VIRTUAL CENTERS OF HYPERBOLIC COMPONENTS IN THE TANGENT FAMILY; HAUSDORFF DIMENSION OUTLOOK

JANINA KOTUS AND MARIUSZ URBAŃSKI

ABSTRACT. The tangent family $f_{\lambda}(z) = \lambda \tan z$ ($\lambda \in \mathcal{C} \setminus \{0\}, z \in \mathcal{C}$) is considered. It follows from [4] that the function ascribing to each parameter λ the Hausdorff dimension of the Julia set of f_{λ} is continuous at all hyperbolic parameters λ . Now, we prove that the hyperbolic dimension of the Julia set at each parameter λ_0 that is a virtual center of a hyperbolic component (in the sense of [2]) is equal to the limit of hyperbolic dimensions (which are also equal to ordinary Hausdorff dimensions) of the Julia sets at hyperbolic parameters λ canonically approaching λ_0 within this component. It is also shown that the Hausdorff dimension of the Julia set of f_{λ_0} is strictly larger than this limit.

1. INTRODUCTION

For every $\lambda \in \mathcal{C} \setminus \{0\}$ consider the meromorphic function $f_{\lambda} : \mathcal{C} \to \overline{\mathcal{C}}$ given by the formula

$$f_{\lambda}(z) = \lambda \tan(z).$$

Then for every integer $p \ge 1$ define the map g_p as follows.

$$g_p(\lambda) = f^p_{\lambda}(\lambda i).$$

The function g_p has a countable infinite set of poles and, if $p \ge 2$, a countable infinite set of essential singularities. A detailed description of the set of these singularities and its thorough analysis is provided in [2]. For every r > 0 put

$$\mathcal{A}^+(r) = \{ z \in \mathcal{C} \colon \operatorname{Im} z > r \}$$

and for every $\alpha > 0$ set

$$S(r,\alpha) = \mathcal{A}^+(r) \cap \{ z \in \mathcal{C} : \operatorname{Im} z \ge \alpha |\operatorname{Re} z| \}.$$

Thus the set $g_p^{-1}(S(r,\alpha))$ is an open subset of $\mathbb{C}\setminus\{0\}$ consisting of countably many connected components. It follows from [2] that if r > 0 is large enough, the boundary of each component V of $g_p^{-1}(S(r,\alpha))$ contains exactly one pole of g_p . Moreover, it follows from [2] and [3] that each pole λ of g_p belongs to the boundary of exactly one connected component of $g_p^{-1}(S(r,\alpha))$, which will be in the sequel denoted by

$$V(\lambda, r, \alpha).$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 37F35. Secondary 37F10, 30D05.

The research of both authors was supported in part by the Polish KBN Grant No 2 PO3A 034 25, the Warsaw University of Technology Grant no 504G 11200043000 and by the NSF/PAN grant INT-0306004.

The research of the second author was supported in part by the NSF Grant DMS 0400481.

Obviously, if r' > r, then $V(\lambda, r', \alpha) = V(\lambda, r', \alpha) \cap g_p^{-1}(S(r,\alpha))$. For every $\lambda \in \mathcal{C} \setminus \{0\}$ let h_{λ} be the Hausdorff dimension of the Julia set $J(f_{\lambda})$ and h_{λ}^* be the hyperbolic dimension of the set $J_r(f_{\lambda})$ defined as the set of those points in $J(f_{\lambda})$ whose ω -limit set contains a point lying out of the set $\{\infty, \lambda i, -\lambda i\}$. It follows from [4] that if λ is a hyperbolic parameter, meaning that f_{λ} has an attracting periodic cycle, then

$$h_{\lambda} = h_{\lambda}^*$$

(because h_{λ} -dimensional Hausdorff measure of the set of transitive points of f_{λ} is finite and positive). In addition on the space of hyperbolic parameters the function

$$\lambda \mapsto h_{\lambda}$$

is continuous. This can be deduced easily from uniqueness of h_{λ} -conformal measure, the fact which was proved in [4].

In this paper we prove the following theorem describing the behavior of dimension h_{λ} near the poles of the functions g_p .

Theorem A Let $p \ge 1$ be an integer and let λ_0 be a pole of the function g_p . Then for every $\alpha > 0$ and every r > 0 large enough,

$$\lim_{\lambda \to \lambda_0} h_{\lambda} = \lim_{\lambda \to \lambda_0} h_{\lambda}^* = h_{\lambda_0}^*,$$

where the limit is taken over the parameters λ in the connected component $V(\lambda_0, \alpha, r)$.

Remark that in the course of the proof of this theorem we reprove the fact known from [2] that the component $V(\lambda_0, r, \alpha)$ consists of hyperbolic parameters. The entire proof of Theorem A consists of several steps which are included in separate sections for the convenience of the reader.

Theorem A has actually two-fold meaning. First, 'continuity' of the hyperbolic dimension at poles of g_p , and secondly, discontinuity of the Hausdorff dimension of Julia sets at these poles; to see it, apart from Theorem A, make use of Skorulski's Theorem 5.6(iv) from [6] stating that $h_{\lambda_0}^* < 2 (\text{HD}(J(f_{\lambda_0})) = 2 \text{ since } J(f_{\lambda_0}) = 2).$

2. Preliminaries

For every $\lambda \in \mathcal{C} \setminus \{0\}$, we have that

$$f_{\lambda}(z) = \left(\lambda i - \lambda i e^{2iz}\right) \left(1 - \frac{e^{2iz}}{1 + e^{2iz}}\right).$$

Hence

$$f_{\lambda}(z) - \lambda i = -\lambda i \frac{e^{2iz}}{1 + e^{2iz}} - \lambda i e^{2iz} \left(1 - \frac{e^{2iz}}{1 + e^{2iz}}\right)$$

= $-\lambda i \left(1 + \frac{1}{1 + e^{2iz}}\right) e^{2iz} + \lambda i \frac{e^{4iz}}{1 + e^{2iz}}.$ (2.1)

It therefore follows that if Imz > 0 is large enough, then

$$\frac{3}{2}|\lambda|e^{-2\mathrm{Im}z} \le |f_{\lambda}(z) - \lambda i|$$
(2.2)

and

$$|f_{\lambda}(z) - \lambda i| \le 3|\lambda|e^{-2\operatorname{Im} z}.$$
(2.3)

