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Abstract. The tangent family fλ(z) = λ tan z (λ ∈ CI \ {0}, z ∈ CI) is considered. It follows
from [4] that the function ascribing to each parameter λ the Hausdorff dimension of the Julia
set of fλ is continuous at all hyperbolic parameters λ. Now, we prove that the hyperbolic
dimension of the Julia set at each parameter λ0 that is a virtual center of a hyperbolic
component (in the sense of [2]) is equal to the limit of hyperbolic dimensions (which are
also equal to ordinary Hausdorff dimensions) of the Julia sets at hyperbolic parameters λ
canonically approaching λ0 within this component. It is also shown that the Hausdorff
dimension of the Julia set of fλ0 is strictly larger than this limit.

1. Introduction

For every λ ∈ CI \ {0} consider the meromorphic function fλ : CI → CI given by the formula

fλ(z) = λ tan(z).

Then for every integer p ≥ 1 define the map gp as follows.

gp(λ) = f p
λ(λi).

The function gp has a countable infinite set of poles and, if p ≥ 2, a countable infinite set of
essential singularities. A detailed description of the set of these singularities and its thorough
analysis is provided in [2]. For every r > 0 put

A+(r) = {z ∈ CI : Imz > r}
and for every α > 0 set

S(r, α) = A+(r) ∩ {z ∈ CI : Imz ≥ α|Rez|}.
Thus the set g−1

p (S(r, α)) is an open subset of CI \{0} consisting of countably many connected
components. It follows from [2] that if r > 0 is large enough, the boundary of each component
V of g−1

p (S(r, α)) contains exactly one pole of gp. Moreover, it follows from [2] and [3] that

each pole λ of gp belongs to the boundary of exactly one connected component of g−1
p (S(r, α)),

which will be in the sequel denoted by

V (λ, r, α).
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Obviously, if r′ > r, then V (λ, r′, α) = V (λ, r′, α) ∩ g−1
p (S(r.α)). For every λ ∈ CI \ {0} let hλ

be the Hausdorff dimension of the Julia set J(fλ) and h∗
λ be the hyperbolic dimension of the

set Jr(fλ) defined as the set of those points in J(fλ) whose ω-limit set contains a point lying
out of the set {∞, λi,−λi}. It follows from [4] that if λ is a hyperbolic parameter, meaning
that fλ has an attracting periodic cycle, then

hλ = h∗
λ

(because hλ-dimensional Hausdorff measure of the set of transitive points of fλ is finite and
positive). In addition on the space of hyperbolic parameters the function

λ �→ hλ

is continuous. This can be deduced easily from uniqueness of hλ-conformal measure, the fact
which was proved in [4].

In this paper we prove the following theorem describing the behavior of dimension hλ near
the poles of the functions gp.

Theorem A Let p ≥ 1 be an integer and let λ0 be a pole of the function gp. Then for every
α > 0 and every r > 0 large enough,

lim
λ→λ0

hλ = lim
λ→λ0

h∗
λ = h∗

λ0
,

where the limit is taken over the parameters λ in the connected component V (λ0, α, r).

Remark that in the course of the proof of this theorem we reprove the fact known from [2] that
the component V (λ0, r, α) consists of hyperbolic parameters. The entire proof of Theorem A
consists of several steps which are included in separate sections for the convenience of the
reader.

Theorem A has actually two-fold meaning. First, ’continuity’ of the hyperbolic dimension at
poles of gp, and secondly, discontinuity of the Hausdorff dimension of Julia sets at these poles;
to see it, apart from Theorem A, make use of Skorulski’s Theorem 5.6(iv) from [6] stating
that h∗

λ0
< 2 (HD(J(fλ0)) = 2 since J(fλ0) = 2).

2. Preliminaries

For every λ ∈ CI \ {0}, we have that

fλ(z) =
(
λi − λie2iz

)(
1 − e2iz

1 + e2iz

)
.
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Hence

fλ(z) − λi = −λi
e2iz

1 + e2iz
− λie2iz

(
1 − e2iz

1 + e2iz

)

= −λi
(
1 +

1

1 + e2iz

)
e2iz + λi

e4iz

1 + e2iz
.

