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Abstract. We consider maximizing orbits and maximizing mea-
sures for continuous maps T : X → X and functions f : X → IR,
where X need not be compact. We give sufficient conditions for
the function f to have a normal form, which allows a character-
ization of f -maximizing measures in terms of their support. For
example if T : X → X is a countable state subshift of finite type
and f has a Gibbs measure, then f has a normal form, and hence
a maximizing measure.

1. Introduction

Let T : X → X be a continuous map on a topological space X.
Given a continuous function f : X → IR, an orbit {x, T (x), T 2(x), . . .}
is called f -maximizing if the time average limn

1
n

∑n−1
i=0 f(T ix) is larger

than along any other orbit. If M denotes the set of T -invariant prob-
ability measures then the measure μ ∈ M is called f -maximizing if∫

f dμ = supm∈M
∫

f dm. We can define f -minimizing orbits and mea-
sures in a similar way.

By ergodic optimization we mean the circle of problems relating to
the search for maximizing (or minimizing) orbits and measures, and the
determination of the maximum ergodic average. The subject evolved
during the 1990s, and for much of this time researchers worked inde-
pendently, unaware of others’ contributions. In 1990 Coelho [C] studied
zero temperature limits of equilibrium states, and their connection with
certain maximizing measures. He showed that for Hölder functions f on
subshifts of finite type, an f -maximizing measure cannot be fully sup-
ported unless f is cohomologous to a constant. In an unpublished man-
uscript from around 1993, Conze & Guivarc’h [CG] improved Coelho’s
result by proving that such an f has a normal form: there exists a
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continuous function ϕ such that f̃ := f + ϕ−ϕ ◦ T ≤ supm∈M
∫

f dm.
The f -maximizing measures are thereby identified as precisely those
invariant probability measures whose support lies in the set of global
maxima of the normal form f̃ .

Conze & Guivarc’h also gave a preliminary analysis of a specific non-
trivial model for ergodic optimization: T (x) = 2x (mod 1) and fθ(x) =
cos 2π(x − θ). A little later this parametrized family of functions was
studied independently by Hunt & Ott [HO] and by Jenkinson [J1, J2],
who proposed a complete characterisation of the maximizing measures
for the family fθ, in terms of Sturmian measures. This conjecture
was proved by Bousch [B1], who had himself independently arrived
at the same characterisation. Bousch also re-discovered the normal
form theorem of Conze & Guivarc’h, exploiting it in a key way for
his proof. An alternative proof of the normal form theorem was given
by Contreras, Lopes & Thieullen [CLT], using techniques inspired by
Mañé [M1, M2], who had established an analogous result in the context
of Lagrangian systems. A subsequent strengthening of Mañé’s result
by Fathi [F1] is closer in spirit to the approach of Bousch, constructing
the normal form from the fixed point of a certain nonlinear operator.

In the present article we consider ergodic optimization for dynamical
systems T : X → X where X is not necessarily compact. In this general
context a maximizing measure need not even exist, so it is convenient
(cf. §2) to distinguish the successively weaker notions of maximizing
measure, maximizing orbit, and limsup maximizing orbit. In §3 an ap-
propriately strengthened notion of normal form is introduced, which in
particular guarantees the existence of a maximizing measure. In §§4, 5
we proceed to derive sufficient conditions for a function to have such a
strong normal form. In the very general context of §4 the sufficient con-
dition is a rather abstract notion of essential compactness. Our main
motivation for studying dynamical systems on non-compact spaces is
the case of countable state subshifts of finite type, and the smooth sys-
tems, such as Gauss’s continued fraction map, that they model. From
§5 onwards we assume that T : X → X is a countable state subshift of
finite type, and that f is bounded above. If X is compact, there exists
a (strong) normal form whenever f has summable variations and T is
topologically mixing [B2, J3]. In the non-compact setting this is not
the case: some extra condition on f is required in order to guarantee
a strong normal form. Our main result, Theorem 5.14, gives such a
condition. The condition is an easily checkable one; in the case of the
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full shift on IN it is that for some I ∈ IN ,
∞∑

j=1

varj(f) < inf f |[I] − sup f |[i]

for all sufficiently large i (cf. Corollary 5.15), where [k] denotes the
(cylinder) set of sequences whose first entry is k, and varj(f) = sup{f(x)−
f(y) : the first j entries of x and y agree}. In other words, the values
of f on some set [I] should be sufficiently larger than its values “at in-
finity”, in the sense that the difference between these values dominates
the total variation

∑∞
j=1 varj(f). In particular, if sup f |[i] → −∞ as

i → ∞ then f has a strong normal form (Corollary 5.16). It follows
(Corollaries 5.17 and 5.18) that if f has an invariant Gibbs measure
then it also has a strong normal form, and hence a maximizing mea-
sure; this is because the existence of a Gibbs measure implies that
sup f |[i] → −∞ as i → ∞.

2. Maximizing orbits and maximizing measures

Let X be a topological space, not necessarily compact. For a contin-
uous transformation T : X → X, let M denote the set of T -invariant
Borel probability measures on X. In general M might be empty,
though if X is a non-empty compact metrizable space then M �= ∅, by
the Krylov-Bogolioubov Theorem ([Wa2], Cor. 6.9.1).

Definition 2.1. (Three types of maximum ergodic average)
By convention we define the supremum of the empty set to be −∞.
If X is a topological space and f : X → IR is continuous then for

x ∈ X we define γ(f, x) ∈ [−∞,∞] by

γ(f, x) = lim sup
n→∞

1

n

n−1∑
i=0

f(T ix) .

Then define the maximum limsup time average γ(f) by

γ(f) = sup
x∈X

γ(f, x) .

A point x ∈ X is called regular if limn→∞ 1
n

∑n−1
i=0 f(T ix) exists (we

allow divergence to either −∞ or +∞), and the set of regular points
is denoted by Reg(X, T, f)

Define the maximum time average β(f) by

β(f) = sup
x∈Reg(X,T,f)

lim
n→∞

1

n

n−1∑
i=0

f(T ix) .
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The function f being continuous is Borel measurable, so for any
Borel measure μ the integral

∫
f dμ ∈ [−∞,∞] is defined provided∫

f+ dμ and
∫

f− dμ are not both infinite, where f± := max(±f, 0).
Let Mf := {μ ∈ M :

∫
f dμ is defined}, and define the maximum

space average α(f) to be

α(f) = sup
m∈Mf

∫
f dm .

Remark 2.2.
(a) If f is bounded either above or below then Mf = M.
(b) If X is compact then Mf = M for all continuous functions f .
(c) If Mf is empty then α(f) = −∞. In particular, if M is empty
then α(f) = −∞ for all continuous functions f .
(d) If M is non-empty, and f ∈ L1(μ) for some μ ∈ M, then α(f) >
−∞.
(e) If f is bounded above then α(f) < ∞. For our main results (see
§5) we always assume f to be bounded above.
(f) If f, g are continuous, and f − g is bounded, then Mf = Mg.

Definition 2.3. (Maximizing orbits and measures)
Any x ∈ X satisfying

lim sup
n→∞

1

n

n−1∑
i=0

f(T ix) = γ(f)

is called limsup maximizing for the function f . Its T -orbit O(x) =
{x, Tx, T 2x, . . .} is also called limsup maximizing for f .

If x ∈ Reg(X, T, f) satisfies

lim
n→∞

1

n

n−1∑
i=0

f(T ix) = γ(f) ,

we say that x, and its orbit O(x), are f -maximizing.
If there exists μ ∈ Mf such that∫

f dμ = γ(f) ,

then μ is called an f -maximizing measure, or simply a maximizing
measure. Let Mmax(f) denote the set of f -maximizing measures.

The above definition is formulated in terms of the maximum limsup
time average γ(f), though this convention is somewhat arbitrary; we
might equally well have used α(f) or β(f). In the case where X is
a compact metrizable space this does not matter, since by the follow-
ing Proposition 2.4 (ii) the three maximum ergodic averages coincide.
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More generally if X is a Polish space, i.e. if it is separable and can be
metrized by means of a complete metric1, then γ(f) ≥ β(f) ≥ α(f),
by Proposition 2.4 (i), which is some justification for our choice in Def-
inition 2.3. In fact our main results in this paper, in sections 4 and 5,
concern functions f for which α(f), β(f), γ(f) all coincide with a fourth
quantity c(f) = lim supn supx

1
n

∑n−1
i=0 f(T ix) introduced in section 3,

so for these results any arbitrariness in Definition 2.3 is immaterial.

Proposition 2.4. Let X be a Polish space. Suppose that T : X → X
and f : X → IR are both continuous. Then
(i) (General case)

α(f) ≤ β(f) ≤ γ(f) .

(ii) (Compact case)
If furthermore X is compact then α(f) = β(f) = γ(f) �= ±∞, and
Mmax(f) is non-empty.

