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ABSTRACT. The escape rates for a ball in a dynamical systems has been much studied.
Understanding the asymptotic behavior of the escape rate as the radius of the ball tends
to zero is an especially subtle problem. In the case of hyperbolic conformal systems this
has been addressed by various authors in several papers and these results apply in the case
of real one dimensional expanding maps and conformal expanding repellers, particularly
hyperbolic rational maps.

In this manuscript we consider a far more general realm of conformal maps where the
analysis is correspondingly more involved. We prove the asymptotic existence of escape
rates and calculate them in the context of countable alphabets, either finite or infinite,
uniformly contracting conformal graph directed Markov systems with their special case of
conformal countable alphabet iterated function systems. The reference measures are the
projections of Gibbs/equilibrium states of Holder continuous summable potentials from a
countable alphabet subshifts of finite type to the limit set of the graph directed Markov
system under consideration.

This goal is achieved firstly by developing the appropriate theory of singular pertur-
bations of Perron-Frobenius (transfer) operators associated with countable alphabet sub-
shifts of finite type and Holder continuous summable potentials. This is done on the purely
symbolic level and leads us also to provide a fairly full account of the structure of the cor-
responding open dynamical systems and, associated to them, surviving sets for the shift
map with the holes used for singular perturbations. In particular, we prove the existence
of escape rates for those open systems. Furthermore, we determine the corresponding
conditionally invariant probability measures that are absolutely continuous with respect
to the reference Gibbs/equilibrium/state. We also prove the existence and uniqueness of
equilibrium measures on the symbol surviving sets. We equate the corresponding topolog-
ical pressures with the negatives of escape rates. Eventually we show that these equilibria
exhibit strong stochastic properties, namely the Almost Sure Invariance Principle, and
therefore, also an exponential decay of correlations, the Central Limit Theorem and the
Law of Iterated Logarithm.

In particular, this includes, as a second ingredient in its own right, the asymptotic be-
havior of leading eigenvalues of perturbed operators and their first and second derivatives.

Our third ingredient is to relate the geometry and dynamics, roughly speaking to relate
the case of avoiding cylinder sets and that of avoiding Euclidean geometric balls. Towards
this end, in particular, we investigate in detail thin boundary properties relating the mea-
sures of thin annuli to the measures of the balls they enclose. In particular we clarify the
results in the case of expanding repellers and conformal graph directed Markov systems
with finite alphabet.

The setting of conformal graph directed Markov systems is interesting in its own and
moreover, in our approach, it forms the key ingredient for further results about other con-
formal systems. These include topological Collet-Eckmann multimodal interval maps and
topological Collet-Eckmann rational maps of the Riemann sphere (an equivalent formula-
tion is to be uniformly hyperbolic on periodic points), and also a large class of transcen-
dental meromorphic functions.

Our approach here,in particular in relation to the applications mentioned in the previous
paragraph, is firstly to note that all of these systems yield some sets, commonly referred
to as nice ones, the first return (induced) map to which is isomorphic to a conformal
countable alphabet iterated function system with some additional properties. Secondly,
with the help of appropriate large deviation results, to relate escape rates of the original
system with the induced one and then to apply the results of graph directed Markov
systems. The reference measures are again Gibbs/equilibrium states of some large classes
of Holder continuous potentials.
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1. INTRODUCTION

The escape rate for a dynamical system is a natural concept which describes the speed
at which orbits of points first enter a small region of the space. The size of these sets is
usually measured with respect to an appropriate probability. More precisely, given a metric
space (X, d), we can consider a (usually) continuous transformation 7" : X — X and a ball

B(z,e) ={x € X : d(z,2) < e}

of radius € > 0 about a given point z. We then obtain an open system by removing B(z, ¢)
and considering the new space X \ B(z,¢) and truncating those orbits that land in the
ball B(z,¢€), which can be thought of informally as a “hole” in the system. This is the
reason that many authors speak of escape rates for the system, whereas it might be a more
suitable nomenclature to call them avoidable or survivor sets.

We can then consider for each n > 0 the set R, (z,¢) of points x € X for which all the
first n terms in the orbit omit the ball, i.e.,

z,T(x),...,T" *(z) & B(z,¢).
It is evident that these sets are nested in both parameters € and n, i.e.,
Ryi1(z,€) C Ru(z,¢)
for all n > 1 and that
R, (z,¢) C Ry(z,¢)

for € > ¢’. We can first ask about the behavior of the size of the sets R, (z,¢) as n — +o0.

If we assume that p is a T-invariant probability measure, say, then we can consider the
measures (1(R,(z,¢€)) of the sets R,(z,¢) as n — +o00. In particular, we can define the
lower and upper escape rates respectively as

R, (B(z,e)) = — lim llogyJ(Rn(z,E)) and R,(B(z,e)) = — lim llogu(Rn(,z,s)).

n—+oo N n——4oo T
We say that the escape rates exist if

R,(B(z¢)) = Ru(B(z,2)),



we denote this common number by
R,(B(z,¢€))

and refer to is as the escape rate from B(z,e). One can further consider how the escape
rates behave as the radii of the balls tend to zero. This, in the context of appropriate
conformal dynamics, is one of the three primary goals of the present work.

Our second goal is to understand the geometry of the avoiding/survivor sets

K.(e):={r € X :T"(z) ¢ B(z,¢) Vn > 0}.
Such sets are T-invariant, meaning that
T(K.(e)) € K.(e),

and are usually of measure p zero, but there is another natural quantity to measure their
size and complexity, namely their Hausdorff dimension. Our goal is to put our hands on the
asymptotic values of HD(K,(¢)) when £ \ 0; again in the context of appropriate conformal
dynamics.

Escape rates and asymptotics of HD(K,(¢)) are indeed natural and well-motivated quan-
tities to study in the context of open systems, they quantitatively measure the way points
avoid the holes under iteration. Gerhard Keller in [24] has unraveled some connections of
escape rates with non-singular perturbations of Perron-Frobenius operators. But these,
i.e. escape rates and asymptotics of HD(K,(¢)), are not the only foci of our manuscript.
Our approach to survivor sets is more comprehensive. There are more concepts, notions
and results finely describing what is going on with the survivor sets. One should mention
here first of all the pioneering works [38], [37], and [9] respectively of G. Pianigiani, G. G.
Pianigiani and J. A. Yorke, and of P. Collet, S. Martinez and B. Schmitt. Furthermore [§],
110, [26], [24], [13],[14], [10], [28], [27], [12], [15], the references therein and many more; we
are far from pretending for this list of references to be complete. The concepts worked out
throughout these works include the following.

First one should notice that in all the above the ball B(z, ¢) can be replaced by any open
set, and the concepts of survivor sets and escape rates remain unchanged. Let us denote
such arbitrary open set by U. We write then K (U) for the corresponding survivor set.

We call a Borel probability measure v on X \ U conditionally invariant if there exists
a € (0,400) such that

(1.1) V(X \ U)NTY(A)) = av(A)

for every Borel set A C X \ U. In slightly different terms, a Borel probability measure v
on X is conditionally invariant with respect to X \ U if (X \ U) =1 and

(1.2) voT ' =av.

If v is absolutely continuous with respect to p,, an equilibrium state of a “sufficiently
good” continuous potential ¢ : X — R, then we call a T-invariant Borel probability measure
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pon K(U) a surviving equilibrium for ¢ if it is “an ordinary” equilibrium state on K (U)
for the map T': K(U) — K(U), i.e. if

sup {h,,(o) + /K(U )godz/} =h,(0) + /K(U )godu,

where the supremum is taken over all Borel probability 7T—invariant measures v on K (U)
for which | K(U)(—gp) dv < 400, and if in addition the above quantity is equal to log .

The most natural and intriguing questions are about the existence and uniqueness of
conditionally invariant measures absolutely continuous with respect the reference measure
1, the existence and uniqueness of surviving equlibria, and the value of the supremum
above; the one being commonly expected to be equal to the negative escape rate. We
address all these questions in full on the symbolic level resulting from complex dynamics
considerations.

We begin by describing some of the background for this area. An early influential result
in the direction of understanding asymptotic escape rates was [51]. Perhaps the simplest
case is that of the doubling map Es : [0,1) — [0,1) defined by

Es(x) = 2z(mod 1)

and the usual Lebesgue measure . For this example it was Bunimovitch and Yurchenko
[4] (see also [26]) who proved the following, perhaps surprising, result showing that

hm E}\(B(’Z7 8)) — hm R/\(B(z7 8)) —
e=0 A(B(xg,€)) =0 A(B(xg,¢))
1.
( )1 if z is not periodic
~|1—2"7 if EP(2) = z is periodic (with minimal period p).

In particular, the asymptotic escape rate can only take a certain set of values which are
determined by the periods of periodic points. More results in this direction followed,
particularly in [26], [24], [20], [12], [11], [14].

We will return to generalizations of these ideas after discussing the problem of the Haus-
dorff dimension of surviving sets K,(¢). The second named author already addressed this
question in the early 80s by showing in [49] and [50] that in the case of the the doubling
map Es, or more generally, of any map E,(z) = gz (mod1), ¢ being an integer greater
than 1 in absolute value, or even more generally, in the case of any C''™ expanding map
of the unit circle, the map

e — HD(K,(¢))

is continuous. Moreover, he also showed that this function is almost everywhere locally
constant, in fact, the set of points where it fails to be locally constant is a closed set of
Hausdorff dimension 1 and Lebesgue measure zero. Rather curiously, the local Hausdorff
dimension at each point € of this set is equal to HD(K,(g)). More about the function
e — HD(K,(¢)) and related questions can be found for example in [2] and [6]. All of
this suggests that it is interesting to study the asymptotic properties of HD(K,(¢)) when
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€ \¢ 0. Andrew Ferguson and the first named author of this paper took up the challenge
by proving in [20] that

(1.4)

1/x if z is not a periodic point of T
. HD(J) —HD(K.(r)) ) 1ty e L - .
lim = if z is a periodic point of T with prime period
=0 w(B(z7)) Xew

p>1

in the case of any conformal expanding repeller 7' : J — J; where b here is just the Hausdorff
dimension HD(J) and p, is the equilibrium state of the Holder continuous potential J >
x +— —blog|T"(x)|. They have also established the analogue of ([1.3]) for such systems.

The approach of [20] was based on the method of singular perturbations, pioneered in the
context of open systems by Véronique Maume-Deschamps and Carlangelo Liverani in [27],
of the Perron—Frobenius operators determined by the open sets B(z,¢). They first did this
for neighborhoods of z formed by finite unions of cylinders of nth refinements of a Markov
partition and then used appropriate approximation. This required leaving the realm of the
familiar Banach space of Holder continuous functions, to work with a more refined space,
and they applied the seminal results of Keller and Liverani from [25] to control the spectral
properties of perturbed operators.

For completeness, we recall that Keller and Liverani introduced a different framework in
[26], whereby one considers a family P.: V — V (0 < € < ¢y) of bounded linear operators
with a spectral gap, i.e.,

Pe - )\eyﬁ(')goe + Ue
with A > 0 and normalization v.(¢.) = 1, where P.U. = 0 and U, has spectral radius
strictly smaller than A.. The approach of Keller-Liverani requires a series of functional
analytic assumptions. Firstly, they assume that

Ch = Z sup |[|[U]] < 400 and Cy := sup ||¢e|| < +oo where v4(p,) = 1.
n—0 €€[0,e0] €€[0,¢0]

Secondly, they denote A, := vy ((Py — P.)(¢o)) and require that there exists C3 > 0 such
that
Nell(Po — P.) (o)l < Cs|A¢| where . := ||vg(P — P.)|| = 0 as € — 0.

In particular, they can first write
Ao — Ae = Aovo(pe) — Uo(Ae(pe)) = no((Fo — Pe)(@e)) < Cone.
If A, # 0 for sufficiently small € > 0, then for £ > 0 they denote
qr = lg% vo((Fo — Pf)PiiPO — P))(¢o)
and then they have an expression

. )\0_)\6_ -
= _1_;;%'
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Finally, to relate this formula to the escape rate problem, they apply these results to the
special choice of operator P, := L(I — 1y, ) where L is the usual Perron-Frobenius operator
for piecewise monotone expansive maps on the Banach space V' of functions of bounded
variation and where U, are a nested sequence of intervals shrinking to a point.

For our purposes it was more natural and more suitable to advance the approach in [20]
rather than to deal with the one in [26].

We now turn to describing and discussing our results in relation to the three general
goals and questions described above. In the current manuscript we want to understand
the escape rates, in the sense of equations and , of essentially all conformal dy-
namical systems with an appropriate type of expanding dynamics. By this we primarily
mean a large class of topologically exact smooth maps of the interval [0, 1], many rational
functions of the Riemann sphAere C with degree > 2, a vast class of transcendental mero-
morphic functions from C to C, and last, but not least, the class of all countable alphabet
conformal iterated function systems, and somewhat more generally, the class of all count-
able alphabet conformal graph directed Markov systems. This last class, i.e the collection
of all countable alphabet conformal iterated function systems (IFSs), has a special status
for us. The reasons for this are two-folded. Firstly, this class is interesting by itself, and
secondly, by means of appropriate inducing schemes (involving the first return map), it is
our indispensable tool for understanding the escape rates of all other systems mentioned
above.

In order to deal with escape rates for countable alphabet conformal IFSs and conformal
graph directed Markov systems (GDMSs), motivated by the work [20] of Andrew Ferguson
and the first named author of this paper, we first develop the singular perturbation theory
for Perron-Frobenius operators associated to Holder continuous summable potentials on
countable alphabet shift of finite type symbol space.

A comprehensive account of the thermodynamic formalism in the symbolic context can
be found in [31], cf. also [29] and [30]. The general approach to control the above mentioned
singular perturbations is again based on the spectral results of Keller and Liverani from
[25]. Because of its critical importance to us, for the convenience of the reader and for
our convenience of reference, we bring up the setting of [25] in Appendix at the end of our
manuscript. We formulate there Theorem 1 of [25] and all its consequences that we shall
need.

The perturbations in the case of a countable infinite alphabet require further refinement
of the Banach space on which the original and perturbed Perron—Frobenius operators act.
This space, By, with its (relatively) strong norm ||- ||y is defined already in the beginning of
Section [3] Its weak norm || - ||, is defined in Section [4] and plays a crucial role in Section
in showing the smallness of perturbations of Perron-Frobenius operators as acting from By
endowed with the strong norm || - ||s to By endowed with the weak norm || - ||.. As already
said, this method of perturbing the Perron—Frobenius operators from a strong norm to a
week one, was pioneered in the conext of open systems by Véronique Maume—Deschamps
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and Carlangelo Liverani in [27] and later was applied many times, for example in [24], [I5],
and [20].

The culminating technical result, a kind of source of all that follows, of our investiga-
tions of singular perturbations of Perron-Frobenius operators (Part [1f) is Proposition
establishing spectral gaps for perturbed operators. Its further versions (such as singular
perturbations of already perturbed operators) are needed and provided for example in Sec-
tion see Lemma therein. We prove Proposition by applying Theorem 1 of [25]
and its consequences derived therein. As we have already said, for the convenience of the
reader and convenience of referring to, we bring up the setting of [25] in Appendix at the
end of our manuscript. We formulate there Theorem 1 of [25] and all its consequences we
need.

Already the definition of the Banach space By is non-standard and non—canonical. Through
the definition of the norm |- ||, it involves the corresponding Gibbs/equilibrium measures.
These measures play a further prominent role when investigating singular perturbations.
Qualitatively new difficulties here, caused by an infinite alphabet, are many fold and a
great deal of them are related to the facts that the symbol space EY need not longer be
compact, that there are infinitely many cylinders of given finite length, and that summable
(particular geometric) potentials are unbounded in the supremum norm. Some remedy to
this unboundedness issue is our repetitive use of Hoélder inequalities rather than estimating
by the supremum norms.

Part |2} Symbol Escape Rates and the Survivor Set K (U,,), is still on the level of symbolic
dynamics, no geometry involved. The holes U,,, being special unions of cylinders of length n,
are tailor crafted for the needs of the next part, Part[3} Escape Rates for Conformal GDMSs
and IFSs. However, these holes are of fairly general form, are of their own interest, and
become particularly simple if the alpabet E is finite. We present a full account of ergodic
theory and thermodynamic formalism for the open dynamical systems they generate.

Let E be a countable alphabet and let A : E x E — {0,1} be a finitely primitive
incidence matrix. Let ¢ : EY — R be a Holder continuous summable potential with
equilibrium/Gibbs state pi,. Specifically, in Part , we prove the following results.

Theorem 1.1. If an integer n > 0 is big enough as required in Proposition[5.2] then [i,, a
probability multiple of p,|ue s a unique conditionally invariant measure on Uy absolutely
continuous with respect to ji,|ye whose Radon-Nikodyn derivative dji,/dju, belongs to By.

In addition, the coefficient o of and is equal to (= i, (07 (UY))) and for every
Borel set B C Uy, we have that

gl (B) N
k—+o0 oy, (07F(US) N UE)

:ﬁn<B>-

Theorem 1.2. Assume that [(—p)du, < +oo. If an integer n > 0 is big enough as
required in Proposz'tz'on then the escape rate R, (Uy,) exists and is equal to —log\,,
where (see Proposition|5.2]) A, is the spectral radius of the perturbed operator L, generated
by the hole U,.
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Theorem 1.3. If an integer n > 0 is big enough as required in Proposition [5.2] then

sup {hy(a)—l—/ pdv:ve M:{(U)} = sup {hu(a)+/ pdv:v e M:{e(a)} = log \,,
K(Un) K

(Un)

where, as above, X\, is the spectral radius of the perturbed operator L, generated by the hole
U,.

Theorem 1.4. Assume that [(—p)du, < +oo. If an integer n > 0 is big enough as
required 1n Proposition then there exists a unique (ergodic) surviving equilibrium state
on the survivor set K(Uy,).

Precisely, the bounded positive linear functional, defined in , restricted to the Ba-
nach space of bounded Holder continuous functions on EY, extends uniquely to a Borel
probability measure p, on EY which is supported on K(U,), shift-invariant and ergodic.
This is the unique surviving equilibrium mentioned above. Being an equilibrium means that

h,, (o) + / o dpy, = log \,,.
K(Un)

Theorem 1.5. If an integer n > 0 is big enough as required in Proposition[5.2] and i, is
the unique (ergodic) surviving equilibrium state on the survivor set K(U,), described in the
previous theorem, then the measure—preserving dynamical system (o : K(U,) — K(U,), tin)
satisfies an Almost Sure Invariance Principle. In particular, the Central Limit Theorem
and the Law of Iterated Logarithm hold:

Let d > 1 be an integer. Fixz an integer n > 0 so large as required in Proposition |5.2).
Let g : K(Uy,) — R? be a bounded Hélder continuous function. Then there exists a matriz
¥2:{1,2,...,d}? — R? such that the process

(9 oo* — / 9 dﬂn)
K(Un) k=1

satisfies an almost sure invariance principle with the limiting covariance X2. In particular,

the sequence
. o0
(Zgoaj—k/ gdun)
- K(Un) k=1

converges in distribution to the Gaussian (normal) distribution N'(0,0%). In addition, if
d =1 then the Law of Iterated Logarithm holds in the form that for p,-a.e. w € K(U,),
we have that
325m0 90 0 (@) = K f,y 9t
lim sup :
k—+00 Vvkloglogk

where 02 := Y2 is a non-negative number. It is positive if an only if the function g :
K (U,) — R is not cohomologous to a constant in L*(u,).

= V27no,

2



11

Theorem 1.6 (Exponential Decay of Correlations). Suppose that (U,)%2, is a sequence
of open subsets of EY satisfying conditions (U0)-(U5). Fiz an integer n > 0 so large
as requz'red in Proposition Then there ezist k € (0,1) and C € (0,+00) such that if
g: KU, - Risa bounded Holder continuous function and h € L'(ju,), then

‘/ (goo* )dun—/ gdun/ hdp, SC*@”HQH@/ |l dpn
K(Un) (Un) K(Un) K(Un)

for every integer k > 0.

We cannot really do much better with the uniqueness part of Theorem|[I.1} the hypothesis
that the Radon-Nikodyn derivative dji,,/du., belongs to By is important. Indeed, it follows
from Theorem 3.1 in [14], that for every a € (0,1) there are uncountably (a continuum) of
many conditionally invariant measures absolutely continuous with respect to y,. Moreover,
if @ € (0,1) is sufficiently small, then the Radon-Nikodym derivatives of all these measures
with respect to p, are bounded.

We would like to add that some of the results listed above were obtained in [I1] in
the context of open systems generated by holes in an infinite alphabet finitely primitive
symbolic subshift of finite type. Their holes were unions of cylinders of length 1 and their
methods were different, i.e. not perturbative. For the case of finite alphabet the reader is
encouraged to consult the book [8].

We would also like to note that Parts[l], [3] and [4] are quite independent of Part 2l Except
that the results of Section [7] in Part [2] are absolutely indispensable for all the rest the
manuscript and the proof of 116.31D presented in Section |16| of Par is so simple because
we were able to show in Part [2that the functionals yu,, appearing there are in fact measures.

Having analyzed the symbolic part of the problem, we turn to escape rates for conformal
GDMSs. With regard to formula , we consider the, already mentioned, measures on
the limit set of the given conformal GDMS, that are projections of Gibbs/equilibrium states
of Holder continuous potentials from the symbol space. With respect to formula , we
must consider geometric potentials, i.e. those of the form

EY 3w tlog |<p;0(7r3(a(w)))} cR

where 7 : EY — X is the canonical map for modeling the dynamics on X. Of particular
interest are those for which ¢ is close to bs, the Bowen parameter of the system conformal
GDMSS, which is defined as the only solution to the pressure equation

P (o, tlog |¢l,, (ms(o(w)))]) = 0,
provided that such a solution exists. We can then consider the projection of the Gibbs/equilibrium
state 1, for the potential ¢ log |, (7s(c(w)))| on the limit set Js . This leads to the partic-
ularly technically involved task of calculating the asymptotic behavior of derivatives X ()
and A/ (t) of leading eigenvalues of perturbed operators when the integer n > 0 diverges to
infinity and the parameter t approaches bs. This is again partially due to unboundedness
of the function EY 3 w — tlog |¢., (ms(0(w)))| € R in the supremum norm and partially
due to lack of uniform topological mixing on the sets K, (¢).
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We say that a set J C R?, d > 1, is geometrically irreducible if it is not contained in any
countable union of conformal images of hyperplanes or spheres of dimension < d — 1 (see
Definition . Our most general results about escape rates for conformal GDMSs can
now be formulated in the following four theorems. We postpone detailed definitions of the
hypotheses until later. We however want to mention that we adopt a simplified notation
for Birkhoff’s sums. Given a dynamical system 7' : X — X and a function ¢ : X — C we

set for every integer n > 1:
n—1
Pn = Z @ o T,
j=0

This notation does not encode the dynamical system 7" under considerations, but it will be
virtually always clear from the context which dynamical system is meant. For example, in
the realm of the symbol spaces EY, it will be always the shift map or its induced maps.
However, we will be sometimes more traditional and will also use the notation

Spp
for ¢,; particularly in contexts where lots of functions with indeces appear.

Theorem 1.7. Let S = {@c}eer be a finitely primitive Conformal GDMS with limit set
Js. Let ¢ : EX — R be a Hélder continuous summable potential with equilibrium/Gibbs
state 1,. Assume that the measure p, o 7T§1 is weakly boundary thin (WBT) at a point
z € Js. If z is either
(a) not pseudo-periodic,
or
(b) uniquely periodic, it belongs to IntX (and z = w(£*) for a (unique) irreducible
word § € EY with £ € EY being the infinite concatenation of &), and ¢ is the
amalgamated function of a summable Holder continuous system of functions,
then, with Rs ,(B(z,€)) == R, (75" (B(2,€))) and Rs,(B(z,¢)) := R, (75" (B(z,¢))), we
have that

B (BG) | Feu(Be)
(1 5) e—0 M(powgl(B(z,@) =0 ,Ugoo'ﬁgl(B(ZvE))
() = {1 if (a) holds
v 1 —exp (¢p(&) — pP(p)) if (b) holds,

where in (b), {£} = m5'(2) and p > 1 is the prime period of & under the shift map.

Theorem 1.8. Assume that S is a finitely primitive conformal GDMS whose limit set Jg
is geometrically irreducible. Let ¢ : EY — R be a Holder continuous strongly summable
potential. As usual, denote its equilibrium/Gibbs state by p,. Then, with Rs ,(B(z,¢)) :=
R, (75'(B(z,¢))), we have that

(1.6) i ZselBEE) ) RselB(z9))

— ’ -1
=50 py o ms ' (B(z,6)) a0 py o mg (B(2,€))
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for p, o mg'—a.e. point z of Js.

These two theorems address the issue of . We would like to note that we do not know
whether the actual escape rates Rs ,(B(z,¢)) exist. As we have already explained it above
we know this, see Section [7]in Part 2] on the symbolic level for the open systems generated
bt the holes U,, n > 1. However, all what our approach gives is that the balls B(z,¢),
in fact their inverse-images m5'(B(z,¢)), are, in an appropriate sense, better and better
approximated by the sets U, as € \, 0 and n depends on ¢, but are actually never equal.
This gives the asymptotic equality in and but no more. The symbol structure of
the sets 75" (B(z,¢)) themselves seems to be too complex (for example these sets usually
cannot be represented as unions of cylinders of the same length) for the strong norm versus
weak norm smallness of perturbations to hold. We are thus content with the asymptotic
results of and ([L.€)).

We would like to bring to the reader’s attention a preprint [3] by H. Bruin, M.F. Demers
and M. Todd, with results related to the above three, which we have recently received.
In regard to (1.4]), we have proved for conformal GDMSs the following two theorems. In
regard to e have proved the following two theorems for conformal GDMSs.

Theorem 1.9. Let S be a finitely primitive strongly regular conformal GDMS. Assume
both that S is (WBT) and the parameter bs is powering at some point z € Js which is
either

(a) not pseudo-periodic or else
(b) uniquely periodic and belongs to IntX (and z = w(£>) for a (unique) irreducible
word & € EY,).

Then

HD(Js) — HD(K.(r)) {1/xm, if (a) holds

0 TG BE) (= @) i (1) holds

Corollary 1.10. If S be a finitely primitive strongly regular conformal GDMS whose limat
set Js is a geometrically irreducible, then

. HD(Js) ~HD(K.(r)) _ 1
(1.8) L R (T B(zr)) X

at pyg o t-a.e. point z of Js.

As we have previously remarked, these four results are of independent interest, but they also
provide a gateway to all other results on escape rates in this paper. There are necessarily
several technical terms involved in formulations of these theorems. However, we hope that
they do not obscure the overall meaning of the four theorems and all terms are carefully
introduced and explained in appropriate sections dealing with them.
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We would however like to comment on one of these terms, namely on (WBT). Its meaning
can be understood as follows. Let

A(zr, R) == B(z,R) \ B(z,7)
be the annulus centered at z with the inner radius r and the outer radius R. We say that a
finite Borel measure p is weakly boundary thin (WBT) (with exponent 5 > 0) at the point

x if
()
B

where we denote
Ag(xa T) = A(Iv r—= [L(B(:L‘, T))B7 r+ M(B(l‘, ,',.))5)

This is a version of the problem of thin annuli, one that is notoriously challenging in dealing
with the issue of relating dynamical and geometric properties, and which is particularly
acute in the contexts of escape rates and return rates. Due to the breakthrough of [36],
where some strong versions of the thin annuli properties are proved, we have been able
in the current paper to prove (WBT) for almost all points, which is reflected in both
Theorem and Corollary . The (WBT) property allows us in turn to approximate
sufficiently well the symbolic sets 75! (B(z,¢)) by the sets U, the significance of which we
discussed few paragraphs above.

In the case of finite alphabets F we have the following two results.

Theorem 1.11. Let S = {@e}ecr be a primitive conformal GDMS with a finite alphabet
E acting in the space R?, d > 1. Assume that either d = 1 or that the system S is
geometrically irreducible. Let ¢ : EY — R be a Holder continuous potential. As usual,
denote its equilibrium/Gibbs state by p,. Let z € Js be arbitrary. If either z is
(a) not pseudo-periodic,
or
(b) uniquely periodic, it belongs to IntX (and z = w(£*%) for a (unique) irreducible
word £ € E% ), and ¢ is the amalgamated function of a summable Hélder continuous
system of functions,

then,
i Ase(B(e) . Rsu(B(2,6)
(1.9) =0 pyomg (B(z,2)) =0 pyomg' (B(z,¢))
)= {1 ?f (a) holds
’ 1 —exp (p,(€) — pP(p)) if (b) holds,

where in (b), {£} = m5'(2) and p > 1 is the prime period of & under the shift map.

Theorem 1.12. Let S = {@e}ecr be a primitive conformal GDMS with a finite alphabet
E acting in the space RY, d > 1. Assume that either d = 1 or that the system S is
geometrically irreducible. Let z € Jg be arbitrary. If either z is
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(a) not pseudo-periodic or else
(b) uniquely periodic and belongs to IntX (and z = w(£>) for a (unique) irreducible
word & € EY).

Then

HD(Js) — HD(K.(r)) {1/xm, if (a) holds

10 = e BEn) —lee(@)) /X if (b) holds .

For these two theorems the two Thin Annuli Properties, Theorem [14.9) and Theorem [14.10],
were also instrumental. With having both Theorem [I5.12] and Theorem [I7.5] proved we
have fully recovered the results of [20].

As we have already explained, our next goal in this paper is to get the existence of escape
rates in the sense of and for a a large class of topologically exact smooth maps
of the interval [0, 1], many rational functions of the Riemann sphere C with degree > 2,
and a vast class of transcendental meromorphic functions from C to C. In order to do this
we employ two principle tools. The first is formed by the escape rates results, described
above in detail, for the class of all countable alphabet conformal graph directed Markov
systems. The second is a method based on the first return (induced) map developed in
Section [19] Section [20] and Section 21} This method closely relates the escape rates of the
original map and the induced map. It turns out that for the above mentioned classes of
systems one can find a set of positive measure which gives rise to a first return map which
is isomorphic to a countable alphabet conformal IF'S or full shift map; the task being highly
non-trivial and technically involved. But this allows us to conclude, for suitable systems,
the existence of escape rates in the sense of and . However, in order to reach this
conclusion we need to know some non-trivial properties of the original systems. Firstly,
that the tails of the first return time and the first entrance time decay exponentially fast,
and secondly that the Large Deviation Property (LDP) of Section [20] holds. This in turn
leads to Theorem [21.6} a kind of Large Deviation Theorem.

We shall now describe in some detail the above mentioned applications to (quite) general
conformal systems. We start with one-dimensional systems. We consider the class of
topologically exact piecewise C3~smooth multimodal maps T of the interval I = [0, 1] with
non-flat critical points and uniformly expanding periodic points, the property commonly
referred to as Topological Collet-Eckmann. Topological exactness means that for every
non-empty subset U of I there exists an integer n > 0 such that 7"(U) = I. Furthermore,
our multimodal map 7" : I — [ is assumed to be tame, meaning that

PC(T) # 1,

where

Crit(T) :={ce I:T'(c) =0}
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is the critical set for T" and

PC(T) := | T"(Crit(T)),
n=1
is the postcritical set of T'. A familiar example would be the famous unimodal map = +—
Az(1 —x) with 0 < A < 4 for which the critical point 1/2 is not in its own omega limit set,
for example where A is a Misiurewicz point.
The class of potentials, called acceptable in the sequel, is provided by all Lipschitz
continuous functions ¢ : I — R for which

sup(¢)) — inf(¢0) < heop(T).

The first escape rates theorem in this setting is this.

Theorem 1.13. Let T : [ — I be a tame topologically exact Topological Collet-Eckmann
map. Let v : I — R be an acceptable potential. Let z € I\ PC(T) be a recurrent point.
Assume that the equilibrium state 1, is (WBT) at z. Then

R, (B(z¢)  R,(B(z¢)

li —Hy _ _

e—=0 IU,,L/,(B(Z,é‘» 0 Mw(B(Zag)) B

if z is not any periodic point of T,
1 —exp (wp(z) — pP(f, ¢)) if 2 is a periodic point of 7.

We have also the following.

Theorem 1.14. Let T : I — I be a tame topologically exact Topological Collet—Eckmann
map map. Let iy : I — R be an acceptable potential. Then
R, (B(z¢))  R,(B(2¢)

im =lim ————— =
=0 py(B(z,¢)) =0 py(B(z,¢€))
for py—a.e. point z € I.

In order to address formula (1.4]) in this context we need a stronger assumption on the
map 1" : I — I. Our multimodal map T : I — I is said to be subexpanding if

Crit(T) N PC(T) = 0.

It is evident that each subexpanding map is tame and it is not hard to see that the subex-
panding property entails being Topological Collet—Eckmann. It is well known that in this
case there exists a unique Borel probability T-invariant measure p absolutely continuous
with respect to Lebesgue measure A. In fact, p is equivalent to A and (therefore) has full

topological support. It is ergodic, even K-mixing, has Rokhlin’s natural extension met-
rically isomorphic to some two sided Bernoulli shift. The Radon—Nikodym derivative Z—’;

is uniformly bounded above and separated from zero on the complement of every fixed

neighborhood of PC(T'). We prove in this setting the following.
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Theorem 1.15. Let T : I — I be a topologically exact multimodal subexpanding map. Fix

¢ € I\PC(T). Assume that the parameter 1 is powering at & with respect to the conformal
GDS 87 defined in Section [22| Then the following limit exists, is finite, and positive:

i 1= HDUEC()
AT BEn)

Theorem 1.16. If T : I — I is a topologically exact multimodal subexpanding map, then
for Lebesque—a.e. point & € I\ PC(T') the following limit exists, is finite and positive:
1 —HD(K,
|1 HD(K(r))
=0 u(B(,7))

We now turn to complex one-dimensional maps. Let f : C — C be a rational map
of the Riemann sphere with degree deg(f) > 2. The sets Crit(f) and PC(f) have the

same meaning as for the multimodal maps of the interval /. Let ¢ : C — R be a Holder
continuous function. Following [I8] we say that ¢ : C — R has a pressure gap if

(1.11) nP(f, 1) — sup (wn) >0

for some integer n > 1. It was proved in [18] that there exists a unique equilibrium state i,
for such 9. Some more ergodic properties of 1, were established there, and a fairly extensive
account of them was provided in [48]. For example, if ©) = 0 then P(f,0) = logdeg(f) > 0
is the topological entropy of f and the condition automatically holds. More generally, it
always holds whenever

sup(y) — nf(¢) < hiop(f) (= logdeg(f)).

We would like to also add that (1.11)) always holds (with all n > 0 sufficiently large) if

the function f : C — C restricted to its Julia set is expanding (also frequently referred to
as hyperbolic). This is the best understood and the easiest to deal with class of rational

functions. The rational map f : C — C is said to be expanding if the restriction fl; :
J(f) — J(f) satisfies

(1.12) inf{|f'(z)|: 2 € J(f)} > 1
or, equivalently,
(1.13) ()] > 1

for all z € J(f). Another, topological, characterization of the expanding property is the
following.

Fact 1.17. A rational function f : C—Cis expanding if and only if
J(f)nPC(f) =0.
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It is immediate from this characterization that all the polynomials z — 2%, d > 2, are
expanding along with their small perturbations z — 2¢ + ¢; in fact expanding rational
functions are commonly believed to form the vast majority amongst all rational functions.

Being a tame rational function and Topological Collet-Eckmann both mean the same
as in the setting of multimodal interval maps. Nowadays this property is somewhat more
frequently used in its equivalent form of exponential shrinking (see (23.4)) (ESP), and we
this follow tradition. All expanding functions are tame and (ESP). Finally, as in the context
of interval maps, we have the following.

Theorem 1.18. Let f : C — C be a tame rational function having the exponential shrinking
property (ESP). Let ¢ : C — R be a Hélder continuous potential with pressure gap. Let

z € J(f)\PC(f) be recurrent. Assume that the equilibrium state j, its (WBT) at z. Then

R (B(e) . R (B(ee)

lim ———— = —_—

I (B o) % u(B(z,0)
)1 if z is not a periodic point for f,
)1 —exp (Spw(z) — pP(f, @/})) if z is a periodic point of f.

Corollary 1.19. Let f: C — C be a tame rational function having the exponential shrink-
ing property (ESP) whose Julia set J(f) is geometrically irreducible. If ¢ : C — R is a
Holder continuous potential with pressure gap, then

R, (B(ze¢) R,(B(z¢)

lim —

e—=0 /J,¢(B(Z,€)) e Nw(B(zv‘g))

for py-a.e. z € J(f).

As for the case of maps of an interval, in order to establish formula in this context
we need a stronger assumption on the rational map f : C — C. Because the Julia set need
not be equal to C (and usually it is not) the definition of subexpanding rational functions
is somewhat more involved, see Definition [23.13] It is evident that each subexpanding map
is tame and it is not hard to see that being subexpanding entails also being Topological
Collet—Eckmann. All expanding functions are necessarily subexpanding.

Theorem 1.20. Let f : C = Cbea subexpanding rational function of degree d > 2.
Fiz ¢ € J(f) \ PC(f). Assume that the measure py, is (WBT) at £ and the parameter
h :=HD(J(f)) is powering at & with respect to the conformal GDS Sy defined in Section .

Then the following limit exists, is finite and positive:

. HD(J(f)) — HD(Ke(r))
P m(BEN)
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Theorem 1.21. If f : C—Cbhea subexpanding rational function of degree d > 2 whose
Julia set J(f) is geometrically irreducible, then for pp—a.e. point & € J(f) \ PC(f) the
following limat exists, is finite and positive:

- HD(J(f) — HD (K (1)
o m(BE )

Remark 1.22. We would like to note that if the rational function f : C—Cis expanding
(or hyperbolic as such functions are frequently called), then it is subexpanding and each
Holder continuous potential has a pressure gap. In particular all four theorems above
pertaining to rational functions hold for it.