A straightforward calculation shows that

$$f'_{\lambda}(z) = \frac{4\lambda e^{2iz}}{(1+e^{2iz})^2}.$$
(2.4)

We assume that $\lambda_0, r > 0$ and $\alpha > 0$ are given by the hypothesis of Theorem A. Presenting our reasoning we keep λ_0 and α fixed but we let r > 0 to be appropriately large. Put

$$V_r := V(\lambda_0, \alpha, r)$$

and

 $U_r := iV_r.$

Since $f_{\lambda_0}^{p-1}(\lambda_0 i)$ is a pole of f_{λ_0} , there exists $n \in \mathbb{Z}$ such that $f_{\lambda_0}^{p-1}(\lambda_0 i) = s_n = (n + \frac{1}{2})\pi$. So taking r > 0 large enough, there exists R > 0 so small that the function

 $F: V_r \times U_r \times B(s_n, R) \to \overline{\mathcal{C}}$

given by the formula

$$F(\lambda, z, w) = f_{\lambda}^{p-1}(z) - w$$

does not take the value ∞ (so F is \mathcal{C} -valued). Since $F(\lambda_0, i\lambda_0, s_n) = 0$ and

$$\frac{\partial F}{\partial z}(\lambda_0, i\lambda_0, s_n) = (f_{\lambda_0}^{p-1})'(\lambda_0 i) \neq 0,$$

it follows from the Implicit Function Theorem that for all r > 0 large enough there exists a unique holomorphic function $\zeta : V_r \times B(s_n, R_1) \to U_r$ (R_1 is small enough) such that $\zeta(\lambda_0, s_n) = i\lambda_0$ and $F(\lambda, \zeta(\lambda, w), w) = 0$. For every $\lambda \in V_r$ define the function $f_{\lambda,*}^{-(p-1)} : B(s_n, R_1) \to U_r$ by the formula

$$f_{\lambda,*}^{-(p-1)}(w) = \zeta(\lambda, w).$$

Then analyticity of ζ yields that $f_{\lambda,*}^{-(p-1)}: B(s_n, R_1) \to U_r$ is analytic and

$$f_{\lambda}^{p-1}(f_{\lambda,*}^{-(p-1)}(w)) = F(\lambda, f_{\lambda,*}^{-(p-1)}(w), w) + w = F(\lambda, \zeta(\lambda, w), w) + w = w.$$

So $f_{\lambda,*}^{-(p-1)}$ is an analytic inverse branch of f_{λ}^{p-1} . Since $f_{\lambda}^{p}(i\lambda) = g_{p}(\lambda) \neq \infty$ for all $\lambda \in V_{r} \setminus \{\lambda_{0}\}$, we have that $f_{\lambda}^{p-1}(i\lambda)$ is not a pole of f_{λ} , in particular $f_{\lambda}^{p-1}(i\lambda) \neq s_{n}$. Thus

$$v_{\lambda} := f_{\lambda,*}^{-(p-1)}(s_n) \neq i\lambda, \quad \lambda \in V_r \setminus \{\lambda_0\}.$$

$$(2.5)$$

Since $v_{\lambda} = \zeta(\lambda, s_n)$, we see that the function $\lambda \mapsto v_{\lambda}, \lambda \in V_r$, is analytic and

$$\lim_{\lambda \to \lambda_0} v_{\lambda} = \lim_{\lambda \to \lambda_0} \zeta(\lambda, s_n) = \zeta(\lambda_0, s_n) = i\lambda_0.$$
(2.6)

Since for every $\lambda \in V_r \setminus \{\lambda_0\}$ the ball $B(v_\lambda, |v_\lambda - i\lambda|)$ contains no singular values of f_λ , we see that for every $\xi \in f_{\lambda,\xi}^{-1}(v_\lambda)$ there exists a unique holomorphic inverse branch $f_{\lambda,\xi}^{-1}$ defined on $B(v_\lambda, |v_\lambda - i\lambda|)$ of f_λ sending v_λ to ξ . Let $v(\lambda) := v_\lambda$. For every $\lambda \in V_r$ let

$$\eta_{\lambda} = \lambda i - v(\lambda).$$

Since $\lim_{\lambda \to \lambda_0} \lambda i = i\lambda_0$ it follows from (2.6) that

$$\lim_{\lambda \to \lambda_0} |\eta_\lambda| = 0. \tag{2.7}$$

For every M > 0 large enough put

 $D_M^+ = \sup\{|(f_\lambda^{p-1})'(z)|: \lambda \in V_M, z \in U_M\} \text{ and } D_M^- = \inf\{|(f_\lambda^{p-1})'(z)|: \lambda \in V_M, z \in U_M\}.$ Define

$$\kappa = \frac{\alpha}{\sqrt{1 + \alpha^2}}.$$

A straightforward calculation shows that if $z \in S(r, \alpha)$ then

$$\mathrm{Im}z \ge \kappa |z|. \tag{2.8}$$

By $K \ge 1$ we denote throughout the entire paper the constant ascribed to the scale 1/2 in Koebe's Distortion Theorem. For every $\lambda \in V_r$ put

$$\mathcal{G}(\lambda) = \left\{ z \in \overline{\mathcal{C}} : \operatorname{Im} z > -\frac{1}{2} \log |\eta_{\lambda}| + 5 + \frac{1}{2} \log |\lambda_0| - \frac{1}{2} \log \kappa + \frac{1}{2} \log K + \log D_M^+ - \log D_M^- \right\}.$$

3. The size of the Julia set

We shall prove first the following.

