(¢)n; < logW —log T + Sy, ¢(x) — P(p)n;

log r - log r - log(Kd) — log |[(F'=1)"(x)|
logW —logT + Sy, ¢(x) — P(¢)n; < logW —log T + Sy, ¢(x) — P(¢)n;
log(K0) = (Xu, +e)(0=1) = log(Kd) = (xu, +E)nj1

Dividing now the numerator and the denominator of the last quotient by n;_; letting r 0
(which implies that n;_; — oo) and using the second part of (4.1) along with (4.6), we
therefore get that

7 (@) < —L 0l +P(O)
mg = X#¢

Since, by Theorem 4.3, the measures pg and mg, are equivalent with positive continuous
Radon-Nikodym derivatives , we obtain for all x € Y that

_ [ ddpuy+ P(&
4, (2) < =4 i:) (9),

Since, by Theorem 4.4, P(¢) — [ ¢dpy = h,,,, combining this inequality with (4.5), completes
the proof. B

We shall prove now the existence of a partition with the properties required by condition (b)
of the definition of loosely Markov maps.

Lemma 4.8. If f : @ — @ is hyperbolic exponential map and ¢ : J(F) — @ is a 1" -tame
potential, then there exists a countable partition o of J(F') (consisting of Borel sets) such that
hu, (T, @) > 0 and oy (z) D Bz, e ") for y-a.e. © € J(F), some constant x(x) > 0 and
all n > 1 large enough.

Proof. Tt was proven in [16] that if u is a Borel probability measure on the cylinder ), then
for every £ > 0 there exists a partition a of ) with diam(«) < £ and such for every 8 > 0

i > M(B(aA,e’ﬁ”)) < 0. (4.9)

n=0 Aca
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Let us apply now this fact with u = pg4. Since h,, > 0, there exists £ > 0 so small that
h,, (T, a) > 0. Since the measure p, is F-invariant, it follows from (4.9) that

Z > M( ( (0A, e™F™) )) Z Z ,u( (0A,e” ")) < 00. (4.10)

n=0 A€«

Fix now ¢ > 0. It follows from Birkhoff’s ergodic theorem, (4.10), and the Borel-Cantelli
lemma that there exists a Borel set X, C J(F') such that ps(X.) =1 and for every z € X,
there exists n(z) > 1 such that F"(x) ¢ B(0A, e"") and

g (P ()] = x| < = (1.11)
for all n > n(x). The former property means that
B(F"(z),e ") C a(F"(x)). (4.12)
So, fix x € X, and n > n(z). There obviously exists y(x) > 0 so large that
F1 (B(x, 677(“")”) C F? (B(x, 677(55)”(“")) C a(F(x)). (4.13)
for all integers ¢ = 0,1,... ,n(x). It follows from the i—Koebe’s distortion theorem that

(B ),8) 5 B (=, ié|(F")’(m)|_1> .

Consequently, all the maps F?, 0 < ¢ < n, restricted to the ball B (:L‘, i6|(F")’(x)|_1) are
univalent. If now ¢ € {n(x),n(z) +1,...,n}, then applying (4.11), we get
B(z,8 ' 0 exp(—(x,, +32)n)) € B(z,8718|(F")'(x)| ),
and it therefore follows from Koebe’s distortion theorem along with (4.11) that,
Fq(B (x, 816 exp(—(X% + 35)n))) C B(Fq(x), 8K |(F9) ()] exp(—(X% + 36)71))
C B(Fq(x), 871K eXP((Xu¢ + 6)(]) exp(—(xud) + 36)n))
C B(Fq(x), 8 10K exp (X% (g —n) exp(—?sn)) (4.14)
C B(Fq(:v),8’15K) exp(—2€n)) C B(Fq(a:),exp(—sn)) C B(Fq(x),exp(—sq)),

where the second last inclusion sign was written assuming that n is large enough (depending
on g). Since x,, > 0, we can find € > 0 so small that x,, +3¢ < 2x,,. Then, for all n > n(z)

large enough we have that 8 !0 K exp (—(X% + 35)n) > exp(—BX%n). It therefore follows
from (4.14) that
F1 (B(x, exp(—SX%n)) C B(Fq(x), exp(—sq))
for all n large enough and all ¢ € {n(x),n(z)+1,... ,n}. Combining this along with (4.12)
and (4.13), we see that
F1 (B(x, 6_“(’")")) C a(F(z))
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foralln > 1 and all 0 < ¢ < n, where x(x) = max{y(v),3x,,}. Hence, B(a:, e”“(“")”) C ay(x)
and we are done. B

We are now in position to conclude the main result of this section.