Proof. (i) Suppose that α(f) > β(f). Then there exists a measure
μ ∈ Mf for which

∫
f dμ > β(f). In particular

∫
f dμ > −∞. Since

X is a Polish space then the triple (X,B, μ) is a Lebesgue space, where
B is the completion of the Borel σ-algebra by μ ([Ro], p. 174). So
T : (X,B, μ) → (X,B, μ) is a measure-preserving automorphism of
a Lebesgue space, and consequently admits an ergodic decomposition
([Ro] pp. 178, 194, [Wa2] p. 34): there is a Borel probability measure
Pμ on the set E ⊂ M of T -ergodic measures, such that if g ∈ L1(μ)
then g ∈ L1(m) for Pμ almost every m ∈ E , and∫

g dμ =

∫
m∈E

∫
g dm dPμ(m) .

If f ∈ L1(μ) this gives
∫

f dμ =
∫

m∈E
∫

f dm dPμ(m), where f ∈
L1(m) for Pμ-a.e. m ∈ E . So there exists an ergodic measure μ′ such
that

∫
f dμ′ ≥ ∫

f dμ > β(f) and f ∈ L1(μ′) (so in particular μ′ ∈
Mf). By the ergodic theorem we know that μ′-almost every x satisfies

limn→∞ 1
n

∑n−1
i=0 f(T ix) =

∫
f dμ′. In particular there is at least one

x ∈ Reg(X, T, f) for which limn→∞ 1
n

∑n−1
i=0 f(T ix) =

∫
f dμ′ > β(f),

contradicting the definition of β(f). So in the case where f ∈ L1(μ)
we in fact have α(f) ≤ β(f).

Next suppose f /∈ L1(μ). The assumption that α(f) > β(f) then
implies that

∫
f dμ = +∞ and β(f) < ∞. The function fk(x) :=

1The assumption that X be Polish is preferable to assuming it to be a complete
separable metric space, since a Polish space need not have a particularly natural or
simple complete metric; eg. X = [0, 1) is Polish but the usual metric d(x, y) = |x−y|
is not complete.
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min(k, f(x)) is in L1(μ), and as above there exists an ergodic measure
μk ∈ Mfk

with
∫

fk dμk ≥ ∫
fk dμ. Note that each μk ∈ Mf , with∫

f dμk > −∞, because μk ∈ Mfk
and f− = f−

k .
By the ergodic theorem there exists xk ∈ X such that

lim
n→∞

1

n

n−1∑
i=0

fj(T
ixk) =

∫
fj dμk for all j ∈ IN . (1)

We claim that xk can be chosen with the additional property that
limn

1
n

∑n−1
i=0 f(T ixk) =

∫
f dμk, so that in particular xk ∈ Reg(X, T, f).

In the case where f ∈ L1(μk) this is true by the ergodic theorem. In
the case where

∫
f dμk = ∞, note that

lim inf
n→∞

1

n

n−1∑
i=0

f(T ixk) ≥ lim inf
n→∞

1

n

n−1∑
i=0

fj(T
ixk)

=

∫
fj dμk (2)

holds for all j, hence the lefthand side of (2) equals +∞. That is,
1
n

∑n−1
i=0 f(T ixk) → ∞ as n → ∞, and therefore each xk ∈ Reg(X, T, f).

So in both cases, since f ≥ fk we have

lim
n→∞

1

n

n−1∑
i=0

f(T ixk) ≥ lim
n→∞

1

n

n−1∑
i=0

fk(T
ixk) =

∫
fk dμk ≥

∫
fk dμ .

Therefore

β(f) = sup
x∈Reg(X,T,f)

lim
n→∞

1

n

n−1∑
i=0

f(T ix)

≥ lim
k→∞

lim
n→∞

1

n

n−1∑
i=0

f(T ixk) ≥ lim
k→∞

∫
fk dμ = ∞ ,

contradicting the fact that β(f) < ∞. This contradiction means that
in the case where f /∈ L1(μ) we again have α(f) ≤ β(f).

It is immediate from their definitions that β(f) ≤ γ(f), so part (i)
is proved.

(ii) To prove α(f) = β(f) = γ(f) it suffices, by (i), to show that
α(f) ≥ γ(f). This is the content of Lemmas 2.3 and 2.4 in [YH], but
for completeness we give the argument here. The compactness of X
means that M is compact for the weak∗ topology ([Wa2], Thm. 6.10).
Consequently for every x ∈ X there exists μx ∈ Mf = M such that
γ(f, x) =

∫
f dμx. This is because there is an increasing sequence

(ni) such that γ(f, x) = limi
1
ni

∑ni−1
j=0 f(T jx) = limi

∫
f dμi, where
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μi = 1
ni

∑ni−1
j=0 δT jx, but (μi) converges weak∗ subsequentially to some

μx ∈ M, so limi

∫
f dμi =

∫
f dμx. Now γ(f) = supx∈X γ(f, x) =

supx∈X

∫
f dμx = limk

∫
f dμxk

for some sequence xk ∈ X, so if μ ∈ M
is any weak∗ accumulation point of (μxk

) then γ(f) =
∫

f dμ ≤ α(f),
as required.

The common maximum ergodic average is finite because f is bounded,
and Mmax(f) �= ∅ because the map μ �→ ∫

f dμ is continuous for the
weak∗ topology. �
Remark 2.5.
If f has a maximizing measure then it also has a maximizing orbit,
and hence a limsup maximizing orbit, by an argument similar to the
proof of Proposition 2.4 (i). If f has a compactly supported maximizing
measure μ then γ(f) �= ±∞, since

∫
f dμ �= ±∞ by continuity of f .

If a limsup maximizing orbit has compact closure then there exists a
(compactly supported) maximizing measure, and hence a maximizing
orbit.

If X is compact then Proposition 2.4 (ii) means the study of (limsup)
maximizing orbits reduces to, and is more elegantly formulated as, the
study of maximizing measures. If X is non-compact then this is not the
case; the following examples illustrate that α(f), β(f), γ(f) need not
coincide nor be finite, and (limsup) maximizing orbits or maximizing
measures need not exist.

Example 2.6. ( f has no limsup maximizing orbit)
If T is the identity map on [0, 1) and f is strictly increasing, say,

then there are no limsup maximizing orbits; γ(f) = ∞ if and only if f
is unbounded.

Example 2.7. (α(f) < β(f); f has a maximizing orbit, Mmax(f) = ∅)
Let T : IR → IR be the translation T (x) = x+1, and f : IR → IR any

function which only takes negative values and has limx→∞ f(x) = 0.
Clearly β(f) = γ(f) = 0, while α(f) = −∞ because M is empty.

If T is modified so as to create some recurrence then M will be
non-empty yet α(f) < β(f) may still occur. If T (x) = x/2 on [−2, 0],
T (x) = 2x on [0, 1], and T (x) = x + 1 elsewhere then M contains only
the Dirac measure at 0, but if f is as above then α(f) =

∫
f dδ0 =

f(0) < 0 = β(f) = γ(f).

Example 2.8. (β(f) < γ(f); f has a limsup maximizing orbit, but no
maximizing orbit)

Equip X = ZZ2 × IN with the discrete topology, where ZZ2 = ZZ/2ZZ.
Let T ((i, n)) = (i+1, n+1) if n = 2k and T ((i, n)) = (i, n+1) otherwise.
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If f((i, n)) = i for each i ∈ ZZ2 then lim infn→∞ 1
n

∑n−1
i=0 f(T ix) = 1

3
and

lim supn→∞
1
n

∑n−1
i=0 f(T ix) = 2

3
for all x ∈ X. Therefore γ(f) = 2/3,

and every orbit is limsup maximizing. However Reg(X, T, f) is empty,
so there are no maximizing orbits.

Example 2.9. (−∞ < α(f) < β(f) < γ(f) < ∞)
Example 2.8 can easily be modified so as to obtain −∞ < α(f) <

β(f) < γ(f) < ∞. Let X be the set of non-negative integers, with
T (0) = 0 and T (n) = n+2 otherwise. Then f : X → IR can be chosen
to take only the values 0 or 1, with f(0) = 0, lim infn

1
n

∑n−1
i=0 f(T i(2)) =

0, lim supn
1
n

∑n−1
i=0 f(T i(2)) = 1, and the limit lim 1

n

∑n−1
i=0 f(T i(1)) =

1/2 existing. So α(f) = 0, β(f) = 1/2, and γ(f) = 1.

Example 2.10. (α(f) = β(f) = γ(f) = −∞)
If T (x) = x + 1 on IR and limx→∞ f(x) = −∞ then every orbit is

maximizing, with α(f) = β(f) = γ(f) = −∞.

3. Normal forms

For a non-empty set X, let B(X) denote the set of all bounded real-
valued functions on X, and B∧(X) the set of functions on X which are
bounded above.

If X is a topological space, let C(X) denote the space of contin-
uous real-valued functions on X. The topology of uniform conver-
gence on compact subsets makes this a complete topological vector
space, though if X is non-compact then C(X) is usually not metriz-
able.2 For ϕ ∈ C(X), and K ⊂ X a compact subset, we shall write
||ϕ||∞,K := supx∈K |ϕ(x)|.