In both theorems py, is a unique (ergodic) Borel probability f-invariant measure on J(f)
equivalent to my,, a unique h-conformal measure my, on J(f) for f. Th was proved studied
in [53], comp. also [52].

The last applications are in the realm of transcendental meromorphic functions. There
is a large class of such systems, introduced in [33] and [34] for which it is possible to build
(see these two papers) a fairly rich and complete account of thermodynamic formalism.
Applying again our escape rates theorems for conformal graph directed Markov systems,
one prove in this setting four main theorems which are analogous of those for the multimodal
maps of an interval and rational functions of the Riemann sphere. These can be found with
complete proofs in Section [24], the last section of our manuscript.

Acknowledgment: The authors wish to thank all the referees of this manuscript for
their very valuable comments and suggestions that considerably influenced the final ex-
position and the content of the manuscript. The authors also wish to thank Tushar Das
for supplying them with some relevant references and for fruitful conversations (with the
second named author) about the topic of this manuscript.

Part 1. Singular Perturbations of Countable Alphabet Symbol Space Classical
Perron—Frobenius Operators

2. THE CLASSICAL ORIGINAL PERRON-FROBENIUS OPERATOR L,
GIBBS AND EQUILIBRIUM STATES /i,
THERMODYNAMIC FORMALISM; PRELIMINARIES

In this section we present some notation and basic results on Thermodynamic Formalism
as developed in [31], see also [30] and [7]. It will be the base for our subsequent work.

Let E be a countable, either finite or infinite, set, called in the sequel the alphabet. Let
A:E x E— {0,1} an arbitrary matrix. For every integer n > 0 let

EYy={weE": A =1V0<j<n-—1},
denote the finite words of length n, let
EY ={w€E": A,  =1Vj>0}

Wjwj+1
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denote the space of one-sided infinite sequences, and let

E* = E" and E}:=|]E}
n=0 n=0
be set of all finite strings of words, the former being without restrictions and the latter
being called A-admissible.

We call elements of % and EY A-admissible. The matrix A is called finitely primitive
(or aperiodic) if there exist an integer p > 0 and a finite set A C E? such that for all
i,J € E there exists w € A such that iwj € E%. Denote by o : EY — EY the shift map, i.
e. the map uniquely defined by the property that

o(W)n = wnt1
for every n > 0. Fixing 6 € (0,1) endow E% with the standard metric
dg(w, T) == Ol

where for every v € E* U EN, || denotes the length of ~, i. e. the unique n € N U {oo}
such that v € E™. Given 0 < k < |v|, we set

Yk =Ny - - Vo
We then also define
M) =A{we EY : wln =7},
and call [y] the (initial) cylinder generated by ~.
Given an element £ € E% and € € {0,1,2,...,+00} we denote by £¢ € E” the concate-
nation of k copies of &; in particular £€° = ), the empty word, ! = £, and £ = ££€.. . is
the infinite concatenation of the word &. We frequently refer to ¥ as the kth power of &.

Let ¢ : EY — R be a Holder continuous function, called in the sequel potential. We
assume that ¢ is summable, meaning that

Z exp (sup(elj) < +oo.
eck
It is well known (see [31] or [29]) that the following limit
o1
P(¢) := lim —log Z exp (sup(¢|w))

n—oo M,
weE%

exists. It is called the topological pressure of . It was proved in [29] (compare [31]) that
there exists a unique shift-invariant Gibbs/equilibrium measure ., for the potential . The
Gibbs property means that

el
= o (pul) — Plim) =
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with some constant C,, > 1 for every w € E° and every integer n > 1, where here and in
the sequel

n—1
gn(w) == Zg oo’
=0

for every function g : E}® — C. For the measure p, being an equilibrium state for the
potential ¢ means that

by (o) + [ e, = Plo)
ER
It has been proved in [31] that
hy.() +/ pdp < P(yp)
ER
for any other Borel probability o-invariant measure p such that [ ¢odp > —oco. For every
bounded function g : EY — R define L,(g) : EY — R as follows

Lo(g)w) =Y glew)exp(p(ew)).
eEE:AewO:I
Then L,(g) is bounded again, and we get by induction that
LE(9)(w) = > glrw)exp(er(rw)).
TEE{’Z:A‘rkile:l

Let Cy(A) be the Banach space of all complex-valued bounded continuous functions defined
on E¥ endowed with the supremum norm ||-||os. Let Hj(A) be its vector subspace consisting
of all Lipschitz continuous functions with respect to the metric dy. Equipped with the norm

(2.1) Ho(9) := l19lloc + vo(9),
where vy(g) is the least constant C' > 0 such that
(2.2) l9(w) = g(7)| < Cdy(w, ),

whenever dg(w,7) < 0 (i. e. wy = 7), the vector space H)(A) becomes a Banach space.
It is easy to see that the operator L, preserves both Banach spaces Cy(A) (as we have
observed some half-page ago) and H5(A) and also acts continuously on each of them. The
adjective “original” indicates that we do not deal with its perturbations while “classical”
refers to standard Banach spaces Cy(A) and H)(A). The following theorem, describing fully
the spectral properties of £, has been proved in [31] and [29].

Theorem 2.1. If A: E x E — {0, 1} is finitely primitive and o € HY(A), then

(a) The spectral radius of the operator L., considered as acting either on Cy(A) or Hy(A)
is in both cases equal to ).

(b) In both cases of (a) the number e*¥) is a simple eigenvalue of L, and there exists
corresponding to it an everywhere positive eigenfunction p, € HZ(A) such that log p,,
1s a bounded function.
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(c) The reminder of the spectrum of the operator L, : Hy(A) — Hj(A) is contained in
a closed disk centered at 0 with radius strictly smaller than eF¥). In particular, the
operator L, : Hy(A) — Hj(A) is quasi-compact.

(d) There exists a unique Borel probability measure my, on EY such that

* — P
Limg = e ¥ my,

where L7 : Cy(A) — Cy(A), is the operator dual to L, acting on the space of all
bounded linear functionals from Cy(A) to C.

(e) If p, : EX — (0,00) is normalized so that m,(p,) = 1, then py,m, = p,, where,
we recall, the latter is the unique shift-invariant Gibbs/equilibrium measure for the
potential .

(e) The Riesz projector Q, : Hy(A) — HY(A), corresponding to the eigenvalue e¥'¥), is
given by the formula

Qu(9) = €"my(g)py.-

If we multiply the operator £, : Hj(A) — H5(A) by e P and conjugate it via the linear
homeomorphism

9= p,'g,
then the resulting operator 7' : Hy(A) — HY(A) has the same properties, described above,
as the operator L, with e’ replaced by 1, p, by the function 1 which is identically equal
to 1, and m,, replaced by . Since in addition it is equal to L : Hj(A) — H5(A) with
¢ = —P(p) +logp,,
we will frequently deal with the operator Ls instead of L, exploiting its useful property
L1 =1.

We will occasionally refer to Lz as fully normalized. Sometimes, we will only need the
semi-normalized operator £, given by the formula

A

L, = e_P(@E(p.

It essentially differs from only by having ) replaced by 1. Now we bring up two standard
well-known technical facts about the above concepts. These can be found for example in
[31].

Lemma 2.2. There ezists a constant M, € (0,+00) such that
|or(w) = @u(T)] < Mb™
for all integers k,m > 1, and all words w, ™ € EY such that w|gim = T|krm-

Lemma 2.3. With the hypotheses of Lemma and increasing the constant M, if neces-
sary, we have that

|1 — exp (pr(yw) — er(77)) | < My|er(w) — @r(T)].
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3. NON-STANDARD ORIGINAL PERRON-FROBENIUS OPERATOR L;
DEFINITION AND FIRST TECHNICAL RESULTS

We keep the setting of the previous section. We still deal with the original operator L,
but we let it act on a different non-standard Banach space By defined below. This space is
more suitable for consideration of perturbations of L.

Given a function g € L'(p,) and an integer m > 0, we define the function osc,,(g) :
EY — [0,00) by the following formula:

(3.1) 08Cm(9)(w) = esssup{|g(a) — g(B)] : @, f € [wlm]}
and

0s¢q(g) := esssup(g) — essinf(g).
We further define:

(3:2) |9lo == sup{0~"[|oscm(g)[[1},
m>0
where | - | denotes the L'-norm with respect to the measure 1. Note the subtle difference

between this definition and the analogous one, which motivated us, from [20]. Therein in
the analogue of formula the supremum is taken over integers m > 1 only. Including
m = 0 causes some technical difficulties, particularly the (tedious) part of the proof of
Lemma [3.2] for the integer m = 0. However, without the case m = 0 we would not be able
to prove Lemma , in contrast to the finite alphabet case of [20], which is indispensable
for our entire approach. The, previously announced, non-standard (it even depends on the
dynamics — via y,) Banach space is defined as follows:
By :={g € L'(iy) : |glo < +o00}

and we denote

(3.3) gllo == lgllx + lglo-
Of course By is a vector space and the function

(3.4) By > g llglle

is a norm on By. This is the non-standard Banach space we will be working with throughout
the whole manuscript. We shall prove the following.

Lemma 3.1. If g € By, then g is essentially bounded and
gl < Tlgllo-

Proof. For all w € EY, we have

lg(w)| < ‘/wgdquOSCo(g)(w)‘ = ‘/wgd““”+/Ew 0sco(g) dpig,
A A A

< / 19l dpty + llosco(g)] s
EOO

A

< lgllo-
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The proof is complete. ]

From now on, unless otherwise stated, we assume that the potential ¢ : EY — R is
normalized (by adding a constant and a coboundary) so that

L1 =1.

For ease of notation we also abbreviate £, to £. We shall prove the following.

Lemma 3.2. There exists a constant C' > 0 for every integer k > 0 and every g € By, we

have

1L¥glo < C(6%|glo + [19]]1)-

Proof. For every e € FE let

Eh(e):={ye E%: A, =1}

Fix first an integer m > 1 and then w,7 € EY such that w|,, = 7|,,. Using Lemmas
and we then get

L g(w) — L

Hence,

gl 3 e gw) —glm)l+ Y lgly)l[en0e) - enr0m
YEEE (w1) YEEX (w1)
< Y 08Cim(g)(yw)ett ) 4
’YEEk(UJl)
20 lelmlen 1 —exp (pr(rw) = eulom)
’YEEk(wl)
< D ostm(g) (yw)e )+
’YEEk(UJl)
+ > lg(rm)en 07 Mlpr(yw) — pi(y7)|
EEk(wl)
Sﬁk(OSCHm(g))(WH’M;em Z (|9(7W)|+OSCk+m(g)(7w))e%(W)
"/EE{IZ(UJl)

< L8(0sCrm(9))(w) + MO™ L (|g]) (w) + MZO™ L¥ (05Ckm(9)) (w)
< (1+ M) L (0scrsm(9)) (W) + MO L (|g])(w)

oscin(LEg)(w) < (14 MZ) LY (05 1m(9))(w) + MZO™LE(|g]) (w)
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Integrating against the measure f,, this yields

0 josem(LEg)||1 < (1+ Mf,)e-m/

[ e oseninlo)) dug + M2 [ (o),

ZO EA
08Ck 4m (9) dpgp + M / 9] dptg-

T By

< (1+ M2)0"|glo + Mgl

< (14 M2) (0" [glo + llgl[1)-

(3.5) =1+ MZ)Q_W/

E

Some separate considerations are needed if m = 0. However, we note that it would require
no special treatment in the case of a full shift, i. e. when the incidence matrix A consists
of 1s only. Let p > 1 be the value in the definition of finite primitivity of the matrix A.
Replacing p by a sufficiently large integral multiple, we will have that the set

E%(a,b) :={a € EY : aab € E}}
consisting of words of length p prefixed by a and suffixed by b is non-empty for all a,b € E

and it is countable infinite if the alphabet E is infinite. For every function h : EY — R
and every finite word v € E% with associated cylinder [y consisting of all infinite sequences

beginning with ~ let ﬁ(v) € R be a number with the following two properties:

(2) h(7) € h([y]) and
(b) [h()] = inf{|h(p)| : p € [7]}.

Let us introduce the following two functions:

ALLFP(g)(p) = Z Z (g(yap)e? 0P eer(@r) _ G(y) Pk eer(en)

[v|=k acEY (i,p1)
and
A2£k+p(g)(w,7) — Z 9(7)€¢k(v) Z evrlaw) _ Z e#r(BT)
|y|=Fk a€EY (Yk,w1) BEEY (7k,71)
We then have

(3.6)  LMP(g)(w) = LYP(g)(1) = AL (g)(w) + A L5HP(g) (w, 7) — ALY (g)(7).
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We will estimate the absolute value of each of these three summands in terms of w only (i.

e. independently of 7) and then we will integrate against the measure f1,. First:
(3.7)
AL () <Y D glyap)ett 90 — g(v)er | egr(er)

IvI=k a€EY (vi,01)

ST S (slras) - Gl 4 jore _ . g(n) o)

[v1=k a€EY (vk,p1)

< Z Z (osck (g|h])esok+p(mp) + Mwewk(vap)eeop(ap)mw”)

[v1=k a€EY (vk,p1)

< Z Z 0SC}, g| e“"’“ﬂ’ vap) + M, Z Z |g(7ap)|6<pk+p(wp)

[vI=k ac EY (vk,p1) [v/=k a€ B (vi,p1)

= L5 (osci(9))(p) + ML (1g])(p),

with some appropriately large constant M,. Plugging into the above inequality, p = w,
this gives

(3:8) |ALEP(g)(w)] < L5 (0scr(g)) (W) + M LY (|g]) (w)-

Now notice that because of our choice of p > 1 there exists a number () > 1 and for every
e € E there exists an at most Q-to-1 function f, : E¥(e,71) — E%(e,w1) (can be chosen to
be a bijection if the alphabet E is infinite). So, plugging in turn p = 7 to (3.7), we get
(3.9)

|ALLEP(g)(7)] <

= Z > osci(glm)er 0+ My Y Y0 lglyBrlens 07
eB% (n

,T1) [v|=k B€EY (vi,71)

Z Z OSCk er(@) >€<Pk+p(’7f6(ﬁ)w) +M(p|§(fy)|e§0k+p(7fe(6)w))

Iv|=k B€E (v&,m1)

<MY ) oser(g)(vfe(B)w)e?t OB L AN TN g (y fu(B)w)|ePr 0D

IvI=k BeEY (vk,71) [vI=k B€EY (vk,1)

< QM, Z Z osci(g) (yaw)e?r+r0%) 4 N Z Z g(yaw)|e?rr(row)

I¥|=k a€ B, (vk,w1) [v/=k a€ B (vg,w1)

= QM (L7 (0scr(g)) (w) + ML (|g]) (w))
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with some appropriate constant ) > 0. Turning to A, LEP(g), we get

AL (g) (w, 7)| < Z 1G(7)|e?x0) Z evr(aw) 4 Z e¥r(67)

[v|=k aeE”('yk,wl) ﬂEEf‘(yk,n)
< > 1P (Lr1(w) + £71())
[vI=k
(3.10) P
< 2M, Z |g(va(Yk, wi )w) | efrr W) g =ep (@l w)e)
Iv|=F
< 2Mpe™ D |g(ra(r, wh)w)| Pt Cen)
IyI=k

< 2Mpe= LM (|g]) (),

where (g, w1) is one, arbitrarily chosen, element from A, a finite set witnessing finite
primitivity of A, such that yo(yg, wr) € EA, and C), := min{inf{yy| : @ € A} > 0.

Inserting now - , and - ) to , we get for all w,7 € EY that
\E’““’(g)(@ —LM(g) ()| < C (ﬁk“’(osck(g))(w) +LM7(g]) (@)

with some universal constant C' > 0. Integrating against the measure j,, this gives

670|\osc0(ﬁk+p(g))||1 <C (/oo

(3.11) _¢ </m osci(g) iy + /? 1 du@>

< C(6"[glo +l9lh)
< CO7P(0"|glo + llglh)-
Along with this gives that
(3.12) L5l < C(6*1glo + llglh)
for all k£ > p with some suitable constant C' > 0. Also, for every 0 < k < p we have
1£5qlo < [|L%glle < max{[|L][5: 0 < j < p}llglls
< 6P max{||L[[) : 0 < j < p}lglla(0"lgls)
< 6P max{||][) 0 < 7 < p}lallo(6¥llo + llall).
Along with this finishes the proof. 0

L5 (o0sci(g)) dpg + / . LEP(|g)) dﬂw)

In conjunction with Theorem this lemma gives the following.
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Proposition 3.3. The following hold:

(1)
Hj(A) C By,

(2)
L(By) < By,
In addition,

(3) The operator L : By — By is bounded, in fact all its iterates are uniformly bounded,

(4)  The function 1 belongs By and is an eigenfunction of the operator L : By — By
with the eigenfunction equal to 1. Prior to any normalization of the operator L,
the corresponding statement would read:

The function p, belongs By and is an eigenfunction of the operator L, : By — By
with the eigenfunction equal to e,

(5)  The measure p, can be viewed as an element of the dual Banach space By and it
s an eigenmeasure of the dual operator L* : By — B} with the eigenfunction equal
to 1. Prior to any normalization of the operator L, the corresponding statement
would read:

The measure m,, can be viewed as an element of the dual Banach space By and it

is an eigenmeasure of the dual operator L, : By — By with the eigenfunction equal
to P,

(6) The operator Q, : Hy(A) — HY(A) extends to the Banach space By by the same for-
mula (e) of Theorem[2.1] (Q,(9)1e(9)1 after normalizations) and the linear operator
Qy, : By — By is bounded.

4. SINGULAR PERTURBATIONS, GENERATED BY OPEN HOLES U,,,
OF (ORIGINAL) PERRON-FROBENIUS OPERATORS L, I:
FUNDAMENTAL INEQUALITIES

This is the first section in which we deal with singular perturbations of the operator L.
We work in the quite general setting described below. We keep the same non-standard
Banach space By but, motivated by [20], we introduce an even more exotic norm || - ||,
which depends even more on dynamics than || - |[y.

The ultimate goal of this and the next section is Proposition[5.2] We prove it by applying
Theorem 1 of [25] and its consequences derived therein. For the convenience of the reader
and convenience of our referring to, we bring up the setting of [25] in Appendix at the end
of our manuscript. We formulate there Theorem 1 of [25] and all its consequences we need.

Passing to details, in this section we assume that (U,)22,, a nested sequence of open
subsets of £ is given, with the following properties:

(U0) Uy = ET,
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(U1) For every n > 0 the open set U, is a (disjoint) union of cylinders all of which are of

length n,
(U2) There exists p € (0, 1) such that such that
po(Un) < p"
for all n > 0.
Let |- |«, || - ||« : Bo = [0, 400] be the functions defined by respective formulas

|g|+ := sup sup {9""/ 9] d/w}
720 m>0 =3 (Un)

gl := [lglls + lgl«
Without loss of generality assume from now on that 6 € (p, 1). We shall prove the following,.

and

Lemma 4.1. For all g € By, we have that
[gll« < 2llglloe < 2lgllo-
Proof. By virtue of (U2), we get
91, < sup {07 1o (Un)llgllc } < sup {07 "9l } = sup{(p/0)"[[9lloo} = llg]loc-

Hence,

llgll« = llglls + gk« < lgllec + [19lloo = 2llloc-
Combining this with Lemma |3.1] completes the proof. 0
In particular, this lemma assures us that |- |, and || - ||+, respectively, are a semi-norm and
a norm on By. It is straightforward to check that By endowed with the norm ||- ||, becomes

a Banach space. For all integers £ > 1 and n > 0 let
k—1

k-1
(4.1) 15 =[] No-swey = [ [ g 007
j=0 §=0

We also abbreviate
1, :=1}
and set
18=1y, =1 —-1,.
Let £, : By — By be defined by the formula

La(g) = L(1L,9).
These, for n > 0, are our perturbations of the operator £. The difference £ — £,, in the

supremum, or even || - ||g, norm can be quite large even for arbitrarily large n, however, as
Lemma [5.1] shows, the incorporation of the || - ||« norm makes this difference kind of small.

The main result of this section is Proposition [5.2] complemented by Proposition |5.3], which
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describes in detail how well the spectral properties of the operator £ are preserved under
perturbations £,,. Note that for every k > 1, we then have

Lh(g) == LM(L}g).

The results we now obtain, leading ultimately to Proposition and Proposition [5.3], stem
from Lemma 3.9 and Lemma 3.10 in [20]. We develop these and extend them to the case of
infinite alphabets. Since the sets U,, may, and in applications, will, consist of infinitely many
cylinders (of the same length), we are cannot take advantage of good mixing properties of
the symbol dynamical system (o : EY — EY, 1,). We use instead the Holder inequality,
which also, as a by-product, simplifies some of the reasonings of [20]. In what follows, the
last fragment, directly preceding Proposition [5.2], and leading to verifying the requirements
(24.3), (24.4), (24.5) from Appendix, corresponding to Remark 3 in [25], is particularly
delicate and entirely different from the one of [20].

Lemma 4.2. For all integers k > 1 and n > 0 , we have
Ik < 1.
Proof. Let g € L*(p1,,). Then,

42 It Hl—/rﬁ Eg)) du, < /c’wngr dyi, = /\nnmczuwugul

Also, for all integers j,m > 0, we have

o / LW g))] dpy < 07 / CH(1Egl) dpy = 0 / 15| dp,
=3 (Unm) =3 (Unm) G+ (Unn)

< / | 9] dps
0'7(3+1)(U7n)

< gl

Taking the supremum over j and m yields
L5 (9)] < gl
Combining this and completes the proof. O
Lemma 4.3. For all integers j,n > 0 and for g € By, we have that
< lglo + 67 llgll-

|g]1rj(U;;) 0

Proof. Fix an integer m > 1. We consider two cases. Namely: 7 +n < m and m < j + n.
Suppose first that j +n < m. Then, oscy, (gl,-iwe)) (W) < 0scy(g)(w) for all w € EY.
Thus

(4.3) Qm/oscm(g]la iwey) dpy < 67 m/oscm(g) dpy, < gl

On the other hand, if m < j + n, then it is easy to see that if [w]|,,] C 077 (US), then
(4.4) 08¢ (91 p-i(ue) ) (w) = 08Cm(g)(w).
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On the other hand, if [wl,,] N o™ (U,,) # 0, then

08¢ (91Lo-i () ) (w) = max{05¢m (9)(w), |[gT )0 }-
In this latter case

1
OSCm<g]lU—j(Uﬁ)) S maX{OSCm(g)(w)7 ||g]1[w\m}||oo} S OSCm(g)(w) + —/ |g| dﬂ's@
o ([wlin]) it

Together with (4.4) this implies that

(4.5) Q_m/oscm(g]lg iwey) dig < |glo + 60~ m/ 9] it
{weEY:[w|m]No =3 (Un)#0}

We now consider two further sub-cases. If m < j, then we see that

o) o [ o gldee <6 gl <07l
{WEB wlm]No—7 (Un)#0} {we B wlm]No = (Un)#0}

If j <m < j+ n, the descending property of the sequence (Un)oo , Yields

{we BY : [wm] No™(U,) # 0} C o7 (Uny).
In this case

(4.7) em/ 9| dpy, < 03'9(””)/ |9l dpy < 0779l
{weER:[w|m]|No =1 (Un)#0} 073 (Um—j)
Combining (4.3)), (4.5), and (4.7)) yields the desired inequality, and completes the proof. [

As a fairly straightforward inductive argument using Lemma [4.3] we shall prove the fol-
lowing.

Lemma 4.4. For all integers k > 1 and n > 0, and all functions g € By , we have that
(4.8) Lrglo < lglo +0(1 —0)707"gl.

Proof. Keeping n > 0 fixed, we will proceed by induction with respect to the integer k£ > 1.
The case of k = 1 follows directly from Lemma [4.3] Assuming for the inductive step that
(4.8) for some integer £ > 1 and applying again Lemma we get

15 glo = [Lo-r () (Lhg)|, < 115 9\e+9 “11hgll-
< |1y gle+9 “llgll-
< lglo +0(1 = 0) 07 |g|l. +07"|lgll-
= lglo +6(1 —6)7'9~“V|g]L..
The proof is complete. l
As a fairly immediate consequence of Lemma [£.4] and Lemma [3.2] we get the following.
Corollary 4.5. There ezists a constant ¢ > 0 such that

(4.9) 1£591le < c(0"l9llo + [lg1]-)
for all g € By and all integers k,n > 0.
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Proof. Substituting 1% ¢ for g into the statement of Lemmaand then applying Lemma ,
we get

1LEgle = [LF(1Eg)|o < C(6F1Fglo + ||g]]1)
< C(0"(lglo + 01— 0)~'0~"||g[l.) + llgll1)
< C(0%(lglo + 01— 0)|gll« + llgll1)-
Hence,
1Lxgllo = [L3glo + |1£%glls < 1Lnglo + llgllx
< (C+1)(0"|glo + 01— ) Mlgll. + llgll1)
< C(0"1gllo + Ilgll+).

for some sufficiently large C' > 0 depending only on C' and 6. The proof is complete. [

5. SINGULAR PERTURBATIONS, GENERATED BY OPEN HOLES U,,,
OF (ORIGINAL) PERRON-FROBENIUS OPERATORS L, II:
STABILITY OF THE SPECTRUM

As noted in the previous section, the ultimate goal of this and the previous section is
Proposition We prove it by applying Theorem 1 of [25] and its consequences derived
therein. For the convenience of the reader and convenience of referring to, we bring up the
setting of [25] in Appendix at the end of our manuscript. We formulate there Theorem 1
of [25] and all its consequences we need.

For a linear operator () : By — By define

Q] = sup{[|Qg]l. : lgllo < 1}

From now on fix p,q > 1, ¢ > 2 being an integer, such that }—17 + % = 1 and, by taking
0 < p < 1 coming from (U2), sufficiently close to 1, assume without loss of generality that

0 (p"/7,1).
We shall prove the following.
Lemma 5.1. For every n > 0 we have
1€ = £alll < 2(pM5)".
Proof. Fix an arbitrary g € By with ||g|l¢ < 1. Using Lemma we then get
(£ = La)gllh = 11£(1 = )9l = [|£(Lo,9)]l1 = [|Lw, 9]l < 1o (Un)] 19l

(5.1) < o (Un)l9llo < pp(Un) < p"
< (pMoy
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Now fix also two integers m,j > 0. Using the Holder Inequality, we get

R I A L e US TN

= 0~lgllo / 1, e, Lo, di,

(5.2) " »
g Hgng_m (/ ]lo'*(jJrl)(Um) d“‘ﬁ) (/ ]lUn du@)

= 191100~ pro(Unn) /P po(U)/
< llgllo(p"7/0)"0"'* < (2"/*)"llgllo < ()",

where the second to the last inequality follows from the fact that 6 € (p*/?,1). Along with
(5.1)) this implies that ||£— L,||. < 2(p*/?)". So, taking the supremum over all g € By with
llglle < 1, we get that |||£ — L,|]] < 2(p"/9)". The proof is complete. O

With Lemma [4.2] Corollary [4.5] and Lemma [4.3] we have checked that the respective
conditions (KL2), (KL3), and (KL5), from Appendix are satisfied. We shall now check that
condition (KL4) from there also holds. We will do this by showing that the requirements

(24.3)-(24.5) from Remark in Appendix hold.

For every integer k > 1 let A* be the partition of EY into cylinders of length k. Let
mr + L'(p,) — L'(p,) be the operator of expected value with respect to the probability
measure /i, and the o-algebra o(A¥) generated by the elements of A¥; i. e.

mi(9) = Ep, (glo(A").
If g € By then |7} (g) — g| < osci(g), and therefore

63 i) gl = [ Irilo) = sldue < [ osculg)dn, < 6¥lgl
EY Ly
Let now A be a finite subset of A* such that
(5.4) He (Alg) < 6",
where
A= ) A
Ae AR\ AL

Let also

Ab = A

Ac Ak

Let A* be the partition of E consisting of A* and all elements of AE. Similarly as above,
let 7y, : L'(py,) — L*(py) be defined by the formula

m(9) = B, (glo(A™)).
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We then have that
(5.5) el [1 < 1,

and for every g € By, because of (5.3) and Lemma 3.1} and (5.4):

Imato) ~ ol = |
By
=/ k|7ri£(g)—g|du@+/ Imi(g) — gl dpe

Al Al

o) = gldn, = [ Imalo) =sldin,+ [ Imi(o) = ol di,
0 c

(5.6) k
< [ 1milo) = gldun, + 2ol (A7)
A
< 0%|glo + 2]|g]|c0"
< 30%/Jg

Now, for all m and k we have that

0 if m > qk
< osco(g) < 2[|gllee < 2[lglle  if m < qk.

0sCm(mr(9)) = {

Moreover, if w € A% and m < gk, then

08¢ (T(9)) (@) = 08¢ (11(9))() < 08¢ (g) ().
Thus,

0~ o5 (e (g) |1 = 0 / s (mel(g) iy

EX

:Q—m/ OSCm(Wk(g))dl’w—"e_m/ oscm(m(g))dﬂw
Agk AZF

<o [ oscule) duy + 26 gl (A7)
0

<glo +2l|9llo
< 3J|gllo-

Therefore |mx(g)]o < 3||g|lo. Together with (5.5)), this gives ||m||s < 4. In other words:

(5.7) sup{||mkllo} <4 < +o0.
k>1

This means that condition (24.3)) is satisfied. Now assume that ||g|l¢ < 1. Recall that we
have fixed p,q > 1 such that (1/p) + (1/q) = 1. Using Holder’s Inequality and (5.6) we
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then get for all integers £ > 1, j > 0, and n > 0, that

/v( )|7Tk(9)—9|dﬂso=/ Lo-iw,y|mi(9) — gl dpy
oI (Un

EX

1/p
< (/ Lo—i(w,) d“w) </
By E
< (U P27 ( /
E

1
< 1o (U) 7 (367 1g]19) /*
< 3p"/Po*,

1/q
[T (g) — glqdlw)

oo
A

1/q
7% (g9) — 9 dusa)

Recall that 6 € (0,1) was fixed so large that § > p/?. In other words p'/?/0 < 1, and we
get

6" 7k (9) — gl dpy < 3(p"'7/0)"6" < 36",
o= (Un)
In other words |m(g) — g|+ < 30%. Together with (5.6)) this gives
(5.8) I17x(g) — g« < 309 + 30 < 66",

It therefore follows from formula (4.9) of Corollary that formula (24.4)) in Appendix is
satisfied with

(5.9) a=60 and M =1.

Since all the operators 7, : By — By have finite-dimensional ranges, all the operators
L, omy : By — By are compact. This establishes formula in Appendix.

All the hypotheses of Theorem in Appendix (i.e. Theorem 1 in [25]) have been thus
verified. Note also that the number 1 is a simple eigenvalue of the operator L : By — By as
there exists exactly one Borel probability o-invariant measure absolutely continuous with
respect to the Gibbs measure f,. Applying Theorem in Appendix and all the corol-
laries listed therein, we get the following fundamental perturbative result which extends
Propositions 3.17, 3.19, and 3.7 from [20] to the case of infinite alphabet.

Proposition 5.2 (Fundamental Perturbative Result). For alln > 0 sufficiently large there
exist two bounded linear operators Q,, A, : By — By and complex numbers X\, # 0 with the
following properties:

(a) A\, is a simple eigenvalue of the operator L,, : By — By.

(b) Q, : By — By is a projector (Q> = Q,,) onto the 1-dimensional eigenspace of \,,.
(¢) Ly =NQn + Ay

(d) QnoA,=A,0Q, =0.
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(e) There exist k € (0,1) and C > 0 such that
1ALl < Cr*
for all n > 0 sufficiently large and all k > 0. In particular,
1%glloe < [1A%gllo < CH¥lgll
for all g € By.
(f) limy, oo A = 1.
(g) Enlarging the above constant C' > 0 if necessary, we have

In particular,

for all g € By.

(h) Timy, o0 [||@n — Qe[| = 0.

Proof. As there exists exactly one Borel probability o-invariant measure absolutely con-
tinuous with respect to the Gibbs measure f,, the number 1 is a simple eigenvalue of
the operator L : By — By. Invoking also and the fact that 1 > 6, the existence of
eigenvalues A, and items (a) and (f) follow immediately from Corollary and (5.9).
The operators Q,, : By — By are defined by formula (24.8). The items (b) and (h)
then directly follow from Corollary 4.11] The items (c), (d), (e), and (g) follow from
corresponding items (1), (2), (4), and (3) of Corollary 24.12] The proof is complete. [

From now on for all n > 0 sufficiently large as following from Proposition [5.2] we denote

Then g, # 0 generates the range of the projector operator @, : By — By and
(5.11) LyGn = M\uGn-

The proof of the next proposition is fairly standard. We provide it here for the sake of
completeness.

Proposition 5.3. All eigenvalues N, produced in Proposition [5.2| are real and positive,
and all operators Q, : By — By preserve By(R) and By (R), the subsets of By consisting,
respectively, of real-valued functions and positive real-valued functions.

Proof. Let p, € By be an eigenfunction of the eigenvalue \,. Write \, = |\,|e"™, with
Y € [0,27). It follows from (b), (c), and (d) of Proposition [5.2] that

(5.12) AnlFe®mE = Q.1 + N, FARL

By (1) of Corollary 1 in [25] we have that @Q,1 # 0 for all n > 0 large enough (so after
disregarding finitely many terms, we can assume this for all n > 0) and |\,| > (1 + k)/2.

Since also £¥1 is a real-valued function, it therefore follows from ([5.12)) and (e) that the
arguments of @,1(w) are the same (mod 27) whenever @), 1 # 0. This in turn implies



37

that the set of accumulation points of the sequence (k7v,)52, is a singleton (mod 27). This
yields 7, = 0 (mod 27). Thus A\, € R, and, as A, is close to 1 (by Proposition [5.2)), it is
positive. Knowing this and assuming g > 0, the equality
Qng =\ Lrg — A A% (9),

along with (e) of Proposition non-negativity of £fg, and inequality |\,| > (1 + k) /2,
vield Q,g > 0. Finally, for g € By(R), write canonically g = g, — ¢g_ with g,,g_ € BJ (R)
and apply the invariance of B, (R) under the action of £,. The proof is complete. U
As an immediate consequence of this proposition and Proposition 5.2, we get the following.

Corollary 5.4. The function g, : By — By belongs to By (R).

Corollary 5.5. The projector operator Q, : By — By gives rise to the bounded linear
positive functional @, : By — R, uniquely determined by the formula

Qnlg) = @n(g)gn-

Remark 5.6. We would like to note that unlike [20], we did not use the dynamics (i.e., the
interpretation of log A, as some topological pressure) to demonstrate item (f) of Proposi-
tion [5.2| and to prove Proposition [5.3] We instead used the full power of the perturbation
results from [25]. (++-+ Redo this remark from here) The dynamical interpretation
will eventually emerge, and will be important for us, but not until Section [16| Therein
Lemma ?7? will provide, at least in part, a dynamical interpretation.

6. AN ASYMPTOTIC FORMULA FOR \,S,
THE LEADING EIGENVALUES OF PERTURBED OPERATORS

In this section we keep the setting of the previous sections. Our goal here is to estblish the
asymptotic behavior of eigenvalues A, as n diverges to +o00. Let

Uy = ﬁ U,.
n=0

In addition to (U0), (U1), and (U2), we now also assume that:
(U3) Uy is a finite set.

(U4) Either
(U4A)

or

(U4B) Uy = {£&}, where £ is a periodic point of o of prime period equal to some
integer p > 1, the pre-concatenation by the first p terms of £ with elements of
U, satisfy

(6.1) ElpUn € U
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for all n > 0, and
(6.2) Tim sup{[p(w) = @(§)]: w € Un} = 0.

(U5) There are no integer I > 1, no sequence (w(”))oo_ of points in £, and no increasing
oo n=0 A
sequence (Sn>n:0 of positive integers with the following properties:

(U5A)
w™, gl (w™) e U,
for all n > 0,

(U5B)

lim dy(w™, Us)

n—oo

>0 if (U4A) holds,
> @' if (U4B) holds,

(U5C)

l
T S
nllf:o;wz < +oo,

for fixed [, where we identify F with the natural numbers to give w§") their
numerical values.

These conditions may seem somewhat artificial and a little bit weird at the first look. In
fact these are tailored for the needs of Part |3| devoted to graph directed Markov systems.
Their meaning will be fully transparent when we pass to deal with these systems. At the
moment we would like only to make the following short comments:

o If U, happens to be a singleton (a very common case) then condition (U4A) just
means that this singleton is not a periodic point of the shift map o; periodic points
are dealt with in (U4B).

e Condition (6.1) holds always if for example U, is contained in some cylinder [¢],]
and contains the cylinder [£],4,]-

e Condition is just the continuity of ¢ at the point £ if the sets U, form a
sequence of neighborhoods of ¢ with diameters converging to 0. However, alluding
to the context of graph directed Markov systems from Part [3| and furthers, U,, will
be then inverse images of some neighborhoods of singletons in the limit set under
the natural projection from the symbol space, and these inverse images may consist
of more than one point. More to it:

o [f

(U5")  limsup sup{dists(w,Us) : w € U,} = 0,

n—oo
then (U5B) cannot occur and condition (U5) is trivially satisfied. If however the
alphabet FE' is infinite, then even if the sets U, are inverse images of some small
neighborhoods of singletons in the limit set under the natural projection from the
symbol space, their diameters, i.e. of the sets U,,, need not converge to 0, nor even
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(U5’) needs to hold. Note that condition (U2) does not rule out the possibility of
such phenomenon to happen. However even if (U5’) fails, condition (U5), being a
kind of its surrogate, will be satisfied for sets U,, considered in Part[3] This condition
will be used several times in our proofs, perhaps most transparently, in the proof of
Lemma [6.2

Having proved all the perturbation results of the previous section, we shall now derive
several further relations between measure p,, the operators £ and £,,, and their respec-
tive eigenvalues. Unlike the previous sections we formulate these results for unnormalized
operators since this is the form (i.e. involving unnormalized operators), these results are
most suitable for applications in later sections. We however in the proofs assume fre-
quently anyway, without loss of generality, that the operators are normalized. We start
with the following analogue of Proposition 4.1 in [20], which is our main result concerning
the asymptotic behavior of eigenvalues A, as n — +oo.