Lemma 3.1. For all r > 0 large enough and all $\lambda \in V_r$

$$f_{\lambda}^{p+1}(\mathcal{G}(\lambda)) \subset \mathcal{G}(\lambda)$$

Proof. Taking r > 0 sufficiently large so that $|\eta_{\lambda}| > 0$ is so small as we wish, it follows from (2.3) that

$$f_{\lambda}(\mathcal{G}(\lambda)) \subset B\left(i\lambda, 3|\lambda| \exp\left(-2\left(-\frac{1}{2}\log|\eta_{\lambda}| + 5 + \frac{1}{2}\log|\lambda_{0}| + \frac{1}{2}\log\left(\frac{K}{\kappa}\right) + \log\left(\frac{D_{M}^{+}}{D_{M}^{-}}\right)\right)\right)\right)$$

$$= B\left(i\lambda, 3e^{-10}K^{-1}\left(D_{M}^{+}/D_{M}^{-}\right)^{-2}\kappa|\lambda||\lambda_{0}|^{-1}|\eta_{\lambda}|\right)$$

$$\subset B\left(i\lambda, e^{-8}K^{-1}\left(D_{M}^{+}/D_{M}^{-}\right)^{-2}\kappa|\lambda||\lambda_{0}|^{-1}|\eta_{\lambda}|\right)$$

$$\subset B\left(i\lambda, e^{-7}K^{-1}\left(D_{M}^{+}/D_{M}^{-}\right)^{-2}\kappa|\eta_{\lambda}|\right).$$
(3.1)

Assume that $r \geq M$ to be so large that

$$\bigcup_{\lambda \in V_r} \mathcal{G}(\lambda) \subset \mathcal{A}^+(M).$$

Applying the Mean Value Inequality, it follows from (3.1) that

$$f_{\lambda}^{p}(\mathcal{G}(\lambda)) \subset B\Big(f_{\lambda}^{p-1}(i\lambda), e^{-7}K^{-1}(D_{M}^{+})^{-1}(D_{M}^{-})^{2}\kappa|\eta_{\lambda}|\Big).$$
(3.2)

Applying the Mean Value Inequality for the same function f_{λ}^{p-1} we also get that

$$|f_{\lambda}^{p-1}(i\lambda) - s_n| = |f_{\lambda}^{p-1}(i\lambda) - f_{\lambda}^{p-1}(v_{\lambda})| \le D_M^+ |i\lambda - v_{\lambda}| = D_M^+ |\eta_{\lambda}|.$$

$$(3.3)$$

Applying in turn the Mean Value Inequality to the inverse branch $f_{\lambda,*}^{-(p-1)} : B(s_n, R_1) \to U_r$ and using (2.5), we get for every $\lambda \in V_r$,

$$|\eta_{\lambda}| = |i\lambda - v(\lambda)| = |f_{\lambda,*}^{-(p-1)}(f_{\lambda}^{p-1}(i\lambda)) - f_{\lambda,*}^{-(p-1)}(s_n)|$$

$$\leq \sup\{|(f_{\lambda,*}^{-(p-1)})'(z)| : z \in f_{\lambda}^{p-1}(U_M)\}|f_{\lambda}^{p-1}(i\lambda) - s_n|$$

$$\leq (D_M^{-})^{-1}|f_{\lambda}^{p-1}(i\lambda) - s_n|$$

or equivalently

$$|f_{\lambda}^{p-1}(i\lambda) - s_n| \ge D_M^- |\eta_{\lambda}|. \tag{3.4}$$

Since $\lim_{M\to+\infty} \frac{D_M^+}{D_M^-} = 1$, we therefore see that with M > 0 large enough,

 $s_n \notin B(f_{\lambda}^{p-1}(i\lambda), e^{-1}D_M^+|\eta_{\lambda}|).$

Combining this, (3.4) and the fact that s_n is a simple pole of the tangent function, we see that with $r \ge M$ large enough (so that $f_{\lambda}^{p-1}(i\lambda)$ is as close to s_n as we wish), the map f_{λ} restricted to the ball $B(f_{\lambda}^{p-1}(i\lambda), 2D_M^+e^{-5}|\eta_{\lambda}|)$ is univalent. Since, s_n is a simple pole of the the tangent function $f_1(z) = \tan(z)$, with residuum equal to 1, there exists $R_2 > 0$ such that

$$\frac{1}{2}|\lambda||z - s_n|^{-2} \le |f_{\lambda}'(z)| \le 2|\lambda||z - s_n|^{-2}$$
(3.5)

and

$$|f_{\lambda}(z)| \ge \frac{1}{2} |\lambda| |z - s_n|^{-1}$$
 (3.6)

for all $z \in B(s_n, R_2)$. Since $\lim_{\lambda \to \lambda_0} f_{\lambda}^{p-1}(i\lambda) = s_n$ and since $\lim_{\lambda \to \lambda_0} |\eta_{\lambda}| = 0$, taking $r \ge M$ large enough, we have that $B(f_{\lambda}^{p-1}(i\lambda), 2D_M^+ e^{-5}|\eta_l|) \subset B(s_n, R_2)$. Combining this, (3.5) with $z = f_{\lambda}^{p-1}(i\lambda)$, Koebe's Distortion Theorem and (3.4) we conclude that

$$f_{\lambda}\Big(B(f_{\lambda}^{p-1}(i\lambda), e^{-7}K^{-1}(D_{M}^{+})^{-1}(D_{M}^{-})^{2}\kappa|\eta_{\lambda}|)\Big) \subset \\ \subset B\Big(f_{\lambda}^{p}(i\lambda), K|f_{\lambda}'(f_{\lambda}^{p-1}(i\lambda))|e^{-7}K^{-1}(D_{M}^{+})^{-1}(D_{M}^{-})^{2}\kappa|\eta_{\lambda}|\Big) \\ \subset B\Big(f_{\lambda}^{p}(i\lambda), 2|\lambda||f_{\lambda}^{p-1}(i\lambda) - s_{n}|^{-2}e^{-7}(D_{M}^{+})^{-1}(D_{M}^{-})^{2}\kappa|\eta_{\lambda}|\Big) \\ \subset B\Big(f_{\lambda}^{p}(i\lambda), 2|\lambda|e^{-7}(D_{M}^{+})^{-1}\kappa|\eta_{\lambda}|^{-1}\Big) \\ \subset B\Big(f_{\lambda}^{p}(i\lambda), (4D_{M}^{+})^{-1}\kappa|\lambda||\eta_{\lambda}|^{-1}\Big)$$

and using (3.2), we get that

$$f_{\lambda}^{p+1}(\mathcal{G}(\lambda)) \subset B\Big(f_{\lambda}^{p}(i\lambda), (4D_{M}^{+})^{-1}\kappa|\lambda||\eta_{\lambda}|^{-1}\Big).$$
(3.7)

Combining now (3.3) and (3.6), we get that

$$|f_{\lambda}^{p}(i\lambda)| \geq \frac{1}{2} |\lambda| |f_{\lambda}^{p-1}(i\lambda) - s_{n}|^{-1} \geq \frac{1}{2} (D_{M}^{+})^{-1} |\lambda| |\eta_{\lambda}|^{-1}.$$