(2.1)

It therefore follows that if Imz > 0 is large enough, then

3

2
|λ|e−2Imz ≤ |fλ(z) − λi| (2.2)

and

|fλ(z) − λi| ≤ 3|λ|e−2Imz. (2.3)

A straightforward calculation shows that

f ′
λ(z) =

4λe2iz

(1 + e2iz)2
. (2.4)

We assume that λ0, r > 0 and α > 0 are given by the hypothesis of Theorem A. Presenting
our reasoning we keep λ0 and α fixed but we let r > 0 to be appropriately large. Put

Vr := V (λ0, α, r)

and

Ur := iVr.

Since f p−1
λ0

(λ0i) is a pole of fλ0 , there exists n ∈ ZZ such that f p−1
λ0

(λ0i) = sn = (n + 1
2
)π. So

taking r > 0 large enough, there exists R > 0 so small that the function

F : Vr × Ur × B(sn, R) → CI

given by the formula

F (λ, z, w) = f p−1
λ (z) − w

does not take the value ∞ (so F is CI-valued). Since F (λ0, iλ0, sn) = 0 and

∂F

∂z
(λ0, iλ0, sn) = (f p−1

λ0
)′(λ0i) 	= 0,

it follows from the Implicit Function Theorem that for all r > 0 large enough there exists
a unique holomorphic function ζ : Vr × B(sn, R1) → Ur (R1 is small enough) such that

ζ(λ0, sn) = iλ0 and F (λ, ζ(λ, w), w) = 0. For every λ ∈ Vr define the function f
−(p−1)
λ,∗ :

B(sn, R1) → Ur by the formula

f
−(p−1)
λ,∗ (w) = ζ(λ, w).

Then analyticity of ζ yields that f
−(p−1)
λ,∗ : B(sn, R1) → Ur is analytic and

f p−1
λ (f

−(p−1)
λ,∗ (w)) = F (λ, f

−(p−1)
λ,∗ (w), w) + w = F (λ, ζ(λ, w), w) + w = w.
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So f
−(p−1)
λ,∗ is an analytic inverse branch of f p−1

λ . Since f p
λ(iλ) = gp(λ) 	= ∞ for all λ ∈ Vr\{λ0},

we have that f p−1
λ (iλ) is not a pole of fλ, in particular f p−1

λ (iλ) 	= sn. Thus

vλ := f
−(p−1)
λ,∗ (sn) 	= iλ, λ ∈ Vr \ {λ0}. (2.5)

Since vλ = ζ(λ, sn), we see that the function λ �→ vλ, λ ∈ Vr, is analytic and

lim
λ→λ0

vλ = lim
λ→λ0

ζ(λ, sn) = ζ(λ0, sn) = iλ0. (2.6)

Since for every λ ∈ Vr \ {λ0} the ball B(vλ, |vλ − iλ|) contains no singular values of fλ, we see
that for every ξ ∈ f−1

λ,ξ (vλ) there exists a unique holomorphic inverse branch f−1
λ,ξ defined on

B(vλ, |vλ − iλ|) of fλ sending vλ to ξ. Let v(λ) := vλ. For every λ ∈ Vr let

ηλ = λi − v(λ).

Since limλ→λ0 λi = iλ0 it follows from (2.6) that

lim
λ→λ0

|ηλ| = 0. (2.7)

For every M > 0 large enough put

D+
M = sup{|(f p−1

λ )′(z)| : λ ∈ VM , z ∈ UM} and D−
M = inf{|(f p−1

λ )′(z)| : λ ∈ VM , z ∈ UM}.
Define

κ =
α√

1 + α2
.

A straightforward calculation shows that if z ∈ S(r, α) then

Imz ≥ κ|z|. (2.8)

By K ≥ 1 we denote throughout the entire paper the constant ascribed to the scale 1/2 in
Koebe’s Distortion Theorem. For every λ ∈ Vr put

G(λ) =
{
z ∈ CI : Imz > −1

2
log |ηλ| + 5 +

1

2
log |λ0| − 1

2
log κ +

1

2
log K + log D+

M − log D−
M

}
.

3. The size of the Julia set

We shall prove first the following.