The space CB(X) of bounded continuous functions will be equipped
with the uniform metric d(ϕ, ψ) = supx∈X |(ϕ − ψ)(x)|, which makes
it a Banach space. Note that (for non-compact X) this is not the
topology induced by C(X); in fact CB(X) is a dense subspace of C(X).
Let CB∧(X) denote the set of continuous functions on X which are
bounded above.

If the topological space X is equipped with a compatible uniform
structure, in particular if it is equipped with a metric which generates
the topology, then we let UC(X) denote the space of all uniformly con-
tinuous functions on X. Let UCB(X) denote the space of all bounded
uniformly continuous functions. This is a closed subspace of CB(X),
so is itself a Banach space when equipped with the uniform norm.
Let UCB∧(X) denote the set of uniformly continuous functions on X

2If X is σ-compact then C(X) is metrizable though non-normable; it is a Fréchet
space.
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which are bounded above. Of course if X is compact then the sets
C(X), CB(X), CB∧(X), UC(X), UCB(X), UCB∧(X) all coincide.

Definition 3.1. (Dynamical cohomology and normal forms)
Let T : X → X be a continuous map on a topological space. If

ϕ ∈ CB(X) then a function of the form ϕ−ϕ ◦ T is called a (continu-
ous) coboundary. Two functions f, g which differ by a coboundary are
cohomologous, and we write f ∼ g. This is an equivalence relation on
C(X), say; the corresponding equivalence classes are called cohomology
classes.

A function f̃ ∼ f is a weak normal form for f if f̃ ≤ γ(f). It is a

strong normal form for f if in addition f̃−1(γ(f)) contains the support
of some T -invariant probability measure. (Recall that the support of a
measure μ, denoted supp(μ), is by definition the smallest closed subset
Y ⊂ X with μ(Y ) = 1). Obviously if f has a strong normal form then
γ(f) is finite.

The set Mf only depends on the cohomology class of f , by Remark

2.2 (f), since if f̃ is cohomologous to f then f − f̃ is bounded. Er-
godic averages are also well-defined on cohomology classes:

∫
f dμ (for

μ ∈ Mf) and limn
1
n

∑n−1
i=0 f(T ix) (if it exists) and limn

1
n

∑n−1
i=0 f(T ix)

do not depend on the cohomology class representative f . Consequently
α(f), β(f) and γ(f) are well-defined on cohomology classes, and (lim-
sup) maximizing orbits and maximizing measures are the same for all
functions in a given cohomology class. If the cohomology class has
a strong normal form, the following result implies that a maximizing
measure is completely characterised by its support.

Proposition 3.2. Suppose T : X → X is a continuous map on the
topological space X, and the continuous function f : X → IR has a
strong normal form f̃ . Then Mf = M, and

Mmax(f) =
{
m ∈ M : supp(m) ⊂ f̃−1(γ(f))

}
�= ∅ .

Proof. The strong normal form f̃ is bounded above, hence Mf̃ = M
(cf. Remark 2.2 (a)). But f ∼ f̃ , so Mf = Mf̃ = M.

Now f̃ ≤ γ(f), so
∫

f dm =
∫

f̃ dm ≤ γ(f) for all m ∈ M. If

μ ∈ M satisfies supp(μ) ⊂ f̃−1(γ(f)) then
∫

f dμ =
∫

f̃ dμ = γ(f), so

μ is f -maximizing. But f̃ is a strong normal form, so there exists at
least one such μ, hence there exists at least one f -maximizing measure.

If m ∈ M is such that supp(m) �⊂ f̃−1(γ(f)), then in fact
∫

f dm =∫
f̃ dm < γ(f), because f̃ ≤ γ(f) and m({x : f̃(x) < γ(f)}) > 0, so m

is not f -maximizing. �
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Proposition 3.2 clearly demonstrates the usefulness of finding strong
normal forms, as they essentially resolve the ergodic optimization prob-
lem: maximizing measures are identified as those invariant probability
measures whose support lies inside the set of maxima of the normal
form. In particular the existence of a strong normal form guarantees
the existence of a maximizing measure. Not every continuous function
has a strong normal form, even in the case where X is compact; indeed
the absence of strong normal forms is in a sense typical (cf. Remarque
7 in [B2], §3 in [BJ]). However in many interesting cases f does have a
strong normal form: Bousch [B1], and independently Contreras, Lopes
& Thieullen [CLT], proved this for Lipschitz functions f and expanding
maps T on the circle. Jenkinson [J3] established the analogous fact for
functions of summable variation defined on finite alphabet subshifts of
finite type, and Bousch [B2] further extended the result to functions f
satisfying Walters’ condition (cf. [Wa1]) and T either weakly expanding
or with weak local product structure. An unpublished manuscript of
Conze & Guivarc’h [CG] seems to be the earliest treatment of normal
forms for ergodic optimization, containing in particular a version of our
Proposition 3.2. In all of the above articles the space X is assumed to
be compact, whereas in this paper we seek sufficient conditions for f
to have a strong normal form in the case where X is not necessarily
compact.

For compact X, every weak normal form f̃ is actually a strong normal
form: the existence of an f -maximizing measure μ (cf. Proposition 2.4

(ii)) forces supp(μ) ⊂ f̃−1(γ(f)), since if not then
∫

f dμ =
∫

f̃ dμ is
strictly less than γ(f). In the non-compact case, a weak normal form
need not be a strong normal form (see Example 5.3), so that weak
normal forms are less useful for our purposes.

One approach to proving the existence of a strong normal form for f
is to search for fixed points of a certain nonlinear operator Mf , which
we now define. This operator was introduced by Bousch [B1] to study
maximizing measures in the case where X is compact. In the context
of Lagrangian flows an analogous construction is the Lax-Oleinik semi-
group of operators, as studied by Fathi [F1]. Fixed points of Mf can be
used to construct a different kind of normal form for f , the essentially
fixed point normal form (see Definition 3.5).

Definition 3.3. Let T : X → X be a surjection on a non-empty set
X, and f : X → IR any function. If ϕ : X → IR then for each x ∈ X,
define Mfϕ(x) ∈ (−∞,∞] by

Mfϕ(x) := sup
y∈T−1x

(f + ϕ)(y). (3)
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If f is bounded above then (3) defines an operator Mf : B∧(X) →
B∧(X), while if f is bounded then it defines an operator Mf : B(X) →
B(X). Iterates of Mf can be expressed as

Mn
f ϕ(x) = sup

y∈T−n(x)

(Snf + ϕ) (y) ,

where

Snf :=
n−1∑
i=0

f ◦ T i .

Define

c(f) = lim sup
n→∞

1

n
sup
x∈X

Snf(x) ∈ [−∞,∞] .

If c(f) ∈ [−∞,∞) then supx∈X Snf(x) is finite for all sufficiently
large n, and is a subadditive sequence of reals, so in fact the limit
limn

1
n

supx∈X Snf(x) ∈ [−∞,∞) exists and equals infn
1
n

supx∈X Snf(x).

Clearly c(f) ≥ γ(f) = supx∈X lim supn
1
n
Snf(x).

If X is a compact metrizable space then c(f) = γ(f), since if μn :=
1
n

∑n−1
i=0 δT ixn

, where xn is such that

sup
x∈X

1

n
Snf(x) =

1

n
Snf(xn) =

∫
f dμn ,

then the sequence (μn) has a weak∗ accumulation point μ, with
∫

f dμ =
c(f). But μ is a T -invariant probability measure, so

∫
f dμ ≤ α(f) =

γ(f). If X is not compact then it is possible that c(f) > γ(f); this
arises if each point has a preimage where f is large, but is itself homo-
clinic to a part of X where f is small (cf. Example 5.4).

Lemma 3.4. Let T : X → X be a surjection on a non-empty set X,
and f : X → IR any function. If there exists ϕ ∈ B(X) and c ∈ IR
such that

Mfϕ = ϕ + c ,

then

c = c(f) = lim
n→∞

1

n
sup
x∈X

Snf(x) .

Proof. The equation ϕ + c = Mfϕ is equivalent to Mf−cϕ = ϕ, which
implies that

ϕ(x) = Mn
f−cϕ(x) = −nc + sup

y∈T−n(x)

(Snf(y) + ϕ(y))
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for all n ∈ IN , x ∈ X. Now ϕ is bounded, and writing a = inf ϕ,
b = sup ϕ we have

a − b

n
+ c ≤ 1

n
sup

y∈T−n(x)

Snf(y) ≤ c +
b − a

n

for all n > 0, x ∈ X. Therefore for all n > 0,

a − b

n
+ c ≤ 1

n
sup
x∈X

sup
y∈T−n(x)

Snf(y) ≤ c +
b − a

n
,

which is equivalent to

a − b

n
+ c ≤ 1

n
sup
y∈X

Snf(y) ≤ c +
b − a

n
∀n > 0 .