Now assume that $\lambda \in V_r$. Then, using (2.8), we obtain

$$\operatorname{Im}(f_{\lambda}^{p}(i\lambda)) \geq \kappa |f_{\lambda}^{p}(i\lambda)| \geq (2D_{M}^{+})^{-1} \kappa |\lambda| |\eta_{\lambda}|^{-1}.$$

It therefore follows from (3.7) that every $z \in f_{\lambda}^{p+1}(\mathcal{G}(\lambda))$

$$\operatorname{Im}(z) \geq (2D_{M}^{+})^{-1} \kappa |\lambda| |\eta_{\lambda}|^{-1} - (4D_{M}^{+})^{-1} \kappa |\lambda| |\eta_{\lambda}|^{-1} \\
= (4D_{M}^{+})^{-1} \kappa |\lambda| |\eta_{\lambda}|^{-1} \\
\geq (8D_{M}^{+})^{-1} \kappa |\lambda| |\eta_{\lambda}|^{-1}.$$

So, looking at the definition of $\mathcal{G}(\lambda)$, we see that if $r \geq M$ is large enough (so that $|\eta_{\lambda}|$ is as small as we wish), then $f_{\lambda}^{p+1}(\mathcal{G}(\lambda)) \subset \mathcal{G}(\lambda)$, and we are done.

For every $\lambda \in V_r$ let

$$\Delta(\lambda) = \frac{1}{2} \Big(-\log|\eta_{\lambda}| + 10 + \log|\lambda_{0}| - \log\kappa + \log K + 2\log D_{M}^{+} - 2\log D_{M}^{-} \Big)$$

Since both the Fatou set and Julia set of f_{λ} are symmetric with respect to the real axis, and since $\mathcal{G}(\lambda)$ is contained in the Fatou set of f_{λ} by Lemma 3.1, we get the following.

Lemma 3.2. For all r > 0 large enough and all $\lambda \in V_r$, we have

$$J(f_{\lambda}) \subset \{z : |\mathrm{Im}z| \leq \Delta(\lambda)\}.$$

4. Estimates of conformal measure

Let \sim be a relation on \mathcal{C} determined by the requirement that $w \sim z$ if and only if $w - z \in \mathbb{Z}$. Obviously \sim is an equivalence relation on \mathcal{C} . Let $Q = \mathcal{C}/\sim$ be the corresponding quotient space, an infinite cylinder, and let $\pi : \mathcal{C} \to Q$ be the canonical projection map, f_{λ} invariant with respect to the lattice $\pi \mathbb{Z}$, it projects down to the map $F_{\lambda} : Q \to Q \cup \{\infty\}$ such that the following diagram commutes,

i.e. $\Pi \circ f_{\lambda} = F_{\lambda} \circ \pi$. Let $J(F_{\lambda}) = \Pi(J(f_{\lambda}))$. It easily follows from lemma 3.1 that if $\lambda \in V_r$, then the sets $\mathcal{A}_r(\lambda)$ and its reflection with respect to the real axis have both attracting periodic points of f_{λ} of period p + 1. The asymptotic values $\pm i\lambda$ must therefore belong to their basis of immediate attraction. Since in addition the map f_{λ} has no critical points, we conclude that the map f_{λ} satisfies condition (*) from [4]. Theorem 2, p. 621 from [4] than states that h_{λ} dimensional Hausdorff measure (defined by means of spherical metric) of the Julia set $J(f_{\lambda})$ is positive and finite, where $h_{\lambda} = \text{HD}(J(f_{\lambda})) = \text{HD}(J(F_{\lambda}))$ is the Hausdorff dimension of the Julia set $J(f_{\lambda})$. Invoking now Lemma 3.2 we conclude that the h_{λ} -dimensional Hausdorff measure (defined by means of Euclidean metric) $H^h(J(F_{\lambda}))$ of $J(F_{\lambda})$ is positive and finite. Then $m_{\lambda} = H^h_{|J(F_{\lambda})}/\text{H}^h(J(F_{\lambda}))$ is a Borel probability measure on $J(F_{\lambda})$, and it is obviously h_{λ} -conformal in the sense that

$$m_{\lambda}(F_{\lambda}(A)) = \int_{A} |F_{\lambda}'|^{h_{\lambda}} dm_{\lambda}$$

whenever $A \subset J(F_{\lambda})$ is a Borel set and $F_{\lambda|A}$ is one-to-one.

Assume that $\lambda_0 \in \mathcal{C} \setminus \{0\}$ is given as in the hypothesis of Theorem A. Let M > 0 be the constant determined in the previous section. For every integer $k \geq M$ put

$$X_k = \{ z \in Q : k \le \operatorname{Im} z \le k+1 \}.$$

Our first result is this.

Lemma 4.1. There is a constant C > 0 (independent of λ) such that if $\lambda \in V_r^+$, $h_\lambda \ge 1$, and $M \le k \le -\frac{1}{2} \log |\eta_\lambda| + \frac{1}{2} \log(|\lambda_0|/16)$, then

$$m_{\lambda}(X_k) \le Ce^{2k(1-h_{\lambda})}$$

Proof. Fix $z \in \Pi^{-1}(X_k)$. By (2.3) we get that

$$|f_{\lambda}(z) - \lambda i| \le 3|\lambda|e^{-2\operatorname{Im} z} \le 3|\lambda|e^{-2k}.$$
(4.2)

Our upper bound on k equivalently means that

$$|\eta_{\lambda}| \le \frac{1}{16} |\lambda_0| e^{-2k}. \tag{4.3}$$

So, using the Mean Value Inequality, (3.3), (4.2) and (4.3) we obtain

$$|f_{\lambda}^{p}(z) - s_{n}| \leq |f_{\lambda}^{p-1}(f_{\lambda}(z)) - f_{\lambda}^{p-1}(i\lambda)| + |f_{\lambda}^{p-1}(i\lambda) - s_{n}|$$

$$\leq D_{M}^{+}|f_{\lambda}(z) - i\lambda| + D_{M}^{+}|\eta_{\lambda}|$$

$$\leq 3D_{M}^{+}|\lambda|e^{-2k} + \frac{1}{16}D_{M}^{+}|\lambda_{0}|e^{-2k}$$

$$\leq 5D_{M}^{+}|\lambda_{0}|e^{-2k}.$$
(4.4)