Lemma 3.1. For all r > 0 large enough and all λ ∈ Vr

f p+1
λ (G(λ)) ⊂ G(λ).
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Proof. Taking r > 0 sufficiently large so that |ηλ| > 0 is so small as we wish, it follows from
(2.3) that

fλ(G(λ)) ⊂ B

(
iλ, 3|λ| exp

(
−2

(
−1

2
log |ηλ| + 5 +

1

2
log |λ0| + 1

2
log

(
K

κ

)
+ log

(
D+

M

D−
M

))))

= B
(
iλ, 3e−10K−1

(
D+

M/D−
M

)−2
κ|λ||λ0|−1|ηλ|

)
⊂ B

(
iλ, e−8K−1

(
D+

M/D−
M

)−2
κ|λ||λ0|−1|ηλ|

)
⊂ B

(
iλ, e−7K−1

(
D+

M/D−
M

)−2
κ|ηλ|

)
.

(3.1)

Assume that r ≥ M to be so large that⋃
λ∈Vr

G(λ) ⊂ A+(M).

Applying the Mean Value Inequality, it follows from (3.1) that

f p
λ(G(λ)) ⊂ B

(
f p−1

λ (iλ), e−7K−1(D+
M)−1(D−

M)2κ|ηλ|
)
. (3.2)

Applying the Mean Value Inequality for the same function f p−1
λ we also get that

|f p−1
λ (iλ) − sn| = |f p−1

λ (iλ) − f p−1
λ (vλ)| ≤ D+

M |iλ − vλ| = D+
M |ηλ|. (3.3)

Applying in turn the Mean Value Inequality to the inverse branch f
−(p−1)
λ,∗ : B(sn, R1) → Ur

and using (2.5), we get for every λ ∈ Vr,

|ηλ| = |iλ − v(λ)| = |f−(p−1)
λ,∗ (f p−1

λ (iλ)) − f
−(p−1)
λ,∗ (sn)|

≤ sup{|(f−(p−1)
λ,∗ )′(z)| : z ∈ f p−1

λ (UM )}|f p−1
λ (iλ) − sn|

≤ (D−
M)−1|f p−1

λ (iλ) − sn|
or equivalently

|f p−1
λ (iλ) − sn| ≥ D−

M |ηλ|. (3.4)

Since limM→+∞
D+

M

D−
M

= 1, we therefore see that with M > 0 large enough,

sn /∈ B(f p−1
λ (iλ), e−1D+

M |ηλ|).
Combining this, (3.4) and the fact that sn is a simple pole of the tangent function, we see
that with r ≥ M large enough (so that f p−1

λ (iλ) is as close to sn as we wish), the map fλ

restricted to the ball B(f p−1
λ (iλ), 2D+

Me−5|ηλ|) is univalent. Since, sn is a simple pole of the
the tangent function f1(z) = tan(z), with residuum equal to 1, there exists R2 > 0 such that

1

2
|λ||z − sn|−2 ≤ |f ′

λ(z)| ≤ 2|λ||z − sn|−2 (3.5)

and

|fλ(z)| ≥ 1

2
|λ||z − sn|−1 (3.6)
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for all z ∈ B(sn, R2). Since limλ→λ0 f p−1
λ (iλ) = sn and since limλ→λ0 |ηλ| = 0, taking r ≥ M

large enough, we have that B(f p−1
λ (iλ), 2D+

Me−5|ηl|) ⊂ B(sn, R2). Combining this, (3.5) with
z = f p−1

λ (iλ), Koebe’s Distortion Theorem and (3.4) we conclude that

fλ

(
B(f p−1

λ (iλ), e−7K−1(D+
M)−1(D−

M)2κ|ηλ|)
)
⊂

⊂ B
(
f p

λ(iλ), K|f ′
λ(f

p−1
λ (iλ))|e−7K−1(D+

M)−1(D−
M)2κ|ηλ|

)
⊂ B

(
f p

λ(iλ), 2|λ||f p−1
λ (iλ) − sn|−2e−7(D+

M)−1(D−
M)2κ|ηλ|

)
⊂ B

(
f p

λ(iλ), 2|λ|e−7(D+
M)−1κ|ηλ|−1

)
⊂ B

(
f p

λ(iλ), (4D+
M)−1κ|λ||ηλ|−1

)
and using (3.2), we get that

f p+1
λ (G(λ)) ⊂ B

(
f p

λ(iλ), (4D+
M)−1κ|λ||ηλ|−1

)
. (3.7)

Combining now (3.3) and (3.6), we get that

|f p
λ(iλ)| ≥ 1

2
|λ||f p−1

λ (iλ) − sn|−1 ≥ 1

2
(D+

M)−1|λ||ηλ|−1.