Proposition 6.1. With the setting of Sections[3| andl], assume that (U0)—(U5) hold. Then

A=\ {/\ if (U4A) holds,

I -
oo 1o (Un) | A1 = APe#2®) if (U4B) holds,

where A and N, are respective eigenvalues of original (i. e., we recall, not normalized)
operators L and L,,.

This proposition will follow from a sequence of several lemmas we shall prove now. We
need a bit of preparation. For every integer n > 0 let v, be p,-conditional measure on Uy,
1. e.:

Lolu,
M%(Un)

Up 1=
We denote
1 =1y, =11}
We start with the following.

Lemma 6.2. If (U0)-(U4A) and (U5) hold, then

HC
i L @n(LL) dvn O, dv, = 1.

n—00 A=A\, n—oo [ poo
A
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Proof. Assume without loss of generality that £ is normalized so that A =1 and L1 = 1.
With an aim to prove the first equality, we note that

/ On(L1E) dvy — / On(L1 — L£11) du, — / Qn(ll — £,1) du,
:/inldyn—/Qnﬁn]ldynZ/inldun—/ﬁninldun

= /Qn]l dyn—)\n/Qn]ldyn

—(1-) / Qull dvn,

using Proposition [5.2] and the first equality is established. Now, fix an arbitrary integer
k > 1. For every w € U, let

(6.3) oy (w) = {r € o7*(w): Jo<jch1 0 (1) € Uy}
and
(6.4) o F(w) =0 F(w) \ o (w).

If 7 € 0" (w), then ¢7(7) € U, for some 0 < j < k — 1. Denote ¢7(7) by 7. Then
yeU, and o"(y) €Uy 1 <k—j <k

Fix an arbitrary M > 0. We claim that for all n > 0 sufficiently large, say n > N := Ny (M),
we have that

k—j
(6.5) > v > Mk
=1

for any v = ¢/ (7) for any 7 € 05" (w) Indeed, seeking a contradiction we assume that there
exist an increasing sequence (s,)5° of positive integers, a sequence (7(”))30 C EY, and an
integer [ € [1, k] such that

(6.6) 7(”), al(v(”)) eUs,,

and

l
S < Mk
i=1
for all n > 0. It then follows from conditions (U4A) and (U5) that the contrapositive of
(U5B) holds, i.e.:
lim dp(y"™, Us) = 0.

n—oo
Hence, from continuity of the shift map o : EY — EF and from the finiteness of the set
Us (by (U3)),
lim dy(o'(7'™), 0" (Us))) = 0.

n—oo



41

So, passing to a subsequence, and invoking finiteness of the set o!(Us), we may assume
without loss of generality that the sequence (al(’y(")))go has a limit, call it 5, and then

B € o'(Uy). But, since the sequence (Un)go is descending, it follows from that
8 € U, for every ¢ > 0. Thus § € No=o U, = Uy,. We have therefore obtained that

Us N (Us) # 0 as this set contains 8. This contradicts (U4A) and finishes the proof of
(6.5)). So, letting n > Np(M) and w € U, we get

L,1(w) = L5(1,) ()
— Z 1L (7)es ) 4 Z 11 (7)e? (™)

T€o; P (w) T€o; " (w)
(6.7) _ Z e () = L] (w) — Z oPk(T)
reos (W) r€ay (W)
=Lw)— Y e
€0y (W)

Now, if 7 € 0y *(w), then y := 07 (1) € U, with some 0 < j, < k — 1, and using (6.5)), we
get

(
< g ( o (U[e])
(6.8) j=0 e>M

This means that there exists a constant C' > 0 such that

So(w) < Chpy, ( U [e]> :

e>M



42 MARK POLLICOTT AND MARIUSZ URBANSKI

Denote the number Cfu, (UeZM[e]) by nar. Using (6.8), (6.7), and Proposition we get

the following.
= ‘/ﬂdun—/Qn]lan = ’/(,Cfl]l—f—so) dl/n—/Qn]ll/n

‘/ — AQn) L dy, + /(Af; —1)@Q,1 dyn+/80 dv,

< [ 1888y + 25 = 1111l + [ S,
< OK™ + CINE — 1| + k.

Now, fix ¢ > 0. Take then n > 1 so large that Cx" < £/3. Next, take M > 1 so large
that kny < €/3. Finally take any n > Ni(M) so large that C|A\* — 1| < &/3. Then
}1 - [Q,1 I/n’ < g, and the proof is complete. O

The proof of the next lemma, corresponding to Lemma 4.3 in [20], goes through unaltered
in the case of an infinite alphabet. We include it here for the sake of completeness and for
the convenience of the reader.

Lemma 6.3. If (U1)-(U4A) and (U5) hold, then
[ Qn (,Cllij) dv,

lim =
n—00 o ( Un)

Proof. We assume without loss of generality that A = 1. Let 7, : U, — U, be the first
return time from U, to U, under the shift map o : EY — EF. It is defined as

To(w) := inf{k > 1:0"(w) € U,}.

By Poincaré’s Recurrence Theorem, 7,(w) < 400 for p,-a.e. w € EY. We deal with the
concept of first return time and first return time more thoroughly in Sections [19] [20, and

21l We have

/ T dvy, = Zz’yn(Tn_l(i)) = Ziun(llﬂ?l(i)) )+ an 1 ' oo - 18 00")
n i=1 i=1 =2
— . t i— c %
= v, (7,1 (1)) + lZQ M@(Un),u@(]ln Yoo 1f 00"
—_ - Z (2 (2 (&
= v, (7, 1( ))—l—;’up(Un),uw(ﬁ (1 o015 00"))

Now using several times the property L7(f-goo?) = gL(f), a formal calculation leads to

/ T AUy, = vy (T, —i—an E’ 1 )))
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Invoking at this point Proposition we further get

/ T dvy, = v (1,1(1)) + an (AT'QnL(15) + ALTTL(1S))

= v, (7, (1)) + v (@ L(15)) Zi)\fjl + Z v, (AT L(19))
= Va7, (1)) + v (QuL(17)) (ﬁ - 1) + 3 i (AL - £1,,))

=2

= vn(7,1 (1)) + 10 (QnL(1S)) (m - 1) + an(Aj;l(ﬁn —£,1))
= V(7,1 (1)) + v (QnL(15)) (ﬁ — 1) +

+an Al ! E]l an A’

=2

Since, By Kac’s Theorem, fUn T, dvy, = 1/ p,(Uy,), multiplying both sides of this formula by
Up (Qnﬁ(]lfl)), we thus get

v (QuL(L5)) <Vn<§2n_£$%>>) Q1)) (w7 (1)) = v (QuE(15)) +

1o (Un)
—|—Ziyn Al ! ,CIl an )
=2 =2
Since, by Lemma
fn @ L) g
n—oo 1 — )\n

we have that lim, . v, (Qnﬁ(ﬂ;)) = 0, and since, applying Proposition again, we
deduce that the four terms in the big parentheses above are bounded, we get that

lim Un (Qnﬁ(]l%))

=1.

n—00 ,ugo(Un>
The proof is complete. ]
We shall prove the following.

Lemma 6.4. If (U1)-(U3), (U4B) and (Ub) hold, then

o (L12) du,
lim 1.9 (£L) dvn lim [ Quldy, =1—\"Pe?®.

n—00 A— A\, n—oo [ poo
A
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Proof. Assume again without loss of generality that £ is normalized so that A = 1 and
L1 = 1. The first equality is general and has been established at the beginning of the
proof of Lemma We will thus concentrate on the second one. So, fix w € U, and k, an
integral multiple of p, say k = gp with ¢ > 0. Define the sets o5 "(w) and o *(w) exactly
as in the proof of Lemma , i.e. by formulae and . We further repeat the proof
of Lemma verbatim until formula (/6.5]), which now takes on the form:

k—j
Either both k—j >p and ~v|p—; = {|x—; or else Z% > Mk.

=1

Indeed, this is an immediate consequence of (U4B) and (U5). In other words

05" (w) = 07" (w) U oy " (w),
o7 (w) = {r € 0" W) 30 < j < q—1) (7)€ Uy and o7 (1) gy = (€1,)" 7 }

03" (w) = 05" (w) \ 07" (w)
- {TGJO_k(w) :3(0<j<k—-1)0'(r) €U, and Z T > Mk}
Now, we shall prove that
(6.9) oit(w) = 2 = {r € og*(w) : "7 (7) € (€]}

Indeed, denote the set on the right-hand side of this equality by Z. If 7 € Z, then
A7), = €y and

o0 (1) = (P 0D (7)) |,0? (1) = E|,w € ELU, C Uy,

where the last inclusion is due to (U4B). Thus, taking j = ¢ — 1, we see that 7 € o, *(w).
So, the inclusion

(6.10) 7 C o7 M(w)

has been established. In order to prove the opposite inclusion, let 7 € o7*(w). Then there
exists j € {0,1,...,¢ — 1} such that o?’(7) € U, and o (7)|pg—j) = (£],)?7. Then

_ i ; : 1
o Py = (Jp(q 7=V OPJ(T))’p = o"(7)| Eq ; +1)+1 Elps

and so, 7 € Z. This establishes the inclusion o;*(w) C Z, and, together with (6.10)
completes the proof of (6.9)).
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Therefore, keeping w € U,, and using and (6.7)we can write
Lil(w) = L(1,)(w)

= 1(w) — Z e#R(T) Z e#k(T)

T€o; (W) r€o; (W)
= 1(w) — Z T, © oPla= D) (7)ePr(T) Z e#k(7)
(6.11) Te€o k(W) €0y " ()
= (w) — ﬁpq<]1[£lp] o gp(q—l))(w) _ Z e#k(7)
€0,y (W)
= (W) = L (L) (@) = Y e,
€0y " (w)
Putting
So(w) :== Z e#r(7)
T€0; (W)

and keeping 7, the same as in the proof of Lemma the same estimates as in , give
us

SQ(UJ) S k‘??M
Hence, using also (6.11)), we get

‘1 —epr(®) /EZII dvy,

= ‘/ﬁp(ﬂ[sp})d%—e“op(f)*/S?d”"
— '/(e*ﬂp(ﬂpw) —e‘PP(g))dunJr/Sgdun
< / |2 (E],w) — 2 (€)|dum + / Sy dvy,

§5n+k77M7

with some ¢, — 0 resulting from the last item of (U4B). Hence, keeping k fixed and letting
M and then n to infinity, we obtain

(6.12) lim [ Lfldy, =1 —e?(¢)

n—oo

for every k = qp > 1. Using Proposition [5.2] we get

‘/ﬁf’;]ldyn—/Qn]ldun = ‘/(E,’i—)\ﬁ@n)]ldyn—k/()\ﬁ—1)Qn]ldyn

<k = @] + 13— 1 @,
< flAnllee + =1
< CrM+ CINE - 1.
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So, fixing ¢ > 0, we first take and fix k¥ > 1 large enough so that Cx* < £/2, and then
using Proposition , we take n > 1 large enough so that C’|/\fl — 1‘ < ¢/2. Combining
this with (6.12]), we finally get the desired equality

lim [ Q,1dv,=1-— e?"©)

n—o0

The proof is complete. O

Applying Lemma |6.4| and proceeding along the lines of the proof of Lemma (or Lemma
4.3 in [20]), we get the following analogue of Lemma 4.5 from [20].

Lemma 6.5. If (U1)-(U3), (U4B) and (U5) hold, then
W (L1E) dv,

n—reo 1 (Uy)
Having proved Lemmas [6.2 [6.3] and Proposition [6.1] follows.

— (1 )\fpesf)p(i))2

Part 2. Symbol Escape Rates and the Survivor Set K (U,)

7. THE EXISTENCE AND VALUES OF SYMBOL ESCAPE RATES R, (U,) AND THEIR
ASYMPTOTICS AS n — 00

We first recall the basic escape rates definitions. Let G be an arbitrary subset of E.
We set

=— 1 o . i :
(7.1) R, (G) ::_kETwEIOgMW({WEEA c0'(w) €G foralli=0,1,2,--- ,k—l})
and
(7.2) R,,(G):=— lim —loguq,({weEff:al(w)gG forall i =0,1,2,--- ,k:—l}).
k—>+ook

We call R, (G) and R, (G) respectively the lower and the upper escape rate of G. Of
course

R

lﬂp(

G) S Elhp (G>7
and if these two numbers happen to be equal, we denote their common value by
thp (G)

and call it the escape rate of G. We provide here for the sake of completeness and conve-
nience of the reader the short elegant proof, entirely taken from [20], of the following.

Theorem 7.1. If (U0)-(U5) hold, then for all integers n > 0 large enough the escape rates
R, (U,) exist, and moreover

R, (U,) =log A —log A,.
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Proof. Assume without loss of generality that the Perron-Frobenius operator L : By — By
is fully normalized so that A = 1 and £1 = 1. By virtue of Proposition (b), (c), and
(d), we have for every n > 0 large enough and for all £ > 1 that

,u¢<{w€ EY :0'(w) €U, foralli=0,1,2,--- ,k—l}) =

k—1
= Jlp (ﬂ U_j(US)) :/ 15 du, =/ LM(13) dp
j=0 EY BT
(7.3)
— [ ch@du = [ (hQu1+ AL de,
EZF EF
= \F Qnl du, + A dp,.
B B
So, employing Proposition (b) and Proposition the latter to make sure that
An € (0,+00) and [, Q1 dpy, € (0,+00), we conclude from (7.3)) with the help of Propo-
A
sition [5.2| (e) and (g), that the limit
.1 o i .
kﬂrfm%bg“@({” € EY :0'(w) €U, foralli=1,--- ,k})

exists and is equal to log \,,. The proof is complete. 0
Now we are in position to prove the following main result of this section.
Proposition 7.2. With the setting of Sections[3| and[l], assume that (U0)—(U5) hold. Then

lim

n—»00 M@(Un)

R, (U,) )1 if (U4A) holds,
1 —exp (¢p(&) — pP(y)) if (U4B) holds.

Proof. By Theorem [7.1] we have
_logA—logA, _log)\n —logA A, — A

e (0n) = =2, @) IR SR A)
Therefore, invoking Proposition [6.1], we get that
lim JelUn) _ o logAs —logh L A Ay
n=oo fip(Un)  novoo Ay — A =0 U (Un)
1A if (U4A) holds,
D) {m — APexp (gp(€)) if (U4B) holds.

1 if (U4A) holds,
)1 —exp (¢p(&) = pP(y)) if (U4B) holds.

The proof is complete. O
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8. CONDITIONALLY INVARIANT MEASURES ON Uf

Following [9] we call a Borel probability measure v on US conditionally invariant if there
exists o € (0,400) such that

(8.1) v(USN o HA)) = av(A)
for every Borel set A C US. In slightly different terms, a Borel probability measure v on
E% is conditionally invariant with respect to US if v(US) = 1 and
(8.2) voo ' =av.
We will frequently treat conditionally invariant measures in this way, i.e., as Borel prob-
ability measures on Y with support on US. Precisely, the phrase “a Borel probability
measure v on US” will mean a Borel probability measure v on E with v(U,) = 0.

From (8.2) and the fact that v(US) = 1 we get
(8.3) a=av(US)) = v(e (UY)).

For the sake of completeness we shall prove the following two facts relating conditionally

invariant measures with the action of truncated Perron-Frobenius operator operators L,

Lemma 8.1. A Borel probability measure v on US absolutely continuous with respect to
the equilibrium state pn = pi,, with Radon—Nikodym derivative h, is conditionally invariant
if and only iof

En(h”Uﬁ = ah

Uz
for some o € (0, 1].

Proof. The measure hy is conditionally invariant if and only if for every Borel set A C U
we have that

a/ hdp = av(A) = v(c 1 A)
A

=v(l,1,00) :/ hll, 14 00du

EY
:/ L1, 00)du = / L(1,h)du = / L, (h)dp.
E¥ A A
But this holds if and only if
L, (h) =ah
p—a.e., US. This completes the proof. O

Corollary 8.2. Ifv is a conditionally invariant measure on US absolutely continuous with
respect to the equilibrium state p = p, with Radon-Nikodym derivative h = dv/dm and
escaping factor o, then

EZ(h) Us — Ozkh|U7cl

for every integer k > 0.
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Proof. We proceed by induction. For k = 0 the statement is trivially true. Next, suppose
that it holds for some integer k > 0. Then LFh ve is a scalar multiple of h|ye. But then

by linearity of the operator £, and Lemma we get that £,(LFh) ve = alyhlye. The
inductive hypothesis then gives that

ﬁZJrlh’Uﬁ _ ak+1h‘Uﬁ
and the proof is complete. 0

We shall prove the following theorem about conditionally invariant measures.

Theorem 8.3. If n > 0 is big enough as required in Proposition[5.2 then

//In = (ﬂ(gn]ln))_lgn

15 a unique conditionally invariant measure on US absolutely continuous with respect to
tolue whose Radon-Nikodyn derivative dii,/dp, belongs to By. In addition, the coefficient
a of and is equal to N, (= 11, (e (US))) and for every Borel set B C US we have
that

UsHo|Ug

—k c
k—+oo oy, (0~*(US) N UE)

— fin(B).

Proof. Because of Corollary [in, is a Borel (positive) probability measure on US. Denote

B = (pp(galn)) ™"
Using ((5.10) we get that for every Borel set B C US that

ﬁn(a_l(B)) = 6“90(]171971]13 © 0) = ﬁug&(['(]lngnﬂB © 0))

= Bﬂw<n3£(ﬂngn)) = ﬁﬂ@(ﬂBﬁn(Qn»

= Bﬂ’tp(]lB)\ngn) = Anﬁﬂw(]lBgn)

= A\nlin(B).
Thus, also

Ap = )‘nﬁn(Unc) = ,un(d_l(Uﬁ))

Now we shall show the uniqueness of fi,,. So suppose that hu is a conditionally invariant
measure with h : EY — [0, +00) belonging to By and identically equal to zero on U,,. Then
by Proposition [5.2] Corollary [5.5, and Corollary [8.2] we have that for every integer k& > 0
that
(8.4) a*hlug = (A Qu(h) + AR |og = (NEQu(R) g + AL o
Assuming that n > 0 is large enough that it follows from Proposition (e) and (f) that
a =\, and limy_, ;o ||\, *AFh|| = 0. Therefore, after dividing both sides of by \F
and letting &k — 400, we conclude that h|ye = Q,(h)gn|ue, The proof of the first assertion

of our theorem is complete.
The second assertion, o = A, = [, (6~ *(U¢)) is now an immediate consequence of (8.3)).
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The third and final assertion of the theorem follows from the following calculation.

) Lo (O'_k(B) N ﬂk;l U_j(U£)> Y (g 0 a®1%)
1m = l1im =
kﬁﬂ)oﬂgo( ( ) N ﬂ] e ( )) k—+o0 l,LSO(]lUc o Uk]lk)
Lo dt i) pia(1sLh(1)
= 1m % 11m % %
k—+4o00 ,utp(ﬁ (]lUc ookl ) k—4o00 pw(]lUﬁ[,@(]ln)
k——+o0 Ms@(ﬂUﬁ‘Cn(]l)
_ N@(ﬂ39n>
fo (L gn
— 7i.(B).
This complete the proof. U

We cannot really do much better with the uniqueness part of this theorem; the hypothesis
that the Radon-Nikodyn derivative dji,,/du, belongs to By is important. Indeed, it follows
from Theorem 3.1 in [14], that for every a € (0, 1) there are uncountably (a continuum) of
many conditionally invariant measures absolutely continuous with respect to yu,. Moreover,
if a € (0, 1) is sufficiently small, then the Radon-Nikodym derivatives of all these measures
with respect to p, are bounded.

9. SYMBOL EscAPE RATES OF U,S, I: THE VARIATIONAL PRINCIPLE ON THE
SURVIVOR SETS K (U,)

We assume again, what is very natural in the context of this section, that the Perron—
Frobenius £, is fully normalized; in particular its leading eignevalue (simultaneously the
spectral radius) A = 1. Theorem then asserts that

(9.1) Ry, (U,) = —log A,.

for all integers n > 0 large enough.
Since the survivor sets K(U,), n > 1, are closed and forward invariant with respect to
the shift map o : EY — E we can consider the dynamical system

U’K(Un) : K(Un) — K(Un)

Let M (o) denote the space of all Borel probability o-invariant measures on £ endowed
with the the weak convergence topology. Let

M, (o) :={v e M(o) : v(K(U,)) =1},
M (o) :={v e M(o) : /cpdu>—oo},

and let M€ (o), M¢ (o) and M (o) denote the respective subspaces of ergodic measures.
Our goal in the upcoming two sections is to prove the following two results.
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Theorem 9.1. (Variational Principle) If (U,)2, is a sequence of open subsets of EY
satisfying conditions (U0-US5), then

sup {h,,(a)+/ pdv v e M;{(U)} = sup {hy(0)+/ pdv v e ./\/l;fe(a)} = log A\,
K(Un) K

(Un)

for allm > 1 large enough.

This is the first result. The other one is to show that there exists a unique measure in
M (o) (and that it belongs to M ¢(¢)) maximizing the above suprema, and to define it
explicitly. We will call this measure the surviving equilibrium state for U,,. In this section
we will show that

(9.2) sup {hy(a) —|—/ pdv:ve M,J[(a)} <log \,.
K(Un)
All other assertions we mentioned above will be proved in the next two sections. Let
v e M} (o). For every k > 1 let
Fulk) :={we E} : W NK(U,) #0}

and let

Za(k) =Y exp(sup(¢eli))).

weFn (k)

Denote by « the partition of EY° into cylinders of length one, i.e,
a = {le]}eer.
Then for every k > 1,
of =ave o)V 2a)V--- Vo V()= {{w}wems -

Denote by h the function (0,+0c) 3 x — —zlogz € R. Since this function is concave,
the following calculation, standard in thermodynamic formalism, gives us that for every
v € M} (o) and every integer k > 1:

(9.3)
H(h)+ [odr < 3 vl (sup(orls) o v(le])
w€Fn (k)
= Zn(k) D Zu(k) " exp (sup(pxli))) b (v([w] exp(— sup(p|y))))
weFn (k)

< Z,(k)h Z Zn (k) texp (sup(gokhw])) v([w]exp ( — sup(cpkhw}))
wEFn (k)

= Zu(k)W(Z," (k) = log Z,(k)

n
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Now our goal is to estimate Z,(k), Since the potential ¢ : EY — R is summable, there
exists [ > 1 such that

— 1
Z exp(sup(¢|()) < 3
e>l+1
We know from Proposition that for every n > 1 large enough
1

Ap > =
2

We have the estimate

Zn(k‘)éiz > exp (sup(elw)) exp (sup(gr—;m))

— .
IO ssbegn TN

k-1 ' 1\ Fd
S IATAIEY
J=0 s<l

where v, € K(U,) is fixed such that Ay,), = 1. Applying Proposition we further

estimate
ACES D (Az@nnm) + ok (5) )

j=0 s<I
k—1 k—j k 1\k
(1 Ar— (5
grzE:Agl<_> :n_<21)§4Af;
j=0 2 An = 3

if n > 1 is large enough and I' is a constant. Therefore,

1
limsup — log Z, (k) < log A,..
k—+oco N

Inserting this into (9.3]) we get

1
h, (o) —i—/gody = lim — (Hy(ak) +/(,0de) < log \,.
k—+4oo k

This establishes formula (9.2]).

10. SymBoL EscAPE RATES OF U,S, II: THE VARIATIONAL PRINCIPLE AND
EQUILIBRIUM STATES ON THE SURVIVOR SETS K (U,); THEIR EXISTENCE AND
STOCHASTIC PROPERTIES

Because of Proposition [5.2] and Proposition [5.3], for every n > 1 large enough the formula
(10.1) By 3 g = Qulgng) = tn(9)9n

where, we recall, g, = @, 1, defines a linear continuous positive functional pu, : By — R.
Speaking a little vaguely, the ultimate goal of this section is to prove that this functional
gives rise to a shift invariant Borel probability measure on K(U,) which maximizes the
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supremum in ((9.2) with the value equal to log A,. Our first step in achieving this goal is
to prove the following.

Lemma 10.1. The linear functional By > g — un(g9) € R restricted to H5(A) extends
(uniquely) to a positive linear functional from Cy(EY) to R and thus it represents a Borel
finite measure on E°. We use the same notation of ., for this extension.

The most natural way to prove this lemma would be to apply the Daniell-Stone Rep-
resentation theorem, but we do not see any reasonable way to show that if a monotone
decreasing sequence of positive bounded Holder continuous functions converges pointwise
to zero, then the sequence of respective values of the functional u,, also converges to zero.
We therefore take a somewhat different way. We first approximate each set U,, from above
by some suitable sets U, (q), ¢ > 1, apply the corresponding analogue of Proposition
for perturbations of the operator £, and define the appropriate measures on the, what will
turn out to be compact, shift invariant sets K(U,(¢)) by means of the Stone Represen-
tation Theorem of positive linear operators “on compact spaces”; the application of this
theorem does not require to show that the continuity (pointwise convergence) hypothesis
of the Daniell-Stone Representation Theorem is satisfied.

Then we will show that these shift-invariant measures on K (U,(q)) converge weakly as
q goes to infinity. The resulting weak limit is necessarily shift—invariant and supported on
K(U,). We will show that this is the required extension of i,,.

So, given an integer [ > 1 we denote

Nl = {1,2,,[}

Given also n > 0 we set

n—1
uv.=U,u U o7 (NY).
j=0
Given ¢ > n let [; > 1 be the least integer such that
1y (N;,) < p?/n.
Then

(10.2) L (U U‘j(Nf)> <pf

Set
Un(q) := Uls.
Of course each open set U, (q) is a disjoint union of cylinders of length ¢ so that condition

(U1) is satisfied for the sequence (U, (g . L := L, is now the fully normalized transfer
operator associated to ¢. As in Sectlon We define the operators

Lng(9) = E(HUSL(Q)Q)'
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The space By and the norm || - ||y remain unchanged. We however naturally adjust the
seminorm | - [, to depend on our sequence (Uy,(q))72,,. We set for g € B:

lg|; = sup sup {H_m/ lg| du@}
>0 m>1 (U" 1 7‘](NC ))

and

gll7 == llgll + lgly.
We intend to apply Keller and Liverani (see [25]) perturbation results. Because of ((10.2)),
Lemma [4.1] goes through for the norm || - [|. We put

Hn-

: H]la 3(US(q)) H]lUc OO']
k—1
I3 = H Lo izt o-iovn) HHU" L) © 0

and note that
kE _ 1k k,*
]1n,q =1, - ]ln,q'
The proof of Lemma goes the same way for the operators ﬁﬁ,q with only formal change
of 1% by 1} and Uy, by Uy (q). It gives:
Lemma 10.2. For every k > 1 and for every q > n, we have that

1Lnqlln < 1.

Lemmas [4.3 1.4 and Corollary used only the (U1) property of the sequence (U, ),
and therefore these apply to the sets U,(q), ¢ > n, and the operators Efl’q (to be clear, the
role of n is in these three results is now played by the pair (n,q)). Fix a,b > 1 such that
11 _

2 +3=1and

Pt <.

We shall prove the following analogue of Lemma 5.1}
Lemma 10.3. For every n > 0 we have
110 = Luglll < 20517,
Proof. Fix an arbitrary g € By with ||g|l¢ < 1. Using Lemma and (10.2), we get
(Ln = Lng)glls = [IL(Mug\vg @9l = [[Lugwg @9l < uso(UC \ Un(@)lglls

=t (U N Un(@)ll9llc0 = pg (Uﬁ N (Un U U O_j(N?)>) [191loo

J=0

. <U,s " aﬂ'(Nn) lollo < 1, (O af(Nn) loll

Jj=0 J=0

(10.3)

< plgllo < p? < (pM")".
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Also, using Cauchy-Schwarz Inequality, we get

em/ ‘(['n - ﬁn,q)g‘ dpy =
0*1( "_1U*J(NC ))

:em/ ]]‘Un 1 *](Nc OO' ‘E(]lU(,\UL )|dlU/¢
A

= eimHgHOO /E‘oo £ (HU;L;& O_fj(Nlcm) oo i+1 ]lUc\Uc ) dIU/SO
A

=0 gl [ g, ) 00 s di

A

S emHgHOO/E“OO ]lU;L:—Ol Uﬁj(me) oaTg ]lun 1 *J(NC dﬂ@
A

= 07"l9ll /E ooz, ) Tupzs o) i

A

< - |gllop " (Ua o) ) 1/b<Ua Nc>

< lgllo(p"*/6)™ p** < p**||glls < p*".

Therefore, |(£n — L) g|:L < p?/*, and together with (10.3]), this completes the proof of our
lemma. 0

Having all of this, particularly the last lemma, and taking into account the considerations
between the end of the proof of Lemma and Proposition [5.2] we get the following
analogue of the latter for the operator £ replaced by L,,, and the operators L,, replaced by
Ly.q

Lemma 10.4. For all integers n > 0 large enough and for all ¢ > n large enough there
exist two bounded linear operators Qn. q, An g : By — By and complex numbers X\, , # 0 with
the following properties:

(a) Ang is a simple eigenvalue of the operator L, , : By — By.

(b) Quyg : By = By is a projector (Q 5 = Qng) onto the 1-dimensional eigenspace of
Ang-

(c) Lyg = Ang@ng+ Bng.
(d) Qugolng=28470Qn,=0
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(e) There ezist k, € (0,1) and C > 0 such that for every integer k > 0 we have that
AT o < ClrnAn)".
In particular,
1A%, 491100 < N1AT gallo < Clraa)*[lgllo
for all g € By.
(f) limysoo Apyg = A

(g) Enlarging the above constant C' > 0 if necessary, we have

1@ngllo < C.
In particular,

1@n.q9llo0 < [[@ngglle < Cllgllo
for all g € By.

(1) Titngosoe ||| Qg — Qull] = 0.

The following lemma can be proved in exactly the same way as was Proposition

Lemma 10.5. All eigenvalues X, , produced in Lemma are real and positive, and
all operators Qn, : By — By preserve By(R) and By (R), the subspaces of By consisting,
respectively, of real-valued functions and positive real-valued functions.

Remark 10.6. How large n needs to be in Lemmas and is determined by the
requirement that the assertions of Proposition hold for such n.

Now, let us consider the dynamical systems o : K(U,(q)) — K(U,(q)), where, we recall,

= ﬂ o'_k
k=0
and we denote
Kn(q) = m(K(Un(q))).

Note that all sets K (U,(q)) are compact. A straightforward elementary calculation shows
that if f,g € By, then

(10.4) 1 7glle < 3 flellglle-

Hence in particular fg € By. This allows us to define a linear functional p, , : By — R by
the requirement that
Qn q(ggn q) = Hn q(g)gn q-

Since, by Lemma[l0.5 Q4 is a positive (Q,4(B4 (R)) C By (R)) operator and @, # 0 all
q > n large enough, 1t follows that fu, 4 is a positive (p,q(B; (R)) C [0,+00)) functional
and

(10.5) fing(1) = 1.
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Positivity of j,, immediately implies its monotonicity in the sense that if f,g € By and
f(z) < g(z) pe-ae. in EY, then

(10.6) g (f) < ping(9)-

Now, let C}(EY) be the vector subspace of Cy(EY) consisting of all functions that are uni-
formly continuous with respect to the metric dy. Let us define a function f,, , : C}(EY) —
[0, 4+00) by the following formula:

(10.7) fing(9) == sup {ng(f) - f < g and feHy(A)}.
Of course by (10.6) we get that
(10.8) 1t 4y = Bnglugay-

Given g € C}/(EY) and k > 1 define two functions

g, (w) :=inf{g(r) : 7 € [w|k]} and gy (w) :=sup{g(r): 7 € [w|k]}.

Of course
9, <9 =Gy
and
(10.9) Jim {lg =g, lloc = lim [|g — gy lloc = 0.

We shall prove that for every g € C}(EY) we have that

(10.10) fing(9) = T g(9) = inf {ping(f) : f > g and f € Hy(A)}.
Then for every k£ > 1 we have that
fing(9) < ting(Tr) = ting (g, + Tk — 9,)) = Hna(g,) + tng(@x — 9,)

< fing(9) + 1(l[ge — 9,/1o0)
= /:Ln,q(g) + ||§k - QkHcov

and invoking ([10.9), we obtain fi, () < T, ,(9) < fing(g), completing the proof of (10.10)).
We now prove the next axiliary fact.

Lemma 10.7. The function fi,, : C}(EY) — R is a positive linear functional such that
fing(1) =1 and fin gl ay = Hnglusa)-

Proof. Positivity is immediate from formula (10.7)). It is also immediate from this formula
that

(10.11) fing(g) = vfinq(9)
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for every a > 0. Employing also , we get that
fina(—g) = inf {ng(f) : [ > —g and f € Hi(A)}
= inf { — ping(—f): —f < g and feHy(A)}
=inf { — puq(f): f < g and f€Hj(A)}
= —sup {ping(f): f < g and f e Hi(A)}

= _ﬂn,q(g)'
Along with ((10.12)) this implies that
(10.12) fing(0rg) = atfing(g)

for every g € CH(EY) and all @ € R. Now fix two functions f,g € C¢(EY). Because of
(10.10) and ([10.7)) there exist four sequences (f; )5, (fi)5°, (g5 )5, and (g;7)5° of elements
of H)(A) such that

fe << fhh g <g<gyf,
and

kh—{go ,un,q(fk_) = kh_{go Nn,q(f]j) = ﬂn,q(f) and kh—glo ,un,q(gk_) = kh—{go Nn,q(gl—:) = /ln,q<g)'
Therefore, applying again ((10.10)) and (10.7]), we obtain
fing(f +9) = B i o (fi7 4 g) = B g g(fi) + 0 ping(910) = fing(f) + fing(9)

and
fing(f+g) < khm g ([ +97) = Jim unq(fk ) + lim Ling(G1) = fing(f) + fing(g).
—00 oo
Hence,

fing(f +9) = fing(f) + fing(9),
and along with ({10.12)) this finishes the proof of Lemmam (the last two assertions of this
lemma are immediate consequences of ((10.5)) and ({10.8]). O

Now we shall prove the following auxiliary fact.
Lemma 10.8. If g € Cy/(EY) and g|g, =0, then fi,q4(g) = 0.

Proof. Let
Frg={weE}:[w] CU; .},
and note that 7, , is a finite set. For every k > 1 let

k—1
Uk = ﬂ oI (US).

We shall prove the following.

Claim 1: There exists p > 1 such that if w € E%" and [w] C U,
K(Un(q)) # 0.

then [w|gn—pn] N



59

Proof. Let

(10.13) pi=#Fnq+ 1< +00.
Seeking a contradiction suppose that £ > p and

(10.14) [wlk-pyn] N K (Un(q)) =0

for some w € EY" with [w] C U™, Because [wli | =
a concatenation of non-overlapping blocks from F, ,, it follows from that there
are two non-overlapping subblocks of w|’(“,? )t forming the same element of Fonqg Let

(l D1 k—p <l—1 < k—1 be the latter of these two blocks, and let the former, denote
it by 7, have the last coordinate j (7 < (I — 1)n). But then the infinite word

pn and beeause w| e pynt1 18

(I—1)n+1
Wlin (W ;11)00 = wl;- n(7w|]+1)n )

is an element of £ and each of its subblocks of length n is a subblock of length n of w.
So, wlim(w|1)® € K(Un(q)). Thus, [w]im] N K (Un(q)) # 0. As I > k — p, this contradicts
(10.14)) and finishes the proof of Claim 1. O

Now passing to the direct proof of our lemma, fix € > 0 arbitrary. Since g|xk v, () = 0 and
g € CH(EY), there exists [ > 1 sufficiently large that

(10.15) 91, < e/2

if [w| > 1 (we EY) and [w]NK(U,(q)) # 0. Take any k > [+ p so large that |[g,,, — g|ec <
£/2. Employing Claim 1, (10.15)), Lemma [10.7} and (10.8)), we get
fng(9)9n.g < fing(Gin)9na = Fna(Grn)Ing = @ng(TrnIng) = An, lmﬁlm «@n 4(Gen9n.a)
= Mg Qna Ly (Gnn.a)
= )‘r:zn@mq (T — Z gkn(“)T)gn,q(WT)e%n(WT))

[WCUEk,: Ay, mp=1

<A, k”an(T — € Z llfln(wT)gn,q(wT)e“"’“"(w))
Awy rg=1

“knT0
=€, Ian qﬁlm (9n.q) = €Qn,q(Gn,q) < €llgn.qlloc@n,q(L)
= €[|gn.gllocgng < €llgn.gllogn.g:

Hence,

fing(9) < |gn.qlloc

Likewise, -fin,4(9) = fing(—9) < ||gnqlloe, and in consequence.

|/ln,q(g)’ < Hgn,qHOE-
Letting € N\, 0 we thus get that f,4(g) = 0 finishing the proof of Lemma [10.§] O
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Since every function g € C' (K (Un(q))) is uniformly continuous, it extends to some uniformly
continuous function g : £ — R. The value

fing(9) = finq(9)
is then, by virtue of, Lemma |10.8| independent of the choice of extension § € C¢(EY) of
g. By Lemma [10.7] we get the following.