Theorem 4.9. If f : @' — @ is a hyperbolic exponential map and ¢ : J(F) — € is a 1" -tame
potential, then for pg-a.e. z € J(F), R, (2) exists and moreover

Ry (2) = HD(1g) = 2.
He
Proof. We shall verify that the dynamical system (F,pus) is loosely Markov. Indeed,
condition (a) is guaranteed by appropriate results from [15]. Condition (b) is just Lemma 4.8,
and condition (c) was established in Theorem 4.7. Thus the proof is completed by applying
Theorem 2.1 along with Theorem 4.7. B

5. CONFORMAL INFINITE ITERATED FUNCTION SYSTEMS

Let us describe first the setting of conformal (infinite) iterated function systems introduced
in [9]. Let I be a countable index set or alphabet with at least two elements and let S =
{¢i: X = X :i € I} be a collection of injective contractions from a compact metric space X
into X for which there exists 0 < s < 1 such that p(¢;(x), ¢;(y)) < sp(z,y), for every i € T
and for every pair of points z,y € X. Thus, the system S is uniformly contractive. Any
such collection S of contractions is called an iterated function system. We define the limit
set, J, of this system as the image of the coding space under a coding map as follows. Let
I™ denote the space of words of length n, I°° the space of infinite sequences of symbols in 7,
I"=U,s1 I" and forw e I", n > 1, let ¢y = ¢y, 0 Py, 0+ 00,. fweI*UI® andn >1
does not exceed the length of w, we denote by w/|, the word wyws . ..w,. Since given w € I*°,
the diameters of the compact sets ¢, (X), n > 1, converge to zero and since they form a
decreasing family, the set

Fj) Dol (X)

is a singleton and therefore, denoting its only element by 7(w), defines the coding map = :
I*° — X. The main object of our interest will be the limit set

J=Ts=2(1®) = U ) dun(X).

wel*® n=1
Observe that J satisfies the natural invariance equality, J = U;c; ¢:(J). Notice that if I is
finite, then J is compact and this property fails for infinite systems.

An iterated function system S = {¢; : X — X : i € I} is said to satisfy the Open Set
Condition (OSC) if there exists a nonempty open set U C X (in the topology of X) such that
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¢;(U) C U for every i € I and ¢;(U) N ¢;(U) = 0 for every pair i,j € I, i # j. (We do not

exclude the possibility that ¢;(U) N ¢;(U) # 0.)

An iterated function system S satisfying the Open Set Condition is said to be conformal if
X C IR? for some d > 1 and the following conditions are satisfied.

(1a): U = Intjpe(X).

(1b): There exists an open connected set V such that X C V C IR? such that all maps
bi, 1 € I, extend to C* conformal diffeomorphisms of V into V. (Note that for d =1
this just means that all the maps ¢;, ¢ € I, are C'* monotone diffeomorphisms, for
d > 2 the words C' conformal mean holomorphic or antiholomorphic, and for d > 2
the maps ¢;, i € I are Mobius transformations. The proof of the last statement can
be found in [1] for example, where it is called Liouville’s theorem.)

(1c): There exist v,/ > 0 such that for every x € X C IR? there exists an open cone
Con(z,7,l) C Int(X) with vertex z, central angle of Lebesgue measure v, and altitude
[.

(1d): Bounded Distortion Property(BDP). There exists K > 1 such that

16, (W)] < K4, ()|

for every w € I'* and every pair of points x,y € V, where |¢/ ()| means the norm of
the derivative.

Let us now collect some geometric consequences of (BDP). We have for all words w € I'* and
all convex subsets C' of V/

diam(¢,(C)) < [, ||diam(C) (5.1)

and
diam(¢,(V)) < D¢, I, (5.2)
where the norm || || is the supremum norm taken over V and D > 1 is a constant depending

only on V. Moreover,

diam(6,(X)) > D1|60| (53)

and
¢u(B(w,1)) D B(du(), K7|4}]|r) (5.4)

for every x € X, every 0 < r < dist(X,0V), and every word w € I*.

