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Abstract

We investigate the notion of topological entropy of a semigroup of continuous
maps and provide several of its basic properties.

1 Introduction

The concept of entropy of a transformation plays a central role in topological dy-
namics. The notion of topological entropy was introduced by Adler, Konheim and
McAndrew in [1] as an invariant of topological conjugacy. Later, Bowen [4] and
Dinaburg [5] presented an equivalent approach to the notion of entropy in the case
when the domain of the considered transformation is a metrizable space. The topo-
logical entropy h(f), of an endomorphism f, measures the complexity of the trans-
formation acting on a compact topological space in the sense that it shows the rate
at which the action of the transformation disperses points.

Since the entropy appeared to be a very useful invariant in ergodic theory and
dynamical systems, there were several attemps to find its suitable generalizations for
other systems such like groups, pseudogroups, graphs, foliations. Among the others,
Ghys, Langevin and Walczak in [7] proposed a definition of a topological entropy
for finitely generated groups and pseudogroups of continous transformations. Bi$
and Walczak in [3] applied the notion of entropy of a group to hyperbolic groups in
the sense of Gromov to study its geometry and dynamics. Friedland in [6] used the
notion of entropy to study some aspects of dynamics of graphs and semigroups.

Also, there have been attemps to introduce several entropy-like invariants for
noninvertable maps. Langevin and Walczak in [10], Hurley in [8], Langevin and
Przytycki [9], Nitecki and Przytycki ([13]) studied different entropy-like invariants.
Nitecki in [12] investigated topological entropy and preimage structure of maps.
Mihailescu and Urbanski in [11] focused on inverse topological pressure and the
Hausdorff dimension of the intersection between the local stable manifold and the



basic set. Hurley ([8]) established relations between topological entropy, preimage
relation entropy, preimage branch entropy and point entropy of a single transforma-
tion. Bi$ in ([2]) generalised Hurley’s results entropies of a single transformations
to the case of finitely generated semigroup of transformations acting on a compact
space.

In this paper we examine in detail the concept of topological entropy of semi-
groups introduced in [2]. Our article is organized as follows. In Section 1, we recall
the notion of topological entropy for a finitely generated semigroup and, for the
convenience of the reader, provide some results. In the Sections 2 and 3 we for-
mulate analogues of properties of topological entropy in the context of an action
of any finitely generated semigroup of continous maps on a compact metric space.
In the last two sections we state some sufficient conditions for a finitely generated
semigroup to have zero, positive or finite entropy.

2 Topological entropy of a semigroup

Many useful properties of the concept of entropy of a single transformation can be
found in [14]. Let X be a compact metric space with a distance function d. Consider
a semigroup G of continuous transformations of X into itself. The semigroup G is
assumed to be finitely generated, e.g. there exists a finite set G; = { f1, ..., fg} such

that
G= ]G

neN
where
Gpn={gi0...og,: X = X}, gcci-

We always assume that idy, the identity map on X is in G;. This implies that G,,, C
G, for all m < n. Following [7] we say that two points p,q € X are (n, )—separated
by G (with respect to the metric d,,. ) if there exists g € G,, such that d(g(p), g(q)) >
g, e.g.
Imao (P, q) = max{d(g(p), 9(q)) : g € G} > &.

We say that a subset A of X is (n,e)—separated if any two distinct points of A
have this property. All (n,e)—separated subsets of X are always finite, since X is
compact. Therefore, we can write

s(n,e, X) := max{card(A) : A is (n,e)—separated subset of X}.
The following definition has appeared in [2].
Definition 1. Let

1
h(G,G1, X) = lim limsup — log(s(n, &, X)).

e—0t n—soco N

The quantity h(G, Gy, X) is called the topological entropy of a semigroup G gener-
ated by G.