Lemma 10.9. The function fi,, : C(K(U,(q))) — R (also denoted in the sequel just by
Unq) s a positive linear functional such that (1) = 1. Thus by the Riesz Representation
Theorem i represents a Borel probability measure on K(U,(q)).

We shall prove the following.

Lemma 10.10. The measure fi,, (as indicated above also denoted in the sequel just by
tng) on K(U,(q)) is o-invariant.
Proof. Let g € C(K(U,(q))). Let g € C#*(EY) be an extension of g. Then goo € Ci(EY)

and it extends g o 0. Fix € > 0 and take §, and §_ both in Hj(A), such that §_ < § < g,
and

fng(G+) — € < fng(9) < png(g-) + e
Of course then we also have §; 00, §_ oo € Hj(A) and §_ oo < joo < g, oo. We thus get
fin,g(9© 0)gng = fing(§© 0)Ing < tng(+ © 0)gng = Qn.g(In.ed+ 0 0)
= A b L Qg (Gngdy © 0)
= A Qg L8 (9n g 0 0)
= /\T_L,};nQn,q (?]4—»61]221 (gmq))
= Qn,q(G+9n,q)
= pn,q(G+)9n.q
< (fing(9) +€)gng = (Hng(9) + €)Gng-

Hence, fin4(g00) < fin4(G) +e. By letting € N\, 0 this yields fi, 4(g00) < fin4(g). Likewise,
working with g_ instead of g;, we get fi,4(g00) > fing(§). Thus fin4(go0) = fin,(g) and
the proof is complete. O

As we have already indicated, our goal now is to prove that the sequence (inq)e2;
converges weakly. For this we bring in the concept of Wasserstein metric. We denote it
by dw and recall that in the setting of the symbol space EY it is defined by the following
formula:

dw (v1,v2) = sup {|r2(g) — v1(g)| g € H(A) and Hy(g) < 1},
where v; and v, are Borel probability measures on E.

The Wasserstein metric dy induces the weak convergence topology on E%°. We shall

prove the following.

Lemma 10.11. The sequence (jin,q)o; is fundamental (Cauchy) with respect to the Wasser-
stein metric dyy.
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Proof. Fix p,q > 1 large enough so that Lemma holds. Fix g € Hj(A) with ||g|ls < 1.
Using item (g) of this lemma, Proposition [p.2]and formula (5.10) we get for pu,-a.e. w € EY
(even on the zero sets of g, , and gy, since in the formula just above the first equality below,
both g, , and g,, cancel out) that

Qn.g(99n )( ) Qup(ggnp) (W)
g (9) = tinp(g ’ e e
In,q(w In,p(w)

‘an ggnq)( )gnp( ) Qn P(ggn,p)(w)gn,q(w)

n,q(W)gnp(W)
| 9n0(@) (Qn, q(ggn ) (@) = Qup(99np)(@)) + Qnp(99n) (@) (G p(w) = G g(w))
Inqg(W)Gnp(w)
< [(@n4(99n.0)(w) = Qup(99np) (WD | |Qnp(99n) (W)]190p (@) = Gng ()]
N Ing(W) Inqg(W)Gnp(w)
< ‘(Qn,q (ggn,q - ggn,p) (w) + (Qn,q - Qn,p)(ggn,p)(w)}
N Ing(W)

+

Qup(l9llocgnp) (W)
Gn,q(W) gnp(w)
[(Qn.qg = Qnp)(9Gnp) (W)

n 1 01p() = Gna()

< 19llc@n.o(19n.q = Gnpl)(w)

N Inp(W) * Ina(@) +
Ngllocupl) |
gn,q(w)gn,p(u))|g”"I( ) = np(W)|

< Qn.q(|9n.q — Gnpl) (W) i |(Qng — Qnyp) (ggn7p)(w)|+

gmq(w) gn,q(w)
|Gnp(W) = Gng(w)]
’ Gng(W)

< gﬁ,;("‘)) (Qn,q(|gn,q — Inp)) (W) + [(Qng — Qnp)(9Gnp)(@)| + [(gnp — gn,q>(w)|)‘

Multiplying both sides of this inequality by ¢, ,(w) we thus get that
(10.16)
1ng(9) = Hnp(9)|Gn.q(w) <

< Qng|9ng = Gnp) (W) + [(Qng = Qnp)(99np) (@) + [(Gnp — Gng) (W)]
< Qn,q(|gn,q — gnl)(w) + Qn.g(Gnp — gn)(W)] + |(Qn,q - Qn)(ggn,p)(wﬂ""
+ [(Qnp — Qn)(9Gnp) (W) + [9ng — gnl(wW) + [gnp — gnl(w).

Now we integrate both sides of this inequality with respect to the measure p,. We treat
each each summand seperately. We start with the last terms. Fix e € (0, [|gnll£1(u,)/2)-
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Then by Lemma m (h), we get for all ¢ > 1 large enough, say g > [y, that

/ 9ng — gal ity = / (@ — Qa1 iy < [[( Qg — Q)L

(10.17) < |[[(Qnig = Qu)II[- 11|60
= [[(@nqg — @u)lll
< €.
So, also
(10.18) /\gmp — gnldp, < €
if p > ;. Next, by Lemma [10.4] (g), we get
(10.19) ||gn,p||9 = “Qn,p]l”G < ||Qn,p||9||]1||9 <C
if p > 1 is large enough, say p > l; > [;. Hence, by (10.4)we get that
199n]] < 3C.

We therefore get for all ¢, p > I, that

/ (@n.g = Qn)(9gnp) o < [[(Qng = @n)(9gnyp)ll«

< |[(Qng — QI - 19gn.pllo
< 3Ce

and in the same way
(10.20) [ 1@ = Qg di, < 5
Next using and Lemma [10.4] (g) we get
[ @uallgns = gu e < 1@l [ Vo = ol

< |Qnallo / gnp — gl ity

< Ce
and in the same way, with (10.18)) replaced by (10.17)), we get that
(10.21) [ @uallona = ) di < =

As the (almost) last step we get from ((10.17) and the choice of € > 0, that

/gn,qd:u@ = /gnd/vbgo + /(gn,q — gn)dph,

1
> gallzrue) = € 2 902100
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Therefore, we conclude from the above inequalities, that after integrating both sides of
(10.16|) we get that

|tn.(9) = tinp(9)] < 2019l 11, (8C +2)e
for all p,q > l,. Hence
A (i ) < Nlgall 7 (8C +2)e
for all p, ¢ > l5. The proof is complete. U

Having this lemma, we can easily prove the following.

Proposition 10.12. For every n > 1 large enough the sequence (iin )i, converges weakly.
Denoting its limit by p,, we have the following:

(a) pn(K(Un)) = 1;

(b) pin 00t = py, i.e., the measure p, is shift invariant; and

(¢) Qu(9ng) = 11n(9)gn for every g € Hy(A).
Proof. Since the Wasserstein metric is complete if the underlying metric space is com-
plete (more precisely, the underlying topological space is completely metrizable) and the
space EY° is completely metrizable, the convergence of the sequence (umq)g‘;l follows from
Lemma [10.11] The item 9a) then follows from the fact that K(U,) is a closed subset of
E% and K(U,(q)) C K(U,) for every ¢ > 1. Item (b) follows from Lemma and the
fact that 1, is the weak limit of the measures p, 4, ¢ > 1.

In order to prove item (c) first note that by the definition of the measures p, 4, ¢ > 1, and
by the the very first assertion of the present proposition, we have that for every g € HZ(A)
that p1,(¢9) = lim, o0 pin4(g) and then, after multiplying both sides of this equality by
Gn,q» WE get

(10.22) 0= lim (16(9)gnq — Hng(9)9na) = M (a(9)9nq — @na(99n.))

feo—a.e. But since all the functions involved are uniformly bounded, the formula ((10.27))
also holds if the limit is understood to be in the space L*(u,) and because of (10.20) along

with (10.21]), we have that
lim  Qnq(99n.q) = @n(99n.q)

q——+00
in L*(p1,). In conclusion:

Qn(9ng) = tn(9)gn
in L'(u,). The proof of item (c) is thus complete. We are done. O

Now we shall prove the following.

Proposition 10.13. . If ¢ € Hy(A) is a summable potential and [(—p)du, < +oo, then

/(—w)dun < +00

for all n > 0 large enough.
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Proof. Since the potential ¢ : EY — R is summable, there exists an integer [ > 1 such
that for all e > 1,

¢l <0.
Therefore, by Proposition [5.2] we have for every ¢ > [ and every w € EY that
[’(gn( - @)ﬂ[e]) (w) Z »Cn (gn(_cp)]l[e])(w) = )‘nQn (gn(_gp)]l[e]) (w> + An(gn(_so)ﬂ[e})(w)
So, by Proposition 5.3}
QuL(gn(—0) i) (W) = M@ (9n(—0) 1) (@) = M Qi (90 (=) L)) ()
> )\n lnf(_gp)’[e]Qn(gn]l[e]%

where writing the last inequality sign of this formula we also used the inequality (—¢)1y) >
inf(—¢)|g 1. By Proposition.2] there exists p > 1 such that for all n > p we have that
An > 1/2. Therefore,

inf(_ﬁo) ’ [e]Qn(gn]l[e])(w) < 2Qn5(9n<_90>]1[6])(w)'

Hence
Zinf<_90>|[e]Qn(gnﬂ[e] < 22@71 gn ﬂ[e )( )
e>l e>l
Equivalently,
(1023) Z inf( (P)’[ ]:un n < 2 Z QnL gn ]1[6 )( )
e>l e>l
Furthermore,
2> " L{gn(—9) ) (@) <D sup(—9)| sup(galg)e™ ™) < [lgnlle Y sup(—)ie o ([€])-
e>l e>l e>l

So, by Proposition again and by Propositionm , we get that
QZQn gn ]1[6] —< Hgn“oozsup |[e]/~L<P([ ])an(w)

e>l e>l
< Cllgnlloe Y sup(—9)| et ([€])
e>l
< C* Y sup(—)|gie([e)-
e>l

Inserting this to ((10.23)), gives
(10.24) Z inf(—p)|e)pin([e]) gn(w) = Z sup(—)|(e e (le])-

e>l e>l

Now, recalling that

(10.25) C' = ilelg {sup(—¢) —inf(—p)} = ilelg { sup(yp) —inf(p)} < +o0
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and that ||g,||cc < C for alln >1 large enough, because of (10.24)), we get that

Zinf(—go)he]un '< Zlnf |[e Mw ]) + ZM@([Q])

e>l e>l e>l

< / (=) dptg-
[l,400)
Now fix w € EY such that g,(w) > 0. We then and obtain from (10.25)) and (10.26)) that

/N (it < 3y (Rig) £ 3O+ b))
;oo

e>l e>l

(10.26)

<O+ inf(—@)|)a(fe])

e>l
=< ggl(w)/ (—p)du+C".
[l,400)

Therefore,

/(—w)dﬂnz / (—o)dpn + / (—)dp, < +00,
jf [1,1-1] [1,400]

and the proof is finished. O

Proposition 10.14. Assume [(—¢)dp, < +oo. If n > 1 is large enough and p,, is the
measure produced in Proposition m then pi, is the surviving equilibrium state for U,,
i.e., [(—p)du, < +o0 and

(10.27) h,, (o) + / o dp, = log A\,
(Un)

Proof. That [(—¢)du, < +oo was proved in Proposition [10.13] Because of (9.2) we are
now only left to show that

(10.28) h,, (o) +/ © dpi, > log Ap,.
K(Un)

Indeed, if 7 € EX, k > 1, then
tn([T])gn = Qulgnlli)) = Qu@n(gnlin)
= XL (Qn(9a1)) — A%(Qn(9a11)))
= N LE (Qulgnlly)
= A\ QLY (gn ).
Now,

‘sz(gn]l[T]) < ||gn||00[’fz(]]'[ﬂ) < HgnHooeXp ( - inf(@khr]))'
Therefore, invoking Proposition we get that

Qn‘cﬁ(gn]l[rﬁ < ||9n||oo exp ( - inf(@khﬂ))Qn(ﬂ) = ||gn||oo exXp ( - inf(gpk|[T]))gn
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Hence,
(10.29) pa([7]) < llgnlloc Ay exp (= inf(oxli)).
So, using also the Bounded Distortion Property for ¢, we get
—log u([7]) > klog A, + inf (¢k[ir) — log [lgnlles
> klog Ay +sup (¢klir) —logllgullc — C

with some constant C > 0. Therefore

H,, (%) = > —pn([7]) log pn([7])

TEEQ

> klog Au+ Y pin([7]) sup(kl 1)) — 10g [|gnlec — C

k
TEEY

> klog A, + /wkdun —log||gnlloc — C

— loghu+ & [ iy~ 10gllgull ~ C

Hence
.1 k
H, (0)=H,, (0,0) = kll}I_{loo EHun(O‘ ) > log A\, + /gpd,un,
and the proof of (10.28) is complete. Simultaneously, the proof of Proposition [10.14] is
complete. 0

We would like to end this section with showing how stochastically sound are the measures
- Indeed, it directly follows from Proposition [5.2] and Proposition that conditions
(2.1), (2.2), and (I) of Gouézel, from [2I] are all satisfied for the measure—preserving dy-
namical systems (o : K(U,) — K(U,), tn), and therefore Theorem 2.1 from [21I] (comp.
also [I] for a more dynamical setting) applies to give the following.

Theorem 10.15. Suppose that (U,)S2, is a sequence of open subsets of EY satisfying
conditions (U0)-(U5). Let d > 1 be an integer. Fix an integer n > 0 so large as required
in Proposition 5.2, Let g : K(U,) — R® be a bounded Hélder continuous function. Then
there exists a matriz ¥2 : {1,2,...,d}*> — R such that the process

(goa’“—/ gdun)oo
K(Un) k=1

satisfies an almost sure invariance principle with the limiting covariance 2. In particular,
the sequence

o0

k—1
(Zgoaj—k/ gdun>
= K(Un) k=1
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converges in distribution to the Gaussian (normal) distribution N(0,02). In addition, if
d =1 then the Law of Iterated Logarithm holds in the form that for p,-a.e. w € K(U,),

we have that - .
I Zj:o goao’ (w) —k fK(Un) gdpiy
im sup =

V2o,
k— 00 Vkloglogk e

where o2 := Y2 is a non-negative number. It is positive if an only if the function g :
K(U,) — R is not cohomologous to a constant in L*(u,,).

2

As the last stochastic law following from Proposition [5.2| and Proposition [10.12] in a
standard way, we record the following exponential decay of correlations.

Theorem 10.16. Suppose that (U,)2, is a sequence of open subsets of EY satisfying
conditions (U0)~(U5). Fiz an integer n > 0 so large as required in Proposition[5.2, Then
there exist k € (0,1) and C € (0,+00) such that if g : K(U,) — R is a bounded Hélder
continuous function and h € L'(u,), then

‘/ (goak'h)dun_/ gd,un/ hdp,
K(Un) K(Un) K(Un)

for every integer k > 0.

< Cx"lglls / 1
K(Un)

11. SymBOL ESCAPE RATES OF U,S, III: THE VARIATIONAL PRINCIPLE AND
EQUILIBRIUM STATES ON THE SURVIVOR SETS K (U,); UNIQUENESS

The ultimate goal of the last two sections and the current one is to prove the following.

Theorem 11.1. Assume that [(—¢)du, < +oo. If (U,)22, is a sequence of open subsets
of EX satisfying conditions (U0)-(U5) then

sup {hy(a)-I—/K(Un) pdv:v e M:(O’)} = sup {hy(o')—|—/l(

for all n > 1 large enough.
Moreover, p, is a unique (surviving) equilibrium state on the survivor set K(U,), i.e.,
the unique (ergodic) o-invariant Borel probability measure on K(U,) for which

hy, (o) + / @ dpy, = log Ap.
K(Un)

pdv v e ./\/l:[e(o)} = log \,
(Un)

We first shall prove the following.

Proposition 11.2. Ifn > 1 is large enough, then the shift invariant measure u, on K(U,)
18 ergodic.

Proof. We first shall prove a weak version of ergodicity. Precisely,
Claim 1°. If g, h € H}(A) then

lim p,(go Ukh) = pn(g)n(h)

k—+o0
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In particular,
) 1
g, (ngkh) = ftn(9)pin(h).

Proof. We have
1in(g © 0*h)gn = Qu(g 0 0*hgn) = QuQn(g o o*hygy)
= Qn(A" L1 (g 0 0%hgn) = AP AL (g 0 0¥ hyy))
= X, QnLy(g 0 a*hg,)
= X, Qu(9L5 (hgn))
(11.1) = A Qu(9(AsQu(hgn) + A (hgn)))
= Qn(9Qn(hgn)) + X, Qn (9275 (hgn))
= Qu(gpn(h)gn) + X, Qn (9% (hgn))
= pin(R)Qn(99n) + A" Qu (9% (hga)))
= fin (W) i (9) g + X, Qn (9 A% (hgn)))
Now, because of Proposition [5.2] (g) and (e) and (10.4), we have that
1255 Qu (9275 (hga)) oo < 1125 Qu (927 (hgn)) o < A" Cllg Ay (hga) o
< 3C||glloA, " 1A% (hgn))llo
< 3C||gllol|hgnllor* A"

Therefore, knowing that x < 1 and invoking Proposition (f) we conclude that for all

n > 1 large enough lim,_, 1o |\, *Qn(9AF (hgn)) |l = 0. Inserting this into (11.1)) we get
that

lim 4,(g 0 0*h) = pn(g)n(R)

k—+4o0

and the proof of Claim 1° is now complete. O

Now, we shall prove the following.

Claim 2°. The vector space Hj(A) is dense in L (E%) with respect to the L' (u,)-norm
on LY (EY).

Proof. Let h: EX — R be a Borel bounded function. Since EY is a completely metrizable
topological space, for every € > 0 there exists a compact set K. C EY such that
€
n EY Ke < s
where M := max{l,||h|lw} and h|g. is continuous. Since K. is compact, h|k, is thus
uniformly continuous. Let ¢ > 1 be so large that

19
Korlw]) < 6M

sup (h|k.n)) — inf(h
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for every w € E%. Define the function h, : EY — [0, +00) as follows:

0 () = sup (h|k.nwlg)  if Ko N [wl|g) #0
v it K. ol = 0

Then he € Ho(EY), |[he]loo < 2M, [he — h| < &5 on K, and

W%—prfa/\m—hmm+/\m—mmm=/ . hld,
B K- E\K.
fin(Ke) + 3M pn (EX\K-)

IA

g
2M
<Sys3m=
_2+3 o

_€+€_6
2 2 7

The proof of Claim 2° is thus complete. O

Claim 3°. If g € H5(A) then for all n > 1 large enough,

k-1
lim - I(w) =
. Ogoa(w) pn(9)
]:

for pp—a.e. w € EY (or K(U,) equivalently).
Proof. By Birkhoff’s Ergodic Theorem there exists g € L7 (E5) such that go o = g and

(11.2) lim —Zgoaj ) =g(w)

k—+oo k

for p,—a.e. w € EY. By subtracting ,un(g) from g we may assume without loss of generality
that

(11.3) pn(g) =0
Assume for a contraction that g # 0 in L7 (E5). Then there exist € > 0 and a compact
set L. C EY such that
g(w) >e and p,(Le) > ¢
for every w € L.. By Claim 2° there exists h € Hj(A) such that

1
/ \h — 1y |dp, < =€°.
EOO 2

A

Then
1,

- ~ - 1
/hgdun:/]lLagdun—l—/(h—]lLE)gdun252—562:55 > 0.
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Inserting this into ((11.2)) we thus get that
1< €2
li nl = Ih ] = pn(hg) = — :
s (3 0e0n) et = 5 2o

j=0

On the other hand, it follows from Claim 1 and ((11.3) that

lim iy, ( Zg ° UJh) = ftn(g)pn(h) = 0. - pn(h) = 0.

7=0

This contradiction finishes the proof of Claim 3°. U

Claim 4°. If g € Ly (EY) then

for p,—a.e. w e EY (or equivalently on K (Un))

Proof. We can assume without loss of generality that p,(g) = 0. Fix ¢ > 0. By Claim 2°
there exists g. € Hj(A) such that

/ 9= — gldp, < €/2.

A

Then

|1 (g:)] < /2.
It therefore follows from Claim 3° and Lebesgue Dominated Convergence Theorem that

1k—1 1k—1 1k—1
- J — - J - _ J
kgrfoounqkaogoa )—kgrfmun<k295w T2 (g—ge)oo

k-1
1 . — 1 ;
< - J i — - ’
_kgljraoo/zn ( p Eoggoa )_’_kEI—Poolun ( : 0(9 g:)oo )
J= J=

k—1

— 1
= :un(|/ln(ga)|) + k;gr—i{loo E ]Z_;,unﬂg - gnl)

1k—1
— il =
([ 0e0]) -0
]:

This completes the proof of Claim 4°. U

e
< /~Ln(|96|> + 5 <E.

Hence

With Claim 4° having been proved, the proof of Proposition is complete. O
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We know from ({9.2)) and from Proposition [10.14] that for all n > 1 large enough pu,, is a
surviving equilibrium state on K (U,,). Thus, in order to conclude the proof of Theorem|11.1}
we are only left to establish the following.

Proposition 11.3. For all n > 1 large enough v, is a unique surviving equilibrium state
on K(U,).

Proof. In order to prove this proposition we follow the reasoning taken from the proof of
Theorem 1 in [I6]. So, suppose that v # pu, is a surviving conditional equilibrium state
for the potential ¢ : EX — R on K(U,). Applying the ergodic decomposition theorem, we
may assume that v is ergodic. Then, using and the Bounded Distortion Property
for ¢;, we get, with an appropriate constant C' € (0, 4000 for every integer [ > 1 that:

0= l(h,,(a) + / (o —log \p) dy) < H,(a) +/ (o1 — log A1) dv
K(Un) K(Up)

= =3 vlel) (0wt ~ o [ (o= toe )

|w[=l

< — Z v([w]) (logv([w]) = (¢i(7) — log Aul)) for a suitable 7, € [w] N K (U,)

Jwl=t

=~ 37wl (o (el exp (1o Aal — (7))

< = 37 wllu) (log (v (pnlw)) "))

=logC — ) v([w])log (M> .

2 ()

Therefore, in order to conclude the proof, it suffices to show that

fim (= Y o (L) ) =0

o pin([w])

Since both measures v and p,, are ergodic, the former by assumption, the latter by Proposi-
tion|11.2] and v # u,, the measures v and p,, are therefore mutually singular. In particular,

lim v <{w e k(U,): LU S}) =0
=00 fn([wli])
for every S > 0. For every j € Z and every [ > 1, set

_ o v([wli]) AL
F“‘{ SR e < ) < }
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Then
) = [ ) < () <
Notice :
-3 by (220 ) = - e () e < S mtm,
Now, for each k = —1,-2, —3,... we have
—|§::ly([w})log (:n(ﬂz]) ) < k:; (F;) —1-;]6 i1
= kv ({w e K(U,) : % }) + ;je s

Thus, we have for each negative integer k,

imsu — v(|wl)lo M ot
s (= 3 vl iog (L) | <kt S gen

— X
n—00 lwl=n i>1

So, letting k go to —oo completes the proof. O

Combining formula (9.2)), Proposition [10.14] and Proposition [11.3] we conclude that the
proof of Theorem [11.1]is complete.

Part 3. Escape Rates for Conformal GDMSs and IFSs

Our approach to proving results on escape rates for conformal graph directed Markov
systems and conformal iterated function systems is based on the symbolic dynamics, more
precisely, the symbolic thermodynamic formalism, developed in the preceding sections.

12. PRELIMINARIES ON CONFORMAL GDMSs

A Graph Directed Markov System (abbr. GDMS) consists of a directed multigraph and
an associated incidence matrix, (V, E,i,t, A). As earlier A is the incidence matrix, i. e.

A:ExFE —{0,1}

The multigraph consists of a finite set V' of vertices and a countable (either finite or infinite)
set of directed edges F and two functions i,1 : £ — V together with a set of nonempty
compact metric spaces {X, e, @ number s, 0 < s < 1, and for every e € E, a 1-to-1
contraction @, : Xye) — Xj(e) with a Llpschltz constant < s. For brevity, the set

S = {906 : Xt(e) — Xi(e)}eeE
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is called a Graph Directed Markov System (abbr. GDMS). The main object of interest in
this book will be the limit set of the system S and objects associated to this set. We now
describe the limit set. For each w € £, say w € L7, we consider the map coded by w:

Puw = Pwy -+ 0P, - Xt(wn) - Xi(w1)~

For w € EY, the sets {¢,, (Xt(wn)) }n>1 form a descending sequence of non-empty compact
sets and therefore ﬂn21 Pusln (Xt(wn)) # (). Since for every n > 1, diam(gpw|n (Xt(wn))) <
s"diam (X)) < s" max{diam(X,) : v € V}, we conclude that the intersection

() @l (Xien))
n>1
is a singleton and we denote its only element by m(w). In this way we have defined the map
T By — X = @ X,
veV
from B to @,y X, the disjoint union of the compact sets X,,. The set
J=Js=n(EY)
will be called the limit set of the GDMS S.

In order to pass to geometry, we call a GDMS conformal (CGDMS) if the following
conditions are satisfied.

(a) For every vertex v € V, X, is a compact connected subset of a euclidean space R?
(the dimension d common for all v € V') and X, = Int(X,).

(b) For every vertex v € V there exists an open connected set W, O X, (where X =
Uyer X,) such that for every e € I with t(e) = v, the map ¢. extends to a C!
conformal diffeomorphism of W, into Wj).

(c) There are two constants L > 1 and « > 0 such that
A
()]

for every e € E and every pair of points z,y € Xy, where |¢],(x)| means the norm
of the derivative.

(d) (Open Set Condition) For all a,b € E, a # b,
Pa(Int (X)) N pp(Int (X)) = 0,
(e) (Geometric Condition) At least one of the following two conditions hold:
(el) (Strong Open Set Condition)
Js NInt(X) # 0.

-1

< Llly — ",

or
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(e2) There exist two numbers [ > 0 and & € (0, 1] such that for every z € 9X C R?
and every 1 € (0,1],

Leby(B(z,7) N X) > kLeby(B(z,r)).

Remark 12.1. If d > 2 and a family S = {@¢}ecr satisfies the conditions (a) and (c),
then, due to Koebe’s Distortion Theorem in dimension d = 2 and the Louisville Represen-
tation Theorem (stating that if d > 3 then each conformal map is necessarily a Mobius
transformation) it also satisfies condition (d) with o = 1.

Remark 12.2. In the papers [30] and [31] there appeared also the following condition
called the Cone Condition:

There exist two numbers v,1 > 0 such that for every x € 0X C R? there exists an open
cone Con(x,~,l) C Int(X) with vertex x, central angle of Lebesgue measure v, and altitude
l.

This condition was however exclusively needed in [30] and [31] (and essentially all re-
lated papers) to have (e2). We will comment more on the Geometric Condition (e) in
Remark [12.12] at the end of this section.

We will frequently need to use the concept of incomparable words. We call two words
w,T € E* incomparable if none of them is an extension of the other; equivalently

[w] N [r] = 0.

What concerns geometric applications, we will be dealing throughout the manuscript
with projections of equilibrium states p, from the symbol space E to the limit set Jg
via the projection map 7s : B — Js. We begin to deal with such projections now. The
following theorem was proved in [31], although its formulation there involved the Cone
condition rather than (e2).

Theorem 12.3. If (e2) holds and p is a Borel shift-invariant ergodic probability measure
on B, then

(12.1) pom ! (pu(Xiw)) Ner (Xym)) =0

for all incomparable words w, T € E*.

This theorem is of particular importance if measure y is a Gibbs state of a Holder continuous
function. The following slight strengthening of Theorem however immediately follows
from the Strong Open Set Condition.

Theorem 12.4. If the Strong Open Set Condition (e1) holds and p is a Borel shift-invariant
ergodic probability measure on ES with full topological support, then

(12.2) o7 (Pu(Xuw) N er (Xur)) =0

for all incomparable words w, ™ € E*.
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Proof. Indeed, the Strong Open Set Condition ensures that for such measures p
u(Int(X)) >0
and, since we clearly have,
o Y (m HInt(X)) C Int(X),

we thus conclude from ergodicity of y that p(Int(X)) = 1. The assertion of Theorem [12.4]
thus follows. 0

Note now that all Gibbs states are of full topological support, so for them either condition
(el) or (e2) is fine.

Moving more toward geometry let ¢ : ES — R be defined by the formula

(12.3) ((w) :=log ey, (m(a(w))].
For every s > 0 we denote:
P(s) := P(0, s¢) € (—o0, +0].

We call P(s) the topological pressure of s. We recall from [30] and [31] the following other
definitions:

Os :=infl's, where I's:= {SEOZZH%H;<+OO}'

eckE
The proofs of the following two statements can be found in [31].

Proposition 12.5. If S is an irreducible conformal GDMS, then for every s > 0 we have
that

Is={s>0:P(s) < +o0}.
In particular,
Os :=1inf{s > 0: P(s) < 400} .

Theorem 12.6. If S is a finitely irreducible conformal GDMS, then the function I's >
s — P(s)1R is

strictly decreasing,

real-analytic,

conver, and

limg ;o P(s) = —00.
We also introduce the following important characteristic of the system S.
bs :=inf{s > 0:P(s) <0} > 0s.

We call bs the Bowen’s parameter of the system S. The following theorem, providing a
geometrical interpretation of this parameter has been proved in [31].
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Theorem 12.7. If S is an finitely irreducible conformal GDMS, then
HD(Js) = bs > 0]
Following [30] and [31] we call the system S regular if there exists s € (0, +00) such that
P(s) = 0.
Then by Theorem12.6|, such a zero is unique and if exists it is equal to bs.

We call the system S strongly regular if there exists s € [0, 400) (in fact in (s, +00)) such
that

0 < P(s) < +oc.

By Theorem [12.6| each strongly regular conformal GDMS is regular. We need one concept
more:

Let I = {f(© () = R :e € E} be a family of real-valued functions. For every n > 1
and 8 > 0 let

Vo(F) = sup  sup {[f“(@ow) (@) = F“) (o) (y)) [}V

webE™ x yeXt(w)

We have made the conventions that the empty word () is the only word of length 0 and
¢p = Idy. Thus, Vi(F) < oo simply means the diameters of the sets f(®)(X) are uniformly
bounded. The collection F' is called a Holder family of functions (of order f3) if

(12.4) Va(F) = sup{V,(F)} < cc.
n>1
We call the Hélder family F', summable (of order /) if (12.4) is satisfied and
(12.5) Zexp(sup (flie)) < +oo.
eck

In order to get the link with the previous sections on thermodynamic formalism on symbol
spaces, we introduce now a potential function or amalgamated function, f : E} — R,
induced by the family of functions F' as follows.

fw) = e (m(o(w))).

Our convention will be to use lower case letters for the potential function corresponding to
a given Holder system of functions. The following lemma is a straightforward, see [31] for
a proof.

Lemma 12.8. If F' is a Hélder family (of order B) then the amalgamated function f is
Hélder continuous (of order ). If F is summable, then so is f.

Let us record the following obvious observation.

!As the relevant proof in [31] shows, the Geometric Condition (e) is not needed at all for this theorem;
comp. Remark |12.12
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Observation 12.9. For every ¢t > 0, t( : £ — R is the amalgamated function of the
following family of functions:

t2 = {Xye) 3 v — tlog|p.(x)| € R}ecp.
The following proposition is easy to prove; see [31l Proposition 3.1.4] for complete details.

Proposition 12.10. For every real t > 0 the function t¢ : EY — R is Holder continuous
and t= is a Holder continuous family of functions.

Observation 12.11. For every t > 0 we have that ¢t € I's if and only if the Holder
continuous potential £ is summable and this happens if and only if the Holder continuous
family of functions ¢= is summable.

For every t € I's we denote by y; the unique equilibrium state of the potential ¢ : EY —
R and by m, the probability eigenmeasure of the dual operator Lj := L;-*. Of particular
geometric importance for us will be the measures p;,, and m;g for regular systems S. Lots
of our geometric and dynamical considerations throughout the rest of the manuscript will
concern equilibrium states p; and their projections from the symbol space EY to the limit
set Js via the projection map ns : EY — Js.

Remark 12.12. We want to emphasize the following.

(1) As the relevant proof in [31] shows the Geometric Condition (e) is not needed at all
for Theorem [12.7

(2) The primary power of the Geometric Condition (e) is that it yields Theorems
and that in turn have significant dynamical and geometric consequences; for
example that the measures p o 7T§1 are dimensional exact and

h
HD(/,L o ﬂ-gl) — M7
Xu
where h, (o) is the Kolmogorov-Sinaj metric entropy of the dynamical system o :

EY — EY with respect to the measure p and
= = [ log ¢l (me(o) | du(w)
EY
is the corresponding Lyapunov exponent.

(3) Another result, important for us, for which the Geometric Condition (e) is needed
(via Theorems and [12.4)), is that if f: EY — R is the amalgamated function
of a Holder family of F' functions, then

my o m5 (pu(H)) = /H exp (Su(F) — P(f)|w]) dmy o 75",

for every w € £ and every Borel set H C X, where

n

Sw(F) = Zf(Wj) O Poiw-

j=1
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In particular, we have then for every ¢t € I's that

myg o 7T§1(<pw(H)) — ¢ PO / ](p:u]tdmt o 7T§1.
A

(4) The Strong Open Set Condition (el) is natural and easy to occur; it is equivalent
to the condition that

Pu(Xiw) € Int(Xiw)
for some w € E. And this one holds for example if
Pe(Xi(e)) € Int(Xi(e))
for some e € .

(5) Condition (e2) is also easy to have. For example it holds if the boundaries 0X,,
v € V, are piecewise smooth or the sets X, are convex.

(6) No Geometric Condition (e) is needed at all if the alphabet E is finite.

We would like however to complete this comment by saying that in the case of finite
alphabet E the Open set Condition alone suffices, and the item (b2) is not needed at all. It
is not needed in the case of infinite alphabet either as long as we are only interested in the
Hausdorff dimension of the limit set, i. e. as long as we only want prove Bowen’s Formula.

13. MORE TECHNICALITIES ON CONFORMAL GDMSs

We keep the setting and notation from the previous section.

e We call a point 2z € X pseudo-periodic for § if there exists w € E% such that
2 € Xy and @, (2) = 2.

e We call a point z € S periodic for S if z = w(w) for some periodic element w € EY.

e Of course every periodic point is pseudo-periodic. Also obviously, for maximal graph
directed Markov systems, in particular for conformal iterated function systems,
periodic points and pseudo-periodic points coincide.

e We call a periodic point z € Js uniquely periodic if 771(2) is a singleton and there
is exactly one & € E% such that the infinite concatenation £€* € EY, ¢¢(2) = z,
and if ¢, (2) = 2z for some a € EY, then o = £9, the concatenation of ¢ copies of £
for some integer ¢ > 1.

We shall prove the following.
Lemma 13.1. If z € Js is not pseudo-periodic for S, then

) n o @ (2) = 0.

n=1
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Proof. Assume for a contradiction that there exists w € 7~1(2) such that o™(w) € 77 1(2)
for some n > 1. We then have

Pula (2) = Pul, (T(0"(W))) = 7 (Wao" (W) = T(w) = 2.
So, z is pseudo-periodic, and this contradiction finishes the proof. [l

In fact, we will need more:

Lemma 13.2. Assume that z € Js is not pseudo-periodic for the system S. If k > 1 is
an integer, (1,)22, is a sequence of integers in {1,2,... k}, and (T("))zo:l is a sequence of
points in B such that

1 (n) — 13 ln (”) —
Jan () =t (o (7)) = 2

then
ln
: (n) _
fim 37" = oo

Proof. Seeking a contradiction suppose that
l’VL

lim 7™ < too.
Y 2
Passing to a subsequence, we may assume without loss of generality

ln

Tm (n)
Jim 3 mi" < oo

There then exists M € (0, +0o0) such that

for all n > 1. Hence,

foralln > 1 and all : = 0,1,2,...,1,. So, passing to yet another subsequence, we may
further assume that the sequence (1,,)22; is constant, say I, = [ for all n > 1, and that for
every 1 = 0,1,2,...,[, the sequence (T("))Zozl is constant, say Ti(") =7, <M for all n > 1.
Let
T = T17T92...T].
it then follows from our hypothesis that
r(2) = o (lim 7(o'(r™))) = lim o(r(r(o'(r™))))
— 7 l(-(n)
Jan e ()

_ 1 (n)y _
—nh_g)loﬂ(T )—z.
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Thus z is a pseudo-periodic point for the graph directed Markov system S, and this con-
tradiction finishes the proof. 0J

A statement corresponding to Lemma [13.2] in the case of periodic points is the following.

Lemma 13.3. Assume that z € Js is uniquely periodic for the system S (i.e., 7~ 1(2) is a
singleton and that there exists a unique point & € E% such that £ € EY, pe(2) = z, and
if va(z) = z for some o € E%, then a = &% for some integer ¢ > 1). Then if k > 1 is
an integer, (1,)22, is a sequence of integers in {1,2,...,k}, and (T(”));o:l is a sequence of
points in B such that

(a)

i M)y = 13 n(+(n))) —
Jin, () = Jim w(o () ==

and
(b) l
JLIEO;Ti(n) < 400,
then l,, is an integral multiple of |£|, say En = q,|&|, and
7-(n)|ln = gan
for allm > 1 large enough.