Letting n → ∞ gives the result. �

Definition 3.5. (Essentially fixed point normal form)
Let X be a topological space. Suppose that T : X → X is a contin-

uous surjection, and f : X → IR is continuous. A function ϕ ∈ CB(X)
which satisfies Mfϕ = ϕ + c(f) is called an essentially fixed point of

Mf . The function f̃ := f + ϕ−ϕ ◦ T is then called an essentially fixed
point normal form for f .

If X is compact then every essentially fixed point normal form is a
strong normal form (but not conversely); indeed the strategy of Bousch
[B1, B2], and in a different context Fathi [F1], for establishing existence
of strong normal forms was to show that Mf has an essentially fixed
point ϕ = Mfϕ−c(f), where compactness of X means that necessarily
c(f) = α(f) = β(f) = γ(f). For non-compact X, an essentially fixed
point normal form need not in general even be a weak normal form
(cf. Example 5.4). In Theorem 5.14 we prove that for suitable func-
tions f over countable state subshifts of finite type, an essentially fixed
point normal form does exist and is also a strong normal form. In the
following §4 we introduce the intermediate concept of essential com-
pactness as a sufficient condition for the existence of a strong normal
form.

4. Essentially compact functions

The importance of a strong normal form for a function was demon-
strated by Proposition 3.2: existence of a strong normal form implies
existence of a maximizing measure, and gives a characterisation of max-
imizing measures in terms of their support. In this section we seek
sufficient conditions for a function to have a strong normal form, in the
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general context of Polish spaces X. In §5 this question is pursued in
the special case of countable state subshifts of finite type.

Definition 4.1. (Essentially compact functions)
Let T : X → X be a continuous surjection on the topological space

X. A continuous function f : X → IR is essentially compact if there
is an essentially fixed point ϕ ∈ CB(X) for Mf , and a subset Y ⊂ X
such that
(a) Ỹ := ∩∞

n=0T
−nY is non-empty and compact,

(b) T (Y ) = X,
(c) for each x ∈ X,

ϕ(x) + c(f) = sup
y∈T−1(x)∩Y

(f + ϕ)(y) . (4)

Remark 4.2. It is often straightforward to find a subset Y satisfying
conditions (a) and (b). For example if X is a suitable countable state
subshift of finite type then Y can be chosen to be an appropriate finite
union of length-one cylinders (see §5, in particular Remark 5.10 (d)).
For suitable subshifts of finite type the class of essentially compact
functions is a large one; for example it contains all functions to which
the thermodynamic formalism applies (cf. Corollaries 5.17 and 5.18).

By definition every essentially compact function has an essentially
fixed point normal form. The following result, a non-compact general-
ization of Lemme B in [B1], tells us more.

Theorem 4.3. Let T : X → X be a continuous surjection on a Polish
space X. If the continuous function f : X → IR is essentially compact,
and ϕ ∈ CB(X) is as in Definition 4.1, then f̃ = f + ϕ − ϕ ◦ T is a
strong normal form for f , and hence

Mmax(f) =
{
m ∈ M : supp(m) ⊂ f̃−1(γ(f))

}
�= ∅ .

Proof. It suffices to show that f̃ is a strong normal form; the character-
ization of Mmax(f) then follows by Proposition 3.2. Now c(f) ≥ γ(f),

so in particular γ(f) < ∞. To see that f̃ is a strong normal form for f

we shall show that f̃ ≤ γ(f), and that f̃−1(γ(f)) contains a non-empty
compact T -invariant set Z (i.e. TZ ⊂ Z), from which it follows that

f̃−1(γ(f)) contains the support of some T -invariant measure, by the
Krylov-Bogolioubov Theorem ([Wa2], Cor. 6.9.1).

Let x ∈ X be arbitrary. We can replace x by T (x) in (4) to obtain

ϕ(Tx) + c(f) = sup
y∈Y ∩T−1(T (x))

(f + ϕ)(y)

= ϕ(x) + f(x) + rϕ(x)
(5)
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where

rϕ(x) := sup
y∈Y ∩T−1(T (x))

(f + ϕ)(y) − (f + ϕ) (x).

The function rϕ = ϕ ◦ T − ϕ + c(f) − f is continuous, since f ,
ϕ, and T are. Also, since ϕ is an essentially fixed point, rϕ(x) =
supy∈Y ∩T−1(T (x))(f + ϕ)(y) − (f + ϕ) (x) = supy∈T−1(T (x))(f + ϕ)(y) −
(f + ϕ) (x) ≥ (f + ϕ) (x)−(f + ϕ) (x) = 0, therefore rϕ is non-negative.

We shall see later that in fact r−1
ϕ (0) = f̃−1(γ(f)).

Let S denote the restriction of the map T to the nonempty compact
invariant set Ỹ = ∩∞

n=0T
−n(Y ). We first claim that

Z :=
∞⋂

n=0

S−n(r−1
ϕ (0) ∩ Ỹ )

is a non-empty compact T -invariant set contained in the zero set r−1
ϕ (0).

The fact that Z ⊂ r−1
ϕ (0) is clear from the definition, as is T -invariance,

because S = T |
eY , so we concentrate on showing that Z is non-empty

and compact. We can write

Z =
∞⋂

N=0

ZN , where ZN :=
N−1⋂
n=0

S−n(r−1
ϕ (0) ∩ Ỹ ) .

Now Z1 ⊃ Z2 ⊃ . . ., so that if each ZN is non-empty and compact then
the same will be true of Z. To prove the compactness of ZN , note that

r−1
ϕ (0) is closed, since rϕ is continuous, and Ỹ is compact. So r−1

ϕ (0)∩Ỹ

is compact, and in particular closed. Hence each S−n(r−1
ϕ (0) ∩ Ỹ ) is

closed, since Sn is continuous. But S = T |
eY , so each S−n(r−1

ϕ (0) ∩ Ỹ )

is a subset of the compact set Ỹ , and therefore itself compact. Conse-

quently the intersection ZN = ∩N−1
n=0 S−n(r−1

ϕ (0) ∩ Ỹ ) is also compact.
Now we show that each ZN is non-empty. Let z be any point in

Ỹ = ∩∞
n=0T

−nY . Then TN(z) ∈ Ỹ as well. Now in general if A ⊂ Ỹ

then T−1A ∩ Y ⊂ Ỹ , so that T−1A ∩ Y = T−1A ∩ Ỹ . In particular
T−1(TN(z))∩Y = T−1(TN(z))∩ Ỹ , so is compact, and also non-empty
by Definition 4.1 (b), so there exists xN−1 ∈ T−1(TN(z))∩Y such that

(f + ϕ)(xN−1) = max
y∈T−1(T N (z))∩Y

(f + ϕ)(y).

But T N(z) = T (xN−1), so xN−1 satisfies

(f + ϕ)(xN−1) = max
y∈T−1(T (xN−1))∩Y

(f + ϕ)(y).

In other words,

rϕ(xN−1) = 0 .
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But xN−1 ∈ T−1(TN(z)) ∩ Y ⊂ Ỹ so in fact

xN−1 ∈ r−1
ϕ (0) ∩ Ỹ .

Now T−1(xN−1)∩Y = T−1(xN−1)∩ Ỹ is compact and non-empty, so

there exists xN−2 ∈ T−1(xN−1) ∩ Y ⊂ Ỹ such that

(f + ϕ)(xN−2) = max
y∈T−1(xN−1)∩Y

(f + ϕ)(y).

But xN−1 = T (xN−2), so xN−2 satisfies

(f + ϕ)(xN−2) = max
y∈T−1(T (xN−2))∩Y

(f + ϕ)(y).

That is,
rϕ(xN−2) = 0 .

So we have that

xN−2 ∈ r−1
ϕ (0) ∩ Ỹ , and T (xN−2) = xN−1 .

Continuing in this way we find a finite sequence x0, x1, . . . , xN−1 of
points with the property that

xn ∈ r−1
ϕ (0) ∩ Ỹ , and xn = T n(x0) = Sn(x0)

for all 0 ≤ n ≤ N − 1. Therefore T n(x0) ∈ r−1
ϕ (0) ∩ Ỹ for all

0 ≤ n ≤ N − 1. So ZN = ∩N−1
n=0 S−n(r−1

ϕ (0) ∩ Ỹ ) contains the point
x0, and in particular is non-empty, as required. It follows that Z :=

∩∞
n=0S

−n(r−1
ϕ (0) ∩ Ỹ ) is a non-empty compact T -invariant subset of

r−1
ϕ (0), by the argument given above.
But any non-empty compact T -invariant set has a T -invariant prob-

ability measure. That is, there exists a measure m ∈ M with

supp(m) ⊂ Z ⊂ r−1
ϕ (0) ∩ Ỹ . (6)

If we integrate equation (5) with respect to any invariant measure μ ∈
Mf we obtain ∫

f dμ = c(f) −
∫

rϕ dμ ≤ c(f) ,

whereas setting μ = m gives∫
f dm = c(f) .