As it was shown in [2] the topological entropy of a semigroup G depends on the
generating set (Gy. It may however still serves as a natural generalisation of the
notion of the topological entropy of a continous mapping f : X — X. Indeed, Let
f: X — X be a continous transformation of a compact metric space X and G(f)
a semigroup generated by G1(f) = {idx, f}. Then, we get that

h(f) = MG(f), Gi(f)),

where h(f) is the entropy of f. We can also describe the entropy of a semigroup G
generated by G in terms of (n,£)—spanning sets. Namely, a subset A of X is called
(n,e)—spanning if for every x € X there exists a € A such that

dy e (,a) = max{d(g(z),g(a)) : g € G,} < &.

The minimum of cardinalities of all (n,c)—spanning sets is denoted by r(n,e, X).
The following characterization of the topological entropy of a semigropup G gener-
ated by a finite set G has been established in [2].

Lemma 1. For any semigroup G generated by a finite set Gy the following equality
holds

1
h(G,G1, X) = lim limsup — log(r(n, &, X)).
e—0t n—soo N
The notion of topological entropy of a semigroup of transformations shares many-
common features with the concept of the topological entropy of a single transforma-
tion. We examine them in detail in the following sections.

3 First results

A classical result concerning the entropy of a single transformation f : X — X
states that for any integer n > 1 we have h(f") = n- h(f). A corresponding result
holds for the entropy of a semigroup of transformations.

Theorem 1. If (G,Gy) and (G*,GY) are finitely generated semigroups generated
respectively by Gy = {idx, g1, ..., gx} and G} = {idx, g7, ...,97"}, m € N, then

h(G*,G) = m - h(G, G)).

Proof. Denote by (X, dx) the compact metric space the semigroup G acts on. Con-
sider two points z,y € X that are (n,e)—separated by G*. This means that there ex-
ists p € G such that dx(p(z),p(y)) > . Since g is the composition g{"o...og", with
some gi, ..., g, € G, we have that dx(g/"o,...,00" (), gi’0, ...,09*(y)) > €. Thus,
the points z, y are (m-n, €)—separated with respect to (G, G1). So, s(n, e, (G*,GY)) <
s(m-n,e,(G,Gy)) and taking the appropriate limit, we obtain that

h(G*,GT) <m-h(G,Gy).
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Starting to prove the opposite inequality, let A C X be an (m - n,&)—spanning
subset of X, with respect to (G, G ), with minimal cardinality. Then, for any z € X
there exists a € A such that for any g € G,,., we have dx(g(z),g(a)) < €. So, in
particular, for any € X there exists a € A such that for any n-tuple ¢7", ..., g/,
where all elements g; are in GG1,, we have

dx(gi'o, ..., 0g;"(x), giro, ..., 0g;(a)) < €.
Therefore, A is (n,e)—spanning subset of X with respect to (G*, G}) and
card(A) =r(m-n,e,(G,Gy)) > r(n,e, (G*,GY)).
Passing to the appropriate limit, we obtain
m - h(G,G1) = h(G", GY),
which completes the proof. [ |

If semigroups (G,G;) and (H, Hy) act respectively on compact metric spaces
(X,dy) and (Y, dy), then (G x H,G; x H;) is a finitely generated semigroup, acting
on the compact space X x Y. We shall prove in this context the following.

Theorem 2. If (G,G,) and (H, Hy) are finitely generated semigroups, then
h’(G X Ha Gl X Hl) = h(GaGl) + h’(Ha Hl)

Proof. In the topological space X x Y we consider the metric dxxy = dx + dy
inducing the product topology. Thus, the finitely generated semigroup (G x H, G X
H,) acts on the compact metric space (X XY, dyxy). Fix now an (n,e/2)—separated
set (with respect to (G,G4)) A = {ai, ..., a,} C X with maximal cardinality, and an
(n,e/2)—separated set B = {by,...,b,} CY (with respect to (H, H;)) with maximal
cardinality. Then, for any two distinct elements (a;,, bj, ), (ai,, b;,) € A x B we get
that dx«y ((ai,,bj,), (ai,, bj,)) > €. This means that the points (a;,,b;,), (ai,, bj,) are
(n,e)—separated with respect to (G x H,Gy x Hy). So, card(A x B) = card(A) -
card(B) = s(X,n,e/)-s(Y,n,e/) and s(X X Y,n,e) > card(A x B) = s(X,n,¢) -
s(Y,n,e). Passing to the appropriate limit, we get that

h(G X H, G1 X Hl) > h(G, Gl) + h(H, Hl)