Proof. 1t follows from item (b) that there exists M > 1 such that TZ»(") < Mforalln>1
and all 1 < ¢ < [,. Assuming the contrapositive statement to our claim and passing
to a subsequence, we may assume without loss of generality that the sequence (1,,)%°; is
constant, say [, = [ for all n > 1, and we may further assume that for every 1 <i <[, the

sequence (T(”))Zozl is constant, say 7 = 7, €{1,2,...,M} for alln > 1 and

(2

(13.1) TV £ ¢
for all n > 1 and some 1 < j <[. Let
T = T1T7T2...T].

We now conclude, in exactly the same way as in the proof of Lemma that ¢, (2) = z.
Therefore, since z is uniquely pseudo-periodic, we get 7 = &9 with some ¢ > 1. In particular
ql¢| = [, and so, using ([13.1)), we deduce that 7 # £?. This contradiction finishes the
proof. O

14. WEAKLY BOUNDARY THIN (WBT) MEASURES AND CONFORMAL GDMSs

In this section we first introduce the concept of Weakly Bounded Thin (WBT) measures.
Roughly speaking, this notion relates the measure of an annulus to the measure of the
ball it encloses. We prove some basic properties of (WBT) and provide some sufficient
conditions for (WBT) to hold for a large class of measures on the limit set of a CGDMS.
We were able to establish these properties, mainly due to the progress achieved in [360],
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Let u be a Borel probability measure on a separable metric space (X, d). For all 8 > 0,
re Xandr >0, let

Ag(x,r) = A(x; r— w(B(z, 7)), r + pu(B(z, r))ﬁ),
where, in general,
A(z;r,R) := B(z,R) \ B(z,71)

is the annulus centered at z with the inner radius r and the outer radius R; in order not to
overlook a possible cases of negative numbers r — u(B(z,7))?, we naturally declare B(z,r)
to be the empty set if 7 < 0. We say that the measure p is weakly boundary thin (WBT)
with exponent 3 at the point x if

(A r))
M aBan)

We simply say that measure p is weakly boundary thin (WBT) if it is is weakly boundary
thin with some exponent 8 > 0. Given a > 0, we further define:

Ag’”‘(x, r) = A(x; r— ap(B(z, ), r + ap(B(z, 7"))'3).
The following proposition is obvious.

Proposition 14.1. If i is a Borel probability measure on a separable metric space X, then
for every point x € supp(p), the following are equivalent.

(a) w is (WBT) at x.

(b) There exists f > 0 such that the measure y is (WBT) at x with exponent v > 0
either if and only if v € (8,400) or if and only if v € [8,4+00). Denote this B by

6#@)
(c) There ezist a, f > 0 such that

B«
lim P 5T (A“ (= T))

M B

(d) For every o > 0 and every 5 € (B,(x),+00),

g A1)
P u(Bl,r))

We say that a measure is weakly boundary thin (WBT) if it is (WBT) at every point
of its topological support. We also say that a measure is weakly boundary thin almost
everywhere (WBTAE) if it is (WBT) at almost every point. Of course (WBT) implies
(WBTAE).

Now we aim to provide sufficient conditions for a Borel probability measure to be (WBT)
and (WBTAE). Let p be an arbitrary Borel probability measure on a separable metric space.
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Let a > 0. We say that p is a-upper Ahlfors (a-up) at a point x € X if there exists a
constant C' > 0 (which may depend on x) such that

u(B(x,r)) < Cr®

for all radii » > 0. Equivalently, for all radii » > 0 sufficiently small. Following [42], the
measure g is said to have the Thin Annuli Property (TAP) at a point z € X if there exists
x > 0 (which may depend on z) such that

(A )
0 u(Blw.n)

We shall easily show the following.

=0

Proposition 14.2. Let (X,d) be a separable metric space, let p be a Borel probability
measure on X and let « > 0. If p is a-upper Ahlfors with the Thin Annuli Property (TAP)
at some x € X, then u is (WBT) at x.

Proof. Taking 3 > 0 so large that C®r#* < r® for r > 0 small enough. Then for such radii
r > 0 we have that AS(z,r) C A(z;r,r 4+ r~) and thus

p(AG (7)) p(A(z;rr + 1))

0 <limsu < lim su =0
= B ) T T w(Bln)
The proof is then complete. OJ

We recall from the book [42] that
HD.(u) = inf{HD(Y) : Y C X is Borel and p(Y) > 0}.

We call HD, (1) the lower Hausdorff dimension of . The Hausdorff Dimension of p is
commonly defined to be

HD(p) = inf{HD(Y") : Y C X is Borel and pu(Y) =1}

The reader should be aware that in [42] the above infimum is denoted HD*(x) and is called
the upper Hausdorff Dimension of . We however, will use the more commonly accepted
tradition rather than the point of view taken in [42]. Referring to the well-known fact (see
[42] for instance) that if p(B(x,t)) > Cr? for the points z belonging to some Borel set
F C X then HD(F) <, we immediately obtain the following.

Lemma 14.3. If HD,(u) > 0 then p is a-upper Ahlfors for every a € (0, HD,. (1)) and
p—a.e. x € X with some constant C' € (0, +00) and every r > 0 small enough.

Definition 14.4. We say that a set J C R% d > 1, is geometrically irreducible if it is
not contained in any countable union of conformal images of hyperplanes or spheres of
dimension < d — 1.

Observation 14.5. Every set J C RY d > 1, with HD(J) > d — 1 is geometrically
irreducible.
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Observation 14.6. If a set J C C is not contained in any countable union of real analytic
curves, then J is geometrically irreducible.

Now we can apply the results obtained above, in the context of CGMS. We shall prove
the following.

Theorem 14.7. Let S = {p.}ecr be a finitely primitive CGDS with a phase space X C RY.
Let ¢ : EY — R be a Holder continuous strongly summable potential, the latter meaning
that

(14.1) > exp (inf(pli) 9Ll ™ < +oo

eck

for some B > 0. As usual, let v, denote its unique equilibrium state. If the limit set of Js
15 geometrically irreducible, then
(a) HD.(uy o m5') = HD(py 0 m5') > 0;
(b) The measure ji, o wg' satisfies the Thin Annuli Property (TAP) at p, o mg' a.e.
point of S
(¢) pyomg' is (WBT) at py a.e. point of Js.

Proof. The proof of Theorem 4.4.2 in [30] [31] gives in fact that the measure p,, is dimen-
sionally exact, i.e., that

lim log iy o w5 (B(, 1))

=0 log r
exists for py, o mg' for a.e. € Js and is equal to hy, (0)/x,, > 0. A complete proof with
all the details can be found in the last section of [7]. Therefore, property (a) is established.

Property (b) follows now immediately from Theorem 30 in [36]. Condition (c) is now an
immediate consequence of (a),(b), Lemma and Proposition [14.2] O

Remark 14.8. Condition [14.1]is satisfied for instance for all potentials of the form
By 3w t(w) = tlog |(¢s(mu(0(w)))] € R,
where t € I's.

Now we shall deal with the case of a finite alphabet. We shall show that in the case of
a finite alphabet (under a mild geometric condition in dimension d > 2) the equilibrium
states of all Holder continuous potentials satisfy (WBT) at every point of the limit set.
Thus our approach is complete in the case of the finite alphabet and present paper entirely
covers the case of conformal IFSs (even GDMSs) with finite alphabet. We shall prove the
following.

Theorem 14.9. Let E be a finite set and let S = {@etecr be a primitive conformal GDMS
acting in the space R. If ¢ : EX — R is an arbitrary Hélder continuous (with the phase
space sets X, C W, CR, v € V) and p, is the corresponding equilibrium state on EY then
the progection measure [, © ng is (WBT) at every point of Js.
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Proof. Put
u:=K 'min{||¢.| : e € E}
so that
P (z)| > u
for all e € E and all x € X;(. For ease of notation we denote
fly = py o ms .
Fix g > 0. Consider the family
Fo(zr)i={we By + Al (2,7) N@u(Ju,_,) # 0 and [[¢) ]| > py(B(z,1)")}

Now consider .?7-:5 (z,7), the family of all words in ]-"5 (z,7) that have no extensions to

elements in }"{f (z,7), where we don’t consider a finite word to be an extension of itself.
Note that then:

a) Fo z,r) consists of mutually incomparable words;
%
(1) Upezsonli] D 751 (47, (2,7); amd
() Yw € Fy(z,7), iy(B(2,7)? < [l@Lll < ' py(B(2, 7))
Therefore the family
{po(Int(Xyw) : w € F(z,7)}

consists of mutually disjoint open sets each of which contains a ball of radius K~ R, (B(z,7))?
where R is as in the proof of Lemma [14.13] Since also

U eu(Xiw) CAGr = 1+ DM pu(B(z,7)? 7 = (1 4+ DM ™) py(B(z,7))%)
wEﬁi(z,r)

we obtain that
(14.2)

HF)(z7) <

N 1y (B(z,7)) _
1y (B(z,7))

So we have shown that the number of elements of j-if (z,7) is uniformly bounded above,

Leby (A(z,r — (1 + DM 1) py(B(z, )8, r — (1+ Du=) py(B(z, 7))%)
2K 'Rpy(B(z,1))?

and in order to estimate ﬁlp(Aﬁw(z, r)). i.e. in order to complete the proof we now only

need a sufficiently good upper bound on p,([w]) for all w € .7?5(2, r). We will do so now.
It is well known (see [30], [31]) that there are two constants n € (0, +00) and C' € (0, +00)
such that

(14.3) py([7]) < Cexp(—=n(|r| + 1))
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for all 7 € F%. Fix w € .7?5(2’,7“) Denote k := |w|. Invoking (c) we get that u* < ||¢l || <
u_l,ui(B(z,r)), whence

Flog ry(B(z,1))

E+1>
log u

Inserting this into (|14.3) we get that

o) < Coxp (= BABEI) — i)

where v = m € (0, 400). Having this and invoking (b) and ({14.2]) we obtain that
Au(Ay, (1) _ Ry (B(z,m)) 7
py(B(z,7)) = py(B(z,7))

and the proof is complete by noting that lim, o 1 (B(z,7))"?~! = 0 provide that we take
v>1/p. O

S ,le(B(Z, T))’YB_I

Now we pass to the case of d > 2. We get the same full result as in the case of d = 1 but
with a small additional assumption that the conformal system S is geometrically irreducible.

Theorem 14.10. Let E be a finite set and let S = {pe}tecr be a primitive geometrically
irreducible conformal GDMS with the phase space sets X, C W, C Re. If¢p: EY — R is
an arbitrary Holder continuous potential and ji, 1s the corresponding equilibrium state then
the progection measure [, © ng is (WBT) at every point of Js

Proof. The meaning of fiy is exactly the same as in the proof of the previous theorem. The
proof of the current theorem is entirely based on the following.

Claim 1: There are a constant a > 0 and C' € (0, +00) such that
fiy(A(z;R—r,R+7)) < Cr®
for all z € R? and all radii r, R > 0.

This claim is actually a sub-statement of formula (2.19) from [54] in a more specific setting.
In particular:

(a) [54] deals with finite IFSs rather than finite alphabet CGDMS;

(b) [54] deals with Hélder continuous families of functions and their corresponding equi-
librium states rather than Hélder continuous potentials on the symbol space E'} and
their projections; and

(c) with the restrictions of (a) and (b) Claim 1 is a sub-statement of formula (2.19)
from [54] only in the case of d > 3.
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However, a close inspection of arguments leading to (2.19) of [54] indicates that the dif-
ference of (a) is inessential for these arguments, and for (b) that the only property of
equilibrium states of Holder continuous families of functions was that of being projections
of Holder continuous potentials from the symbol space E%. Concerning (c) it only remains
to consider the case d = 2. We then redefine the family F, from section 2, page 225 of
[54] to conclude that also all the intersections of the form X N L, where L C C where is a
round circle (of arbitrary center and radius). The argument in [54] leading to (2.19) goes
through with obvious minor modifications. Claim 1 is then established.
Using this claim, we obtain

oA, (2.1) _ Oy (Bz.r)
(Bl ) = iu(Bler)

and the proof is complete and by noting that lim,_, ,uzﬂ_l(B(z, r)) for every 8 > 1/a. O

— O (Bl 7))

Fixing a k > 0 let

Ny(z,r) = —% log u(B(z, 1)), | € NU {400}

where [t], t € R, denotes the integer part of ¢. Let us make right away an immediately
evident, but extremely important, observation.

Observation 14.11. If x is a Borel probability measure on X, then for every r > 0, we
have that

6_HN”(I7T) < [L(B(JZ,?“)) < 6N6_HN”(x’r).

Now, let in addition & = {p.}eccp be a finitely primitive CGDMS with a phase space
X CRY For every v € X and r > 0 and an integer n > 0, let

Al (x,yr) = U {gow(Jg) cweEY, po(J)NB(x,r)#£0 and ¢,(Js) N B(z,1) # @}.

We say that the measure p is dynamically boundary thin (DBT) at the point z € Jg if
for some k > 0

(144) lim M(A*Nn(l’vr)(x’T))

M aB@r)

We say that the measure p is Dynamically Boundary Thin (DBT) almost everywhere if
the set of points where it fails to be (DBT) is measure zero, and that the measure p is
Dynamically Boundary Thin (DBT) if it is (DBT) at every point of its topological support.
We shall prove the following.

Proposition 14.12. If a Borel probability measure u on Js is (WBT) at some point
x € Js, then it is (DBT) at x.
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Proof. Let > 0 be as in the definition of (WBT) of p at z. Since S is a conformal GDMS,
there exist constants n > 0 and D > 1 such that
diam(p, (X)) < Dy~

for all w € EY%. Therefore, if k > 0 is sufficiently small, then for every z € Js and every
r > 0 we have

}kV,{(Z,T‘) ($’ ’I“) C A({lj, r— De—nNn(x,r)’ r 4+ De—mN~(x,r)>
C A(w;r — D(u(B(w,r))"",r + D(u(B(z,r))"")
o K,De
= AZ/ (x,r).
For every r > 0, sufficiently small, we then have
M(A}(V,i(x,r) (x, r)) _ N(AZ/K’De(x, r))
pw(B(z,r)) = p(Bz,r))

Now, if k > 0 is sufficiently small, then /s > § and, in consequence,

M(A?\/H(m,r) (QZ’, T)) N(AZ/H7D6<I'7 T))

0<1l <l =0.
S0 (Bl 0 p(B(r))
This means that p is (DBT) at = and the proof is complete. O

Now we shall provide some sufficient conditions, different than (WBT), for (DBT) to
hold at every point of Js. We will do it by developing the reasoning of Lemma 5.2 in [5].
We will not really make use of these conditions in the current manuscript but these are
very close to the subject matter of the current section and will not occupy too much space.
These may be needed in some future. We shall first prove the following.

Lemma 14.13. Let S = {@e}ecr be a finitely primitive CGDMS satisfying SOSC. Assume
that a number t > max{fs,d — 1} satisfies

P(t
(14.5) t>d—-1+ (*
log s

Recallthat pi; is the unique equilibrium state of the potential EY > w w— tlog |y, (T(ow))].
Then there ezists constants a > 0 and C' € [0, +o00| such that

o ms' (Ag(z,1)) < Ce*
for all z € Js, all radii v > 0 and all integers n > 0.
Proof. For all a € E, let r > 0. Set

Joo= |J  ws(]).

bEE:Agp=1
r € (0,1]. For k > 0 consider the set

EX(z,r) = {w c E% - Poo(Juy ) N B(2,m) # 0 and (S, ) N B(z,7)" # Q)}.



88 MARK POLLICOTT AND MARIUSZ URBANSKI

Furthermore, for every k > 0 let
EX(z,mn) = {w € EX(z,7) : s < ||¢l] < 5"}
Then the family
Fi(z,myn) = {gpw(lnt(X)) CWweE Eﬁ(z,r;n)}
consists of mutually disjoint open sets contained in
A(z;r — Ds",r + Ds")

each of which contains a ball of radius K1 Rs""! where R > 0 is the radius of an open
ball entirely contained in IntX, for all v € V. So, then

Lebg(A(z;r — Ds™, r + Ds™)) rd=lgn

<C - d—1_(1-d)n <C (1—-d)n
Lebg(0, k=1 Rsn+1) = s =

#Fi(z,mn) <

Snd

with the same universal constant C; € (0,+400). Since EX(z,7,n) = 0 for every n < k,
then knowing that ¢t > max{fs,d — 1} gives that

peoms (Ag(z,v)) = Z i U Sow(jw|w\_1)

weEX (2,r;k)

< S #F ) sup{u(pu(X)) : w € Balzrin))

<0 Z S(l—d)ne—P(t)kStn
n=~k

_ Cle—P(t)k Z S(t—l—l—d)n
n=~k

— Oy (1 — stH1-d) L= POk g(t+d-1k

= O1(1 — s Lexp(((t + 1 — d) log s — P(t))k)
But (t 4+ 1 —d)logs — P(t) < 0 by virtue of and the proof is complete. O
As an immediate consequence of this lemma we get the following.

Theorem 14.14. Let S = {@.}eer be a finitely primitive CGDMS. If a number t >
max{fs,d — 1} satisfies

P(t
(14.6) t>d—1+ (t
log s

then py o 7r§1, the projection of the corresponding equilibrium state p, on EY, is DBT at
every point of Js
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Proof. Because of the Lemma [14.13| for all z € Jg and all radii 7 > 0, we have that
He © ng (A*Nn(z,r)(z> T)) < C’exp(—aNn(z, k))

< Cexp (—a (% log i o m5 (B(2,71)) — 1))
= Ce® (o ms(B(z,1)))*"
= Ce* (o w5 (B(2,1)))" poms (Blz,r))

Equivalently,

-1 *
pomg (A 2 T)(Z,T)) . a_q
L < Ce” B(z, .
[t 0751(3(277’)) N ‘ (Mt Oﬂ-S ( (Z T)))

and the proof is complete since the right hand-side of this inequality converges to 0 as
r — 0 for every x € (0, @).

O
As an immediate consequence of this theorem we get the following.

Corollary 14.15. Let S be a finitely primitive strongly reqular CGDMS. Then there exists
n > 0 such that if t € (max{0s,d — 1},HD(Js) + 1), then p; o wg"', the projection of the
corresponding equilibrium state y; on EY, is DBT at every point of Js.

Proof. We only need to check that if t € (max{fs,d — 1}, HD(Js) + 1) for some n > 0
sufficiently small then (14.6) holds. Indeed, since P(bs) = 0 (by strong regularity of S) this
is an immediate consequence of continuity of the function (fs,+00) >t — P(t) e R. O

15. ESCAPE RATES FOR CONFORMAL GDMSS; MEASURES

In this section we continue the analysis from the previous section and we prove our first
main results concerning escape rates; the one for conformal GDMSs and equilibrium/Gibbs
measures. We first work for a while in full generality. Indeed, let u be an arbitrary Borel
probability measure on a metric space (X, d). Fix £ > 0. Fix z € X. Let

[':=Tu(2) := {Nu(z,7) : 0 < r < 2diam(X)}.

Represent I as a strictly increasing sequence (1,,)5°, of non-negative integers. Let us record
the following.

Observation 15.1. If z € supp(u), then I';(z) € N. Moreover, the set I is infinite if and
only z is not an atom of pu.

We shall prove the following.

Lemma 15.2. If p is a Borel probability measure on X which is (WBT) at some point
z € X, then the set I'(z) has bounded gaps, precisely meaning that

Al(z) :=sup{lp41 — I} < +o0
n>0
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Proof. Fix n > 0. There then exists r,, > 0 such that
Ni(z,r) <l,+1
for all r > r,, and
Ni(z,7m) > lps
for all » < r,. Therefore, by Observation [14.11
1(B(z,1y)) < € exp (— klypi1)
and
p(B(z,1)) > exp (= w(ly +1)).

Hence,

p(B(rtp (Bzr)) o oo o
1W(B(z, 1)) = p (K(lns1 — (I +1))).

for all # > 0, in particular for 8 > £,(2). But since the measure p is (WBT) at z, we
therefore have that

n(B(z,m0 + 1P (B(2,10))))

e (s — 1) < Jig DT < o
Thus o
lim (L1 — (I, + 1)) < 400
n—o0
and the proof is complete. 0]

For every n > 0 let
R, = {r € (0,2diam (X)) : Nu(z,7) = 1,},
and, given in addition 0 < m <n, let

(15.1) R(m,n) = 0 R.

Now we make an additional substantial assumption that
S = {Spe}eEEH

a conformal GDMS is given, and
(15.2) n(Js) = 1.
For any z € Js and r € (0, 2diam(X)), define
(15.3) W7 (z,7) := Bys(z,7) \ AN, oy (2,7) and W (2,7) 1= Bys(2,7) U Ay, (o (2, 7).
Let us record the following two immediate consequences of this definition.
Observation 15.3. For every z € Js and r € (0, 2diam(X)), we have

W= (z,7) C Bys(z,7) C W (z,7).

Observation 15.4. For every z € Js and r € (0,2diam(X)) both sets W~ (z,7) and
W (z,r) can be represented as unions of cylinders of length N, (z,7).
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In the sequel we will frequently, without explicit mentioning it, use the formula

:LL(BJS<27T)) = /L(B(Z,T)),

which follows immediately from ((15.2)).
Fix £ > 0 so small that (14.4]) holds and so that n/x > (3,(z). We shall prove the following.

Lemma 15.5. For all k > 0 large enough, if n — k > 2, then
W*(z,5) CW (2,r)
for allr € Ry and all s € R,,.
Proof. The assertion of our lemma is equivalent to the statement that
WH(z,s)NA] (z,1) = 0.

Assume for a contradiction that there are sequences (nj);io and (kj);io of positive integers

such that lim; . k; = +00 and n; — k; > 2 for all j > 0, and also there are radii r; € Ry,
and s; € R,,; such that

W(z,85) VA], (z,75) # 0,
for all 7 > 0. Since we know that for each w € JEZ,
diam (i, (J)) < De 1,
using Observation [14.11] we therefore conclude that
s; + Dy (B(z,1;)) > s; + Dexp (= nNa(z,15)) > 55+ De
> 5;+ De™ " > — De” M
=r; — Dexp (— nNu(z,75))
> 1j = D" (B(z,17)).
Hence, s; > r; — 2Du"*(B(z,7;)), and therefore,

,U(B(Z’Sj)) /L(B(Z,?"j)) - M(AZ/&QD('Z»TJ')) 1 /L(AZ/K’ZD(ZaTj))
154 By = (B, r,) =BG )

On the other hand,it follows from Observation [T4.11] that
w(B(z,55)) < e"e " and w(B(z,7;)) > o rilk;

This yields
1(B(zs;))
u(B(z,1;))

Along with ((15.4)) this implies that

p(AL 0 (2 y)

u(B(z,r5))

<e"exp (= K(ly, — l,)) < €exp (= k(n; — kj)) < efe™™ =e "

(15.5) >1—e"
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However, since lim;_,, r; = 0, since the measure p is (WBT), and since x > 0 was taken so
small that n/x > (,(z), we conclude that (15.5) may hold for finitely many integers j > 0
only, and the proof of Lemma [15.5]is complete. O

As an immediate consequence of this lemma and Observation [15.3] we get the following.
Lemma 15.6. For all integers k > 0 large enough, if n — k > 2, then
W= (z,8) CW (z,7) and Wt (z,8) CWT(z,7)
for all r € Ry, and all s € R,,.
Now we shall prove the following.

Proposition 15.7. Let § be a conformal GDMS. Let u be a Borel probability measure
supported on Js. Suppose that p is (WBT) at some point z € Js which is not an atom of
. Let R be an arbitrary countable set of positive reals containing 0 in its closure. Then
there exists (n; = n;(R))5%y, a strictly increasing sequence of non-negative integers, with
the following properties.

(a) nj+1 — ’flj S 47
(b) njp1 —n; > 2,
(c) The set RNR,, # 0 for infinitely many js.

o0

Proof. We construct the sequence (n;)32, inductively. Assume without loss of generality

that ro = 2diam(7$) and set ng := 0. For the inductive step suppose that n; > 0 with
some j > 0 has been constructed. Look at the set R(n; + 2,n; + 4); see (15.1)) for its
definition. If

{lp :n;+2<k<n;+4}N{Ny(z,r): 7 € R} #0,
take n;; to be an arbitrary number from {n; +2,n; + 3,n; + 4} such that

In;s, € {Nk(z2,7) 7 € R}

If, on the other hand,

{lg:n; +2<k<nj+4}N{Ny(z,7):r € R} =10,
set

Njt1 = Ny + 2.

Properties (a) and (b) are immediate from our construction. In order to prove (c) suppose
on the contrary that

RO(JRn, =0
Jj=p
with some p > 0. This yields njy1 =n; + 2 for all j > p, i.e. n; =n, + 2(j — p) and

G{lk:np—{—Q(j—Fl—p)S/{:Snp—i—Q(j—l—Q—p)}ﬂ{NH(z,T):TER}Z@

J=p
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But

Uy + 2 +1-p) <k <my+2(i+2-p)} = {lx 1 k >n, +2}.

J=p
Thus, N.(z,7) < mn,+ 1 for all r € R. By Observation [14.11] this gives that pu(B(z,7)) >
exp (— K(n,+1)) for all r € R, contrary to the facts that 0 € R and that z is not an atom
of u. We are done. OJ

Keep R arbitrary, with properties as in Proposition [15.7, until the proof of Theo-
rem , where it will be determined. Let n; = n;(R), j > 1, be the integers produced in
Proposition [15.7} For every j > 0 fix arbitrarily r; € R, requiring in addition that r; € R
if RNRy,; # 0. Set

(15.6) Ul;j (z) :=7 (W~ (z,7;)) and Ulj:j (z) = (WH(z,15)).

These sets are well defined as the function [ : N — N is 1-to-1 and, by (b), the function
J = nj is also 1-to-1. Furthermore, for every j > 0 and every [, < k < define

(15.7) UE(z) = Ulfj(z).

Nj4+17

In this way we have well-defined two sequences of open neighborhoods of 77!(z). We shall
prove the following.

Proposition 15.8. With hypotheses exactly as in Proposition @ both (U,;t(z))zozo are
descending sequences of open subsets of E satisfying conditions (U0)—(U2).

Proof. (U0) is immediate from the very definition. If & > 0 and then j = j, > 0 is
uniquely chosen so that [, <k <, , then UE(z) = Uf:.(z), and both sets are disjoint
unions of cylinders of length n; by Observation and since T; € Ry, s0 also of length
k as k > I,;. Thus (Ul) holds. That both sequences (U,f(z))oozo are descending follows
immediately from Lemmas|15.6] property (b) of Proposition ]ﬁkﬂ and formulas and

(15.6)). Applying formulas (15.7)) and ((15.6)) along with Proposition [15.7| (b), Lemma [15.5]
Observation [15.3] Observation [14.11] Lemma [15.2] and Proposition [15.7| (a), we get
(15.8)

w(U; () < n(U(2)) = u(Wh,, (2) = p(x = (WH(z,1))) < (7™ (W (2,75-0))
p(r = (W (z,15-0))) < p(n™ (Blz,mj-1))) < eexp (= kN(2,75-1))
ere it = e it exp (K(l, L, — o, 1))

efemint oxp (RAL(2) (ny1 —nj1)) < "™ exp (= kil

< exp (k((1+ 8Al(z)))e "™,

and thus condition (U2) is satisfied with any p € (e, 1) sufficiently close to 1. The proof
is complete. 0

Proposition 15.9. With hypotheses exactly as in Propositionm both (U,;t(z))zozo satisfy
condition (U3). If in addition either z is not pseudo-periodic for S or it is uniquely periodic

IA
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and z € Int X, then (U5) holds. In the former case also (U4) holds while in the latter case
it holds if in addition p is an equilibrium state of the amalgamated function of a summable
Holder continuous system of functions.

Proof. With the same arguments as in ([15.8) we get that

(15.9) 7 (2) S (U, (2) €[ UF(2) € ﬂ 7 (B(z,7j-1)) S 7 l(2).

So (U3) holds as m~1(z) is a finite set. Assume now that z is not pseudo-periodic. Then
condition (U4A) holds because of Lemma and ((15.9)), while (U5) directly follows from
Lemma [13.2| and the inclusion U;" (2) € 7~ (B(z,7j-1)).

Assume in turn that z € IntX is uniquely periodic point of S with prime period p. Then
U, consists of a periodic point, call it &, of period p because of @ . S0, £ =71 for a
unique point 7 € EY. Condition (U5) directly follows from Lemma El Now we shall
show that the sequence (U;r(z))zo satisfies the property (U4B). Indeed, without loss of
generality we may assume that ¢ = [, where k = n;, j > 0. Take an arbitrary w € Ufkr(z).

This means that w|;,, € E% and Puly, (J) N B(z,7;) # 0. Then

Proty, (1) N B(2,75) 2 rof, (1) N @r(B(2,75)) = @7 (pu, () N B(z,715)) #0.

Hence, ), (J/)NB(z,7;) # 0, meaning that Tw € U (2). So, the inclusion 7U;" (2) € U;f(2)
has been proved and (6.1 of (U4B) holds for the sequence (U;"(2))

1=0"

In order to establish (6.1)) of (U4B) for the sequence (U;” (Z))Zo’ recall that n > 0 is so

(2

small that ||/ || < el for all w € E%. Take now x > 0 as small as previously required
and furthermore so small that Sns~" > 2. On the other hand, for every k :=n;, j > 1, we
have

(15.10) 0 (W™ (2,15)) € o (B(z,75)) € B(2,1¢L(2)[r;)) € B(z,¢7"ry).
On the other hand, by and the definition of /,,,, we have that
W (z.1)) 2 B(z,ry — D) D B(z,r; — Dp/*(B(z.,)
D B(z,rj— DC’"/”rf"/H)
) B(z, e_"‘ﬂrj)
provided that £ > 0 is taken sufficiently small (independently of j). Along with

this gives,
or(W(z,15)) S W (2,15)).
Hence,
W(TUl;(z)) = W(TW_I(W_(Z,T‘j))) = QOT(W<7T_1(W_(Z,Tj))))
= (W (ear).
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Thus

TU, (2) € T (W (z,15)) = Uy, (2)-
Thus, the part (6.1) of (U4B) is established. In order to prove (6.2) of (U4B), let k£ > 0
and 7, > 0 be as in the proof of Proposition [L15.8] The proof of this proposition gives that

Uf(z) Cnt (W*(z, Tjk_1>).

Since we now assume that p(w) = f(r(o(w))), w € EY, where (fe)eeE is a Holder
continuous summable system of functions, condition of (U4B) follows from continuity
of the function f™ : Xy) — R and the fact that lim;_, ji, = +o00. The proof of our
proposition is complete. 0

Now, we are in position to prove the following main result of this section, which is also one
of the main results of the entire paper. Recall that the lower and upper escape rates R,

and R, have been defined by formulas (7.1)) and (7.2)).

Theorem 15.10. Let S = {p.tecr be a finitely primitive Conformal Graph Directed
Markov System. Let ¢ : EX — R be a Holder continuous summable potential. As usual,
denote its equilibrium/Gibbs state by p,. Assume that the measure p, o mg' is (WBT) at
a point z € Js. If z is either
(a) not pseudo-periodic,
or
(b) uniquely periodic, it belongs to IntX (and z = 7(£*%) for a (unique) irreducible
word § € EY ), and ¢ is the amalgamated function of a summable Hélder continuous
system of functions,
then, with ﬁSW(B(z,s)) =R, (7T§1<B(Z, 5))) and }_%3’@(3(2,6)) = }_QW (ng(B(z,e))), we
have that
Rs (B(z,¢ Rs.(B
lim _s,ngl (2,¢€)) i 3,41 (z,€)) _
0 iy 015 (B(,9)) | 0 iy 05 (B(z,€))

(15.11)
1 if (a) holds
=dy(2) = :
1 —exp (pp(§) — pP(p)) if (b) holds,
where in (b), {£} = m5'(2) and p > 1 is the prime period of & under the shift map.

Proof. Assume for a contradiction that (15.11]) does not hold. This means that there exists
a strictly decreasing sequence s,(z) — 0 of positive reals such that at least one of the
sequences

(BsalBleonC) Y (Rt )
uwoﬂgl(B<z:5n(z))) n=0 Mwoﬂgl(B('z?Sn(’z))) n=0
does not have d,(z) as its accumulation point. Let

R :={sn(z) :n>0}.
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Let (Uf(z))zo:o be the corresponding sequence of open subsets of EY° produced in formula
(15.7). Then, because of both Proposition and Proposition m Proposition
applies to give

ORLUEGE)
(15.12) Jirgom = d,(z2).

Let (n;)52, be the sequence produced in Proposition with the help of R defined above.
By this proposition there exists an increasing sequence (jx)32, such that R N R, # ()
for all £ > 1. For every k > 1 pick one element r, € RN ank. Set qr =1 By
Observation m and formula , we then have

RuUz() molUa() _ Be,(Bem) _ Ren(Bzn)
pe(Ug (2))  po(B(z,14)) ~ pyoms (Blz,mi)) ~ mpoms (Blz,mx))
R (U5()  nlUS()
~ pp(Ug (2))  pe(B(z,71))
But, since p, o mg' is (WBT) at z, it is (DBT) at z by Proposition [14.12} and it therefore
follows from ((14.4)) along with formulas (15.3) and ((15.6]) that
i eWUa) oy #elUn(2)
k—oo ly(B(2, 7)) k—oo ly(B(2, 1))
Inserting this to (|15.12)) and (|15.13]), yields:

lim BS,go(B(Z7 Tk)) — lim ES7¢(B(27 Tkz))
koo, 0 g (B(2,14)) koo pig o s (B(2,74))

’rij .

(15.13)

= dy(2).

Since r, € R for all & > 1, this implies that d,(z) is an accumulation point of both

sequences (ES,(,D(B(Z7 Tk))/ﬂw © ﬂ-gl(B(Za Tk)))zo:p (ESW(B(Z7 Tk‘))/:“’@ o ﬂ-gl(B<Z7 Tk)))zo:p
and this contradiction finishes the proof of Theorem [15.10] O

Now, as an immediate consequence of Theorem [15.10] and Theorem [14.7, we get the fol-
lowing.

Theorem 15.11. Assume that S is a finitely primitive conformal GDMS whose limit set
Js is geometrically irreducible. Let ¢ : EY — R be a Holder continuous strongly summable
potential. As usual, denote its equilibrium/Gibbs state by p,. Then

Rs ,(B(z,¢€)) . Rsy(B(z¢))

15.14 li =1 !
( ) glir(l) N@OWEI(B(Zgg)) Eg% MWOWEI(B(Z’g))

for p, o mg'~a.e. point z of Js.

In the realm of finite alphabets E, by virtue of Theorem [15.10] and both Theorem [14.9
and Theorem [14.10 we get the following stronger result.
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Theorem 15.12. Let S = {pcteer be a primitive Conformal Graph Directed Markov
System with a finite alphabet E acting in the space R, d > 1. Assume that either d = 1
or that the system S is geometrically irreducible. Let ¢ : EY — R be a Holder continuous
potential. As usual, denote its equilibrium/Gibbs state by p,. Let z € Js be arbitrary. If
either z s
(a) not pseudo-periodic,
or
(b) uniquely periodic, it belongs to IntX (and z = w(£*) for a (unique) irreducible
word § € EY ), and ¢ is the amalgamated function of a summable Hélder continuous
system of functions,

then
lim ES’SO(B(Z’(E)) = lim }_%S’w(B(Z’g)) =
(15.15) =20 pip 05 (B(z,€)) 20 pg o mg (B(z,€))
()= {1 if (a) holds
’ 1 —exp (pp(€) — pP(p)) if (b) holds,

where in (b), {£} = m5'(2) and p > 1 is the prime period of & under the shift map.

16. THE DERIVATIVES X/ (t) AND A/(t) OF LEADING EIGENVALUES

In this section we have S = {¢, }ccp, a finitely primitive strongly regular conformal graph
directed Markov system. We keep a parameter t > s and consider the Holder continuous
summable potential ¢; : Y — R given by the formula

pi(w) = tlog |g, (r(o(w)))]

We further assume that a sequence (U,)22, of open subsets of E is given satisfying the
conditions (U0)-(U5). The eigenvalues A and A, along with other objects associated to the
potential ¢; are now indicated with the letter /number ¢.

Our goal in this section is to calculate the asymptotic behavior of derivatives X/ (t) and
A7(t) of leading eigenvalues of unnormalized operators L, when the integer n > 0 diverges
to infinity and the parameter ¢t approaches bs. Because of dealing with derivatives and
because of wanting/needing our results about them to be of full strength and generality, we
do impose in this section no normalizations on the operators £ and L£,. Note for example
that the normalization A(t) = 1 for all ¢ > s “artificially” yields the derivatives of all
orders of A(t) equal to 0. Also, the equation A(t) = 1 (with no normalizations), known
as Bowen’s equation, has a rich geometric meaning; its (unique) solution is the Hausdorff
dimension of the limit set Jg, the meaning entirely lost after normalization.

The task of calculate the asymptotic behavior of derivatives A (¢) and A!(¢) is truly
tedious and technically involved. This is partially due to unboundedness of the function ¢,
in the supremum norm and partially due to lack of uniform topological mixing on the sets
K. (e) introduced below.
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The main theorems of this section form the crucial ingredients in the escape rates con-
siderations of the next section, i.e. Section [17]

We start with the following.