Now assume that λ ∈ Vr. Then, using (2.8), we obtain

Im(f p
λ(iλ)) ≥ κ|f p

λ(iλ)| ≥ (2D+
M)−1κ|λ||ηλ|−1.

It therefore follows from (3.7) that every z ∈ f p+1
λ (G(λ))

Im(z) ≥ (2D+
M)−1κ|λ||ηλ|−1 − (4D+

M)−1κ|λ||ηλ|−1

= (4D+
M)−1κ|λ||ηλ|−1

≥ (8D+
M)−1κ|λ||ηλ|−1.

So, looking at the definition of G(λ), we see that if r ≥ M is large enough (so that |ηλ| is as
small as we wish), then f p+1

λ (G(λ)) ⊂ G(λ), and we are done.

For every λ ∈ Vr let

Δ(λ) =
1

2

(
− log |ηλ| + 10 + log |λ0| − log κ + log K + 2 log D+

M − 2 log D−
M

)
.

Since both the Fatou set and Julia set of fλ are symmetric with respect to the real axis, and
since G(λ) is contained in the Fatou set of fλ by Lemma 3.1, we get the following.

Lemma 3.2. For all r > 0 large enough and all λ ∈ Vr, we have

J(fλ) ⊂ {z : |Imz| ≤ Δ(λ)}.
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4. Estimates of conformal measure

Let ∼ be a relation on CI determined by the requirement that w ∼ z if and only if w− z ∈ ZZ.
Obviously ∼ is an equivalence relation on CI. Let Q = CI/ ∼ be the corresponding quotient
space, an infinite cylinder, and let π : CI → Q be the canonical projection map, fλ invariant
with respect to the lattice πZZ, it projects down to the map Fλ : Q → Q∪{∞} such that the
following diagram commutes,

CI
fλ−→ CI

Π
⏐⏐⏐�

⏐⏐⏐�Π
Q

Fλ−→ Q

(4.1)

i.e. Π◦fλ = Fλ◦π. Let J(Fλ) = Π(J(fλ)). It easily follows from lemma 3.1 that if λ ∈ Vr, then
the sets Ar(λ) and its reflection with respect to the real axis have both attracting periodic
points of fλ of period p + 1. The asymptotic values ±iλ must therefore belong to their basis
of immediate attraction. Since in addition the map fλ has no critical points, we conclude that
the map fλ satisfies condition (*) from [4]. Theorem 2, p. 621 from [4] than states that hλ-
dimensional Hausdorff measure (defined by means of spherical metric) of the Julia set J(fλ)
is positive and finite, where hλ = HD(J(fλ)) = HD(J(Fλ)) is the Hausdorff dimension of
the Julia set J(fλ). Invoking now Lemma 3.2 we conclude that the hλ-dimensional Hausdorff
measure (defined by means of Euclidean metric) Hh(J(Fλ)) of J(Fλ) is positive and finite.
Then mλ = Hh

|J(Fλ)/Hh(J(Fλ)) is a Borel probability measure on J(Fλ), and it is obviously
hλ-conformal in the sense that

mλ(Fλ(A)) =
∫

A
|F ′

λ|hλdmλ

whenever A ⊂ J(Fλ) is a Borel set and Fλ|A is one-to-one.

Assume that λ0 ∈ CI \ {0} is given as in the hypothesis of Theorem A. Let M > 0 be the
constant determined in the previous section. For every integer k ≥ M put

Xk = {z ∈ Q : k ≤ Imz ≤ k + 1}.
Our first result is this.

Lemma 4.1. There is a constant C > 0 (independent of λ) such that if λ ∈ V +
r , hλ ≥ 1, and

M ≤ k ≤ −1
2
log |ηλ| + 1

2
log(|λ0|/16), then

mλ(Xk) ≤ Ce2k(1−hλ).