It follows that c(f) = α(f). But c(f) ≥ γ(f), and γ(f) ≥ α(f)
by Proposition 2.4 (i), so in fact c(f) = γ(f). Therefore m is an f -
maximizing measure. Moreover, equation (5) now reads

γ(f) − rϕ = f̃ , (7)
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so that f̃ ≤ γ(f), and f̃ is a weak normal form for f . Moreover (7)
gives

r−1
ϕ (0) = f̃−1(γ(f)) ,

and combining this with equation (6) shows that supp(m) ⊂ f̃−1(γ(f)),

so that f̃ is indeed a strong normal form for f . �

5. Countable state subshifts of finite type

Definition 5.1. The space Σ = IN IN , equipped with the product topol-
ogy, is the full shift on the alphabet3 IN . Of course, the map we are
considering is the shift map T : Σ → Σ defined by (Tω)n = ωn+1. Given
an adjacency matrix A : IN × IN → {0, 1}, the associated subshift of
finite type ΣA is the subspace of Σ defined by

ΣA = {ω ∈ Σ : A(ωn, ωn+1) = 1 for all n ≥ 1}
and the map we consider is the shift restricted to the invariant set ΣA.
If ΣA is a subshift of finite type then T (ΣA) ⊂ ΣA, and we again write
T : ΣA → ΣA to denote the corresponding restriction of the shift map.
All subshifts of finite type are Polish spaces, and we shall always use
the complete metric δ(x, y) = 2−min{n:xn 	=yn}.

A finite word w ∈ INn is A-admissible if A(wi, wi+1) = 1 for all
1 ≤ i ≤ n − 1. Given w ∈ INn and ω ∈ ΣA, the concatenation wω is
the sequence defined by

(wω)i =

{
wi if 1 ≤ i ≤ n

ωi−n if i ≥ n + 1
.

In general T : ΣA → ΣA need not be surjective. Clearly it is surjec-
tive if and only if A has the property that for every ω ∈ ΣA there is
some i ∈ IN such that A(i, ω1) = 1. The class of matrices A studied in
this paper all have this property.

For any n ∈ IN we define ΠA,n : ΣA → INn by ΠA,n(ω) = (ω1, . . . , ωn)
(projection onto the first n coordinates). If w ∈ INn then the corre-
sponding cylinder set in ΣA is defined by

[w] = [w]A = Π−1
A,n(w) = {x ∈ ΣA : ΠA,n(x) = w} .

Define

INA = {i ∈ IN : [i]A �= ∅} ,

the set of those symbols which actually appear as an entry in some
element of ΣA. If INA is finite then ΣA is compact, and called a finite

3Here, as throughout the article, IN denotes the set of strictly positive integers.
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state subshift of finite type. If INA is infinite then ΣA is non-compact,
and called a (strictly) countable state subshift of finite type4.

Henceforth our Polish space X will be a subshift of finite type ΣA

for which the shift map T : ΣA → ΣA is surjective.

Lemma 5.2. Let ΣA be a subshift of finite type for which the shift
map T : ΣA → ΣA is surjective. Suppose f is uniformly continuous
and bounded above (i.e. f ∈ UCB∧(ΣA)). Then the formula

Mfϕ(x) = sup
y∈T−1x

(f + ϕ)(y)

defines an operator Mf : UCB∧(ΣA) → UCB∧(ΣA).

Proof. Let ϕ ∈ UCB∧(ΣA). Clearly Mfϕ is bounded above. Since
Mfϕ = M0(f + ϕ), it suffices to show that if g ∈ UCB∧(ΣA) then
M0g ∈ UC(ΣA). Let ε > 0. Choose n ∈ IN such that if u, v ∈ ΣA

satisfy ΠA,n(u) = ΠA,n(v), then |g(u)− g(v)| < ε/2. Fix x, y ∈ ΣA such
that ΠA,n(x) = ΠA,n(y). Choose a ∈ IN such that ax is A-admissible
and g(ax) ≤ M0g(x) < g(ax) + ε/2. Since ay is A-admissible, g(ay) ≤
M0(g)(y), so −ε < g(ay)−g(ax)−ε/2 < M0g(y)−M0g(x). Interchang-
ing x and y gives −ε < M0g(x) − M0g(y), so |M0g(x) − M0g(y)| < ε
and therefore M0g is uniformly continuous. �

The main results of this section concern conditions on f which guar-
antee the existence of an essentially fixed point normal form, which is
then shown to be also a strong normal form. To motivate the need for
such conditions, consider the following example.

Example 5.3. (essentially fixed point normal form but no strong nor-
mal form)

Let T : Σ → Σ be the full shift on the alphabet IN , and let
f : Σ → IR be constant on length-2 cylinder sets, with f [m, n] = −1

n(n+1)

if m = n + 1 and f [m, n] = −1 otherwise. First we claim that
α(f) = β(f) = γ(f) = 0, and that there exist f -maximizing orbits
but no f -maximizing measures. Certainly γ(f) ≤ 0, since f < 0. If
νn denotes the unique invariant measure supported on the periodic
orbit generated by ω(n) := (n, n − 1, . . . , 1), then supn≥0

∫
f dνn = 0,

so that α(f) = 0. Therefore α(f) = β(f) = γ(f) = 0, by Proposi-
tion 2.4 (i). If ω = (1, 2, 1, 3, 2, 1, 4, 3, 2, 1, . . .), formed by concatenat-
ing, in order of increasing n, all words of the form (n, n − 1, . . . , 1),

then limn→∞ 1
n

∑n−1
i=0 f(T iω) = 0, so that ω has an f -maximizing or-

bit. Clearly f has no f -maximizing measures, since f < 0 implies that

4Alternative terminology for ΣA is a countable Markov shift or countable state
topological Markov chain.
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f dm < 0 for any (invariant) probability measure m. Therefore, by

Proposition 3.2, f does not have a strong normal form.
The function f is already in weak normal form: f ≤ γ(f). To see

that f has an essentially fixed point normal form, let ϕ ∈ CB(Σ) be
constant on length-1 cylinder sets, defined by ϕ([n]) = −1/n for all
n ∈ IN . A short calculation reveals that f + ϕ − ϕ ◦ T = 0 = γ(f) on
cylinder sets of the form [n + 1, n], whereas (f + ϕ − ϕ ◦ T )([m, n]) =
−1− 1

m
+ 1

n
< 0 = γ(f) if m �= n + 1, so ϕ is an essentially fixed point

for Mf , and c(f) = γ(f) = 0.

The dynamics in Example 5.3 is topologically mixing, and the con-
tinuous function f is bounded and locally constant (in particular it has
summable variations, cf. Definition 5.7). For compact subshifts of finite
type these conditions are enough to ensure that f does have a strong
normal form (see [B2, J3]). In the non-compact setting, however, an
extra condition is required: the values of f “at infinity” should not
be too large in comparison to its value on some “finite” part of the
space. This condition will be formalised as (13), and in the case of the
full shift has a simpler form (22). It fails to be satisfied in Example
5.3 because f is too large on cylinder sets of the form [n + 1, n] for
arbitrarily high values of n.

The following example is in a sense even more striking than the
last one: the function f has an essentially fixed point normal form,
but not even a weak normal form. However this is simply because
the value c(f) = lim supn

1
n

supx Snf(x) is strictly larger than γ(f) =
supx lim supn

1
n
Snf(x), a phenomenon which can only arise if the space

is non-compact (cf. the discussion prior to Lemma 3.4). It should be
noted that the subshift of finite type below is not topologically mixing
(i.e. its adjacency matrix is not primitive, cf. Definition 5.9), whereas
for our main results (Lemma 5.11 onwards) we shall always assume
topological mixing.

Example 5.4. (c(f) > γ(f); essentially fixed point normal form but
no weak normal form)

It is notationally convenient to take ZZ rather than IN as the alphabet
for the following subshift of finite ΣA ⊂ ZZIN . Define the adjacency
matrix A by A(i, i+1) = 1 ∀i ∈ ZZ, A(0, i) = 1 ∀i ≥ 1, and A(i, j) = 0
otherwise. Define f to be constant on cylinder sets of length one, with
f [i]A = 0 for i ≤ 0 and f [i]A = −1 otherwise. Clearly limn

1
n
Snf(x) =

−1 for all x ∈ ΣA, so γ(f) = −1. But c(f) = 0; indeed f is already
in essentially fixed point normal form, since Mf0 = 0. However f does

not have a weak normal form: if f̃ ∼ f with f̃ ≤ γ(f) = 0 then
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c(f̃) ≤ 0, whereas in fact c(f̃) = c(f) = −1 since it is easily seen that
c(·) is well-defined on cohomology classes.