Now, fix in turn $\xi \in f_{\lambda}^{p}(\Pi^{-1}(X_{k}))$. Then $f_{\lambda,*}^{-(p-1)}(\xi) \in f_{\lambda}(\Pi^{-1}(X_{k}))$. Recall also that $f_{\lambda,*}^{-(p-1)}(s_{n}) = v_{\lambda}$. Now, using the Mean Value Inequality, (2.2) and (4.3), we get that

$$D_{M}^{+}|\xi - s_{n}| \geq |f_{\lambda,*}^{-(p-1)}(\xi) - f_{\lambda,*}^{-(p-1)}(s_{n})|$$

$$\geq |f_{\lambda,*}^{-(p-1)}(\xi) - i\lambda| - |f_{\lambda,*}^{-(p-1)}(s_{n}) - i\lambda|$$

$$\geq \frac{3}{2}|\lambda|e^{-2(k+1)} - |\eta_{\lambda}|$$

$$\geq \frac{1}{8}|\lambda_{0}|e^{-2k} - |\eta_{\lambda}|$$

$$\geq \frac{1}{16}|\lambda_{0}|e^{-2k}$$

 So

$$|\xi - s_n| \ge \frac{1}{16D_M^+} |\lambda_0| e^{-2k}.$$
 (4.5)

Now, we shall estimate from above the width of the set $f_{\lambda}^{p+1}(\Pi^{-1}(X_k))$. By (4.5) (3.5) and (4.4), we get for all $z_1, z_2 \in \Pi^{-1}(X_k)$ that

$$\begin{aligned} |f_{\lambda}^{(p+1)}(z_{2}) - f_{\lambda}^{(p+1)}(z_{1})| &= |f_{\lambda}(f_{\lambda}^{p}(z_{2})) - f_{\lambda}(f_{\lambda}^{p}(z_{1}))| \\ &\leq 2|\lambda| \Big(16D_{M}^{+}|\lambda_{0}|^{-1}\Big)^{2} e^{4k} \Big(\pi/2\Big) |f_{\lambda}^{p}(z_{2}) - f_{\lambda}^{p}(z_{1})| \\ &\leq 2^{9}\pi |\lambda_{0}|^{-1} \Big(D_{M}^{+}\Big)^{2} e^{4k} \Big(|f_{\lambda}^{p}(z_{2}) - s_{n}| + |f_{\lambda}^{p}(z_{1}) - s_{n}|\Big) \\ &\leq 2^{13}\pi |\lambda_{0}|^{-1} \Big(D_{M}^{+}\Big)^{3} e^{2k}. \end{aligned}$$

Hence

$$\sup \operatorname{Re}\left(f^{p+1}(\Pi^{-1}(X_k))\right) - \inf \operatorname{Re}\left(f^{p+1}(\Pi^{-1}(X_k))\right) \le 2^{13}\pi |\lambda_0|^{-1} \left(D_M^+\right)^3 e^{2k}.$$
 (4.6)

8

Now, take arbitrary point $z \in X_k$. Choose then any point $\tilde{z} \in \Pi^{-1}(z)$. We get by (3.4), (3.5) and (4.4) that

$$|(F_{\lambda}^{p+1})'(z)| = |(f_{\lambda}^{p+1})'(\tilde{z})| = |f_{\lambda}'(f_{\lambda}^{p}(z))||(f_{\lambda}^{p-1})'(f_{\lambda}(z))||f_{\lambda}'(z)|$$

$$\geq \frac{1}{2}|\lambda||f_{\lambda}^{p}(z) - s_{n}|^{-2}D_{M}^{-2}|\lambda|e^{-2(k+1)}$$

$$\geq e^{-2}D_{M}^{-}|\lambda|^{2}(5D_{M}^{+})^{-2}|\lambda_{0}|^{-2}e^{4k}e^{-2k}$$

$$\geq (2|\lambda_{0}|)^{-1}D_{M}^{-}(5eD_{M}^{+})^{-2}e^{2k}.$$
(4.7)

Since the map f_{λ}^{p+1} restricted to the set

$$\left\{ z \in \mathcal{C} : -\frac{\pi}{2} \le \operatorname{Re}(z) \le -\frac{\pi}{2} \quad \text{and} \quad k \le \operatorname{Im}(z) < k+1 \right\}$$

is one-to-one, it follows from (4.6) that the map $F_{|X_k}^{p+1}$ is at most $(2^{13}(D_M^+)^3|\lambda_0|^{-1}e^{2k})$ -to-one. Therefore, applying (4.7) and using h_{λ} -conformality of the measure m_{λ} , we get that

$$1 \ge m_{\lambda}(F_{\lambda}^{p+1}(X_k)) \ge 2^{-13} (D_M^+)^{-3} |\lambda_0| e^{-2k} \int_{X_k} |(F_{\lambda}^{p+1})'(z)|^{h_{\lambda}} dm_{\lambda}(z)$$
$$\ge 2^{-13} (D_M^+)^{-3} |\lambda_0| e^{-2k} \left((2|\lambda_0|)^{-1} D_M^- (5eD_M^+)^{-2} \right)^{h_{\lambda}} e^{2kh_{\lambda}} m(X_k)$$
$$\ge C^{-1} e^{2k(h_{\lambda}-1)} m(X_k),$$

where the existence of a constant C > 0 (independent of λ) follows from the middle line and the observation that $h_{\lambda} \in [1, 2]$. We are done.

Now, for each $\lambda \in V_r$, R > 0 and integer $j \ge 1$, let

$$P_{\lambda} = \left\{ z \in \mathcal{C} : \operatorname{Re}(w_0(\lambda)) - \frac{\pi}{2} \le \operatorname{Re}z < \operatorname{Re}(w_0(\lambda)) + \frac{\pi}{2} \right\}$$

and

$$A_j(\lambda, R) = A(w_0(\lambda), (j+1)^{-1}R, j^{-1}R) \cap P_{\lambda}$$

be the annulus centered at $w_0(\lambda)$ with inner radius $(j+1)^{-1}R$ and outer radius $j^{-1}R$ intersected with the vertical strip P_{λ} . We shall prove the following.