Proof. Fix z ∈ Π−1(Xk). By (2.3) we get that

|fλ(z) − λi| ≤ 3|λ|e−2Imz ≤ 3|λ|e−2k. (4.2)
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Our upper bound on k equivalently means that

|ηλ| ≤ 1

16
|λ0|e−2k. (4.3)

So, using the Mean Value Inequality, (3.3), (4.2) and (4.3) we obtain

|f p
λ(z) − sn| ≤ |f p−1

λ (fλ(z)) − f p−1
λ (iλ)| + |f p−1

λ (iλ) − sn|
≤ D+

M |fλ(z) − iλ| + D+
M |ηλ|

≤ 3D+
M |λ|e−2k +

1

16
D+

M |λ0|e−2k

≤ 5D+
M |λ0|e−2k.

(4.4)

Now, fix in turn ξ ∈ f p
λ(Π−1(Xk)). Then f

−(p−1)
λ,∗ (ξ) ∈ fλ(Π

−1(Xk)). Recall also that

f
−(p−1)
λ,∗ (sn) = vλ. Now, using the Mean Value Inequality, (2.2) and (4.3), we get that

D+
M |ξ − sn| ≥ |f−(p−1)

λ,∗ (ξ) − f
−(p−1)
λ,∗ (sn)|

≥ |f−(p−1)
λ,∗ (ξ) − iλ| − |f−(p−1)

λ,∗ (sn) − iλ|
≥ 3

2
|λ|e−2(k+1) − |ηλ|

≥ 1

8
|λ0|e−2k − |ηλ|

≥ 1

16
|λ0|e−2k

So

|ξ − sn| ≥ 1

16D+
M

|λ0|e−2k. (4.5)

Now, we shall estimate from above the width of the set f p+1
λ (Π−1(Xk)). By (4.5) (3.5) and

(4.4), we get for all z1, z2 ∈ Π−1(Xk) that

|f (p+1)
λ (z2) − f

(p+1)
λ (z1)| = |fλ(f

p
λ(z2)) − fλ(f

p
λ(z1))|

≤ 2|λ|
(
16D+

M |λ0|−1
)2

e4k
(
π/2

)
|f p

λ(z2) − f p
λ(z1)|

≤ 29π|λ0|−1
(
D+

M

)2
e4k
(
|f p

λ(z2) − sn| + |f p
λ(z1) − sn|

)
≤ 213π|λ0|−1

(
D+

M

)3
e2k.

Hence

sup Re
(
f p+1(Π−1(Xk))

)
− inf Re

(
f p+1(Π−1(Xk))

)
≤ 213π|λ0|−1

(
D+

M

)3
e2k. (4.6)
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Now, take arbitrary point z ∈ Xk. Choose then any point z̃ ∈ Π−1(z). We get by (3.4), (3.5)
and (4.4) that

|(F p+1
λ )′(z)| = |(f p+1

λ )′(z̃)| = |f ′
λ(f

p
λ(z))||(f p−1

λ )′(fλ(z))||f ′
λ(z)|

≥ 1

2
|λ||f p

λ(z) − sn|−2D−
M2|λ|e−2(k+1)

≥ e−2D−
M |λ|2(5D+

M)−2|λ0|−2e4ke−2k

≥ (2|λ0|)−1D−
M(5eD+

M)−2e2k.

(4.7)

Since the map f p+1
λ restricted to the set{

z ∈ CI : −π

2
≤ Re(z) ≤ −π

2
and k ≤ Im(z) < k + 1

}

is one-to-one, it follows from (4.6) that the map F p+1
|Xk

is at most
(
213(D+

M)3|λ0|−1e2k
)
-to-one.

Therefore, applying (4.7) and using hλ-conformality of the measure mλ, we get that

1 ≥ mλ(F
p+1
λ (Xk)) ≥ 2−13(D+

M)−3|λ0|e−2k
∫

Xk

|(F p+1
λ )′(z)|hλdmλ(z)

≥ 2−13(D+
M)−3|λ0|e−2k

(
(2|λ0|)−1D−

M(5eD+
M)−2

)hλ
e2khλm(Xk)

≥ C−1e2k(hλ−1)m(Xk),

where the existence of a constant C > 0 (independent of λ) follows from the middle line and
the observation that hλ ∈ [1, 2]. We are done.