Theorem 16.1. For every 0 < n < 400, the function (0s,+00) 3t — A\, (t) € (0, +00) is
real analytic and

(16.1) N(t) = lim X, (¢).

n—oo

Proof. By extending the transfer operators L, : By — By in the natural way to complex
operators for all ¢t € C with Re(t) < 0s, and applying Kato-Rellich Perturbation Theorem
(see [55]), along with Proposition[5.2] we see that for every 0 < n < 400 there exists V,,, an
open neighborhood of (fs, +00), such that each function (0s,+00) 3t +— A, (t) € (0, 4+00)
extends (and we keep the same symbol )\, for this extension) to a holomorphic function
from V,, to C, and also each function (fs,+00) > ¢ +— Qg e By extends to a holomorphic
function from V,, to C belonging to By. Denote these latter extensions by

gn V= C, n>0.
It is also a part of Kato-Rellich Theorem that
(16.2) Lingn(t) = Aa(t)gn(t)

for all 0 < n < 400 and all t € V,,. In particular, all the functions (0s, +00) 3 t — A, () €

(0,4+00), 0 < n < 400, are real analytic. In order to prove (16.1]), we shall derive first a
"thermodynamical” formula for X/ (¢). Differentiating both sides of (16.2)), we obtain

(16.3) L, 190 (t) + Lingn(t) = N, (8)gn(t) + Aa(t)g,,(2),
where
(16.4) L, (ww) = > lyglew)u(ew)log |l (m(u))| - ¢l (x(u))[",

and all four terms involved in (16.3|) belong to By. Applying the operator Qq(f ) to both sides
of this equation, we get

QW (L1090 (t)) + QY Lo (9,(8)) = X,(DQY (9a(1)) + A (1) QL (94(1)).

Since
QY (9n(1)) = gn(?)
and
QY Lin(9,(1) = LenQP (9,,(8)) = M(HQY (9,(1)),
we thus get
(16.5) X, (8)gn(t) = QY (L ,n(t)).

Since in addition ng) is a projector onto the 1-dimensional space Cg,(t), this operator
gives rise, similarly as in Section [10], to a unique bounded positive linear functional

Vin : B@ — C
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determined by the property that

QP (u) = vip(u)gn(t)
for every u € By. So, we can write (16.5]) in the form
(16.6) NL(1) = v (L1 g (1)):
Now, writing
l(w) = log |g,,, (m(o(w))],
formula (|16.4)) readily gives
L} n(u) = Lyn(ul),
so that ((16.5)) takes on the form
(16.7) X (1) = vin (Lin(lgn(t))).
Keeping t € (0s,+00) and for the rest of the proof set
U = Lin(lgn(t)) and = Ly, (Cg(t)),
but remember that all ,, and ¢ depend on ¢ too. Now, we have
QY (n) = QU (W) = vin(Wn)gn(t) — vi(¥)g(t)
= (Vt,n(¢n) - Vt(¢))g(t) + (gn(t) - g(t))yt,n(¢n)7

and keep in mind that all objects considered here are understood in their unnormalized
meaning. Hence,

(Ve (¥n) = 22()) g(t) = Qi (1) — QU () + (9(t) = ga(t)) Vi (Wn).

Therefore, recalling that the function g(t) is everywhere positive and that v,(g(t)) = 1, we
get the following.

i) = (0] = [ |@01) = QW) + rale)9(0) = gu(®)] e
</ \Q“) - QW)

But, because of Proposition -

[ 1.6 = g0l < llsn) - 900, = @) - QO a)

dve + vin(—n) /|gn —g(t)|d vy

*

(168) <|||@@ - Q®||| o
= ||Jev @ -e@||| —o

as n — 0. Hence, in view ({16.7]), in order to conclude the theorem, it suffices to show that

(16.9) iim [ Q10(0) ~ QU w)]dn =0

n—oo
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and

(16.10) M = sup{vin(—tn)} < +o0.

n>1

We first deal with the latter. We note that it follows from Proposition (g) that

(16.11) 192 ()]l < llga(®)llo = 1Q ()]s < C(2) < +o0.

with some constant C(t) € (0,+00) and all integers n > 0. Now, since t > 0g, it directly
follows from the inequality

(16.12) | log @il | < [lel]] =

for every € > 0 and all e € N large enough that

[1¥nlloc = 1€e0 (gn()lloo < Mg ()|l Lenlll
(16.13) < OO Lenlllo
COI[Lellloo < +00

for all n > 1 (including infinity) large enough. Now note that the same argument (only
easier) as the one leading to Lemma shows that all v, are in fact positive measure

on EY, and, by (16.11)), are uniformly bounded above by C(t). So, (16.10) immediately
16.13)

follows from ({1

Now we shall prove that (16.9) holds. Write, as usually, ||h||; := ||h]|11q,) for all h €
L'(v;). With the use of (16.18)) we then estimate

QY (¢n) = QU (W) = [[(QF — @ N + QY (¢ — 91

< QY - wurww '@ — )|

< 1QY = QD )ull + Q[ [[n — ¢l 12
sM@g %W|WNWH@ 1l — ]14
< M IIQY — QI+ Q1 lon — 11

’Vl

Hence, applying Proposition (h), we see that in order to prove that ((16.9) holds, and
by having done this, to conclude the proof of Theorem [16.1} it suffices to show that

(16.14) Tim [[4, — ]y = 0.
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It is well-known, and follows easily from that ¢ € LP(v;) for all real p > 0. Using
Cauchy-Schwarz inequality we then estimate:
n — ¥l = ||Le(lr) — Lo(@)]], = || Ly — )|, = 11y — V)I1
< Il =2 = ell2lgn ()1 = g(£)] 2
= (1|21 Ln (0 () = (2)) + () (Ln — L]
< 112 (11 n (3 (t) = @)z + [17() Lo, ||2)
< 12 (7 () = @)z + 11, []2)
< 2 (v (@) = v @)z + V1(Un))
< WHz(H%(t YOla + Vvi(U))

But lim,, . 4(U,) = 0 and lim,,_, ||g.(t) — g(t)||ls+ = 0 because of and m
Hence, the formula ((16.14)) holds and the proof of Theorem is complete

Now our goal is to show that the derivatives \/(¢) are uniformly bounded above in
appropriate domains of ¢ and n. In order to do this we will need several auxiliary results.
Our strategy is to apply the results of [25] for the family of operators

(Lin:te(s—0d,540),n>0),

where s > s and § > 0 is small enough. It is evident from the form of our potentials
pi(w) = tlog ¢, (m(c(w)))| that the distortion constants M, of Lemma and Lemma
can be taken of common value for all ¢ € (0,2s — fs]. Denote this common constant by
M. An inspection of the proof of Lemma leads to the following.

Lemma 16.2. For every § € (0, s — 0s) there exists a constant Cs € (0,+00) such that for
every t € [s — 0, s + 0], every integer k > 0, and every g € By, we have

[LEgle < C5(OA0))"(1)]glo + A (1)l]g]]-

Since the function (A, +00) 3 t — A(t) is strictly decreasing, denoting A(s — d) by M, as
an immediate consequence of Lemma [16.2] we get the following.

Lemma 16.3. For every 6 € (0,s — 0s), every t € [s — 6,5 + d], every integer k > 0, and
every g € By, we have

1L5gle < C5(0M)*|glo + M¥[|g] 1.
Lemma [£.2] directly translates into the following.

Lemma 16.4. For every 6 € (0,s — 0s), every t € [s — §,s + d], every integer k > 0, and
every n > 0, we have

1511, < NE(1) < M*,

The proof of Corollary provides exact estimates of constants, and gives the following.
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Lemma 16.5. For every § € (0,5 —0s), everyt € [s — 9, s+ 0], every integer k > 0, every
integer n > 0, and every g € By, we have

128091l < (C5 + 1)(OM)*[|glls + (C5 + 1) (1 + 0(1 = )~ ) M*||gll.,

with some constant C'§ € (0, +00).

From now on throughout the entire section we assume that condition (U2) holds in the
following uniform version:

(U2*) There exists p € (0,1) such that for some ¢ > 0 and for all integers n > 0 we have
sup {p(Un) : t € [s — 0,5 + 8]} < p™.

We now have the following.

Lemma 16.6. For every ¢ € (0,s — 0s), everyt € [s — 0,5 + d] and every integer n > 0,
we have

1€ = Lalll < 2A(1)(p"9)" < 2M 1.

Now, Lemmas [16.4] [16.2] and [16.6] along with formula (5.8), and compactness (in fact
finite dimensionality) of the operators m; : By — By imply that Theorem 1 in [25] along
with all corollaries therein, applies to the family of operators

('Ct,n te(s—06,s+0d),n> O),
(i. e. Ly corresponds to Py and L, correspond to operators P.) with
(t,n) s < t—s and n— 400
to give the following extension of Proposition [5.2]
Proposition 16.7. Fiz s > 0s. Then there exist § € (0,s — 6s) sufficiently small and an
integer ng > 0 sufficiently large such that for all (t,n) € (s —d,s +0) X {ns,ns +1,...,}

there exist bounded operators QS), AP By — By and complex numbers \,(t) # 0 with the
following properties:

(a) An(t) is a simple eigenvalue of the operator Ly, : By — By.

(b) Qtn) : By — By is a projector (an)Q = an)) onto the 1-dimensional eigenspace of
An(t).

(C) Et,n - )\n<t>Q§n) + Az‘,,n-
(d) Q" 0 Ay = Ay, 0 QY =0,
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(e) There ezist k € (0,1) and C' > 0 (independent of (t,n) € (s — 6,5+ 0) X {ng,ns +
1,...,}) such that

1AL llo < C(rA())*
for all k > 0. In particular,
1A% 91l < [[AE91l0 < C (A1) [lgll0
for all g € By.
(f) hm(t,n)ﬁs )\n(t) = )\(S)
(g) Enlarging the above constant C' > 0 if necessary, we have
1Q4]le < C.

In particular,

1Q" gl < 1R gllo < Cllgllo
for all g € By.

(h) Timge s [[|QF = Qulll = 0.

We now pass to deal with the second derivatives A/ (t). We start with close scrutiny of
L, (h), v € By. We estimate for every v € By:

1Le ()11 < 11Len (69) oo < Lo (€ [17]]50)
= Yllool 1Lt ()]l
< [1Lentllooll1lo
< [1Lell]scl Iy 1lo-

We have already got a uniform upper bound on [i,|~. Let us now also estimate [¢,]g.

Write

(16.15)

Then
(16.17) Un = Lin(lgn(t)) = Li(lrn).

We will in fact proceed more generally than merely estimating |1, |g. We shall prove, and
we will need, the following.

Lemma 16.8. There exists a constant Cy > 0 such that for every v € By, we have that
1L:(E9)lo < Cullv]lo-
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Proof. By virtue of [16.15] it suffices to estimate |L¢(¢)|y. Fix an integer m > 0, w € EY,
and «, 8 € [w|n]. Let e € E be such that A.,, = Aeg, = 1. Then

UeBN(eB)Lm (B — tlea)y(ea)lgl(m(a)
= |eeB) (1eB) (BN = Aea)lghlm@]!) +(ea)lg,(m(a)l! (¢(eB) ~ ((ea))|

< |eB) (HeB) I w(BNI ~ Ietm(@)I') + I (@) (2(e8) 2 (ea)]
+ 0sCm1(€) (ew)y(ea)|gr (m(a)) [
< A0 U(eB)y(e)] - @ (m(B))I" + e (m(a)) [ osem 1 () (ew) +
+ A0y (ea) |l ()]
with some constant A € (0, +00) and some constant 6 € (0, 1) sufficiently close to 1. Hence,
using also and Lemma we get
|L:(63)(B) = Lo(€y)(a)]
< A@zm(wt (1e|7)(B) + Li(y )) + K'L, (oscmH(fy))(w)
< 407 (L0 el lo + €01 |o) + K" L1 (05611 (7)) )
< A6 (L0 el o + 1€D]ls) + K" L1 (05641 (7)) )
(
(

< AP (I1Le(O)llcl 7 1le + [1£ell6][11lo) + K Lo (08Cm1(7))(w)
< AP (1Lallo + 11£0(O)llso) 1910 + KL (05Cm41(7)) (w)

Therefore,

osc(Le(67)) (w) < AG*™ ([|Lello + [1Le(O]s0) [17llo + K Li(08Cms1(7)) ().

Thus, after integrating against measure v;, we get

lloscn (Le(9)) 1104y < AG*™ ([[Lello + [[Le(O)]le) 1710 + Kt/ﬁt(OSCmH(v)) dv;

= A8 (1Ll + 1Ol + K [ oscua () d
< AP (124l -+ IEO ) Il -+ KO~
Therefore,

072" Josco (Lol [11164) < (AUILelo + [1£:(0)]|o0) + K 071) |17 o-
Combining this with (16.15]) we finally get

IL(N)lo < (1Ll oo + AUILulo + [[Le(O]o0) + K 071) [[V]]o.
So, the proof is complete. O

As a fairly straightforward consequence of this lemma we get the following.
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Corollary 16.9. There exists a constant C; > 0 such that for every v € By and alln > 1,
we have that

1£en(E)lo < CilIV]lo-
Proof. By virtue of Lemma (with £ = 1) and Lemma [4.1| we get

[Layle < [vlo + (1= 0) Myl < (1+2(1 = 6)7)9lo-

Of course,

2wy < Yl eren < [1le-
Hence,

1Lny]le < 2(1+ (1 =) )l[vls.
As

Liyn(ly) = Lo(byLy,) = Lo (L(1Ln7)),
applying Lemma [16.8, we thus get

1Lea(0)llo = ILe(E(Lay))llo < 2Co(1 + (1 = 0)7)]|7lo-

The proof is complete. [l
It immediately follows from this corollary, along with ((16.17)) and (16.11]), that
(16.18) [Pnllo < M;

with some constant M; € (0,00) and all integers n > 0.

Now we are ready to prove the following.

Lemma 16.10. For every s > s there exists n € (0,1) such that
[':= sup sup{\/(t):t € (s—n,s+n)} < +oo.

n>ng

Proof. Throughout the whole proof we always assume that ¢t € (s — 0, s+ d) and n > ng,
where § > 0 is the one produced in Proposition[16.7] Fix an integer N > 1 and differentiate
the eigenvalue equation

Et ngn( )= )‘g@)gn(t)
with respect the variable ¢ two times. This gives in turn
(L£32) (9a (1) + L3,(9,() = NXL (N (£)9n(t) + X7 ()95, (2)
and
(L£3)"(9n(1) + (L£22) (9(1) + (£55) (9(1) + L3 (9 (1)) =
= N(N = AN, (6)?gu(t) + NATT 0N (1) g, (8)+
+ NATTHON () ga(t) + NATTH X, (0)gn (1) + A (D) gn(t)-
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Equivalently:

(L8 (gal0)) + 2(L8) (gl (1)) + L2, (g1(1))
— NN = DAY ()N, ()% gn(t) + 2NNV ()N, (D)9 )+
NN ON()ga(t) + AN (1) (0):

Noting that
QLY (g(t)) = LY (g1(t)) = AN ()™ (g1(1))

and applying to both sides of this equality the linear operator Qg"), we get

L) (9n(0) + 208 (L) (g1, (1) =
= N(N = DAY (6)ga(t) + 2NN 0N, QL (64 (1)) + NXTH (X ()90 (8).

Now since (L7, i n) (9a(t)) = L3, (gn(t)Sn0), and so (LF,)"(gn(t)) = L1, (9x(t)(Sn()?), and
since also (L£7),)'(g,( LY,

t
) = ( ' (t)Snl), we thus get
(16.19)

Q" LY (9a(H)(Sn0)?) +2Q LY (4, (t)Snl) =
= N(N — DAY 2() (N, (£)2ga(t) + 2N AL 0N (DO (g4 (1)) + NAN L)AL (£)ga ().

(
t

We first deal with the term Q{" L, (¢/,(t)Sn (). We have

N-1 N-1
QLY (g (t)Snl) = %N( Zeoaf): QLN (gL (t)o o)

J=0

=

QM Ly (L], (gu ()

<
Il
o

(16.20)

?

LYTQM L, (0L,) (d4(1)))

Z .
Il
Lo

AN TR L1n (C£1,) (91(1))).

.
Il
o
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Now, by virtue of Proposition [16.7, particularly by its parts (c) and (e), and by Corol-
lary [16.9 we get

| £an (02061, = Mt L0 Q1 (G0)) ||
< \ct,n(ecz,n<g;<t>) M(tY L0 (€017 (511) |
= |2 (e (£at6(0) — MtV @7 (a0))) |
= |[Len (€A7(g0(1)))]
< 1A% (g ()6
< C'C(RA®)) |95 (®)]o-
Therefore, by item (g) of Proposition we get
Lo (LL0(9,(0)) = MOQ L ((Q(g(1) | < CCmA®Y 118 D)o
On the other hand, because of , we get
N(Q™ (9 (1) = vn(gh (D)X (1)ga () = va (g ())QL Lo (Lga(1))
= an)ﬁt,n (th,n (g;(t))gn(t))
= QM L, (LQM (gh(1)))
Therefore, using and , we get
AN ON Q) Lan (g (HSN(0) = NAT ON Q" @) | =

o

0

DIy

(16.21)

T, . ‘
- HN M) QN Lo (0L, (9(1)) — Q8 Lo (CQV (gl (1 )))Hm
7=0
] M-l ' ,
=% 3 e e (et 1) — @ L@ )] |
=0
T |
< S [0 Q L (02, 0) — @ Lun (€@ ()]
=0
e |
<+ S, (B)]lor

0

J
Therefore, for all pairs (¢,n) sufficiently close to s, we have

lim_ |2V AN () (@£ (605 (0) = N 0N (6,(1) ) | =0

N—o0 00
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where the convergence, in the supremum norm || - ||« is uniform with respect to all ¢
sufficiently close to s. Inserting this to (16.19), we thus get
(16.22)

Ni()gn(t) = Tim NN (0O LY, (g0 (1) (Sw(0)%)] = A O = 1gn (BN, (1))0 (1),

with the same meaning of convergence as above.

Let us first deal with the term Qg")ﬁfn(gn(t)(SNf)z). We have

(16.23)
QLY (ga(8)(Sn0)?) =
N—-1 N-1
=23 3 QML (gu() oot Lo o) +2Qt (9(t)€? 0 07)
i=0 j=i+1
N_ N-1 N-1
= (n),CN (gn 2007 -I—ZZ Z Qtn)ﬁN (t)(£-Lool™ Z)Oai)
=0 1=0 j=i+1
N—1 N-1 N-1
=Y QLT (CLLga() +2) 0 Y QLY (oL L (ga(1))
=0 i=0 j=i+1
N—1 N-1 N-1
= X0 D QM LL (0u(DF) + 22,0 Y D7 QLY (galt) - Lo 0T
=0 i=0 j=i+1
N_1 -1 N—-1
Y AP () 20X Y QL (2 o)
=0 i=0 j=i+1
N—1 N-1 N—
Y O L0 0) 123 Z AHID@Q Lo (L1 (bon(®)))
=0 =0 j=i

N-1

= AT OO L (gn() +2 3 MO = R)QE Lo (L5, (Lga(1))).
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Now, using Proposition (¢) (and (d)) and denoting ¢, = L4 ,0g,(t)), we get

QY Ly (0LF,(Lgn())) = Q) L1n (CLE (Lonlgn (1)) = Q1 L1n (CLF (0))
= QLo (COE QY () + AR (1))

QP L1n (0Q (1)) + QP Lin (A (400))

QLo (01 (n)gn (1)) + QF Lo (AE (1))

Vi () Q1" Lin (Con(t)) + Q1 Lon (AF (1)

Ve () Q8" (1) + Q1 Lo (A (1))

Therefore, using Proposition again, we get

2 iA;V YN = B)QY Lo (ELF, (Lga(t))) =

“ A ZONN — D0 0n(t) +2 3 AT F QI £, (A (1)

= M2ONN = 1) (N 0) ga(t) +2 3 AL L, Q8 (AE ()
k=1

= AV 2N (N = 1) (A, (1) ga(t) + 2203 2(0) L, Q" ()

= M2 ON(N = )N, (1) gat) + 2052 (0) Lo (v1.0(8n) 9a (1))
= V2N (N = 1) (N, (1) ga () + 202 2(O)01,0(t00) L1 (90 (1))
= V2N (N = 1) (N, (1)) gu(t) + 20N ()X, (£)ga (1)

In consequence, denoting by T (¢,n) the function whose limit (as n — oo) is calculated in

, and utilizing , we get

Tt 1) = QL1 (90(0%) + X, ()90 (1)
It thus follows from that
(16.24) NI(E)ga(t) = QLo (g (D).

Since, by Proposition all the operators Qg”) : By — By are positive, and because of
this also non-decreasing, and g, (t) = an)]l is non-negative, the formula (16.24)) yields the
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following.

Nr(0)9a(8) < 1190 (0)]1o0@1™ (L0 () < gn ool L1 ()] |o0Q5™ 1
< 1ga®llool1£:(E)llca(t)
< 2/gn()]]so] 1L (%) 09 (L),

where the last inequality was written for ¢ sufficiently close to s. Canceling out ¢, (t) and

noticing that by Proposition m (2), llgn(®)||leo = HQt”)IlHOO < C, we now finally obtain
that

Aa(t) < 2C1|L(€%)] oo,
and the proof is complete. O

Now we shall prove the following.

Lemma 16.11. We have

(a) For every n > 1 the function (6s,+00) 3t — A, (t) is decreasing.

(b) For every s € (0s,+00) and for everyn > 1 large enough there exists 6 > 0 such that
the function \,|(s—ssts) is strictly decreasing, in fact X, < tX(s) on (s — 8,5+ 9).

(c) For everyt € (0s,+00) and for every n > 1, A\, (t) < A(t).
(d) For every n > 1, limy_, 1 A, (t) = 0.
(e) For everyn > 1 large enough there exists a unique b, > 0 such that A\, (b,) = 1.

Proof. For part (a), Proposition implies that
1/k

oo

(16.25) An(t) = lim [|£7, 1|

and since for each n > 1 the function ¢ — HﬁﬁnﬂHoo is decreasing, item (a) follows
immediately. For part (b) note that \'(s) < 0. Hence, by Theorem A (s) < 3N(s) <0
for all n > 1 large enough, say n > N;. Take now & € (0,7) so small that ['d < —IX(s),
where I' > 0 is the constant coming from Lemma [16.10] By the Mean Value Theorem
A (t) =N (s)+ A (u)(t—s) for every t € (s—6,s+0) and some u € (s—0,s+0) depending
on ¢. Hence, applying Lemma [16.10} we get for all n > Ny and all t € (s — 4, s + J) that

1
A (t) < 5)‘/(‘9) +T4 <0.

Thus item (b) is proved. Similarly as in item (a), item (c¢) immediately follows from ((16.25)
and inequality £}, 1 < Lf1. Item (d) is an immediate consequence of item (c) and the
well-known fact (see [31]) that lim; o A(t) = 0. Proving (e), it is well-known (see again
[31]) that there exists a unique b € (s, +00) such that

A(b) = 1.
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Let 6 > 0 be the value produced in item (b) for s = b. We know that

1 1
)\(b— 55) >0 and )\(b+ 55) < 0.
It the follows from Proposition [16.7 (f) that
1 1 1 1 1 1
A (b — 55) > 5A(b— 55) >0 and A, (b+ 55) < §A(b+ 55) <0
for all n > 1 large enough, say n > N,. Because of the choice of § > 0 and because of item
(b), we may also have Ny > 1 so large that the function )‘"hb— 15114 is strictly decreasing
27 2

for every n > N,. Therefore, for every n > N, the function )\n’[b,l 511 has a unique
27 2

zero. Along with item (a) this finishes the proof of item (e). The proof of Lemma [16.11|is
complete. 0

Remark 16.12. With the help of Proposition [16.7] we could have strengthened Theo-
rem to show uniform convergence with respect to ¢ ranging over compact subsets of
(fs,+00). However, we really do not need this in the current paper.

By analogy to the unperturbed case, we call the numbers b,, produced in this lemma Bowen’s
parameters. Now we can prove the following.

Proposition 16.13. With the settings of the current section (in particular with the stronger
condition (U2*) replacing (U2)), we have

i 270 ) X if (U4A) holds
ooy (Un) | (1= |k(m(€))]) /X, if (U4B) holds

Proof. Since the functions (0s,+00) 3 t — A, (t), n > 1, are all real-analytic by the Kato-
Rellich Perturbation Theorem, making use of Lemma|l16.10, we can apply Taylor’s Theorem
to get
1= >\n<bn) - /\n(b) + /\/(b) + O((b - bn)2)

Equivalently,

1 — (D)

b—b,

Denoting by d(£) the right-hand side of the formula appearing in Proposition , and using
this proposition along with the fact that A(b) = 1, we thus get

= —X(b) + O(b — by).

w(Un) o/ -1
S, ~ MO
Equivalently,
b—b 1
16.26 lim o= (6.
(16.26) AR OR

But expanding (16.7) with n = oo, we get N'(b) = —A(b)xu, = —Xu,, and inserting this
into (16.26)) completes the proof. 0
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Now we shall link Bowen’s parameters b,, to geometry. We shall prove the following.

Theorem 16.14. Let S = {p.}ecr be a finitely primitive strongly reqular conformal graph
directed Markov system. Let (U,)2, be a nested sequence of open subsets of EY satisfying
conditions (UO0), (Ul), and (U2*) with s = bs. Recall that

K(U,) =)o "U;) = {w € EY : Vizo) 0" (w) ¢ Un}

for all n > 0 and denote
K, = ns(K(Uy,)).

Then
HD(K,) = b,
for all n > 0 large enough.
Proof. Put
hyn == HD(K,).
We first shall prove that
hn < by,

for all n > 0 large enough. Assume that 6 > 0 is chosen so small that the conclusion of
Lemma [16.11] (b)holds. Take then an arbitrary ¢ > b,. Fix any ¢ > 1. Define

Ky (U,) := {w € K(U,) : w, = q for infinitely many n}

and

Our first goal is to show that
(16.27) HD (K, (q)) < by
for all n > 0 large enough. Indeed, for every k > 1 let
Ey(q) == {wlr:w € K,(U,) and wi1 = q}.

Fix an arbitrary o € E such that go € EY. Then, using (BDP), Proposition [16.7] (c),
(e), and (g), along with Lemma we get

Z dlamt(ng(Xt(T)»: Z dlamt(ng(Xt(q)))X Z ||90;-||t

TEEL(q) T€EL(q) TE€EL(q)
= Y |@(n(qa))|" < LF(1E)(ga) = LF, (1)(qax)
TGEk(fI)

= M (H)Q (1) (ga) + S*(1)(qa)
< MO (L)oo + [15*(1) |
< ONE() + C(rA(H))F
= C(AE(t) + (rA())P).
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Therefore, for every k > 0, using the facts that A,(f) < 1 (Lemma [16.11{(b)), that x < 1,
and that kA(t) < 1 if n > 1 is sufficiently large so that the perturbed Bowen’s parameter
b, is sufficiently close to the (unperturbed) Bowen’s parameter b, we get

3 diam' (¢, (X)) < C N AP L\ (1)F

< C(1= M)A (8) + (1= 8AE) T (A®))').

Since UpZ; U e, (q) 97 (Xi(r)) s a cover of K, () whose diameters converge (exponentially
fast) to zero as | — oo, formula ((16.28)) yields H;(K,(q)) = 0.Therefore, HD(K,(q)) < t.
As t > b, was arbitrary, this gives formula ((16.27)). Let

Ko (U,): = {w € K(U,) : at least one ¢ € N appears in w infinitely many times}

= U Kq(Un)

and let o
K, () := W(KOO(UR)) = U K. (q).

Formula and o-stability of Hausdorff dimension then imply that
(16.29) HD (K, (00)) < by.
Now, for every integer [ > 1 let
K[ (U,) = {w € EY : the letters 1,2,...,] appear in w only finitely many times}
and
K (U,) = {w € EY : the letters 1,2,...,l do not appear in w at all}.
Furthermore,
K3(0) = (K7 (U,) and K0 = m(K{(U,)).
But
K< | eli0),

weky
and therefore
HD(K;; (1)) = HD(K,(1)).
But K, \ K, (c0) C (2, K:(l). Hence, applying Theorem 4.3.6 in [31], we get
HD(K, \ Kn(00)) < inf{HD(K (1))} = inf{HD(K\(1))} = 05 < bs(=b).
Since lim,,_, b, = b, this implies that for all n > 1 large enough HD(K,, \ K, (c0)) < b,.

Along with ((16.29)) this yields
(16.30) HD(K,,) < b,.
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Passing to proving the opposite inequality, let p;,, , be the shift-invariant ergodic measure
supported on K (U,) produced in for the potential

EY 3> wr— —b,log |¢l, (1s(o(w)))| € R.

Then iy, nomg' is a Borel probability measure on K,, and by the definition of b,, by (444
insert a theorem for the 2nd equality below) and by Theorem 4.4.2 in [31], we get
that

th n(a) 1Og An(bn) + anub n anm,n n

(16.31) HD(K,,) > HD (g, n © 7ot) = uk = UALA =,
( s ) X:u‘bny’ﬂ X/J'bn,n X)u'bn,n
Along with (|16.30]), this completes the proof of Theorem |16.14] O

As a direct consequence of this theorem and Proposition [16.13] we get the following.

Proposition 16.15. With the hypotheses of Theorem [16.14] we have that

HD(Js) — HD(K,) {1/X% if (U4A) holds
(1= let(m(€DN) /X, if (UAB) holds .

17. ESCAPE RATES FOR CONFORMAL GDMSs; HAUSDORFF DIMENSION

16.32 lim

This mini-section is the main fruit of the labor in the previous section. It pertains to the
rate of decay of Hausdorff dimension of the set of avoiding/survivor points. It contains,
in particular, Theorem [17.1], the second main result of this manuscript. Given z € Jgs and
r >0 let

K.(r) = ms(K.(r)),

where
K.(r) := {we EY :Vys00"(w) ¢ (z,r)} = ﬂ o (71 (B(2,1))).
More generally, given a set G C R%, we denote
K(G):={w € EY : ¥Ypzo0"(w }—ﬂa 7 H(G9))

and 3
K(G) = ms(K(G)).
We say that a parameter ¢ > s is powering at a point z € Jg if there exist a > 0, C' > 0,
and § > 0 such that

(17.1) fLs © a1 (B(z, 7’)) < C’(yt or ! (B(Z, T)))a

for every s € (t — d,t 4+ §) and for all radii > 0 small enough. The constant « is called
the powering exponent of ¢ and z. The following is one of the main results of our paper.

Theorem 17.1. Let S be a finitely primitive strongly reqular conformal GDMS. Assume
that both S is (WBT) and parameter bs is powering at some point z € Js which is either
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(a) not pseudo-periodic or else
(b) uniquely periodic and belongs to IntX (and z = w(£>) for a (unique) irreducible
word & € EY).
Then

. HD(Js) — HD(K,(r)) /X, if (a) holds
17.2 1 =
(172) 0 (rY(B(z,1))) {(1 —@t(2))) /X if (b) holds .
Proof. Denote the right-hand side of by £(z). Put
h:=HD(Js) =bs and h, := HD(K.(r)).

Seeking contradiction assume that ((17.2) fails to hold at some point z € Js. This means
that there exists a strictly decreasing sequence (s,(z))>, of positive reals such that the
sequence

( h— h, )Oo
(71 (B(w(2), 50(2))))

n=0
does not have £(z) as its accumulation point. Let

R :={sn(z) :n > 0}.
Let (UZ(2))%2, be the corresponding sequence of open subsets of E produced in formula
. We shall prove the following.
Claim 1°: Both sequences (UZ(2))%, satisfy the (U2*) condition for the parameter h.
Proof. Let a > 0 be a powering exponent of h = bs at z and let 6 > 0 come from this

powering property. Let s € (h—3d,h+6). Applying then formula (15.8) to the measure py,
we get, with notation used in this formula, that

1 (UE(2)) < peom (Bz,751)) < Clpmom (B(z,151)))" < Cexp® ((148Al(2))e"*.
The claim is proved. O

By this claim and because of Propositions [15.8 and [15.9], Proposition [16.15| applies to give
h— hE

17.3 lim ——— =&(2),

(179) L)

where hit := HD(K (U (2)). Let (n;)32, be the sequence produced in Proposition with
the help of R. By virtue of this proposition there exists an increasing sequence (j)z>, such
that R N ank # () for all k > 1. For every k > 1 pick one element r, € R N ank. Set

qr = ln; . By Observation and formula , we have
U<
o (Uge(2)) g (m=H(B((2),7x))) — (7™ )))
h — h+ ' 1 (Ug
(U;;( 2)) (7 1(B(W(Z) ©))

(17.4)
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But since p, o 771 is WBT, it is DBT by Proposition [14.12] and it therefore follows from
(14.4) along with formulas ((15.3) and (15.6|) that

. 1(Ug, () PR p(Ug; (2))
lim =1= lim .
X B r) e (e (Ble(2).70))
Inserting this and (17.3)) to (17.4]) yields
lim h= h, =&(2).

koo fuy (11 (B(7(2), 7x)))
Since 1, € R for all k& > 1, this implies that £(z) is an accumulation point of the sequence

h— h, ) -
po(m (B(x(2) s (2)) )
and this contradiction finishes the proof of Theorem [17.1] O

We have discussed at length the (WBT) condition in Section particularly in Theo-
rem (14.7} we now would like also to note that since any two measures ji;, t > 0s, are either
equal or mutually singular, the standard covering argument gives the following simple but
remarkable result.

Proposition 17.2. If § is a finitely primitive reqular conformal GDMS, then every pa-
rameter t > O is powering with exponent 1 at yu; o m1—a.e. point of Js.

Now, as an immediate consequence of Theorem [17.1] Theorem [14.7 and Proposition [17.2]
we get the following result, also one of our main.

Corollary 17.3. If § be a finitely primitive strongly regular conformal GDMS whose limat
set Js is geometrically irreducible, then

. HD(Js) —HD(K.(r)) 1
17.5 lim =
( ) r—0 1 (71'*1(3(2, 7”))) X
—a.e. point z of Js.

at ppg ot

In the case of finite alphabet E, we can say much more for the parameter bs than established
in Proposition Namely, we shall prove the following.

Proposition 17.4. If S is a finite alphabet primitive conformal GDMS, then S is powering
at the parameter bs at each point & € Js.

Proof. The proof of Theorem 7.20 in [7] (see also Theorem 7.17 therein for the main geomet-
ric ingredient of this proof) produces for every radius r € (0, % min{diam(X,) : v € V} a
family Z(r) C E% consisting of mutually incomparable words with the following properties.

<1> Cflr S ||90:;H007diam(90w(Xt(w))) S 017’ fOI" all w & Z(r)
(2) Yu(Xiyw)) NB(&, 1) #0 for all w e Z(r)
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(3) 5 (B(&,7)) € Uperm vl
(4) #Z(r) < Cy,
where C and Cy are some finite positive constants independent of ¢ and r. Abbreviate
b:= bg.

It easily follows from [31] that there exist a constant 6 € (0,bs/4) and a constant @ €
(1, +00) such that
ps([7])

—1
QS P <9

for every s € (b—0,b+ 9) and for all 7 € E%. We therefore get for every s € (b — 9,b+ 6)
and all w € Z(r) that

(17.6) pa((e]) < QTP gl 1, < QUL
and

(17.7) m(lw]) > QCrte.

It is also known from [7] that, with perhaps larger @ > 1:

178) s (BE) = Q7

This formula follows for example from ((17.7)) applied to a sufficiently small fixed fraction
of r. If /2 < s < b, then P(s) > 0, and we get

ps([w]) < QC5r® < QCHr = QCY (")
< QCIQip; o5 (B(E. )
< Q*Cluy o5 (B(E,T))
< Q*Clyi o5 (B(E, ).

Now we assume that s > b. We set

s/b

(17.9)

k= max{||¢l]l- : e € F} <1,
and we recall that
= =~ [ ol (o)) difw) >
EX
By taking § € (0,b/4) small enough, we will have

S—g 2Xb
s—>b ~ log(1/k)

for all s € (b,b+ §). Hence

<s - g) log k < —2yy(s — b) < P(s).

and P(s) > —2xu(s —b)
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Equivalently C)) < eP() Thus
(=8Il < Pl

As || |lso < k¥l and s > b, we therefore get
—P(s)|w s s L
ps([w]) < QeI < QllellI% < QCPre

b 1
< Q*Ci Qi oms' (BE )
b1
= Q**Cip; oms' (B(E,7))
1
< Q*Crpg omg' (B(E,7)).
Combining this along with ((17.9) we get that

ps(w]) < QCrug o5 (B(E, 7))
for all s € (b—4d,b+0) and all w € Z(r). Thus, looking also up at (4) and (3), this yields

1
psoms (B, 1)) < CoQCrpg o mg (B(E, 7))
for all s € (b—6,b+ 0) and all radii r € (0,3 min{diam(X,) : v € V}). The proof of
Proposition is complete. O

As an immediate consequence of Theorem Theorem (14.9, and Proposition we
get the following considerably stronger/fuller result.

Theorem 17.5. Let S = {@e }ecr be a primitive Conformal Graph Directed Markov System
with a finite alphabet E acting in the space RY, d > 1. Assume that either d = 1 or that
the system S is geometrically irreducible. Let z € Js be arbitrary. If either z is
(a) not pseudo-periodic or else
(b) uniquely periodic and belongs to IntX (and z = 7(£%°) for a (unique) irreducible
word § € EY ).
Then

. HD(Js) — HD(K.(r)) /X, if (a) holds
(17.10) lim - = ) ‘
=0 (71 (B(z,1)) (1= let()) /Xy if (b) holds .
18. EscAPE RATES FOR CONFORMAL PARABOLIC GDMSSs

In this section, following [32] and [31], we first shall provide the appropriate setting
and basic properties of conformal parabolic iterated function systems, and more generally
of parabolic graph directed Markov systems. We then prove for them the appropriate
theorems on escaping rates.