Obviously a prerequisite for proving that f : ΣA → IR has an essen-
tially fixed point normal form is the existence of an essentially fixed
point for the operator Mf . The first step in proving this existence is
to show that Mf preserves the Banach space UCB(ΣA) (see Lemma
5.6), thereby improving on Lemma 5.2. For this we need the extra as-
sumption that f is bounded below when restricted to some set Z with
the property that T (Z) = ΣA. Clearly f satisfies this assumption if
it is bounded on the whole of ΣA. It also satisfies the assumption if
there exists a finite sub-alphabet L ⊂ IN such that every x ∈ ΣA has a
preimage ix for some i ∈ L; in this case we can define Z = Π−1

A,1(L). It
follows easily (Lemma 5.6) that Mf : UCB(ΣA) → UCB(ΣA) has ap-
proximate fixed points: for each 0 ≤ λ < 1 the equation ϕ = Mf (λϕ)
has a unique solution in UCB(ΣA), since Mf is 1-Lipschitz for the
uniform distance. Later, under extra hypotheses on f and A, it will
be shown that any accumulation point (in a suitable topology) of the
family of approximate fixed points is in fact an essentially fixed point
for Mf . This general strategy is patterned on the proof of Théorème
1 in [B2]. As we shall soon see, however, the non-compactness of ΣA

complicates matters considerably.
The approximate fixed points for Mf are actual fixed points for the

following operators:

Definition 5.5. Let f ∈ B∧(X). For 0 ≤ λ ≤ 1, define the (nonlinear)
operator Mf,λ : B∧(ΣA) → B∧(ΣA) by

Mf,λϕ(x) = sup
y∈T−1(x)

(f + λϕ) (y) ,

so that Mf,1 = Mf . The iterates of Mf,λ can be expressed as

Mn
f,λϕ(x) = sup{Sλ,nf(wxx) + λnϕ(wxx) : wx ∈ INn, wxx ∈ ΣA} ,

where Sλ,nf(z) :=
∑n−1

j=0 λn−1−jf(T jz).

Lemma 5.6. Let ΣA be a subshift of finite type. Suppose f is uniformly
continuous and bounded above, and inf f |Z > −∞ for a subset Z with
T (Z) = ΣA.

For each 0 ≤ λ ≤ 1, the operator Mf,λ preserves the Banach space
UCB(ΣA).

If 0 ≤ λ < 1 then Mf,λ is a contraction on UCB(ΣA), hence has a
unique fixed point ϕλ ∈ UCB(ΣA).

Proof. Since Mf,λ is the composition of Mf and the homothety ϕ �→ λϕ,
and since f ∈ UCB∧(ΣA), Lemma 5.2 implies that Mf,λ preserves the



20 O. JENKINSON, R. D. MAULDIN, AND M. URBAŃSKI

space UCB∧(ΣA). To show that Mf,λ preserves UCB(ΣA), it remains
to check that if ϕ ∈ UCB(ΣA) then Mf,λϕ is bounded below, but this
is the case because inf Mf,λϕ ≥ inf f |Z + λ inf ϕ > −∞.

The operator Mf,λ : UCB(ΣA) → UCB(ΣA) is λ-Lipschitz with
respect to the complete metric d(ϕ, ψ) = supx∈ΣA

|(ϕ − ψ)(x)|, so for
0 ≤ λ < 1 it has a unique fixed point ϕλ ∈ UCB(ΣA). �

Our aim is to extract an accumulation point from the family of ap-
proximate fixed points (ϕλ)0≤λ<1. To this end it will be useful to prove
that the family is equicontinuous (Lemma 5.8), and that its global oscil-
lation is bounded independently of λ (Lemma 5.11). These results will
be obtained by imposing further control on the modulus of continuity
of the function f , something stronger than uniform continuity.

Definition 5.7. For n ≥ 1 the n-th variation of f : ΣA → IR is defined
by

varn(f) = sup
ΠA,n(x)=ΠA,n(y)

{f(x) − f(y)}.

Note that f ∈ UC(ΣA) if and only if varn(f) → 0 as n → ∞.
We say f has summable variations if

∞∑
n=1

varn(f) < ∞.

The 0-th variation is defined as var0(f) = supx,y∈ΣA
{f(x)−f(y)}. Note

that it is not included in the above sum, so summable variations does
not imply boundedness.

Lemma 5.8. Let ΣA be a subshift of finite type. Suppose f is bounded
above, with summable variations, and inf f |Z > −∞ for a subset Z with
T (Z) = ΣA. Then for all 0 ≤ λ < 1, the fixed point ϕλ ∈ UCB(ΣA) of
Mf,λ satisfies

vari(ϕλ) ≤
∞∑

j=i+1

varj(f) for all i ≥ 1 . (8)

Proof. Let ϕ ∈ UCB(ΣA). For j ≥ 1 we shall consider the jth variation
of Mf,λϕ. Suppose x, y ∈ ΣA satisfy ΠA,j(x) = ΠA,j(y). For any ε > 0
we can find i ∈ IN with ix ∈ ΣA such that

Mf,λϕ(x) < ε + (f + λϕ)(ix) .

On the other hand we have Mf,λϕ(y) ≥ (f +λϕ)(z) for all z ∈ T−1(y).
In particular we may choose z = iy: we know that iy ∈ ΣA because
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ix ∈ ΣA and ΠA,1(x) = ΠA,1(y), and ΣA is a subshift of finite type.
Therefore

Mf,λϕ(x) − Mf,λϕ(y) < ε + (f + λϕ)(ix) − (f + λϕ)(iy) ,

from which we deduce that

Mf,λϕ(x) − Mf,λϕ(y) < ε + varj+1(f + λϕ)

≤ ε + varj+1(f) + varj+1(ϕ) .

Since ε > 0 was arbitrary, we in fact have

varj(Mf,λϕ) ≤ varj+1(f) + varj+1(ϕ) ,

so in particular

varj(ϕλ) ≤ varj+1(f) + varj+1(ϕλ) . (9)

Now varj+1(ϕλ) → 0 as j → ∞ since ϕλ is uniformly continuous, so
iteration of (9) yields

vari(ϕλ) ≤
∞∑

j=i+1

varj(f) for all i ≥ 1 ,

which is the required inequality (8). �
We require the following assumption on the matrix A in order to

control, uniformly in λ, the 0-th variation of the fixed points ϕλ.

Definition 5.9. An adjacency matrix A, and the corresponding sub-
shift of finite type ΣA, are called primitive if there exists an integer
N ≥ 0, and a non-empty subset M ⊂ IN , such that for all x ∈ ΣA

and all i ∈ INA there exists w ∈ M
N with iwx ∈ ΣA. Any such pair

(N, M) is called a primitive pair for A; N is a primitive constant and
M a primitive alphabet. If there exists a finite primitive alphabet M

then we say that A and ΣA are finitely primitive.

Remark 5.10.
(a) If A is primitive then T : ΣA → ΣA is surjective: for any primitive
alphabet M, the set Z = Π−1

A,1(M) is such that T (Z) = ΣA.
(b) Primitivity is equivalent to topological mixing of T : ΣA → ΣA

(i.e. for all non-empty open sets Y, Z ⊂ ΣA there exists M ∈ IN such
that T−mY ∩Z �= ∅ for all m ≥ M). If INA = IN then A is primitive if
and only if there exists n ∈ IN such that every entry of the matrix An

is strictly positive.
(c) Sarig [Sa] defines the big images and preimages property as the
existence of a finite M ⊂ IN such that for all j ∈ IN there exists
i, k ∈ M with A(i, j) = 1 = A(j, k). If A is primitive and INA = IN
then this condition is equivalent to finite primitivity.
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(d) Suppose A has the big images and preimages property, with M ⊂ IN
the finite set as in (c) above. If we let Y = ∪i∈M[i]A, then T (Y ) = ΣA,

and Ỹ = ∩∞
n=0T

−n(Y ) is a closed nonempty subset of the compact set
M

IN . Therefore conditions (a) and (b) of Definition 4.1 (defining an
essentially compact function) are satisfied.

Lemma 5.11. Suppose, in addition to the hypotheses of Lemma 5.8,
that ΣA is primitive. Then for all 0 ≤ λ < 1, the fixed point ϕλ ∈
UCB(ΣA) of Mf,λ satisfies

var0(ϕλ) ≤ N
(
sup f − inf f |Π−1

A,1(M)

)
+

∞∑
j=1

varj(f) (10)

for any primitive pair (N, M) for ΣA.

Proof. Let m ≥ 0 and write n = N + m. For any ϕ ∈ UCB(ΣA),
x ∈ ΣA, and ε > 0, we can find words v ∈ INN and u ∈ INm such that
uvx ∈ ΣA, and

Mn
f,λϕ(x) < Sλ,nf(uvx) + λnϕ(uvx) + ε .

For any y ∈ ΣA, primitivity means we can find w ∈ M
N such that

uwy ∈ ΣA. Clearly

Mn
f,λϕ(y) ≥ Sλ,nf(uwy) + λnϕ(uwy) ,

and therefore

Mn
f,λϕ(x) − Mn

f,λϕ(y)

< Sλ,nf(uvx) − Sλ,nf(uwy) + λn [ϕ(uvx) − ϕ(uwy)] + ε . (11)

Now
λn [ϕ(uvx) − ϕ(uwy)] < varm(ϕ) ,

and

Sλ,nf(uvx) − Sλ,nf(uwy) =

n−1∑
i=0

λn−1−i
[
f(T iuvx) − f(T iuwy)

]
≤

m−1∑
i=0

λn−1−ivarm−i(f) +

n−1∑
i=m

λn−1−i(sup f − inf f |Π−1
A,1(M))

≤
∞∑

j=1

varj(f) + N(sup f − inf f |Π−1
A,1(M)) .