Now, for each λ ∈ Vr, R > 0 and integer j ≥ 1, let

Pλ =
{
z ∈ CI : Re(w0(λ)) − π

2
≤ Rez < Re(w0(λ)) +

π

2

}

and

Aj(λ, R) = A(w0(λ), (j + 1)−1R, j−1R) ∩ Pλ

be the annulus centered at w0(λ) with inner radius (j + 1)−1R and outer radius j−1R inter-
sected with the vertical strip Pλ. We shall prove the following.

Lemma 4.2. There exists a constant C1 > 0 (independent of λ ) such that for every λ ∈ Vr

with hλ ≥ 1, every R > 0, and every integer j ≥ 1,

mλ(Π(Aj(λ, r)) ≤ C1

(
min

{
π

2
, R
})−1

R2hλ |ηλ|hλ−1j1−2hλ .

Proof. Since it is easy to calculate that

Im(w0(λ)) = Im
( 1

2i
log0

( iηλ

2λ − iηλ

))
= −1

2
log

∣∣∣∣∣ iηλ

2λ − iηλ

∣∣∣∣∣ = −1

2
log |ηλ| + 1

2
log |2λ − iηλ|,
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where log0

(
iηλ

2λ−iηλ

)
is a logarithm of iηλ

2λ−iηλ
, we get that

− 1

2
log |ηλ| + 1

2
log |λ0| ≤ Im(w0(λ)) ≤ −1

2
log |ηλ| + 1

2
log |3λ0|. (4.8)

It therefore follows from (2.4) that every z ∈ B(w0(λ), R)

|f ′
λ(z)| ≤ 8|λ0| exp(log |ηλ| − log |λ0|) = 8|ηλ|.

Thus, applying the Mean Value Inequality, we obtain for every j ≥ 1, the following

fλ(B(w0(λ), Rj−1)) ⊂ B(v(λ), 8|ηλ|Rj−1). (4.9)

It follows from (4.8) and (2.4) that for every z ∈ B(w0(λ), R),

|f ′
λ(z)| ≥ 2|λ0| exp(log |ηλ| − log(3|λ0|) =

2

3
|ηλ|. (4.10)

Applying 1
4
-Koebe’s Distortion Theorem, we therefore get that

fλ

(
B(w0(λ), R(j + 1)−1) ∩ Pλ

)
⊃ fλ

(
B
(
w0(λ), min

{
π/2, R(j + 1)−1

}))

⊃ B
(
v(λ),

1

6
|ηλ|min

{
π/2, R(j + 1)−1

})

⊃ B
(
v(λ),

1

6
|ηλ|min {π/2, R} (j + 1)−1

)
.

Since the map fλ restricted to the set B(w0(λ), R)∩Pλ is one-to-one, we thus conclude (using
also (4.9) that

fλ(Aj(λ, R)) ⊂ A
(
v(λ),

1

6
min {π/2, R} |ηλ|(j + 1)−1, 8R|ηλ|j−1

)
. (4.11)

Since f p−1
λ (vλ) = sn and since (f p−1

λ )′(iλ0) 	= 0, it follows from (2.6) that there exists a
universal radius T > 0 such that the map f p−1

λ (restricted to to the ball B(vλ, T ) is univalent
and

1

2
|(f p−1

λ0
)′(iλ0)| ≤ |(f p−1

λ )′(z)| ≤ 2|(f p−1
λ0

)′(iλ0)| (4.12)

for all r > 0 large enough (so that λ is as close to λ0 as one wishes) and for all z ∈ B(vλ, T ).
So applying the Mean Value Theorem, 1

4
-Koebe Distortion Theorem and (4.11) yields that

for all λ ∈ Vr and all j ≥ 1 that

f p
λ(Aj(λ, R)) ⊂ A

(
sn,

1

48
|(f p−1

λ0
)′(iλ0)|min {π/2, R} |ηλ|(j + 1)−1, 16|(f p−1

λ0
)′(iλ0)|R|ηλ|j−1

)
(4.13)

Hence, if z ∈ Aj(λ, R) then using (3.5) we get that

|f ′
λ(f

p
λ(z))| ≥ 2−10|λ0||(f p−1

λ0
)′(iλ0)|−2R−2|ηλ|−2j2.
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Consequently using (4.10) and (4.12) we get that for every ζ ∈ Π(Aj , (λ, R)) ζ = Π(z),
z ∈ Aj(λ, R) that

|(F p+1
λ )′(ζ)| =|(f p+1

λ )′(ζ)|
=|f ′

λ(z)||(f p−1
λ )′(f(z))||f ′

λ(f
p
λ(z))|

≥3−12−10|λ0||(f p−1
λ0

)′(iλ0)|−1R−2|ηλ|−1j2.