Let o : I°® — I*® be the shift mapping, i.e. cutting off the firs coordinate. In order to define
the dynamical systems we want to deal with in this section we state first the following special
case of Theorem 4.4.1 proven in [10].
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Theorem 5.1. If i is a Borel shift-invariant ergodic probability measure on I°°, then

pom(4,(X) N, (X)) =0 (5.5)

for all incomparable words w, T € I*.

It follows from this theorem that for p-a.e. © € J there exists exactly one element ¢ € I such
that = € ¢;(J). Putting

fz) = ¢; ()
we obtain a dynamical system f : J — J defined p-a.e. on J. Given a subset Y of I*° and
1 € 1, put
(Y] ={iwelI*:weY}.

Using shift-invariantness of the measure u, we get for every Borel set A C J that

por 15 ) =wom ! (Uat)) =u (U 4 = (Ui ()

= u(o™ (771 (A))) = por ! (A).

This means that the measure po7m ! is f-invariant and we can consider the metric dynamical
system (f, pom !). The Lyapunov characteristic exponent x,o,-1(f) of this system is defined
by the formula

Xues 1(F) = = [ 10g 1L, (x(o(w))ldpu o 77" (w) > 0.

Notice that we could have defined this quantity in terms of the dynamical system (f, pomr ')
as this system and the shift map (o, ) are isomorphic via the projection map = : I — J.
In order to relate the recurrence rates and pointwise dimensions of the dynamical system
(f,mom™"), we need to restrict ourselves to a smaller, though fairly large and geometrically
significant, class of shift-invariant measures p generated by the summable Holder families of
functions. Following [14], [6] and [10], we define these families and measures as follows. Fix
B>0andlet G={g®: X — IR:i€ I} bea family of continuous functions. For each n > 1
put
Va(G) = sup sup {|g“Y (0o (2)) — 6“1 (Gow) () [}V,
welm z,yeX
and assume that
V3(G) = sup{V,(G)} < 0.
n>1

The collection G is then called a Holder family of functions (of order ). If in addition

Zesup(g(“) < 00,

icl
then the family G is called a summable Holder family of functions of order 5. Throughout
this section the family F' is assumed to be summable Holder of some order g > 0. Following
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the classical thermodynamic formalism, we defined the topological pressure of F' by setting

1 n
P(G) = lim —log Z exp (Sl}l{ngwi o ¢ij> .
j=1

n—oo n, |w|*n

Notice that the limit indeed exists since the logarithm of the partition function
Zn(G) = > exp(sup(S,(Q)))
|w|=n

is subadditive, where
SW(G) = Zg(Wj) © ¢ajw-
=1

Moreover
P(G) = int {1 log Zn(G)} .
n

n>1
Now, a Borel probability measure m¢ is said to be G-conformal provided it is supported on
the limit set J, for every Borel set A C X

me(6o(A)) = /Aexp(Sw(G) ~P(G)|w]) dma, Vwe I (5.6)

and

ma(¢u(X) N ¢ (X)) = (5.7)
for all incomparable w, 7 € I*. In [14] and [6], comp. [10]), we have proved the following.

Theorem 5.2. If G is a summable Holder family of functions, then there exists exactly one
G-conformal measure mg. In addition, there exists a unique shift-invariant Borel probability
measure fig on 1% such that the measure pg = fig ow ' on J is absolutely continuous with
respect to mg. In addition, the Radon-Nikodym derivative dug/dme is uniformly bounded
away from zero and infinity.

The measure g is called the Gibbs state of the Holder family GG. It follows from Theorem 5.2
and the statements above that we may consider the dynamical system (f, pus). Our aim is to
verify that this dynamical system is loosely Markov. We start with the following.