Lemma 4.2. There exists a constant $C_1 > 0$ (independent of λ) such that for every $\lambda \in V_r$ with $h_{\lambda} \geq 1$, every R > 0, and every integer $j \geq 1$,

$$m_{\lambda}(\Pi(A_j(\lambda, r))) \le C_1\left(\min\left\{\frac{\pi}{2}, R\right\}\right)^{-1} R^{2h_{\lambda}} |\eta_{\lambda}|^{h_{\lambda}-1} j^{1-2h_{\lambda}}$$

Proof. Since it is easy to calculate that

$$\operatorname{Im}(w_0(\lambda)) = \operatorname{Im}\left(\frac{1}{2i}\log_0\left(\frac{i\eta_\lambda}{2\lambda - i\eta_\lambda}\right)\right) = -\frac{1}{2}\log\left|\frac{i\eta_\lambda}{2\lambda - i\eta_\lambda}\right| = -\frac{1}{2}\log|\eta_\lambda| + \frac{1}{2}\log|2\lambda - i\eta_\lambda|,$$

where $\log_0\left(\frac{i\eta_\lambda}{2\lambda-i\eta_\lambda}\right)$ is a logarithm of $\frac{i\eta_\lambda}{2\lambda-i\eta_\lambda}$, we get that

$$-\frac{1}{2}\log|\eta_{\lambda}| + \frac{1}{2}\log|\lambda_{0}| \le \operatorname{Im}(w_{0}(\lambda)) \le -\frac{1}{2}\log|\eta_{\lambda}| + \frac{1}{2}\log|3\lambda_{0}|.$$
(4.8)

It therefore follows from (2.4) that every $z \in B(w_0(\lambda), R)$

$$|f_{\lambda}'(z)| \le 8|\lambda_0|\exp(\log|\eta_{\lambda}| - \log|\lambda_0|) = 8|\eta_{\lambda}|.$$

Thus, applying the Mean Value Inequality, we obtain for every $j \ge 1$, the following

$$f_{\lambda}(B(w_0(\lambda), Rj^{-1})) \subset B(v(\lambda), 8|\eta_{\lambda}|Rj^{-1}).$$

$$(4.9)$$

It follows from (4.8) and (2.4) that for every $z \in B(w_0(\lambda), R)$,

$$|f_{\lambda}'(z)| \ge 2|\lambda_0| \exp(\log|\eta_{\lambda}| - \log(3|\lambda_0|) = \frac{2}{3}|\eta_{\lambda}|.$$

$$(4.10)$$

Applying $\frac{1}{4}$ -Koebe's Distortion Theorem, we therefore get that

$$f_{\lambda}\Big(B(w_{0}(\lambda), R(j+1)^{-1}) \cap P_{\lambda}\Big) \supset f_{\lambda}\Big(B\Big(w_{0}(\lambda), \min\left\{\pi/2, R(j+1)^{-1}\right\}\Big)\Big)$$
$$\supset B\left(v(\lambda), \frac{1}{6}|\eta_{\lambda}| \min\left\{\pi/2, R(j+1)^{-1}\right\}\right)$$
$$\supset B\left(v(\lambda), \frac{1}{6}|\eta_{\lambda}| \min\left\{\pi/2, R\right\}(j+1)^{-1}\right).$$

Since the map f_{λ} restricted to the set $B(w_0(\lambda), R) \cap P_{\lambda}$ is one-to-one, we thus conclude (using also (4.9) that

$$f_{\lambda}(A_j(\lambda, R)) \subset A\left(v(\lambda), \frac{1}{6}\min\left\{\pi/2, R\right\} |\eta_{\lambda}| (j+1)^{-1}, 8R|\eta_{\lambda}| j^{-1}\right).$$
(4.11)

Since $f_{\lambda}^{p-1}(v_{\lambda}) = s_n$ and since $(f_{\lambda}^{p-1})'(i\lambda_0) \neq 0$, it follows from (2.6) that there exists a universal radius T > 0 such that the map f_{λ}^{p-1} (restricted to to the ball $B(v_{\lambda}, T)$ is univalent and

$$\frac{1}{2}|(f_{\lambda_0}^{p-1})'(i\lambda_0)| \le |(f_{\lambda}^{p-1})'(z)| \le 2|(f_{\lambda_0}^{p-1})'(i\lambda_0)|$$
(4.12)

for all r > 0 large enough (so that λ is as close to λ_0 as one wishes) and for all $z \in B(v_{\lambda}, T)$. So applying the Mean Value Theorem, $\frac{1}{4}$ -Koebe Distortion Theorem and (4.11) yields that for all $\lambda \in V_r$ and all $j \ge 1$ that

$$f_{\lambda}^{p}(A_{j}(\lambda,R)) \subset A\left(s_{n}, \frac{1}{48} | (f_{\lambda_{0}}^{p-1})'(i\lambda_{0})| \min\left\{\pi/2, R\right\} |\eta_{\lambda}|(j+1)^{-1}, 16| (f_{\lambda_{0}}^{p-1})'(i\lambda_{0})| R|\eta_{\lambda}| j^{-1}\right)$$
(4.13)

Hence, if $z \in A_j(\lambda, R)$ then using (3.5) we get that

$$|f_{\lambda}'(f_{\lambda}^{p}(z))| \geq 2^{-10} |\lambda_{0}|| (f_{\lambda_{0}}^{p-1})'(i\lambda_{0})|^{-2} R^{-2} |\eta_{\lambda}|^{-2} j^{2}.$$

10

Consequently using (4.10) and (4.12) we get that for every $\zeta \in \Pi(A_i, (\lambda, R))$ $\zeta = \Pi(z)$, $z \in A_i(\lambda, R)$ that

$$|(F_{\lambda}^{p+1})'(\zeta)| = |(f_{\lambda}^{p+1})'(\zeta)|$$

= $|f_{\lambda}'(z)||(f_{\lambda}^{p-1})'(f(z))||f_{\lambda}'(f_{\lambda}^{p}(z))|$
 $\geq 3^{-1}2^{-10}|\lambda_{0}||(f_{\lambda_{0}}^{p-1})'(i\lambda_{0})|^{-1}R^{-2}|\eta_{\lambda}|^{-1}j^{2}.$ (4.14)

Looking at (4.13) and (3.6) we see that

$$f_{\lambda}^{p+1}(A_j(\lambda, R)) \subset B(0, 96|\lambda_0||(f_{\lambda_0}^{p-1})'(i\lambda_0)|^{-1}(\min\{\pi/2, R\})^{-1}|\eta_{\lambda}|^{-1}(j+1).$$