(4.14)

Looking at (4.13) and (3.6) we see that

f p+1
λ (Aj(λ, R)) ⊂ B(0, 96|λ0||(f p−1

λ0
)′(iλ0)|−1(min{π/2, R})−1|ηλ|−1(j + 1).

Since f p+1
λ restricted to Aj(λ, R) is one-to-one, we therefore conclude that the map F p+1

λ

restricted to Π(Aj(λ, R)) is at most 96π−1|λ0||(f p−1
λ )′(iλ0)|−1(min{π

2
, R})−1|ηλ|−1j-to-one.

Hence, using this fact, (4.14) and conformality of the measure mλ, we get that

1 ≥ mλ(F
p+1
λ (Aj(λ, R)))

≥
(
96π−1|λ0||(f p−1

λ )′(iλ0)|(min{π/2, R})−1|ηλ|−1j
)−1

∫
Aj(λ,R)

|(F p+1
λ )′|hλdmλ

≥ π

96
|(f p−1

λ0
)′(iλ0)|−1 min{π/2, R}|ηλ|j−1

(
3−12−10|λ0|(f p−1

λ0
)′(iλ0)|−1R−2|ηλ|−1j2

)hλ ·
· mλ(Aj(λ, R)).

Thus

mλ(Aj(λ, R)) ≤ C1(min{π/2, R})−1R2hλ |ηλ|hλ−1j1−2hλ ,

where C1 > 0 is a universal constant, since hλ ∈ [1, 2]. We are done.

Since hyperbolic sets are stable under perturbations and their Hausdorff dimension is deter-
mined by Bowen’s formula, we get that

lim
λ→λ0

h∗
λ ≥ h∗

λ0
. (4.15)

Since B. Skorulski proved in Theorem 5.6 of [6] that h∗
λ0

> 1, we therefore conclude that there
is s > 1 such that

hλ = h∗
λ ≥ s > 1

for all r > 0 large enough and all λ ∈ V (λ0, α, r). Writing C2 = C1
∑∞

j=1 j1−2s, we obtaining
the following immediate consequence of Lemma 4.2.

Corollary 4.3. For all r > 0 large enough, all λ ∈ Vr and all R ≥ π
2

mλ(Π(B(w(λ0), R))) ≤ C2π

2
R4|ηλ|s−1.
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5. Tightness of conformal measures

We shall prove in this section the following.

Lemma 5.1. With the assumptions of Theorem A, the family

{mλ}λ∈V (λ0,α,r)

is tight, where mλ is the hλ-conformal measure for Fλ : Q → Q introduced in the beginning of
Section 4.

Proof. Since

lim
t→+∞D+

t = lim
t→+∞D−

t = |(f p−1
λ0

)′(iλ0)|,
we have that

1

2
|(f p−1

λ0
)′(iλ0)| ≤ D−

M ≤ D+
M ≤ 2|(f p−1

λ0
)′(iλ0)|

for all M ≥ T , with some fixed T > 0 large enough. It therefore follows from Lemma 3.2 that
for all λ ∈ V (λ0, α, r)

J(fλ) ⊂ {z ∈ CI : |Imz| ≤ Δ∗(λ)} (5.1)

where

Δ∗(λ) =
1

2

(
− log |ηλ| + 10 + log |λ0| − log κ + log K

+ 2 log(2|(f p−1
λ0

)′(iλ0)|) − 2 log((1/2)|(f p−1
λ0

)′(iλ0)|)
=

1

2

(
− log |ηλ| + 10 + 4 log 2 + log |λ0| − log κ + log K

).