Proposition 5.3. If G is a summable Holder family of functions with finite Lyapunov expo-
nent Xug, then

. log pe(B(x, 7)) _ hue(f) _ HD (j1¢;).
r—0 log r X e

for pg-a.e. x € J.
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Proof. Define the function p : I*®* — IR by the formula

p(w) = lim inf log ma(B(x, 7"))
r—0 log r

We shall show for every w € I*°, we have

plow) > p(w). (5.8)

Indeed, using G-conformality of the measure pg, we get for every w € I and every r €
(0, dist(X, V') that

ma(B(m(w), |16, |Ir) > me(éw, (B(r(ow),r))) = /B - exp (g (r(w)) — P(G))dmg
> e P exp (inf{g(“”)}mg (B(ﬂ(aw), 7“))

Hence, (5.8) follows. Since the measure fig is ergodic, it follows from Birkhoff’s ergodic
theorem that the function p : I — IR is constant fig-a.e., say p(w) = p for some p > 0 and
allw € Y C I* with fig(Y) = 1. Put now

1 B
= r—0 logr

Since, by Theorem 5.2, the measures pe and mg are equivalent with bounded Radon-Nikodym
derivatives, p = p, and consequently, p = p for all w € Y. Since HD(ug) = esssup(p) and,
since in view of Theorem 4.4.2 in [10] (comp. Theorem 3.1) in [14]), HD(u¢) = hu, (f)/Xues
we therefore conclude that

lim inf log,ug(B(:U,T)) _ huG(f) _ HD(MG)-

r—0 log r Xpe:

for all w € Y. Since it was demonstrated in the proof of Theorem 4.4.2 in [10] (comp.
Theorem 3.1) that

r—0 logr Xua

for fig-a.e w € I*°, we therefore conclude that

lim IOg /Lg(B(IL', T)) — huc(f) — HD(,U/G)
r—0 logr X e

for fig-a.e w € I*°. We are done. B

The iterated function system {¢;};c; is said to satisfy the strong open set condition if J N
Inta(X) # 0. In the case when the alphabet [ is finite, the the strong open set condition is
always satisfied (see [12]) perhaps with a different seed set X. The main result of this section
is the following.
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Theorem 5.4. Suppose that {¢;}icr is a conformal iterated function system satisfying the
strong open set condition. Suppose also that G is a summable Hélder family of functions
with finite Lyapunov exponent X,.. If (f, 1e) is the corresponding dynamical system, then

for pug-a.e. z € J, the number R, (z) exists and moreover

h
Ryo(2) = HD(s) = 2eef)

Xna
Proof. We shall verify that the dynamical system (f, uc) is loosely Markov. Item (a) follows
immediately from Theorem 2.4.6 in [10] and the relation L,(1)(w) = L4(1)(nw) established
in the middle of the page 128 in [7]. In order to check item (b) put x = x,,. Let Wy C I®

be the set of all sequences w € I such that
1 .

lim ~ log e, (r(0"w))| = —x. (5.9)

n—oo n,

By Birkhoff’s ergodic theorem jig(1W;) = 1. The strong open set condition implies the
existence of a finite word n € I* such that ¢,(X) C IntX. Let r = dist(¢,(X),0X). It
follows from Birkhoff’s ergodic theorem that there exists a Borel set W, C W; such that
fic(W3) =1 and for every w € W,

lim 1) (5.10)
k—o0 nk(w)

where {ny(w)}2, is the infinite sequence of all consecutive integers n > 1 such that o™ (w) €
{n} x I*. In particular pug(m(Ws)) = 1. The family

a = {¢i(X) }ier-

is a partition of J. Fix x € 7(W3), © = m(w), where w € W,. Using the bounded distortion
property and looking at (5.9) and (5.10), we see that for all n > 1 large enough, |¢[, ()] >

r~'exp(—2xn) and ny,, < 2ny, where k > 1 is uniquely determined by the requirement that
ng < n < ngyp. We then have

(@) = 601, (X) D bu,, (X) D uy,., (B(w(0™ 4w, 7)) D B(m(w), exp(—2xmin)
D B(ﬂ(w),exp(—4xnk)) D B(ﬂ(w),exp(—élxn)).

So, condition (b) of the definition of loosely Markov systems is also satisfied. Condition (c) fol-
lows immediately from Proposition 5.3. Thus the proof is completed by applying Theorem 2.1
along with Proposition 5.3. We are done. B
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