In order to prove the opposite inequality, we consider a set C' C X with minimal
cardinality which is (n,e/2)—spaning with respect to (G,G;) and a set D C YV
with minimal cardinality which is (n,s/2)—spaning with respect to (H, H;). Then,
card(C x D) =r(X,n,e/2)-r(Y,n,e/2) and C x D is (n,c)—spaning with respect
to (G x H,Gy x Hy). Thus, r(X x Y,n,e) <r(X,n,e/2)-r(Y,n,c/2). Taking now
the appropriate limit, we get that

h(G X H, G1 X Hl) < h(G, Gl) + h(H, Hl)

The proof is complete. [ |



Theorem 3. If (G, G4) is a finitely generated semigroup acting on a compact metric
space (X,d), generated by Gy = {idx, g1, ..., gr}, and there exists a compact subset
M of X such that for every g; € G

then,
h((G7 G1)7 X) > h((GM7 G{M)a M)a

where (GM,GM) is a semigroup acting on M, generated by
GY' = {idar, g1l s gel )

Proof. Denote by A an (n,e)— separated subset of M (with maximal cardinal-
ity) with respect to (GM,GM). This means that for two distinct points x,y € A
there exists ¢ € G, such that dy(g|m(z),g|m(y)) > €. But this means that
dx(g(x),g(y)) > . Therefore, the set A is (n,e)— separated with respect to (G, Gy),
and consequently s(n, s, (GM,GM)) < s(n, ¢, (G,G,)). We are thus done by passing
the appropriate limit when n — oo. [

Theorem 4. Let (G,G) be a finitely generated semigroup acting on a compact
metric space (X,d), generated by G, = {idx, ¢1,...,gr}. Assume that there erist
compact subsets My and My of X such that X = M; U My and that for every
je{1,2,...,k} g;(My) = My and g;(My) = My Then

h((G,G1), X) = max{h((GM,GM"), My), h((GM2, G}"), M,)}.

Proof. Let A; € M;, i = 1,2, be (n,e)—spanning sets with minimal cardinality, in
the respective spaces M;,i = 1,2. Since

card(A; U Ag) < card(Ay) + card(Az) < 2 - max{card(A;), card(Az)}
and since A; U A, forms an (n,£)—spanning subset of X. We see that

r(n,e, (G,Gy),X) <2-max{card(A;), card(As2)}
< 2max{r(n, s, (GM G, My),r(n, e, (GM2,GY?), My)}.

Hence, passing to the appropriate limit, we obtain

WG, Gy, X) < max{h((G™, G{"), My), h((G™, G3") My) }.
Since, by Theorem 3, we have

h((G, Gh), X) 2 max{h((G™", GY"") My), h((G™, G3"”) My)},

we are done. [}



4 Positive entropy

As before, let (X, dx) be a compact metric space. We consider continous transfor-
mations of the space X into itself.

Theorem 5. If fi, fo : X — X are two surjective continuous maps of a compact
metric space X and Y is a closed subset of X such that f{*(Y)N f5'(Y) =0 and
YU fHY) C Y, then h(G,Gy) > log2 > 0, where G| = {idx, f1, fo} and G
s the semigroup generated by G.