Our first goal is to show if r > 0 is large enough, then

lim
M→+∞

sup{mλ({z ∈ Q : Imz ≥ M}) : λ ∈ V (λ0, α, r)} = 0. (5.2)

Indeed, let

R = max{10 + 4 log 2 + log K − log κ, log 30}.
It then follows from (5.1) and (4.8) that

J(Fλ) ∩ {z ∈ Q : Imz ≥ M} ⊂
qλ⋃

k=M

Xk ∪ B(w(λ0), R)),

where

qλ = −1

2
log |ηλ| + 1

2
(log |λ0|/16).
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Hence, applying Lemma 4.1 and Corollary 4.3, we obtain with r > 0 large enough for every
λ ∈ Vr, that

mλ(J(Fλ) ∩ {z ∈ Q : Imz ≥ M}) ≤
qλ∑

k=M

Ce2k(1−s) +
πC2

2
R4|ηλ|s−1

≤ Ce2M(1−s)

1 − e2(1−s)
+

πC2

2
R4|ηλ|s−1.

Since 1 − s < 0 and since limλ→λ0 |ηλ| = 0, formula (5.2) follows. Let S : CI → CI be given by

the formula S(z) = −z. This map obviously projects down to the map Ŝ : Q → Q such that
the following diagram commutes.

CI
S−→ CI

Π

⏐⏐⏐�
⏐⏐⏐�Π

Q
Ŝ−→ Q

(5.3)

Let m′
λ = mλ ◦ Ŝ−1. Looking at this diagram, we see that Ŝ ◦ Ŝ = id (in particular Ŝ is

invertible and Ŝ−1 = Ŝ) and Ŝ−1 ◦ Fλ = Fλ ◦ Ŝ−1. Since |(Ŝ)′(z)| = 1 for all z ∈ Q, it also
follows from (5.3) that |F ′

λ(S
−1(z))| = |F ′

λ(z)|. Consequently

dm′
λ ◦ Fλ

dm′
λ

(z) =
dmλ ◦ Ŝ−1 ◦ Fλ

dmλ ◦ Ŝ−1
(z)

=
dmλ ◦ Fλ ◦ Ŝ−1

dmλ ◦ Ŝ−1
(z)

=
dmλ ◦ Fλ

dmλ
(Ŝ−1(z))

= |F ′
λ(z)|hλ(Ŝ−1(z))

= |F ′
λ(z)|hλ

This means that m′
λ is an hλ-conformal measure for Fλ. The uniqueness (see[4]) of such

conformal measure implies that m′
λ = mλ or equivalently mλ ◦ Ŝ−1 = mλ. Hence

mλ({z ∈ Q : Imz ≤ −M}) = mλ((Ŝ)−1({z ∈ Q : Imz ≤ −M})).
Combining this and (5.2), we see that

lim
M→+∞

sup{mλ({z ∈ Q : |Imz| ≥ M}) : λ ∈ V (λ0, α, r)} = 0.

Since the set {z ∈ Q : |Imz| ≤ M} is compact, the tightness of the family of measures
{mλ}λ∈V (λ0,α,r) is established.
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6. Conclusion of the proof of Theorem A

Take {λn}∞n=0, any sequence of parameters from V (λ0, α, r) such that limn→∞ λn = λ0. In
order to conclude the proof it suffices to show that

lim
n→∞hλn = hλ∗

0
.

Since hλ ∈ [s, 2], s > 1, we may assume without loss of generality that the sequence {hλn}∞n=1

converges, say, to t ∈ [s, 2]. Combining Lemma 5.1 and Prokhorov theorem (see [1], Theo-
rem 5.1, Section 5, p. 59) , we conclude that there is a subsequence of the sequence {mλn}∞n=1

converges weakly to a Borel probability measure m on Q. We may assume without loss of
generality that the sequence {mλn}∞n=1 converges itself to the measure m. It is by now stan-
dard and not too difficult (see [7] for details in a compatible situation) to show that m is a
t-conformal measure for Fλ0 . Since, in addition J(Fλ0) = Q and since t ≥ s > 1, it follows
from Theorem 5.6 from [6] that t = h∗

λ0
, and we are done.

Proposition 6.1. With the assumption of Theorem A, we have that

lim
λ→λ0

mλ = mλ0 ,

where mλ0 is the weak limit of {mλ}λ∈V (λ0,r,α), and where mλ is the only hλ-conformal measure
of Fλ on J(Fλ0).
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