Since f_{λ}^{p+1} restricted to $A_j(\lambda, R)$ is one-to-one, we therefore conclude that the map F_{λ}^{p+1} restricted to $\Pi(A_j(\lambda, R))$ is at most $96\pi^{-1}|\lambda_0||(f_{\lambda}^{p-1})'(i\lambda_0)|^{-1}(\min\{\frac{\pi}{2}, R\})^{-1}|\eta_{\lambda}|^{-1}j$ -to-one. Hence, using this fact, (4.14) and conformality of the measure m_{λ} , we get that

$$1 \ge m_{\lambda}(F_{\lambda}^{p+1}(A_{j}(\lambda, R)))$$

$$\ge \left(96\pi^{-1}|\lambda_{0}||(f_{\lambda}^{p-1})'(i\lambda_{0})|(\min\{\pi/2, R\})^{-1}|\eta_{\lambda}|^{-1}j\right)^{-1}\int_{A_{j}(\lambda, R)}|(F_{\lambda}^{p+1})'|^{h_{\lambda}}dm_{\lambda}$$

$$\ge \frac{\pi}{96}|(f_{\lambda_{0}}^{p-1})'(i\lambda_{0})|^{-1}\min\{\pi/2, R\}|\eta_{\lambda}|j^{-1}\left(3^{-1}2^{-10}|\lambda_{0}|(f_{\lambda_{0}}^{p-1})'(i\lambda_{0})|^{-1}R^{-2}|\eta_{\lambda}|^{-1}j^{2}\right)^{h_{\lambda}}\cdot m_{\lambda}(A_{j}(\lambda, R)).$$

Thus

$$m_{\lambda}(A_j(\lambda, R)) \leq C_1(\min\{\pi/2, R\})^{-1} R^{2h_{\lambda}} |\eta_{\lambda}|^{h_{\lambda} - 1} j^{1 - 2h_{\lambda}},$$

a universal constant, since $h_{\lambda} \in [1, 2]$. We are done.

where $C_1 > 0$ is a universal constant, since $h_{\lambda} \in [1, 2]$. We are done.

Since hyperbolic sets are stable under perturbations and their Hausdorff dimension is determined by Bowen's formula, we get that

$$\lim_{\lambda \to \lambda_0} h_{\lambda}^* \ge h_{\lambda_0}^*. \tag{4.15}$$

Since B. Skorulski proved in Theorem 5.6 of [6] that $h_{\lambda_0}^* > 1$, we therefore conclude that there is s > 1 such that

$$h_{\lambda} = h_{\lambda}^* \ge s > 1$$

for all r > 0 large enough and all $\lambda \in V(\lambda_0, \alpha, r)$. Writing $C_2 = C_1 \sum_{j=1}^{\infty} j^{1-2s}$, we obtaining the following immediate consequence of Lemma 4.2.

Corollary 4.3. For all r > 0 large enough, all $\lambda \in V_r$ and all $R \geq \frac{\pi}{2}$

$$m_{\lambda}(\Pi(B(w(\lambda_0), R))) \leq \frac{C_2 \pi}{2} R^4 |\eta_{\lambda}|^{s-1}.$$

5. TIGHTNESS OF CONFORMAL MEASURES

We shall prove in this section the following.

Lemma 5.1. With the assumptions of Theorem A, the family

 $\{m_{\lambda}\}_{\lambda\in V(\lambda_0,\alpha,r)}$

is tight, where m_{λ} is the h_{λ} -conformal measure for $F_{\lambda} : Q \to Q$ introduced in the beginning of Section 4.

Proof. Since

$$\lim_{t \to +\infty} D_t^+ = \lim_{t \to +\infty} D_t^- = |(f_{\lambda_0}^{p-1})'(i\lambda_0)|,$$

we have that

$$\frac{1}{2}|(f_{\lambda_0}^{p-1})'(i\lambda_0)| \le D_M^- \le D_M^+ \le 2|(f_{\lambda_0}^{p-1})'(i\lambda_0)|$$

for all $M \ge T$, with some fixed T > 0 large enough. It therefore follows from Lemma 3.2 that for all $\lambda \in V(\lambda_0, \alpha, r)$

$$J(f_{\lambda}) \subset \{ z \in \mathcal{C} : |\mathrm{Im}z| \le \Delta^*(\lambda) \}$$

$$(5.1)$$

where

$$\Delta^{*}(\lambda) = \frac{1}{2} \Big(-\log |\eta_{\lambda}| + 10 + \log |\lambda_{0}| - \log \kappa + \log K \\ + 2\log(2|(f_{\lambda_{0}}^{p-1})'(i\lambda_{0})|) - 2\log((1/2)|(f_{\lambda_{0}}^{p-1})'(i\lambda_{0})|) \\ = \frac{1}{2} \Big(-\log |\eta_{\lambda}| + 10 + 4\log 2 + \log |\lambda_{0}| - \log \kappa + \log K \Big)$$

Our first goal is to show if r > 0 is large enough, then

$$\lim_{M \to +\infty} \sup\{m_{\lambda}(\{z \in Q : \operatorname{Im} z \ge M\}): \quad \lambda \in V(\lambda_0, \alpha, r)\} = 0.$$
(5.2)

Indeed, let

$$R = \max\{10 + 4\log 2 + \log K - \log \kappa, \log 30\}.$$

It then follows from (5.1) and (4.8) that

$$J(F_{\lambda}) \cap \{z \in Q : \operatorname{Im} z \ge M\} \subset \bigcup_{k=M}^{q_{\lambda}} X_k \cup B(w(\lambda_0), R)),$$

where

$$q_{\lambda} = -\frac{1}{2} \log |\eta_{\lambda}| + \frac{1}{2} (\log |\lambda_0|/16).$$

Hence, applying Lemma 4.1 and Corollary 4.3, we obtain with r > 0 large enough for every $\lambda \in V_r$, that

$$m_{\lambda}(J(F_{\lambda}) \cap \{z \in Q : \operatorname{Im} z \ge M\}) \le \sum_{k=M}^{q_{\lambda}} Ce^{2k(1-s)} + \frac{\pi C_2}{2} R^4 |\eta_{\lambda}|^{s-1} \\ \le \frac{Ce^{2M(1-s)}}{1-e^{2(1-s)}} + \frac{\pi C_2}{2} R^4 |\eta_{\lambda}|^{s-1}.$$

Since 1 - s < 0 and since $\lim_{\lambda \to \lambda_0} |\eta_{\lambda}| = 0$, formula (5.2) follows. Let $S : \mathcal{C} \to \mathcal{C}$ be given by the formula S(z) = -z. This map obviously projects down to the map $\hat{S} : Q \to Q$ such that the following diagram commutes.