Since ε > 0 was arbitrary in (11), we deduce

Mn
f,λϕ(x) − Mn

f,λϕ(y) ≤
∞∑

j=1

varj(f) + N(sup f − inf f |Π−1
A,1(M)) + varm(ϕ) .
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In particular, choosing ϕ to be the fixed point ϕλ of Mf,λ gives

ϕλ(x) − ϕλ(y) ≤
∞∑

j=1

varj(f) + N(sup f − inf f |Π−1
A,1(M)) + varm(ϕλ) .

But varm(ϕλ) → 0 as m → ∞, since ϕλ is uniformly continuous, so

var0(ϕλ) ≤
∞∑

j=1

varj(f) + N(sup f − inf f |Π−1
A,1(M)) ,

as required. �
The family (ϕλ)0≤λ<1 of approximate fixed points need not itself be

uniformly bounded. However, if we define ϕ∗
λ := ϕλ − inf ϕλ then

inf ϕ∗
λ = 0 for each λ, and var0(ϕ

∗
λ) = var0(ϕλ), so inequality (10)

implies that (ϕ∗
λ)0≤λ<1 is bounded independently of λ. It is this family

which will provide an accumulation point. The constants inf ϕλ are
in general non-zero, which is why the accumulation point will be an
essentially (rather than bona fide) fixed point for Mf .

Although UCB(ΣA) was a convenient space in which to find the
approximate fixed points ϕλ, it is not an appropriate space in which
to find accumulation points of the associated family (ϕ∗

λ)0≤λ<1, which
a priori is not pre-compact in UCB(ΣA) (equipped with the uniform
distance). On the other hand (ϕ∗

λ)0≤λ<1 is equicontinuous by (8), and
uniformly bounded by the above discussion, so the Ascoli-Arzela The-
orem implies it is pre-compact in the space C(ΣA) (equipped with the
topology of uniform convergence on compact subsets). So there exists
an accumulation point ϕ∗

1 ∈ C(ΣA) as λ ↗ 1. Indeed ϕ∗
1 ∈ UCB(ΣA),

since from (8), (10) it follows that vari(ϕ
∗
1) ≤ ∑∞

j=i+1 varj(f) → 0 as
i → ∞, and

var0(ϕ
∗
1) ≤ N

(
sup f − inf f |Π−1

A,1(M)

)
+

∞∑
j=1

varj(f) < ∞ . (12)

We would now like to show that ϕ∗
1 is an essentially fixed point of

Mf . For 0 ≤ λ < 1 the fixed point equation Mf,λϕλ = ϕλ is equivalent
to

Mf,λϕ
∗
λ = ϕ∗

λ + (1 − λ) inf ϕλ ,

and we wish to let λ ↗ 1 along an appropriate subsequence in order
to deduce that Mfϕ

∗
1 = ϕ∗

1 + c(f). The (subsequential) convergence of
Mf,λϕ

∗
λ to Mfϕ

∗
1 is not immediately obvious, however. We would like

both Mfϕ
∗
1 − Mfϕ

∗
λ and Mfϕ

∗
λ − Mf,λϕ

∗
λ to become small in C(ΣA).

The smallness of the first term would follow if Mf : C(ΣA) → C(ΣA)
were continuous, and the smallness of the second would follow were
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it true that for all ψ ∈ C(ΣA), and all compact K ⊂ ΣA, ‖(Mf −
Mf,λ)ψ‖∞,K → 0 as λ ↗ 1. Unfortunately, a priori neither of these
properties holds.5 If Mf were continuous then for every compact subset
K ⊂ ΣA there would exist another compact subset L such that, for all
ψ ∈ C(ΣA), the restriction Mfψ|K could be expressed as a (continuous)
function of ψ|L. In general this is not the case, since Mfψ(x) is defined
by taking a supremum over the (non-compact) set T−1(x). For the
same reason ‖(Mf − Mf,λ)ψ‖∞,K does not in general converge to zero
as λ ↗ 1.

We therefore require an additional hypothesis on f , a certain quanti-
tative control on its variations. This will ensure that, for any 0 ≤ λ ≤ 1,
only finitely many preimages y ∈ T−1(x) can contribute to the supre-
mum defining Mfϕ

∗
λ(x). The condition on f is that for some primitive

pair (N, M), and some set Z with T (Z) = ΣA,

N(sup f − inf f |Π−1
A,1(M)) +

∞∑
j=1

varj(f) < inf f |Z − sup f |[i]A (13)

for all sufficiently large i ∈ IN . That is, the values of f on Z are
sufficiently larger than its values “at infinity”. Of course a necessary
condition for (13) to hold is that inf f |Π−1

A,1(M) > −∞ and inf f |Z > −∞.

Note that if ΣA is the full shift then (13) simplifies: we may take N = 0,
and choose Z to be any length-one cylinder set [I], so that (13) holds
when

∞∑
j=1

varj(f) < inf f |[I] − sup f |[i]

for all sufficiently large i ∈ IN .

Lemma 5.12. Suppose, in addition to the hypotheses of Lemma 5.11,
that the inequality (13) holds for some primitive pair (N, M) and some
set Z with T (Z) = ΣA. Then there exists J ∈ IN such that for all
0 ≤ λ, μ ≤ 1,

Mf,μϕ∗
λ(x) = max

y∈T−1(x)∩(∪J
i=1[i]A)

(f + μϕ∗
λ)(y) for all x ∈ ΣA . (14)

5By contrast in UCB(ΣA) the analogues of both these facts are true: Mf is
(1-Lipschitz) continuous, and ‖(Mf − Mf,λ)ψ‖∞ ≤ (1 − λ)‖ψ‖∞. However we
cannot work in this space, because the (subsequential) convergence ϕ∗

λ → ϕ∗
1 is not

guaranteed.
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Proof. Inequalities (10), (12) and (13) imply that

μvar0(ϕ
∗
λ) = μvar0(ϕλ)

≤ var0(ϕλ)

≤ N
(
sup f − inf f |Π−1

A,1(M)

)
+

∞∑
j=1

varj(f)

< inf f |Z − sup f |[i]A
(15)

for all i sufficiently large, i > J say. In particular

inf f |Z − sup f |[i]A > 0 for all i > J ,

so if we define Y := ∪J
i=1[i]A then Z ⊂ Y .

Let x ∈ ΣA be arbitrary, and suppose that ix ∈ ΣA for some i > J .
Now x has at least one preimage jx ∈ Z ⊂ Y , and by (15) we know
that

f(jx) − f(ix) > μ var0(ϕ
∗
λ)

≥ μ (ϕ∗
λ(ix) − ϕ∗

λ(jx)) .

That is,

(f + μϕ∗
λ)(jx) − (f + μϕ∗

λ)(ix) > 0 ,

so the supremum supy∈T−1(x)(f + μϕ∗
λ)(y) = Mf,μϕ∗

λ(x) must be at-
tained by one of the finitely many preimages of x lying in Y . That
is,

Mf,μϕ∗
λ(x) = sup

y∈T−1(x)

(f + μϕ∗
λ)(y) = max

y∈T−1(x)∩Y
(f + μϕ∗

λ)(y)

for all x ∈ ΣA, as required. �
Notice that for λ = μ = 1 the equation (14), asserting that we need

only check finitely many preimages y ∈ T−1(x) in order to compute
Mfϕ

∗
1(x), is reminiscent of the definition of essential compactness. In-

deed once we have proved, in Theorem 5.14, that ϕ∗
1 is an essentially

fixed point of Mf , (14) will provide the important condition (c) of
Definition 4.1 from which we deduce that f is essentially compact.

Before that, (14) is an important ingredient in the proof of the next
lemma. Recall that the need for bounds such as the following (18),
(19) were our motivation for introducing condition (13).

Lemma 5.13. Under the same hypotheses as Lemma 5.12, for every
compact subset K ⊂ ΣA, and for all 0 ≤ λ, λ′, μ, μ′ ≤ 1,

||(Mf,μ − Mf,μ′)ϕ∗
λ||∞,K ≤ |μ − μ′| ||ϕ∗

λ||∞,L , (16)
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and

‖Mf,μϕ∗
λ − Mf,μϕ

∗
λ′‖∞,K ≤ μ‖ϕ∗

λ − ϕ∗
λ′‖∞,L , (17)

where L = L(K) := T−1K ∩ (∪J
i=1[i]A) is compact, and J ∈ IN is as in

Lemma 5.12.
In particular,

||(Mf,λ − Mf )ϕ
∗
λ||∞,K ≤ (1 − λ)||ϕ∗

λ||∞,L , (18)

and

||Mfϕ
∗
1 − Mfϕ

∗
λ||∞,K ≤ ||ϕ∗

1 − ϕ∗
λ||∞,L . (19)

Proof. Let Y = ∪J
i=1[i]A, where J ∈ IN is as in Lemma 5.12. If K ⊂ ΣA

is compact and x ∈ K then Lemma 5.12 implies we can find y ∈
T−1(x) ∩ Y ⊂ T−1K ∩ Y =: L such that Mf,μϕ∗

λ(x) = (f + μϕ∗
λ)(y).