Proof. Since f;7'(Y) and f;'(Y) are two disjoint compact sets, the distance & be-
tween them is positive. Fix ¢ € (0,d). Since every map g : X — X, g € G is
surjective, one can select for every g € G exactly one point z, € ¢~ *(Y). Now, for
every n > 0 consider the set

An:{zg:QEén}a where Gn:{gnogn—lo---og2091191,---,9n€{f1,f2}}-

We shall show that A, is an (n, £)-separated set consisting of exactly 2" elements.
So, consider two arbitrary elements g # h from G,. Write Jd=0gnOGgn_19...00q;
and h = hy, o hy,_y0...0hy, where g;,h; € {fi1, fo} for all j = {1,2,...,n}. Since
g # h, there exist k € {1,2,...,n} such that g; = hy, go = ho, ..., gx_1 = hy_1, and
gr. 7# hy. Hence

Ge-10...091(29) € gr-10...0g1((gno...091) "(Y)) C (gno...0gx) (Y) C g, ' (V)

and similarly

gr=10...0g1(21) € gr—10...0g1((hpo...0hy) 1(Y))
=hg q10...0h ((hyo...0oh) (Y)) Ch (Y).

Hence, d(gr—10...0¢1(%9),9k-10...0g1(2n)) > 6 > €. Thus, the points z, and z,
are (n,¢)- separated and, in partlcular zg # z,. This latter statement implies that
the map g — z,, g € G, is bijective, and therefore s(n, e, X) > card(G,) = 2". In
consequence h(G,G) > log2 > 0. We are done. |

As an immediate consequence of this theorem and Theorem 3, we get the fol-
lowing.

Corollary 1. If for fi, f» € Homeo(S') there exists a closed interval I C S such

that
[, fH ) eI

and
NI =0
then, the semigroup generated by idx, fi, fo has positive entropy.



Theorem 6. If (G,G4) is a semigroup of Lipschitz transformations, acting on a
compact Riemannian manifold, then the entropy h(G,G4) is finite.

Proof. Denote by d the metric on a Riemannian compact manifold M and denote
the dimension of this manifold by m. It follows from our assumptions that for any
g € G there exists a positive L, such that for any x,y € M we have

d(g(z),9(y)) < Lyd(x,y)

Let L = max{L, : g € G;} and denote by A a maximal (n,e)— separated subset of
M. Then, for any distinct aq,a, € A we obtain

9 S dnm”(al,az) S L"d(al, CLQ).

Thus d(a1,as) > L™ which means that A is a (0,eL~"™)—separated subset of M.

Hence
vol M

mingepvol B(z, 2= e L")

s(n,e) < s(0,eL™) <

For an m-dimensional manifold M we have that a ball B(x,r) centered at a point
x € M and a radius r, satisfies the inequality

vol B(x,r) > cr™

with some positive constant ¢ independent of x and r. Thus,

vol M vol M
mingeyvol B(z,2-'eL=") — ¢(2-'eL—")m’

and consequently

(n,e) < vol M

s(n — .

T e(2 e L™

Passing to the suitable limits we thus get that h(G,G;) < L™, which finishes the
proof. [

5 Zero entropy and final remarks

Theorem 7. Let (G,G) be a finitely generated semigroup acting on a compact
metric space X. Assume that the family {g : X — X}geq is equicontinous. Then
h(G, Gl) =0.

Proof. Denote by d the metric on the compact metric space X. Fix e > 0. Since the
semigroup G acts equicontinuously on X, there exists 0 > 0 such that if x,y € X
and d(z,y) < 0, then d(g(z),g(y)) < ¢ for all g € G. Conequently, if A C X is
d-spanning (with respect to the metric d) subset of X, then A is (n,)—spanning.
Hence r(n,e) < cardA < oo, (the latter inequality is true since X is compact) and
therefore

h(G,G,) < lim lim llog(r(n,s)) =0.

e=>0n—oo N

We are done. [ |



As an immediate consequence of this theorem, we get the following.

Corollary 2. If (G,G,) is a finitely generated semigroup of isometries acting on a
compact metric space X, then h(G,G4) = 0.

Problem 1. It is well known that for a homeomorphism f : X — X of a compact
metric space X the equality h(f) = h(f 1) holds. Is this also true in the case of semi-
groups generated respectively by homeomorphisms idx, f1, ..., fr and idx, f7*, ..., fk_1
of the space X ?
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