Let $m'_{\lambda} = m_{\lambda} \circ \hat{S}^{-1}$. Looking at this diagram, we see that $\hat{S} \circ \hat{S} = id$ (in particular \hat{S} is invertible and $\hat{S}^{-1} = \hat{S}$) and $\hat{S}^{-1} \circ F_{\lambda} = F_{\lambda} \circ \hat{S}^{-1}$. Since $|(\hat{S})'(z)| = 1$ for all $z \in Q$, it also follows from (5.3) that $|F'_{\lambda}(S^{-1}(z))| = |F'_{\lambda}(z)|$. Consequently

$$\frac{dm'_{\lambda} \circ F_{\lambda}}{dm'_{\lambda}}(z) = \frac{dm_{\lambda} \circ \hat{S}^{-1} \circ F_{\lambda}}{dm_{\lambda} \circ \hat{S}^{-1}}(z)$$
$$= \frac{dm_{\lambda} \circ F_{\lambda} \circ \hat{S}^{-1}}{dm_{\lambda} \circ \hat{S}^{-1}}(z)$$
$$= \frac{dm_{\lambda} \circ F_{\lambda}}{dm_{\lambda}}(\hat{S}^{-1}(z))$$
$$= |F'_{\lambda}(z)|^{h_{\lambda}}(\hat{S}^{-1}(z))$$
$$= |F'_{\lambda}(z)|^{h_{\lambda}}$$

This means that m'_{λ} is an h_{λ} -conformal measure for F_{λ} . The uniqueness (see[4]) of such conformal measure implies that $m'_{\lambda} = m_{\lambda}$ or equivalently $m_{\lambda} \circ \hat{S}^{-1} = m_{\lambda}$. Hence

$$m_{\lambda}(\{z \in Q : \mathrm{Im} z \leq -M\}) = m_{\lambda}((\hat{S})^{-1}(\{z \in Q : \mathrm{Im} z \leq -M\})).$$

Combining this and (5.2), we see that

$$\lim_{M \to +\infty} \sup\{m_{\lambda}(\{z \in Q : |\mathrm{Im}z| \ge M\}): \quad \lambda \in V(\lambda_0, \alpha, r)\} = 0.$$

Since the set $\{z \in Q : |\text{Im}z| \leq M\}$ is compact, the tightness of the family of measures $\{m_{\lambda}\}_{\lambda \in V(\lambda_0, \alpha, r)}$ is established.

JANINA KOTUS AND MARIUSZ URBAŃSKI

6. Conclusion of the proof of Theorem A

Take $\{\lambda_n\}_{n=0}^{\infty}$, any sequence of parameters from $V(\lambda_0, \alpha, r)$ such that $\lim_{n\to\infty} \lambda_n = \lambda_0$. In order to conclude the proof it suffices to show that

$$\lim_{n \to \infty} h_{\lambda_n} = h_{\lambda_0^*}$$

Since $h_{\lambda} \in [s, 2], s > 1$, we may assume without loss of generality that the sequence $\{h_{\lambda_n}\}_{n=1}^{\infty}$ converges, say, to $t \in [s, 2]$. Combining Lemma 5.1 and Prokhorov theorem (see [1], Theorem 5.1, Section 5, p. 59), we conclude that there is a subsequence of the sequence $\{m_{\lambda_n}\}_{n=1}^{\infty}$ converges weakly to a Borel probability measure m on Q. We may assume without loss of generality that the sequence $\{m_{\lambda_n}\}_{n=1}^{\infty}$ converges itself to the measure m. It is by now standard and not too difficult (see [7] for details in a compatible situation) to show that m is a t-conformal measure for F_{λ_0} . Since, in addition $J(F_{\lambda_0}) = Q$ and since $t \geq s > 1$, it follows from Theorem 5.6 from [6] that $t = h_{\lambda_0}^*$, and we are done.

Proposition 6.1. With the assumption of Theorem A, we have that

$$\lim_{\lambda \to \lambda_0} m_{\lambda} = m_{\lambda_0},$$

where m_{λ_0} is the weak limit of $\{m_{\lambda}\}_{\lambda \in V(\lambda_0, r, \alpha)}$, and where m_{λ} is the only h_{λ} -conformal measure of F_{λ} on $J(F_{\lambda_0})$.

References

- [1] P. Billingsley, Convergence of Probability Measures, Wiley, 2nd Edition, 1999.
- [2] L. Keen, J. Kotus, The dynamics of the family $\lambda \tan z$ Conf. Geom. and Dyn. 1, 28-57, (1997).
- [3] L. Keen, J. Kotus, On period doubling phenomena and Sharkovkii type ordering for the family $\lambda tan(z)$ Contemporary Mathematics 303, 51-78, (2002).
- [4] J. Kotus, M. Urbański, Conformal, geometric and invariant measures for transcendental expanding functions, Math. Ann. 324, 619-656, (2002).
- [5] J. Kotus, M. Urbański, Fractal measures and ergodic theory of transcendental meromorphic functions Preprint 2004, available on Mariusz Urbański's web page http://www.math.unt.edu/~urbanski
- B. Skorulski, The existence of conformal measures for some transcendental meromorphic functions, Preprint 2004.
- [7] M. Urbański, A. Zdunik, The parabolic map $f_{1/e}(z) = \frac{1}{e}e^z$, Indagationes Math. 15 (2004), 419-433.

JANINA KOTUS, FACULTY OF MATHEMATICS AND INFORMATION SCIENCES WARSAW UNIVERSITY OF TECHNOLOGY WARSAW 00-661, POLAND E-MAIL: JANINAK@IMPAN.GOV.PL

MARIUSZ URBAŃSKI, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, P.O. BOX 311430, DENTON, TX 76203-1430, USA E-MAIL:URBANSKI@UNT.EDU WEB: HTTP://WWW.MATH.UNT.EDU/~URBANSKI