As in Section [12] there are given a directed multigraph (V) E,i,t) (E countable, V finite),
an incidence matrix A : £ x E — {0,1}, and two functions i,t : £ — V such that A, =1
implies ¢(b) = i(a). Also, we have nonempty compact metric spaces {X,},cv. Suppose
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further that we have a collection of conformal maps ¢, : Xy — Xj(e), e € E, satisfying
the following conditions:

(1) (Open Set Condition) ¢;(Int(X)) N ¢;(Int(X)) = O for all i # j.

(2) |pi(z)] < 1 everywhere except for finitely many pairs (i, x;), i € F, for which x; is
the unique fixed point of ¢; and |¢}(x;)| = 1. Such pairs and indices i will be called
parabolic and the set of parabolic indices will be denoted by €2. All other indices
will be called hyperbolic. We assume that A; = 1 for all i € Q.

(3) Vn > 1 Yw = (w1, ..., w,) € E™ if w, is a hyperbolic index or w,_1 # wy,, then ¢,
extends conformally to an open connected set Wy,) C R?¢ and maps Wiw,) into
Wz(wn)

(4) If 4 is a parabolic index, then (1, ¢i»(X) = {;} and the diameters of the sets
in(X) converge to 0.

(5) (Bounded Distortion Property) 3K > 1Vn > 1 Vw = (w1, ...,w,) € [" Va,y € V if
wy, is a hyperbolic index or w,,_; # w,, then

/
!w/w(y)l <K
|l (@)]
(6) 3s < 1Vn >1Vw € EY if w, is a hyperbolic index or wy,_1 # wy, then ||¢|| < s.

(7) (Cone Condition) There exist «,l > 0 such that for every x € 0X C R? there
exists an open cone Con(z,«,l) C Int(X) with vertex z, central angle of Lebesgue
measure «, and altitude .

(8) There exists a constant L > 1 such that

i) = lei(@)]] < Llleillly — =]
for every ¢ € I and every pair of points x,y € V.

We call such a system of maps

S={pi:i€ L}
a subparabolic iterated function system. Let us note that conditions (1),(3),(5)-(7) are
modeled on similar conditions which were used to examine hyperbolic conformal systems.
If Q # 0, we call the system {; : i € E} parabolic. As declared in (2) the elements of the
set E\ Q are called hyperbolic. We extend this name to all the words appearing in (5) and
(6). It follows from (3) that for every hyperbolic word w,

VoWiw)) € Wi
Note that our conditions ensure that ¢j(z) # 0 for all i € E and all z € Xy4). It was
proved (though only for IFSs but the case of GDMSs can be treated completely similarly)
in [32] (comp. [31]) that
(18.1) lim sup {diam(¢., (X))} = 0.

n—oo ‘w‘:n
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As its immediate consequence, we record the following.

Corollary 18.1. The map m : EF — X = Doy Xo, {m(W)} = (150 Pufa (X)), is well
defined, i.e. this intersection is always a singleton, and the map 7 is uniformly continuous.

As for hyperbolic (attracting) systems the limit set J = Jg of the system & = {¢¢}ece is
defined to be

JS = W(Ezo)
and it enjoys the following self-reproducing property:

T =] ee())

ecE
We now, following still [54] and [31], want to associate to the parabolic system S a canonical
hyperbolic system S*. The set of edges is this.
E,={i"jin>1,i€Q i#jeB, Aj=1}U(F\Q) C E}.
We set
V. =t(E,) Ui(E,)

and keep the functions ¢ and 7 on E, as the restrictions of ¢ and ¢ from E%. The incidence

matrix A, : E. x E, — {0,1} is defined in the natural (the only reasonable) way by
declaring that Af, =1 if and only if ab € E. Finally

S = {(pe : Xt(e) — Xt(e) e c E*}

It immediately follows from our assumptions (see [54] and [31] for details) that the following
1s true.

Theorem 18.2. The system S* is a hyperbolic conformal GDMS and the limit sets Js and
Js« differ only by a countable set.

We have the following quantitative result, whose complete proof can be found in [48].

Proposition 18.3. Let S be a conformal parabolic GDMS. Then there exists a constant
C € (0,400) and for every i € Q there exists some constant f; € (0, +00) such that for all
n>1 and for all z € X; := Ujcp sy 05(X),

TS S Bt
C™n fi <|gm(z)] <Cn @

In fact we know more: if d = 2 then all constants 5; are integers > 1 and if d > 3 then all
constants B; are equal to 1.

Let
p = Bs :=min{F; :€€ Q}
Passing to equilibrium/Gibbs states and their escape rates, we now describe the class of

potentials we want to deal with. This class is somewhat narrow as we restrict ourselves to
geometric potentials only. There is no obvious natural larger class of potentials for which
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our methods would work and trying to identified such classes would be of dubious value
and unclear benefits. We thus only consider potentials of the form

EY > wr G(w) :=tlog|¢, (ts(o(w)))| €R, t=>0.
We then define the potential (; : E2. — R as

G i"jw) = ZQ} (("jw)), 1€Q, n>0, j#i and i"jw € B

We shall prove the following.

Proposition 18.4. If S is a conformal parabolic GDMS, then the potential (; is Holder
continuous for each t > 0 it is summable if and only if

s
t> ——
B+1
Proof. Holder continuity of potentials ¢}, ¢ > 0, follows from the fact that the system S*

is hyperbolic, particularly from its distortion property, while the summability statement

immediately follows from Proposition [18.3] 0
So, for every t > % we can define pf to be the unique equilibrium/Gibbs state for

the potential (; with respect to the shift map o, : EJ. — EX.. We will not use this
information in the current paper but we would like to note that u; gives rise to a Borel
o-finite, unique up to multiplicative constant, o-invariant measure p, on E°, absolutely
continuous, in fact equivalent, with respect to pf; see [31] for details in the case of t = bs =
bs+, the Bowen’s parameter of the systems & and S* alike. The case of all other ¢ > 551
can be treated similarly. It follows from [31] that the measure p; is finite if and only if
either

(a) t € (6“,65) or

(b) t =bs and bs > 2.

Now having all of this, as an immediate consequence of theorems Theorem [15.10| and
Theorem [15.11] we get the following two results.

Theorem 18.5. Let S = {p.}ecr be a parabolic Conformal Graph Directed Markov System.

Fix t > Bﬁl and assume that the measure u; o 75! is (WBT) at a point z € Js. If 2 is
either

(a) not pseudo-periodic with respect to the system S*,
or
(b) uniquely periodic with respect to S*, it belongs to IntX (and z = mg«(£>) for a
(unique) irreducible word £ € Ef,. ),
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then, with Rs. ,.(B(z,€) == R, (751 (B(2,€))) and Rs+ u3(B(z,€) := R,: (15 (B(z,¢))),

we have
ES*,;L;(B(Z’g)) T ES*,#: (B(Z,&f))
im —— =lim ——
182) =0 ufomg, (B(z,€)) =0 uf omg. (B(z,¢))
. iy (Z) - 1 if (a) holds
P 1= |ek(2)[e7PPs @ if (b) holds,

wher’e in (b), {¢€} = 75!(2) and p > 1 is the prime period of & under the shift map
B — B

Theorem 18.6. Let S = {p.}ecr be a parabolic Conformal Graph Directed Markov System
whose limit set Js is geometrically irreducible. If t > -~ then

B+1
Rs. «(B(z,¢e Rs- .+ (B(z,
(18.3) im —5’“15 () _ im 37’@5 (2,6)) _
B i omsl (Bore)) o i o gl (B(s, )
for p; o —a.e. point of Js.

Sticking to notation of Section |17} given z € E. and r > 0 let
K (r) = ms- (K7(r)),

where
K (r ) i={w € EXu : Vuso 0l (w) ¢ w5t (B(ms+(2),7)} = ﬂa_" T+ (B(ms(2),1))).

As immediate consequences respectively of Theorem and Corollary [I7.3, we get the
following two results.

Theorem 18.7. Let S = {p.}ecr be a parabolic Conformal Graph Directed Markov System.
Assume that both S* is (WBT) and parameter bs is powering at some point z € Jg«. If z
15 either
(a) not pseudo-periodic with respect to the system S*,
or
(b) uniquely periodic with respect to S*, it belongs to IntX (and z = mg«(£>) for a
(unique) irreducible word £ € EZ,.),

then,

(184)  lim B2Us) ZHDUECr) {1/Xu; if (a) holds
| =0 iy (7 (B(z2,1))) (1- |90/5(Z)|)/Xu;; if (b) holds .

Theorem 18.8. Let S = {p.}tecr be a parabolic Conformal Graph Directed Markov System
whose limit set Js is geometrically irreducible. Then

. HD(Js) — HD(K:(r)) _ 1
(18.5) s (B X
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1

Jor ppy o™ —a.e. point z of Js.

Part 4. Applications: Escape Rates for Multimodal Interval Maps and
One—Dimensional Complex Dynamics

Our goal in this part of the manuscript is to get the existence of escape rates in the sense
of (1.3) and ({1.4 . ) for a large class of topologically exact piecewise smooth multimodal maps
of the interval [0, 1], many rational functions of the Riemann sphere C with degree > 2, and
a vast class of transcendental meromorphic functions from C to C. In order to do this we
employ two primary tools. The first one is formed by the escape rates results for the class
of all countable alphabet conformal graph directed Markov systems obtained in Sections
and . The other one is the method based on the first return (induced) map developed in
Section Section [20] and Section [21] of this part. This method closely relates the escape
rates of the original map and the induced one. It turns out that for the above mentioned
class of systems one can find a set of positive measure which gives rise to the first returned
map which is isomorphic to a countable alphabet conformal IFS or full shift map; the task

highly non-trivial and technically involved in general. In conclusion, the existence of escape
rates in the sense of (|1.3)) and ((1.4]) follows.

19. FIRST RETURN MAPS
Let (X, p) be a metric space and let ' C X be a Borel set. Let T': X — X be a Borel

map. Define
Fo=Fn(\JT™*

k=0n==k
i. e. F., is the set of all those points in F' that return to F' infinitely often under the
iteration of the map 7. Then for every x € F,, the number

r(x) :=min{n > 1:T"(z) € F} =min{n > 1:T"(x) € F}

is well-defined, i. e. it is finite. The number 77 (z) is called the first return of x to F' under
the map F'. Having the function 7 : F,, — N; defined one defines the first return map
Tr : Fyo — F by the formula

(19.1) Tp(z) : T (z) € Fy C F.

Let B be a Borel subsets of F'. As in the two previous sections let
K(B) = ﬂT (X\ B) and Kp(B ﬂT (Fx \ B).

In particular, this definition apphes for the set B = F. A stralghtforward observation is
that Kp(B) = F\, N K(B), so that we have the following.

(19.2) Kp(B) = Fx NK(B) C FNK(B).
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We shall prove the following.

Theorem 19.1. If the map T : X — X 1is locally bi-Lipschitz and B C F are Borel subsets
of X, then
HD(K (B)) = max{HD(K(B)), HD(K (F))}.

Proof. Since K(F') C K(B), we have that HD(K(F')) < HD(K(B)), and by (19.2) we have
HD(Kr(B)) < HD(K(B)). We are thus let to show only that
HD(K(B)) < max{HD(Kr(B)), HD(K(F))}.
Indeed, fix z € K(B). Let
N, ={n>0:T"(x) € F}.
Consider two cases:

Case 1°: The set N, is finite. Denote then by n, its largest element. Then T"="1(z) €

K(F). Hence
ve | JT KR
n=>0

note that this relation holds even if N, = 0.
Case 1°: The set N, is infinite. Then there exists m, > 0 such that 7™ (z) € Fl,. Hence,

vel|JT(F
n=0
In conclusion

B) C O T="(K(F)) U G T—"(F.

But then, using - we get

( ) U (K(B) N G T‘”(Foo)>

o0

cJr(EB)NKF) | T (K (B)N Fx)

=Jrxw) T (KB

Therefore, using o-stability of Hausdorff dimension and local bi—Lipschitzness of T, we get
HD(K(B)) < sup {max{HD(T"(K(F))), HD(IT " (Kr(B)))} }
n>0
< sup fmax{HD(T " (K (F))), HD(T~"(K#(B)))}}

n>0

= max{HD(K(F)), HD(Kr(B))}
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The proof of Theorem [19.1] is complete. O

As an immediate consequence of this theorem we get the following.

Corollary 19.2. If the map T : X — X s locally bi-Lipschitz, B C F' are Borel subsets
of X, and HD(K(F)) < HD(K(B)), then

HD(K(B)) = HD(Kr(B)).

20. FIRST RETURN MAPS AND ESCAPING RATES, I

As in Section (X, p) is a metric space, F' C X be a Borel set and T': X — X is a
Borel map. The symbols Fl,, 7r, and Tr have the same meaning as in Section [19] Now in
addition we also assume that the system 7" : X — X preserves a Borel probability measure
poon X. It is well-known that then the first return map Tr : F,, — F,, preserves the
conditional measure g on F (or Fy, alike). This measure is given by the formula

_ 14)
He) = )

for every Borel set A C F'. The famous Kac’s Formula tells us that

[
Trpdip = ———.
FF i M(F>

For every n > 1 denote
n—1 '
Tlg’n) = ZTF o T}j7‘7
j=0

so that
()
Ti(z) =T @(z).
If B, as in Section [19] is a Borel subset of F', then for every n > 1 we denote

n—1 n—1
B :=(\T7(X\B), By(F):=FxnB; and B(Ty):=[]T:’(X\B).
j=0 j=0

For every n € (0,1) and every integer k > 1 denote

Fio1(n) = {:c €F.: (ﬁ - ) k< 7t®(z) < (ﬁ +n> k} .

Let us record the following straightforward observation.

(20.1) Furd() N By, € Fuaa(n) N BY(Te) € Fua () VB

MeaRI w(F) M1

This simple relation will be however our starting point for relating the escape rates of B
with respect to the map 71" and the first return map Tr : Fyo — Fi.



126 MARK POLLICOTT AND MARIUSZ URBANSKI

Definition 20.1. We say that the pair (7, F') satisfies the large deviation property (LDP)
if for all n € (0, 1) there exist two constants 7) > 0 and C, € [1,+o00) such that

W Fi(n)) < Cpe™™
for all integers n > 1.

In what follows we will need one (standard) concept more. We define for every x € X the
number

Ep(z) :=min{n € {0,1,2,...,00} : T"(z) € F}.

This number is called the first entrance time to F' under the map 7" and it is closely related
to T F,

Tr(z) = Ep(T(2)) + 1
if x € F, but of course it is different.
Definition 20.2. We say that the pair (7, F') has exponential tail decay (ETD) if
n(Ez'([n, +o00]) < Ce "
for all integers n > 0 and some constants C, « € (0, +00).

Let B be a Borel subset of F. Following the previous sections denote respectively by
Rr,(B) and Ry, ,(B) the respective escape rates of B by the maps 7' : X — X and
Tr : Foo — Foo; i. e.

1 — 1
Ry, (B) = — lim —logu(By) < Rp,(B):=— lim —logu(By),
n—oo M n—oo
and . .
Ry, (B) = — lim ~log up(B;(Tr)) = — lim —log u(B;,(Tr)),
n—oo M n—oo 1}
5) : 1 c : 1 c
Rypu(B) == lim —log up(B,(Tr)) = — lim —log u(B;(TF)),
n—oo 10 n—oo T

with obvious inequality

We shall prove the following.

Theorem 20.3. Assume that a pair (T, F) satisfies the large deviation property (LDP)
and has exponential tail decay (ETD). Let (By)32,, be a sequence of Borel subsets of F' such
that

<a> limy, 00 ,U(Bk> =0,
(b) The limits
R B
—2E " and lim —RTF’“< )
exist, are equal, and belong to (0,+00); denote their common value by Rp(u).
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Then the limits R (B o
lim —A (Bt) and lim —RT’“(Bk)
also exist, and, denoting their common value by Rr(p), we have that

Ry(p) = Rp(p).
Proof. Fix n,e € (0,1). Fix two integers k,n > 1. Denote the sets (Bk)‘é . and

w(F)
(Bk)zﬁ—n)n respectively by By, (n) and B,:n(n). Because of (20.1]), we have
n(F
(20.2) (1 (Foa(n) N (Be)i(Tr)) < u(ByF,(n).

Fix M; > 1 so large that

(20.3) (I —e)Rp(p) < r(BY) = ar(BY < (1+e)Rp(p)
and
(20.4) ARp(p)pr(Bi) < min{e, 7)/2}

for all £k > M. Fix such a k. Fix then N, > 1 so large that
exp (— (1 + &) Ry u(Bi)n) < pu((Br)i(Tr)) < exp (= (1 - €) Ry, ,(Bi)n)
for all n > N,il). Along with this gives
(20.5) exp (— (14+2) Re(u)pr(Be)n) < p((Be)i(Tr)) < exp (— (1-2)Rp(u)ur(Be)n).
Therefore, using also Definition , we get for all £ > M; and all n > N,gl) that
w(Foca(n) N (B)S(Tr))  p((B)s(Tr)) — n(EFs_y(n) N (Br)s(Tr))

1((Be)s(Tr)) a 1((Be)s(Tr))
w(BRu(Tr)) = n(Fia() _ | s(Fia ()
1((Be)s(Tr)) 1((Be)s(Tr))
C e—Min=1)
>1 ¥

- exp (— 4Rp(p)pr(Bin)
=1 — Cye" exp ((4Rp (1) pr(Bi) — )n)
X 1
>1—Cpe'exp ( - 57771) >1/2,
where the last inequality holds for all n > N,il) large enough, say n > N,?) > N 151). Along

with (20.2) this gives

Hence
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Since
(Bk)z 2 Bt >
w(Fy "
we get
1
tim L log u(BY, () < (— - n) lim L log u((B))
n—o0 12 F) n—o0
Therefore,
— 1 —
R By) > | ——= —n ) Rr.(B).
Teu(Br) 2 <M(F) 77) 7.u(Br)
Dividing both sides of this inequality by u(By) and passing to the limit with & — oo, this
entails
Ry, (By)
R > (1— F)) lim —£—22
By letting in turn n \, 0, this yields
Rr,.(By)
20.6 R > Jim —£2

-1
Passing to the proof of the opposite inequality, denote ( Gl 77) n by n™ and ( @ T T]) n
by n~. We have

B, (n) = J (By,(n) N Ex'(j)) U Bz ((n*, +0q)])
(20.7) 7= .
= Ex'((n', +o0] UUE )N T (B ;).
Now,
(20.8) | |
ER'G)NT ((Br)or_,;) = Ex'()) N T (F) N T~ ((By)%+_,)
= Ex'(j)NT 7 (F N (Br)or_;)
= B () 0 (179 (Flwegy 1) 0 (B ) UT (Fepu i) 0 (B ) ).

By (20.1)) we have
F(Cn+—j)——1<77) N (Bk:)fﬁ—j = F(Cn+—] 1(n
(20.9) - F(n+7])— 1(n
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Now take p, ¢ > 1 such that % + % = 1. By applying Hélder inequality, T-invariance of the
measure g, (20.5)), and making use of Definition , we get for all 0 < 7 < N,gl), that

p( B (5) N T (B (n) 0 (B ])) < u( B () 0T (B (Tr) ) =

— d
/ = (B o, - ()

1/q
= ( Ee' ) du) ( (B’“)< +—J)_(TF)) du)

’ul/p(E (j) /~L/ ((Bk)(n+_]) (Tr)))
'ul/P N ( n+,J TF))

< OYre™n exp( (1= p ) Rp(p )MF(Bk)(n+—j)_>

o (= i () (s +0)-0))

- rexp (<UL Reuyn(mn)

a (1—-¢)? 1 - .
- exp (— (E — . (M(F) + 77) RF(N)MF(Bk)) J)

Together with the left-hand side of (20.5]) this gives that

,u(EEl(j) N~ (F(n+_j)*—1<77) (Bk)n+_J)>
<
1((Br)e(Tr)) B

< e (Re(uue(B((1+o = 2(1-2)n)-

a (1—e?/ 1 - ,
- exp <— (E R (M(F) +77) RF(M)MF(Bk)> J) :

Taking now ¢ > 1 sufficiently close to 1 and looking at (20.4)) we will have for every ¢ > 0
small enough that

1 1 a (1—e?/ 1 - o
2 T(1_2)2 <12 < o B —
(14e) q(l ) <1 q+65 <T7¢ and » . (M(F) + n) Rp(p)pr(Bg) > o

Therefore, for all K > M; and for all 0 < j <n* — N,El), we have that

M(Egl(j) N7 (F(nJr—j)*—l(n) N (Bk>fz+—j)>
pu((Br)e(Tr))

< Cl/pe'?é‘ne—%]

(20.10)
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For nt — N,il) < 7 < n*, using (20.4]), the left-hand side of (20.5), and looking up at
Definition [20.2] we have the easier estimate:

p(B )T (Foe )N Bt )))  (B7G)

u((Be)s(Tr)) ~ u((Br)i(Tr)) —
< C exp ((1+€)*Rp(p)pr(Bi)n)

< Cexp (—a(n® = NgV)) exp (1 +2)*Re (1) e (By)n)

= e exp (14 P Reuur(B) @ (40 ) o)

(20.11)

< C’eaN/il).
Now we can estimate the second part of (20.8]). We note that
Ept () NT 7 (Fur—jy-—1() 0 (Bi)ss—;) € Ex' () N T (FGe_jy- (),

and use again Holder inequality, T-invariance of measure p, and Definitions and [20.1},
to estimate:

M(Eﬁl(j) NT(For - ()0 (Bk);Jr—j)) <
< w(ER D ATy a) = [ A
< (BN (G) v (TT (Fia 1))
= WP (B (G)) - (Fe ()

< oV sicag i (0= )

] o N 1 -1
= CYPCMgae vl exp [ — x_1 (— + 77) Jil-
7 p g \pu(F)
Combining this with the left-hand side of (20.5) this gives that

M(E}?l(j) NT— (F(Cn+_j)f_1(77) N (Bk)fﬁ—j))

1((Br)a(Tr))
(2012) < cneyret oxp (- (1 - (14 P ReGnr (B ) n)-
- exp (— (% — Z (ﬁJrn)_l) j) :

Now, first take ¢ > 1 so large that

o ﬁ( 1 N )1>a
_— — — —_— /)7 —.
p g \p(F) 2
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Then take k > M, say k > M, , > M, so large that
Ui 5 Ul
- —(1 R By) > —.
. (1+&)°Re(u)pr(Bg) > 2

Inserting these two inequalities into , yields
p(Be )N T (Fe ) 0 (B )
u((Br);(Tr))

Finally, by Definition , the left-hand side of , and ,
m(Ex ((n", +00]))
p((Br)s(Tr))

il

A :
< Cl/pCé/qeqe 2" 27,

(20.13)

< Ce exp ((1+€)’ R () e (Bi)n)

— e (= (a (i +n) - G+ P Rete(Bn) )
<C

for every € > 0 small enough and n > M;. Combining this inequality, (20.10)), (20.11]),

(20.9), (20.8]), and (20.7), we get for every k > 1 large enough, every e > 0, and every
n > N,gl , that

(B () o _—
H k,n Y aN® ! —aj " _Ten -2 " _Ten
— (14 M —I—C§€2J—|—C€ E e 2! < (C"e
N((Bk>%(TF)) ( ) =0 j=0

with some constants C, ", C”,C" € (0, 4+00) and p > 1 independent of k > 1 large enough,
n > N,il), and € € (0,1) small enough. Hence,

— 1 _
— lim —log p1( By, (1) = R, (Br) = Te

for every € > 0 and every k > 1 large enough. Therefore,

— 1 _
— lim ~log 1#(Byn(n) > Ry, ,.(By)

for every k > 1 large enough. Since

(Bk)z g B~ )
]
e SRl
we get
i L log ((Bo)S) < T~ log j(By, (n).
n—00 1 " _ﬁ—}-nn—)oon k,n
Therefore,

Ry, (Bi) < (ﬁ s n) Ry, (By)
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for every k > 1 large enough. Dividing both sides of this inequality by p(By) and passing
to the limit with k£ — oo, this gives

. BT,M(B]C)
Rp(p) < (1+ W(F))k% By

By letting in turn n \, 0, this yields
By, (Bk)
R < lim —/# 2.
rl) < koo H(DBrk)
Together with (20.6]) this finishes the proof of Theorem [20.3] O

21. FIRST RETURN MAPS AND ESCAPING RATES, II

In this section we keep the settings of Section more specifically that described between
its beginning until formula . In particular, we do not assume appriori that (LDP)
holds. In fact our goal in this section is provide natural sufficient conditions for (LDP) to
hold. Let ¢ : X — R be a Borel measurable function. We define the function pp : FF — R
by the formula

Tr(z)—1

(21.1) or(x) = Z o T(z).

J=0

It is well-known
(21.2) / pdp = M(F)/ pr di.
X F

In particular,
]lF =TF,
and, inserting this to (21.2)), we obtain the familiar, discussed in the previous section, Kac’s

Formula
foetie =
Trpdip = ———.
F i u(F)

Definition 21.1. We say that a pentacle (X, T, F, 1, ), or just T, is of symbol return type
(SRT) if the following conditions are satisfied:

(a) FF = EY for some countable alphabet E and some finitely irreducible incidence
matrix A.
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(f) There are two constants C, a > 0 such that

,u(TF_I(n)) < Ce "
for all integers n > 1.

Since
7 (n) C T (ER' (n — 1))

and since the measure p is T-invariant, we immediately obtain the following.

Observation 21.2. If a pentacle (X, T, F, i, ) satisfies all conditions (a)—(e) of Defini-
tion and it also has exponential tail decay (ETD), then (X, T, F, u, ) also satisfies
condition (f) of Definition R1.1} thus in conclusion, the pentacle (X, T, F, u, ¢) is then of
symbol return type (SRT).

Given 6 € R we consider the potential
vy :=pp+0mp: F — R
We shall prove several lemmas. We start with the following.

Lemma 21.3. If T is an (SRT) system, then the potential pg : F' — R is summable for
every 6 < a.

Proof. Since T is SRT, we have that
> exp (sup (o)) = Y _exp (sup ((0r + 07r)ie)))

eeE eckE

= Zexp sup (¢F|[e]))exp QTF Z,u ) exp GTF( ))

ecE ecElR

> -3 Y ()

1 Tp(e):n Tr(e)=n

<CZexp )<+oo

3
Il

I
Mg

1

3
Il

whenever 6 < «. The proof is complete. O

Lemma 21.4. If T is an (SRT) system, then the function (—oo,a) 3 6 — P(pg) € R is
real-analytic.

Proof. In the terminology of Corollary 2.6.10 in [31], condition (c) of Definition says
that op € Kg, where 8 > 0 is the Holder exponent of pp. Of course 7 € Kp since 7p is
constant on cylinders of length one. Lemma says that ¢y € Kg for all § < «; in fact
the proof of this lemma shows that ¢y € K for all § € C with Re(f) < «. This now means
that all hypotheses of Corollary 2.6.10 from [31] are satisfied. The upshot of this corollary
is that the function

{#eC:Re(f) <a} 30— L,, € L(Kp)
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is holomorphic, where L, is the Perron-Frobenius operator associated to the potential
wy and the shift map ¢ = Tr. The proof is now concluded by applying Kato-Rellich
perturbation Theorem and the fact that exp (P(gpg)) is a simple isolated eigenvalue of L,
for all real § < « (it is not really relevant here but in fact exp (P(yg)) is equal to the
spectral radius of the operator £,, € L(Kg)), see the paragraph of [31] located between
Remark 2.6.11 and Theorem 2.6.12 for more details. 0

Because of Lemma for every 6 < « there exists a unique Gibbs/equilibrium state 1
for the potential ¢y : F' — R. Having the previous two lemmas, Proposition 2.6.13 in [31]
applies to give the following.

Lemma 21.5. If T is an (SRT) system, then

d
@P(%):/FTFCZ,M@

for every 0 < .

Now having all the three previous lemmas along with Definition 21.1] employing the stan-
dard (by now) tools of [31], exactly the same proof as in [I7] yields the following.

Theorem 21.6. If T is an (SRT) system, then for every § < a we have that

1 n
lim ﬁlogu({x S sgn(@)TF) (x) > sgn(Q)n/ Trdug}) = —6/ 7r dptg + P(pg).
F F

n—oo
In order to make use of this theorem we shall prove the following.

Lemma 21.7. If T is an (SRT) system and the first return map function 7p : Foo — N is
unbounded, then for every non-zero 8 < a we have that

P(wg) — 9/ Tr dpg < 0.
F

Proof. Since py is an equilibrium state for (g, we have that
P(pg) — 9/ Tr djtg = hy, (o) +/ or dpg + 9/ Tr djtg — 9/ Tr djtg
F F F F

= hy, (o) + / ©r djg
F

Hence, in order to complete the proof we only need to show that the inequality sign above is
strict. In order to do this suppose for a contradiction that h,, () + [, ¢r dug = P(pr). But
then the fact that p is the only equilibrium state for ¢r, implies that py = p. But because
of Theorem 2.2.7 in [31] this in turn implies that the function vy — pr is cohomologous to a
constant in the class of Holder continuous functions defined on E® = F. But @p—pp = 07p
is, by our hypotheses, unbounded unless # = 0. This finishes the proof. O

Now we can prove the main result of this section:
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Lemma 21.8. If T is an (SRT) system and the first return map function 7 : Foo — N s
unbounded, then the pair (Tr, F') satisfies the large deviation property (LDP).

Proof. Fix n € (0,1). It follows from Lemma and Lemma that the function
(—o0,a) 30— / TR dpg € [1,4+00)
F

is continuous. Therefore, there exists § € (0, «) such that

/Tpdu—né/Tpdua,/Tqu_aé/Tpdu+n-
F F F F

u(F)™ =y < /

F

Equivalently:
TF dﬂ«s,/ Trdp_s < M(F)_1 + 1.
F

Hence for every k > 1:

Fi(n)C{zeF: 7'1’;)(:1:) > k/ Trdus} U{z € F: Tﬁ)(x) < k:/ Trdp_s}.
F F

So, denoting
. I .
7 := 5 min {5/ Tr dps — P(ea), —5/ Trdi_s — P(go,(;)},
F F
which is positive by Lemma [21.7], we conclude from Theorem [21.6, that

M(Eil(n)) < Cpe™
for all £ > 1. The proof is complete. U

22. ESCAPE RATES FOR INTERVAL MAPS

In this and the next sections we will reap the benefits of our work in the previous sections,
most notably of that on escape rates of conformal countable alphabet IFSs and of that on
the first return map techniques including large deviations. This section is devoted to the
study of the multimodal smooth maps of an interval.

We start with the definition of the class of dynamical systems and potentials we consider.

Definition 22.1. Let I = [0, 1] be the closed interval. Let T : I — I be a C? differentiable
map with the following properties:

(a) T has only a finitely many maximal closed intervals of monotonicity; or equivalently
Crit(T) = {z € I : T'(x) = 0}, the set of all critical points of 7" is finite.

(b) The dynamical system T : I — [ is topologically exact, meaning that for every
non-empty subset U of I there exists an integer n > 0 such that 7"(U) = I.

(c) All critical points are non-flat.
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(d) T : I — I is a topological Collet-Eckmann map, meaning that
inf{(|(T™) (x))"" : T"(x) =a forn >1} > 1

where the infimum is taken over all integers n > 1 and all fixed points of T™.

We then call T': I — I a topologically exact topological Collet-Eckmann map (teTCE). If
(c) and (d) are relaxed and only (a) and (b) are assumed then T is called a topologically
exact multimodal map.

We set
PC(T) = | T"(Crit(T))
n=1
and call this the postcritical set of T'. We say that the map T : I — [ is tame if
PC(T) # I.

The following theorem is due to many authors and a detailed and readable discussion on
this topic can be found, for example, in [40)]

Theorem 22.2 (Exponential Shrinking Property). If T : I — I satisfies conditions (a)—(c)
of Definition then T is a (te)TCE, i.e. condition (d) holds if and only if there exist
0>0,v>0 and C >0 such that if z € I and n > 0 then

diam(W) < Ce™ ™
for each connected component W of T~"(B(z,26)).

The hard part of this theorem is its “if” part. The converse is easy. There are more con-
ditions equivalent to teTCE, but we need only the above Exponential Shrinking Property
(ESP) and we do not bring them up here. We now however articulate two standard suf-
ficient conditions for (ESP) to hold. It is implied by the Collet-Eckmann condition which
requires that there exist A > 1 and C' > 0 such that for every integer n > 0 we have that

(") (f(e)] = CA™.

If also suffices to assume that the map 7' is semi-hyperbolic, i.e., that no critical points ¢
in the Julia belongs to its own omega limit set w(c) for (ESP) to hold. This so for example,
if T' is a classical unimodal map of the form [ 5 z — Az(1 — x), with 0 < A < 4 and the
critical point 1/2 is not in its own omega limit set, i.e., 1/2 € w(1/2).

We call a potential 1 : I — R acceptable if it is Lipschitz continuous and

sup(v) — inf(¢)) < hyop(T).

We would also like to mention that for the purposes of this section it would suffice that
¥ : I — R is Hélder continuous (with any exponent) and of bounded variation. We denote
by BV the vector space of all functions in L*()\), where A denotes Lebesgue measure on I,
that have a version of bounded variation. This vector space becomes a Banach space when
endowed with the norm

lgllzv = llgllLen, + vi(g)



137

where v;(g) denotes the variation of g on I. For every g € BV define the Perron-Frobenius
operator associated to v by

yeT~1(2)
It is well known and easy to check that £,(BV;) C BV, and £, : BV; — BV is a bounded

linear operator.
The following theorem collects together some fundamental results of [22] and [23]

Theorem 22.3. IfT : I — I is a topologically exact multimodal map and v : I — R is an
acceptable potential then
(a) there exists a Borel probability eigenmeasure my, for the dual operator Ly, whose
corresponding eigenvalue is equal to e*¥). It then follows that supp(my) = 1.
(b) there exists a unique Borel T-invariant probability measure i, on I absolutely con-
tinuous with respect to my,. Furthermore, p, 1s equivalent to my;
(¢) by, (T) + [;¥dpy = P(¥), meaning that py is an (ergodic) equilibrium state for
Y I — R with respect to the dynamical system T : [ — 1.

)
(¢) r(Ly) = .
(1) sp(£4) N OB(0, ")) = ()

)

of Ly : BV — BV with eigenfunction py = am which 1s Lipschitz continuous

and log-bounded.

We shall use the commonly accepted convention, used throughout this article, that for
every r € (0, 1] and every bounded interval A C R we denote by rA the (smaller) interval
of length r|A| centered at the same point as A. We now consider the following version of
the bounded distortion property taken from [40] whose proof has a long history and is well
documented therein.

Theorem 22.4. Let T : I — I be a teTCE. Then for every r € (0,1) there exists K(r) €
(0, +00) such that if A C I is an interval, n > 0 is an integer, the map T"|a is 1-to-1, and
x,y € A are such that T"(x), T™(y) € rT"(A), then

YO | < o) — e
e = 1| < KOIT) - o)

We next recall the following definition.

Definition 22.5. An interval V' C [ is called a nice set for a multimodal map 7" : [ — [ if
int(V)yn | JT"(0V) =0
n=0

The proof of the following theorem is both standard and straightforward, and has been
presented in various similar settings. We provide the proof below because of the critical
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importance for us of the theorem it proves and the brevity of the proof, for the sake of
completeness, and for the convenience of the reader.

Theorem 22.6. If T : I — I is topologically exact multimodal map then for every point
€€ (0,1) and every R > 0 there exists a nice set V C I such that £ € V C B(§, R).

Proof. Since the map T : I — I is topologically exact it has a dense set of periodic points.
Fix one periodic point w, say of prime period p > 1, such that & € U T *({T7(w) : 0 <
Jj <p—1}). Again because of topological exactness of T,

Ee(0,9)N|JTH({Ti(w): 0<j<p—1})

and

ceEnnJr*({Tiw :0<j<p-1}).

For every n > 1, sufficiently large denote by & € I the point closest to £ in

0.9 JT+({Tiw): 0<j<p—1})

and by ' € I the point closest to & in

&N JT+{T(w): 0<j<p—1}).
k=0

We then denote

Vo= (6,,60).
Then obviously & € V,, TF(EE) & (€,,&F) for all k = 0,1,---,n — 1, and TF(E) €
{T'(w): 0 < j <n—1} for all k > n. Since lim, 4 & = £ it then follows that
TF(EE) ¢ V,, for all k > n. In conclusion, V,, are the required nice sets for all integers
n > 1. Since in addition lim,, , {,, diam(V},) = 0 the proof is complete. d

Given a set F' C [ and an integer n > 0, we denote by Cr(n) the collection of all connected
components of 7-"(F"). From their definitions, nice sets enjoy the following property.

Theorem 22.7. IfV is a nice set for a multimodal map T : I — I, then for every integer
n >0 and every U € Cy(n) either

UNV =0 or UCV.

From now on throughout this section we assume that 7' : I — [ is a tame teTCE map.
Fix a point £ € I\PC(T'). By virtue of Theorem m there is a nice set V' such that

£eV and 2VNPC(T) = 0.
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The nice set V' canonically gives rise to a countable alphabet conformal iterated function
system in the sense considered in the previous sections of the present paper. Namely, put

¢ = Jcvn).
n=1

For every U € Cj; let 7(U) > 1 the unique integer n > 1 such that U € Cy(n). Put further
Yy = fl;TV(U) 2V =U
and keep in mind that
Denote by Ey the subset of all elements U of C;, such that
(a) SOU(V) - Va
d) fFUYNV =0 forall k=1,2,....,7(U)— 1.
The collection
Svi:{(pUZV—>V}
of all such inverse branches forms obviously an iterated function system in the sense con-
sidered in the previous sections of the present paper. In other words the elements of Sy
are formed by all inverse branches of the first return map fiy : V. — V. In particular,
Ty (U) is the first return time of all points in U = ¢y (V) to V. We define the function
Ny : E}? — Ny by setting
Ny (w) = 1y (w1).
Let
my By - R
be the canonical projection induced by the iterated function system Sy . Let
Jv =Ty (E‘O/O)
be the limit set of the system Sy. Clearly
Jy C 1.
It is immediate from our definitions that
Tv(m(w)) = Nv(w)

for all w € EY.
We shall now prove the following.