Also Mf,μ′ϕ∗
λ(x) ≥ (f + μ′ϕ∗

λ)(y), so

(Mf,μ − Mf,μ′)ϕ∗
λ(x) ≤ (f + μϕ∗

λ)(y) − (f + μ′ϕ∗
λ)(y)

= (μ − μ′)ϕ∗
λ(y)

≤ |μ − μ′| ||ϕ∗
λ||∞,L .

Reversing the roles of μ, μ′, an analogous argument gives

(Mf,μ − Mf,μ′)ϕ∗
λ(x) ≥ −|μ − μ′| ||ϕ∗

λ||∞,L ,

and since x ∈ K was arbitrary,

||(Mf,μ − Mf,μ′)ϕ∗
λ||∞,K ≤ |μ − μ′| ||ϕ∗

λ||∞,L ,

which is the required inequality (16).
Lemma 5.12 also implies that

Mf,μϕ
∗
λ(x) − Mf,μϕ∗

λ′(x) = max
y∈T−1(x)∩Y

(f + μϕ∗
λ)(y) − max

z∈T−1(x)∩Y
(f + μϕ∗

λ′)(z)

≤ max
w∈T−1(x)∩Y

((f + μϕ∗
λ)(w) − (f + μϕ∗

λ′)(w))

= μ max
w∈T−1(x)∩Y

(ϕ∗
λ − ϕ∗

λ′)(w)

≤ μ||ϕ∗
λ − ϕ∗

λ′ ||∞,L ,

where L = T−1K ∩ Y , and (17) follows since x ∈ K was arbitrary. �

With the estimates (18), (19) in hand we are now ready to prove
the main result of this paper, giving sufficient conditions for a func-
tion f to have an essentially fixed point normal form, which is also a
strong normal form. The hypotheses below are exactly the same as for
Lemmas 5.12 and 5.13, but for convenience we state them in full.
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Theorem 5.14. Suppose the subshift of finite type ΣA is primitive.
Suppose f : ΣA → IR has summable variations, and is bounded above.
Suppose the inequality (13) holds for some primitive pair (N, M) and
some set Z such that T (Z) = ΣA.

Then f is essentially compact, and has a strong normal form f̃ .
Consequently

Mmax(f) =
{
m ∈ M : supp(m) ⊂ f̃−1(γ(f))

}
�= ∅ .

Proof. As noted previously, the fixed point equation Mf,λϕλ = ϕλ is
equivalent to

Mf,λϕ
∗
λ = ϕ∗

λ + (1 − λ) inf ϕλ , (20)

and we want to let λ ↗ 1 in (20) in order to show that Mfϕ
∗
1 =

ϕ∗
1 + c(f). If K ⊂ ΣA is compact then

||Mf,λϕ
∗
λ − Mfϕ

∗
1||∞,K ≤ ||Mf,λϕ

∗
λ − Mfϕ

∗
λ||∞,K + ||Mfϕ

∗
λ − Mfϕ

∗
1||∞,K

≤ (1 − λ)||ϕ∗
λ||∞,L + ||ϕ∗

1 − ϕ∗
λ||∞,L ,

by (18) and (19), where L = L(K) is a compact subset of ΣA. Since
||ϕ∗

λ||∞,L is bounded independently of λ, and ϕ∗
λ → ϕ∗

1 subsequentially
in C(ΣA), we see that Mf,λϕ

∗
λ → Mfϕ

∗
1 subsequentially in C(ΣA) as

λ ↗ 1.
So (Mf,λ − Id)(ϕ∗

λ) → (Mf − Id)(ϕ∗
1) subsequentially in C(ΣA) as

λ ↗ 1. Since each (Mf,λ−Id)(ϕ∗
λ) is a constant function, and constant

functions form a closed subspace of C(ΣA), the function (Mf −Id)(ϕ∗
1)

is also a constant. By Lemma 3.4, the constant in question must be
c(f) = limn

1
n

supx∈X Snf(x). Therefore

Mfϕ
∗
1 = ϕ∗

1 + c(f) , (21)

and ϕ∗
1 is an essentially fixed point for Mf .

If Y = ∪J
i=1[i]A, where J ∈ IN is as in Lemma 5.12, then setting

λ = μ = 1 in (14), and combining with (21), gives

ϕ∗
1(x) + c(f) = Mfϕ

∗
1(x) = max

y∈T−1(x)∩Y
(f + ϕ∗

1)(y)

for all x ∈ ΣA, which is precisely condition (c) of Definition 4.1. The
fact that Y is a finite union of cylinder sets ensures that conditions
(a) and (b) of Definition 4.1 are also satisfied (cf. Remark 5.10 (d)).
Therefore f is essentially compact. Since ΣA is a Polish space, Theorem
4.3 then implies that f̃ := f + ϕ∗

1 − ϕ∗
1 ◦ T is a strong normal form for

f , and that Mmax(f) =
{

m ∈ M : supp(m) ⊂ f̃−1(γ(f))
}

�= ∅ . �

In the case where the subshift of finite type ΣA is the full shift,
Theorem 5.14 implies:
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Corollary 5.15. Let Σ = IN IN be the full shift. Suppose f : Σ → IR is
bounded above, has summable variations, and that there exists I ∈ IN
such that ∞∑

j=1

varj(f) < inf f |[I] − sup f |[i] (22)

for all i sufficiently large.
Then f is essentially compact, hence has a strong normal form f̃ , hence

Mmax(f) =
{
m ∈ M : supp(m) ⊂ f̃−1(γ(f))

}
�= ∅ .

Proof. For the full shift we may choose Z = [I] and N = 0. The
inequality (22) then implies (13), and the result follows from Theorem
5.14. �

The inequality (13) asserts that the (finite) infimum of f on some
set Z is sufficiently larger than its values “at infinity”. An extreme
example of this is when sup f |[i]A → −∞ as i → ∞.

Corollary 5.16. Let ΣA be primitive. Suppose f has summable vari-
ations, that there is a primitive alphabet M for which inf f |Π−1

A,1(M) >

−∞, and that sup f |[i]A → −∞ as i → ∞.

Then f is essentially compact, hence has a strong normal form f̃ , hence

Mmax(f) =
{
m ∈ M : supp(m) ⊂ f̃−1(γ(f))

}
�= ∅ .

Proof. The lefthand side of (13) is finite, because f is bounded above,
with summable variations, and inf f |Π−1

A,1(M) > −∞. The set Z =

Π−1
A,1(M) satisfies T (Z) = ΣA, and inf f |Z > −∞, so the righthand

side of (13) tends to +∞ as i → ∞. Therefore (13) holds for all
sufficiently large i, and the result follows from Theorem 5.14. �

The case where sup f |[i]A → −∞ as i → ∞ occurs in particular when
the summability condition∑

i∈IN

exp(sup f |[i]A) < ∞ (23)

holds. This condition plays a key role in the development of the thermo-
dynamic formalism for countable state subshifts of finite type, allowing
us to define the Ruelle operator Lfϕ(x) =

∑
Ty=x ef(y)ϕ(y). If ΣA is

finitely primitive and f has summable variations then (23) is equivalent
(cf. [MU], Prop. 2.7) to the finiteness of the topological pressure

P (f) = lim
n→∞

1

n
log

∑
T ny=y

exp

(
sup

ω∈[ΠA,n(y)]

n−1∑
i=0

f(T iω)

)
,
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and is a necessary condition for the existence of an invariant Gibbs
measure for f . Any f satisfying the summability condition (23) is
necessarily bounded above, and if INA = {i ∈ IN : [i]A �= ∅} is infinite
then f is unbounded below.

Corollary 5.17. Let ΣA be finitely primitive. Suppose f has summable
variations and satisfies the summability condition (23).

Then f is essentially compact, hence has a strong normal form f̃ , hence

Mmax(f) =
{
m ∈ M : supp(m) ⊂ f̃−1(γ(f))

}
�= ∅ .

Proof. If M is a finite primitive alphabet for ΣA then inf f |Π−1
A,1(M) >

−∞. The summability condition (23) implies that sup f |[i]A → −∞
as i → ∞, with the convention that sup f |[i]A = −∞ whenever [i]A is
empty. The result now follows from Corollary 5.16. �

In particular we deduce

Corollary 5.18. Let ΣA be finitely primitive. If f has summable vari-
ations and an invariant Gibbs measure then it also has a maximizing
measure.
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[J2] O. Jenkinson, Frequency locking on the boundary of the barycentre set,
Experimental Mathematics, 9 (2000), 309–317.

[J3] O. Jenkinson, Rotation, entropy, and equilibrium states, Trans. Amer.
Math. Soc., 353 (2001), 3713–3739.
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