Proposition 22.8. Let T : I — I be a tame teTCE map. Let ¢ : I — R be an acceptable
potential. If V' is a nice set for T, then

a ~V =Yy omy — P(Y)Ny : EN = R is a summable Hélder continuous potential;
(a) Yy =1 P

(b) P(o,y) =0 for the pressure for the shift map o : EY — E‘N/i

(€) pov = [, © 77‘;1, where g, 18 the equilibrium state for iy and the shift map

U:E{Y%EO[;
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(d) In addition, 1y is the amalgamated function of a summable Héolder continuous sys-
tem of functions.

Proof. Holder continuity of JV follows directly from Theorem (the Exponential Shrink-
ing Property) and the fact that the function Ny is constant on cylinders of length 1. Holder

continuity of ¥y follows directly from Theorem (the Exponential Shrinking Property)
and the fact that the function Ny is constant on cylinders of length 1. We define a Holder
continuous system of functions G' = {g® : V' — R}.cp by putting

9" = (v — P(p)7v) 0 ¢e, € € E.

Theorem then implies the system G is summable, P(G) = 0, and my y is the unique
G-conformal measure for the IFS Sy. According to [31], g : EYY — R, the amalgamated
function of G is defined by the formula

g(w) = g“ (v (0(w))) = Yy © pu, (Tv (0 (w))) = PW)7v 0 o, (17 (0(w)))
= v omy(w) = P(¢) Ny (w)
= @Z)‘/(w).
By Proposition 3.1.4 in [31] we thus have that
P (o, ) = P(G) = 0.

Now, since my o 0 = Ty o 7y, i.e. since the dynamical system Ty : Jy — Jy is a factor of
the shift map o : EY} — EY via the map 7y : EY — Jy, we see that gy, © T, is a Borel
fy-invariant probability measure on Jy equivalent to m Dy © w;l =My o Tl =mg= M V-
Since my, v is equivalent to juy,y, we thus conclude that the measures my o myt and iy
are equivalent. Since both these measures are Ty -invariant and ji,, 1 is ergodic, they must

be equal. The proof is thus complete. 0]

Since 7y : E‘N/ — Jy = V., where, we recall the latter is the set of points returning
infinitely often to V', is a measurable isomorphism sending the o-invariant measure fi; = to
the fy-invariant probability measure py v, by identifying the sets Ei and V(= Jyv), we
can prove the following.

Lemma 22.9. With all the hypotheses of Proposition 22.8) the pentacle (I,T,V, z/;v,ud;v)
s an SRT system having exponential tail decay (ETD), where we recall that V, is identified
with EY, 1y is identified with vy — P(¥)1y, and [, is identified with i,y .

Proof. By virtue of Proposition [22.8| and Observation [21.2f we only need to prove that the
pentacle (1,7, V, 4y, u; ) has exponential tail decay (ETD). We can assume without loss
of generality that ¢ : I — R is normalized so that

P() =0 and my = py.

Now define
CY(n) :=={U € Cy(n) : Vpzren—1) T*U) NV = 0}
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and
Cy(n):={U €Cy(n):UCV}={U€Cy(n) :UNV #0}.
Since the map T : I — I is topologically exact, there exists an integer ¢ > 1 such that
TV D 1.
Therefore for every e € Cy/(n) there exists (at least one) é € Cj;(n + ¢q) such that
T 0 e = pe.

By conformality of the measure p,, for every e € Cy(n), we have

11y (9 (V) = exp(—=q[¢]|oo) iy (e (V).
So, since

U e U am\ U e,

acCO (n+ beCy (n+q) ecC (n
v(n+q) Tdopecd ) v(n)

we therefore get

o | U e < | U @M\ U V)

0 beCy (n+q) 0
aeC? (n+q) qu‘;ez?/im e€Cy, (n)

=uw | U eW|-ul U V)
beCy (n+q) e€Cd (n)
quwb€COV(")

=py | T7° U ec(V) | | — Z iy (0e(V))

ceCy (n) e€Cd (n)

= | U oW | = D nu(pe(V))

ceCY (n) e€Cy (n)

< iy U (,DC(V) _exp(_9||¢||00) Z V“lﬂ(SDE(V))

ceCy(n) e€C (n)

= Ty U gpc(V) )

ceCY (n)
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where v := 1 — exp(—¢||¥||s) € [0,1). An immediate induction then yields

po | @e(V) | <97ty
eeCy (n)

for all n > 0. But, as
By ([n, +od]) = By ({+00}) U U U eV
k=n eeC}, (k)

and since p1,,(Ey " ({+00})) = 0 by ergodicity of py and of p,(V) > 0, we therefore get
that

—1 n
(22.1) p (B ([, +00))) < (y(1—AM7)) "y
for all n > 0. This just means that the pentacle (I,7,V, szylh;v) has exponential tail
decay (ETD), and the proof is complete. O

Denote by Ig(T) the set of all recurrent points of 7" in I. Formally
Ir(T) :={z€l: lim |T"(z) — z| = 0}.

n—oo
Of course Ir(T) C Jr and py(I \ Ir(T)) = 0 because of Poincaré’s Recurrence Theorem.
The set Ir(T) is significant for us since

IR(T)NV C Jy.
Now we can harvest the fruits of the work we have done. As a direct consequence of Theo-

rem (15.10, Theorem [15.11], Proposition [22.8, Lemma [22.9] Lemma [21.8, and Theorem [20.3]
we get the following two results.

Theorem 22.10. Let T : I — I be a tame teTCE map. Let ¢ : I — R be an acceptable
potential. Let z € Ir(T)\PC(T).
Assume that the equilibrium state jy, is (WBT) at z. Then

BB Ru(Be)
=0 py(B(z,€)) =20 py(B(z,¢))

if z is not any periodic point of T
h {1 —exp (Sp¥0(z) — pP(f, %)) if 2 is a periodic point of 7.

Theorem 22.11. Let T : I — I be a tame teTCE map. Let ¢ : I — R be an acceptable
potential. Then a
R, (B(22) R (B(:2))

lim ———— = lim ———————5 =
=0 py(B(z,€)) =20 py(B(2,€))

for py—a.e. point z € 1.
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Definition 22.12. A multimodal map T : [ — [ is called subexpanding if

Crit(T) N PC(T) = 0.
It is not hard to see (good references for a proof can be found in [40]) that the following
1t true.

Proposition 22.13. Any topologically exact multimodal subexpanding map of the interval
I is a tame teTCE map.

Let us quote another well-known result which can be found, for example, in the book of
de Melo and van Strien [35].

Theorem 22.14. If T : I — I is a topologically exact multimodal subexpanding map, then
there exists a unique Borel probability T-invariant measure p absolutely continuous with
respect to Lebesque measure \. In fact,

(a) p is equivalent to A and (therefore)
(b) has full topological support.
(¢) The Radon—Nikodym derivative ‘;—‘; 15 uniformly bounded above and separated from

zero on the complement of every fized neighborhood of PC(T).
(d) w is ergodic, even K-mizing,
(e) p has Rokhlin’s natural extension metrically isomorphic to some two sided Bernoulli

shift and
(f) w charges with full measure both topologically transitive and radial points of T

As an immediate consequence of this theorem, particularly of its item (c), we get the
following.

Corollary 22.15. If T : I — I s a topologically exact multimodal subexpanding map,
then the T-invariant measure p absolutely continuous with respect to Lebesque measure A

is (WBT) at every point of I \ PC(T).

Passing to Hausdorff dimension, by a small obvious modification (see [40] for details)
of the proof of Theorem for all ¢ € Crit(T) U {£} there are arbitrarily small open
intervals V., ¢ € V., such that V. N PC(T) = § and the collection T, n > 1, of all
continuous (equivalently smooth inverse branches of 7™) defined on V,, ¢ € Crit(T') U {¢},

and such that for some ¢ € Crit(T") U {¢},
T (V) = Ve

*

and
UTHr vy n|J{Ve: z € Crit(T) u{¢}} =0

forms a finitely primitive conformal GDS, which we will call Sy, whose limit set contains
Trans(7"). Another characterization of Sy is that its elements are composed of continuous
inverse branches of the first return map of f from

V= U {Vz cz e Crit(T) U {f}}
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to V. It has been proved in [40] that HD(K(V)) < 1.
So, since by Theorem lim,_,o HD(K(B(&,7))) = HD(I) = 1, we conclude that
HD(K(V)) < HD(K(B(¢,7)))
for all > 0 small enough. Therefore, since bs, = 1 and since ppy = fivs, applying
Theorem [I7.1] Corollary and Corollary [19.2] we get the following two theorems.

Theorem 22.16. LetT' : I — I be a topologically exact multimodal subexpanding map. Fix

¢ € I\PC(T). Assume that the parameter 1 is powering at £ with respect to the conformal
GDS Sr. Then the following limit exists, is finite, and positive:

1 — HD(K,

L1 HD(K(r)
=0 u(B(§, 7))

Theorem 22.17. If T : I — I s a topologically exact multimodal subexpanding map, then

for Lebesque—a.e. point & € I\ PC(T') the following limit exists, is finite and positive:
1 —HD(K,
1 HD(K(r))
=0 pu(B(Er))

23. ESCAPE RATES FOR RATIONAL FUNCTIONS OF THE RIEMANN SPHERE

Now, we will apply the results of sections 14 and 15 to two large classes of coAnformal
dynamical systems in te complex plane: rational functions of the Riemann sphere C in this
section and, in the next section, transcendental meromorphic functions on C. This section
considerably overlaps in some of its parts with the previous section on the multimodal
interval maps. We provide here its full exposition for the sake of coherent completeness
and convenience of the readers not necessarily interested in interval maps.

As said, now we deal with rational functions. Let f : C — C be a rational function of
degree d > 2. Let J(f) denote the Julia sets of f and let

Crit(f) == {c e C: f'(c) = 0}

be the set of all critical (branching) points of f. As in the case of interval maps set
PC(f) = | f™(Crit(f))
n=1

and call it the postcritical set of f. The best understood and the easiest (nowadays)
to deal with class of rational functions is formed by expanding (also frequently called

hyperbolic) maps. The rational map f : C — C is said to be expanding if the restriction
flapy  J(f) = J(f) satisfies

(23.1) inf{|f'(z)] : z € J(f)} > 1
or, equivalently,
(23.2) ()] > 1

for all z € J(f). Another, topological, characterization of the expanding property is this.
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Fact 23.1. A rational function f : C — Cis expanding if and only if

J(f) N PC(f) = 0.

It is immediate from this characterization that all the polynomials z — 2%, d > 2, are
expanding along with their small perturbations z — 2?+¢: in fact expanding rational func-
tions are commonly believed to form a vast majority amongst all rational functions. This
is known at least for polynomials with real coefficients. We however do not restrict our-
selves to expanding rational maps only. We start with all rational functions, no restriction
vvhaﬁcsoeveer7 and then make some, weaker than hyperbolicity, appropriate assumptions.

Let v : C — ]1/%\ be a Holder continuous function, referred to in the sequel as potential.
We say that ¢ : C — R has a pressure gap if

(23.3) nP(¢) —sup (¢n) >0
for some integer n > 1, where P(¢)) denotes the ordinary topological pressure of 9| ;) and
the Birkhoft’s sum 1, is also considered as restricted to J(f).

We would like to mention that always holds (with all n > 0 sufficiently large) if
the function f : C — C restricted to its Julia set is expanding (also frequently referred to
as hyperbolic).

The probability invariant measure we are interested in comes from the following.

Theorem 23.2 ([18]). If f : C — C is a rational function of degree d > 2 and if ¢ : C — R
15 a Holder continuous potential with a pressure gap, then v admits a unique equilibrium
state fiy, i.e. a unique Borel probability f-invariant measure on J(f) such that

PW) =hy, () + [ .
J(f)
In addition,

(a) the measure v, is ergodic, in fact K-mizing, and (see [48]) enjoys further finer
stochastic properties.

(b) The Jacobian

dpy 0T

J(f) > z+— e

(2) € (0, +00)
18 a Holder continuous function.

In [41] a rational function f : C — C was called tame (comp. Sectiondevoted to interval
maps) if

J(f)\PC(f) # 0.

Likewise, following [44], we adopt the same definition for (transcendental) meromorphic
functions f: C — C.

Remark 23.3. Tameness is a very mild hypothesis and there are many classes of maps foe
which these hold. These include:

(1) Quadratic maps z — 2 + ¢ for which the Julia set is not contained in the real line;
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(2) Rational maps for which the restriction to the Julia set is expansive which includes
the case of expanding rational functions; and
(3) Misiurewicz maps, where the critical point is not recurrent.

In this paper the main advantage of dealing with tame functions is that these admit Nice
Sets. Let us define and discuss them now. R

Analogously as in the case of interval maps, given a set F' C C and n > 0, we denote by
Cr(n) the collection of all connected components of f~"(F). J. Rivera-Letelier introduced
in [43] the concept of Nice Sets in the realm of the dynamics of rational maps of the
Riemann sphere. In [19] N. Dobbs proved their existence for tame meromorphic functions

from C to C. We quote now his theorem.

Theorem 23.4. Let f : C — C be a tame meromorphic function. Fiz a non-periodic point
z € J(f)\PC(f), kK > 1, and K > 1. Then for all L > 1 and for all v > 0 sufficiently
small there exists an open connected set V.=V (z,r) C C\ PC(f) such that

(@) If U € Cy(n) andUNV #0, thenU C V.

(b) If U € Cy(n) and U Nwv # 0, then, for all w,w’ € U,

ey L)
Itz b and g =5

(¢) B(z,7) C U C B(z,kr) CC\ PC(f).

Each nice set canonically gives rise to a countable alphabet conformal iterated function
system in the sense considered in the previous sections of the present paper. Namely, put

¢ =Jevn).
n=1

For every U € Cj; let 7/(U) > 1 the unique integer n > 1 such that U € Cy(n). Put further
ov =" voU

and keep in mind that
Denote by Ey the subset of all elements U of C;, such that

(a) pu(V)CV,
(b) f’“(U)ﬁVzQ) forall k=1,2,...,7v(U)—1.
The collection

Sy ={pp:V -V}

of all such inverse branches forms obviously a conformal iterated function system in the
sense considered in the previous sections of the present paper. In other words the elements
of Sy are formed by all holomorphic inverse branches of the first return map f, : V — V.
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In particular, 7, (U) is the first return time of all points in U = ¢y (V) to V. We define
the function Ny : Y — N; by setting
Nv(w) = Tv(wl).
Let N
Ty E‘N/ —C
be the canonical projection induced by the iterated function system Sy . Let
Jv LTy (E‘Iﬁ)
be the limit set of the system Sy. Clearly
Jv C J(f).
It is immediate from our definitions that
Tv(m(w)) = Nv(w)
for all w € EY).

Now, having in addition a Holder continuous potential 1) : C — R with pressure gap, we
already know from the previous sections that iy, the conditional measure of p,;, on V' is
fy-invariant and ergodic.

Definition 23.5. We say that the rational function f : C — C has the Exponential
Shrinking Property (ESP) if there exist 6 > 0, v > 0, and C' > 0 such that if z € J(f) and
n > 0, then

(23.4) diam(W) < Ce ™
for each W € Cp(.,25)(n).

Remark 23.6. This property has been throughly explored in the papers including [39]
and the references therein. These papers provide several different characterizations of
Exponential Shrinking Property, most notably the one called Topological Collet-Eckmann;
one of them being uniform hyperbolicity of periodic points in the Julia set. We do not
recall any more of them here as we will only need (ESP).

Exactly as in the case of interval maps, we now provide two standard sufficient conditions
for (ESP) to hold. It is implied by the Collet-Eckmann condition which requires that there
exist A > 1 and C' > 0 such that for every integer n > 0 we have that

[(f*)' (f(e)] = CA™
If also suffices for (ESP) to hold to assume that a rational map is semi-hyperbolic, i.e.,
that no critical point ¢ in the Julia belongs to its own omega limit set w(c). This so for
example, if T"is a classical unimodal map of the form I 3 z +— Az(1 — x), with 0 < A <4
and the critical point 1/2 is not in its own omega limit set, i.e., 1/2 & w(1/2).
Last observation: all expanding rational functions have the Exponential Shrinking Prop-
erty (ESP).

We shall prove the following.
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Proposition 23.7. Let f : C — C be a tame rational function satisfying (ESP). Let

Y C — R be a Hélder continuous potential with pressure gap. If V' is a nice set for f,
then

(a)
Yy =ty omy —P()Ny : EY - R

1s a Hélder continuous potential,
(b) P(O-a QZV) =0,
()

Hop v = g, © ',
where fi5, s the equilibrium/Gibbs state for the potential @V and the shift map
o:EY — EY.

(d) In addition, 1;‘/ is the amalgamated function of a summable Holder continuous sys-
tem of functions.

Proof. Holder continuity of ¥y follows directly from (ESP) i.e Definition , and the fact
that the function Ny is constant on cylinders of length one. Now, it follows from [I§] that
there exists a unique exp(P(¢) — ¢)-conformal measure on J(f), i.e. a Borel probability
measure m,, on J(f) such that

my(f(A)) = " /Aew dmy,

for every Borel set A C J(f) such that the map f|4 is 1-to-1. In addition m, is equivalent
to py with logarithmically bounded Holder continuous Radon-Nikodym derivative. It im-
mediately follows from this formula that for every e € Ey and every Borel set A C V', we
have that

(23-5) My, v (SOe(A)) = /AeXP (Wv - P(WT\/) © 90@) dmy,y,

where my, v is the conditional measure of my on V. Now we define a Holder continuous
system of functions G := {¢® : V — R}.cp by putting

g9 = (v —P)1v) 0., €€ Ey.

Formula ([23.5) thus means that the system G is summable, P(G) = 0, and m,, v is the
unique G-conformal measure for the IFS Sy. According to [31], g : EYY — R, the amalga-
mated function of G is defined by the formula

g(w) = gV (v (0(w))) = Pv 0 Pu, (Tv(0(w))) = P()7v 0 gy (v (0(w)))
=y omy(w) — P(¢) Ny (w)
= @V(W)
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By Proposition 3.1.4 in [31] we thus have that
P(o,49v) =P(G) =0.

Now, since 7y o 0 = fy o my, i.e. since the dynamical system fy : Jy, — Jy is a factor of
the shift map o : EY} — FEY via the map my : EY — Jy, we see that gy, © 7, is a Borel
fy-invariant probability measure on Jy equivalent to m Dy © 7T‘;1 =My o Tl =mg= M V-
Since my,v is equivalent to fiy,y, we thus conclude that the measures m,; o - and iy
are equivalent. Since both these measures are fy-invariant and p,y is ergodic, they must
be equal. The proof is thus complete. 0

Since 7y @ EY — Jy = V., where, we recall the latter is the set of points returning
infinitely often to V', is a measurable isomorphism sending the o-invariant measure ;- to
the fy-invariant probability measure py v, by identifying the sets EY and V(= Jyv), we
can prove the following.

Lemma 23.8. With the hypotheses of Proposition(23.7,, the pentacle (J(f), f,V, iy, [, ) i
an SRT system and has exponential tail decay (ETD), where we recall that V, is identified
with EY, 1y is identified with vy — P(¢) 1y, and 11, is identified with i,y .

Proof. By virtue of Proposition [23.7] and Observation [21.2f we only need to prove that the
pentacle (J(f), f,V,¢v, ;) has exponential tail decay (ETD). We can assume without

loss of generality that 1 : C — R is normalized so that
P() =0 and my = py.
Now define
CY(n) :=={U € Cy(n) : Viocren fF(U) NV =0}

Since the map f : J(f) — J(f) is topologically exact, there exists an integer ¢ > 1 such
that

Ay 2 J(f).
Therefore for every e € Cy(n) there exists (at least one) é € C;,(n + ¢) such that
Jhope = pe.

By conformality of the measure p,, for every e € Cy(n), we have

115 (0e(V)) > exp(—q|[1h|]oe) s (0 (V).

So, since

U e U e\ [ ev),

aeC¥ (n+q) beCy (n+q) e€C? (n)
v Faopyecd (n) v
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we therefore get

we | U eaW) | <m| U @\ [ eV

aeCf (n+q) beCy (ntq) eeCd (n)
flopyecy, (n)

=w | U e |-ul U )
beCy (n+q) e€CY (n)
floppecy (n)

=y | [0 U (V) — Z s (e(V))

ceCY (n) e€Cy (n)

= | U oW | = D nm(ee(V))

ceCf (n) e€CP (n)

<pp | U V)| —exp(=alltlle) D mplpe(V))

ceCy (n) e€CY (n)

=y | | V)],
ceCf (n)

where v := 1 — exp(—¢||¢||x) € [0,1). An immediate induction then yields

po | U eeV)] <"

e€C (qn)

for all n > 0. An immediate induction then yields

e | U eeV) ] <971y
e€C (n)

for all n > 0. But, as
Ey'([n, +o0]) = By ({+00}) U U U eV
k=n ecc?, (k)

and since 1, (Ey ' ({+00})) = 0 by ergodicity of py and of (V) > 0, we therefore get
that

(23.6) p (By ([, +00])) < (31 = AM0)) " ym/e
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for all n > 0. This just means that the pentacle (I, f,V, v, 15,,) has exponential tail decay
(ETD), and the proof is complete. O

Denote by Jg(f) the set of all recurrent points of f in J(f). Formally
Jn(f) == {z € J(f) - i (=) — 2| = O}.

n—o0

Of course Jr(f) C Jr and py(J(f)\ Jr(f)) = 0 because of Poincaré’s Recurrence Theorem.
The set Jg(f) is significant for us since

Jr(f)NV C Jy.

Now we can now apply the conclusions of the work done. As a direct consequence of
Theorem [15.10] Proposition Lemma Lemma [21.8 and Theorem [20.3] we get the
following.

Theorem 23.9. Let f : C — C be a tame rational function having the exponential shrinking
property (ESP). Let ¢ : C — R be a Hélder continuous potential with pressure gap. Let

z € Jp(f) \PC(f). Assume that the equilibrium state p, is (WBT) at z. Then
i R, (B(z¢)  R,(B(2¢)

_ = ]ImM —
e=0 MUJ(B(Z:e)) e—=0 M¢<B(Z,€))
B {1 if z is not any periodic point of f,

1 —exp (Spw(z) — pP(f,z/))) if z is a periodic point of f.

Remark 23.10. Theorem [23.9holds in fact for a larger set than Jz(f). Indeed, it holds
for every point in V' N Jg,, where V' is an arbitrary nice set.

As a fairly immediate consequence of Theorem and Theorem [14.7, we get the following.

Corollary 23.11. Let f : C — C be a tame rational function having the exponential
shrinking property (ESP) whose Julia set J(f) is geometrically irreducible. If ¢ : C — R
15 a Holder continuous potential with pressure gap, then

R (BG) R (Bes)
B e (Be)) L (B (= 2))
for py-a.e. z € J(f).

Indeed in order to prove this corollary it suffices to note that if the Julia set J(f) is geomet-
rically irreducible, then neither is the limit set of the iterated function system constructed
in the arguments leading to Theorem [23.9|

Remark 23.12. We would like to note that if the rational function f : C— Cis expanding,
then it is tame, satisfies (ESP), and each Holder continuous potential has pressure gap. In
particular the two above theorems hold for it.

Now turn to the asymptotics of Hausdorff dimension. We recall the following.
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Definition 23.13. Let f : C — C be a rational function of degree d > 2. We say that the
map f is sub-expanding if one of the following two equivalent conditions holds:

(a)

U o (Crit(H)\ () N J(f) =0 and  Crit(f) N f~(Crit(f) N J(f)) =0,

n=1

(b)

Crit(f) N U fr (Crit(f) N J(f)) = ( and f has no rationally indifferent periodic points.
n=1

Let

h:=HD(J(f)).
It was proved in [52] and [53] that there exists a unique h—conformal measure mj, on J(f)
for f and a unique f-invariant (ergodic) measure yu; on J(f) equivalent to my,. In addition
up, is supported on the intersection of the transitive and radial points of f. It has been
proved in [53] that any subexpanding rational function enjoys ESP. It therefore follows
from [39] that there are arbitrarily small open connected sets V., ¢ € J(f) N Crit(f), and

Ve, respectively containing points ¢ and £ such that the collection of all holomorphic inverse
branches f, ™ of ", n > 0, defined on V., z € (J(f) N Crit(f)) U {£}, and such that for

some 2’ € (J(f) N Crit(f)) U {&},
[ (V2) € Vi

and
U A 00) n U {Ve w e (J(F) N Crit(f) u{e}} = 0.

forms a finitely primitive conformal GDS, call it S;. Another characterization of Sy is that
its elements are composed of analytic inverse branches of the first return map of f from

V= J{Ve :w e (J(f) N Crit(f)) U {€}}

V. It has been proved in [46] and [46] that the system Sy is strongly regular. It follows from
Lemma 6.2 in [39] that HD(K (V) < h. So, as by Theorem[17.1] lim, o HD(K(B(¢,r))) =
h, we conclude that

HD(K(V)) < HD(K(B(&,r)))
for all 7 > 0 small enough. Therefore, since h = bs, and since ppy = [ibs, » applying
Theorem [17.1] Corollary [I7.3], and Corollary [19.2] we get the following two theorems.

Theorem 23.14. Let f : C—Chbhea subexpanding rational function of degree d > 2. Fix
¢ e J(f)\ PC(f). Assume that the measure pp is (WBT) at & and the parameter h is
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powering at § with respect to the conformal GDS Sy. Then the following limit exists, is
finite and positive:

. HD(J(f)) ~ HD(Ke(r))

r—=0 pun(B(&;7))

Theorem 23.15. If f: C—Cobea subexpanding rational function of degree d > 2 whose
Julia set J(f) is geometrically irreducible, then for pp—a.e. point & € J(f) \ PC(f) the
following limit exists, is finite and positive:

| HD(J(/)) ~ HD(K¢(r))

r—0 pn(B(E,7))

Remark 23.16. We would like to note that if the rational function f : C— Cis expanding,
then it is automatically subexpanding and the two above theorems apply.

24. ESCAPE RATES FOR MEROMORPHIC FUNCTIONS ON THE COMPLEX PLANE

We deal in this final section with transcendental meromorphic functions. We also apply
here the results on escape rates for conformal GDMS and the techniques of first return maps.
Let f: C — C be a meromorphic function. Let Sing(f~!) be the set of all singular points

of f71,i. e. the set of all points w € C such that if W is any open connected neighborhood
of w, then there exists a connected component U of f~!(W) such that the map f: U — W
is not bijective. Of course if f is a rational function, then Sing(f™') = f(Crit(f)). As in
the case of rational functions, we define

PS(f) = f™(Sing(f ).

The function f is called topologically hyperbolic if
diStEuClid(Jf, PS(f)) > 0,
and it is called expanding if there exist ¢ > 0 and A\ > 1 such that

(f")'(2)] = eA”

for all integers n > 1 and all points z € J; \ f7"(00). Note that every topologically hyper-
bolic meromorphic function is tame. A meromorphic function that is both topologically
hyperbolic and expanding is called hyperbolic. The meromorphic function f : C — C is
called dynamically semi-reqularif it is of finite order, commonly denoted by py, and satisfies
the following rapid growth condition for its derivative.

(24.1) [f'(2)] = 7 M+ [ A+ ()™, 2 €T,

with some constant k£ > 0 and «g, ap such that ay > max{—ay,0}. Set a:= a3 + ax.
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Remark 24.1. A particularly simple example of such maps are meromorphic functions
fr(z) = Ae* where A € (0, 1/e) since these maps have an attracting periodic point. A good
reference is [33].

Let h : Jf — R be a weakly Holder continuous function in the sense of [34]. The
definition, introduced in [34] is somewhat technical and we will not provided it in the
current paper. What is important is that each bounded, uniformly locally Holder function
h: Jf — R is weakly Holder. Fix 7 > ay as required in [34]. For t € R, let

(24.2) Yo = —tlog|f'l, +h

where |f'(z)], is the norm, or, equivalently, the scaling factor, of the derivative of f evalu-
ated at a point z € J; with respect to the Riemannian metric

|d(2)| = (1 + |2[)""[d|.

Following [34] functions of the form (24.2))(frequently referred to as potentials) are called
loosely tame. Let Ly, = Cy(Jr) — Cy(Jr) be the corresponding Perron-Frobenius operator
given by the formula
Lnglz) = 3 glw)ern,
wef~1(2)

It was shown in [34] that, for every z € J; and for the function 1 : z + 1, the limit

1
lim —log £; 1 (%)
n

n—oo

exists and takes on the same common value, which we denote by P(¢) and call the topological
pressure of the potential 1;. The following theorem was proved in [34].

Theorem 24.2. If f: C — Cisa dynamically semi-regular meromorphic function and h :
Jr — R is a weakly Holder continuous potential, then for everyt > pg/a there exist uniquely
determined Borel probability measures my, and pyp, on Jy with the following properties.

(a) ,Czhmt,h = Mih-

(b) P(%,h) = Sup {hu(f) + fwt,h dp :po f~h = p and fwt,h dp > —OO}-

(C) M © ffl = Wt.h, f@/)t,h d#t,h > —o0, and hm,h (f) + fwt,h d,Ut,h = P(%,h)-
(d)

. . . . d
The measures i p, and myp, are equivalent and the Radon—Nikodym derivative d:;—tt”;

has a nowhere-vanishing Hélder continuous version which is bounded above.

The exact analogue of Theorem holds, with the same references, for all hyperbolic
meromorphic functions; we will refer to this theorem as Theorem M(M) Also, for the
system Sy and the projection my : E‘N, — Jy have the same meaning. As in the case of
rational functions denote by Jr(f) the set of all recurrent points of f in J(f). Formally

Ialf) =z € J(f)+ im |f"(2) = 2| =0}
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Of course Jr(f) C Jr and py(J(f)\ Jr(f)) = 0 because of Poincaré’s Recurrence Theorem.
The set Jg(f) is significant for us since

Jr(f)NV C Jy.

The Exponential Shrinking Property (ESP) holds since now the function f : C — C is
expanding. The proof of Proposition [23.7 goes through unchanged except that instead of
using [I8] we now invoke Theorem [24.2] (a). We also will refer this proposition as
Proposition (M). Lemma also carries on to the meromorphic case (we refer to
it as Lemma (M); the proof of items (a)—(e) Definition required by this lemma
to hold, follows as in the case of rational functions, from proposition m (M), while the
proof of item (f) of this definition is now a direct consequence of Lemma 4.1 in [45]. Now,
in exactly the same way as in the case of rational functions, as a direct consequence of

Theorem [15.10] Theorem [15.11] Proposition [23.7 (M), Lemma [23.8] (M), Lemma [21.8] and

Theorem [20.3] we get the following two theorems.

Theorem 24.3. Let f: C — C be a dynamically semi-reqular meromorphic function. Let
t > prfaand let h : J(f) = R be a weakly Hélder continuous function. Let z € Jp(f).
Assume that the corresponding equilibrium state pu 5, is (WBT) at z. Then

im Eut,h(B(Z’ 6» — 1 E#t,h (B(Z> 5)) _

=0 un(B(z,€)) =0 pn(B(z,¢€))
1 if z is not any periodic point of f,
B {1 — exp (Spwt,h(z) — pP(wt,h)) if z is a periodic point of f.

Theorem 24.4. Let f : C — Cbea dynamically semi-reqular meromorphic function whose
Julia set is geometrically irreducible. Lett > py/a and let h: J(f) — R be a weakly Hélder
continuous function. Then

R, (B(z¢) R, (B(z¢)

im = lim
=0 pun(B(z,€)) =0 pn(B(z,¢))
for wip—a.e. z € J(f).

Remark 24.5. Theorem holds in fact for a larger set than Jg(f). Indeed, it holds for
every point in V' N Jg,,, where V' is an arbitrary nice set.

Turning to the asymptotics of Hausdorff dimension, let J.(f) be the set of radial (or
conical) points in J(f), i. e. the set of all those points in J(f) that do not escape to
infinity under the action of the map f: C — C. Assume now more, namely that f : C — C
is dynamically regular in the sense of [33] and [34]. What at the moment is important for
us is that P(h,) = 0, where

h. :=HD(J.(f)).
We already know that there exists a nice set V' containing ¢ and the elements of the
corresponding conformal IFS Sy are composed of analytic inverse branches of the the first
return map from V to V. Since & € Jg(f), we have that £ € Jy. Corollary 6.4 in [44]
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tells us that HD(K (V) < h,. So, since by Theorem lim, o HD(K(B(&,7))) = hy, we
conclude that

HD(K(V)) < HD(K(B(&,7)))
for all » > 0 small enough. Therefore, since h, = bs, and since pupy = Ibs,, » applying
Theorem [I7.1] Corollary [I7.3] and Corollary [19.2] we get the following two theorems.

Theorem 24.6. Let f : C — C be a dynamically reqular meromorphic function. Fix
€ € Jr(f). Assume that the measure up, (i.e. pin,.o with the weakly Hélder function h
identically equal to 0) is (WBT) at & and the parameter h, is powering at & with respect to
the conformal IFS Sy. Then the following limit exists and is finite and positive:

r—0 pun, (B(z,7)) '

Theorem 24.7. Let f : C — Cbea dynamaically regular meromorphic function whose Julia
set is geometrically irreducible. Then the following limit exists and is finite and positive for

wn,—a.e. z € J(f):

lim HD(Jr(f)) B HD(Kz<r))
r—0 pin, (B(2,7))
Note that the conclusion of Remark 24.5] holds in the case of Theorem 24.6] too.

Appendix: The Keller—Liverani Perturbation Theorem

In this appendix we formulate the Keller—Liverani Perturbation Theorem from [25] in its
full generality and, formally speaking, in a slightly more general form than in [25]. We also
formulate all its consequences derived in [25] that we need in our manuscript, particularly
in Section [5 to prove Proposition [5.2] which is crucial for us. We follow pretty closely the
notation, formulations, and enumeration of [25] for the reader to easily compare our text
with the original article [25]. We first describe the setting.

Let (B, ] - ||) be a Banach space. The vector space B is also equipped with a second

norm | - | < || - || with respect to which B need not be complete. For any bounded linear
operator () : B — B, B understood here with the norm || - ||, let
(KL1) QI =sw {|QfI: £ € B.IIfIl <1}

Let A be a directed set having a largest element which we denote by 0. In [25] A = [0, +00)
with the reverse order. For our applications in Section [5| A = NU {400}, although actually
it suffices to consider {n,n+1,...} U {400} where n > 0 is large enough, with the natural
order. Assume that a family (P.).cx of bounded linear opertors on (B, || -||) is given which
enjoys the following properties.

(KL2) There are constants Cy, M > 0 such that for all € € A
[P < CiM”
for all n > 0,
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(KL3) There are constants Cy, C3 > 0 and o € (0, min{1, M }) such that for all € > 0,
IPZfI] < Coa™ [ fI| + CsM™ | f|
for all n > 0 and all f € B,
(KL4) If z € ¢(P.) N B(0, ), then z is not in the residual spectrum of P,
(KL5) There exists a net 7 : A — [0, +00) such that 7(0) = 0, 7(A \ {0}) C (0, +00)

e =0
and
[P = Rl < 7(e)
for all € € A.

These are all hypotheses for the Keller—Liverani Perturbation Theorem. In order to formu-
late this theorem we need one more piece of notation.
For all > 0 and all r > « let

Vsri={2€C:|z| <r or dist(z,0(FP) < d}.

The actual Keller—Liverani Perturbation Theorem from [25] is about upper bounds on the
norms of resolvents (z — P.)~! and continuity at 0 of the latter.

Theorem 24.8 (Keller-Liverani Perturbation Theorem). Suppose that (P.)cen is a family
of bounded linear operators on (B, || - ||) satisfying conditions (KL2)-(KL5). Fiz § > 0 and
r € (o, M) and let
. log(r/a)
= log(M/a)
Then there are constants €g = €o(6,7) > 0, a = a(r) > 0, b = b(d,r) > 0, ¢ = ¢(5,r) > 0,
and d = d(d,7) > 0 such that for every e > ¢y and all z € C\ Vj,., we have that

> 0.

(KL8) 1(z = Po) = fII < all £l + 0| f]
and
(KL9) II(z = P~ = (2= Po) Il < 7(e) (ell(z = Po) Ml +dll(z = Po) ).

Remark 24.9. This remark is essential for us and corresponds to Remark 3 (and partly
Remark 1) in [25]. As Keller and Liverani write in Remark 1 “In nearly all cases the two
norms involved have the additional property that

(KL7) the closed unit ball of (B, || -||) is | - |-compact.”

and this yields condition (KL4) to hold. However in the case of the present paper, with
B=DBy | -|l=1"-lleand |-| = |-« (KL7) does fail. The remedy comes from Remark 3

in [25] which we explain now.
Assume there exists a sequence of linear operators 7, : B — B, k > 1, such that

(24.3) Sgp{llmﬂ} < +o0,
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(24.4) sup {|f — mf| - f € B, | fl <1} = (/M)
and
(24.5) P.m, is a compact operator for all &k > 1.

Then all the operators P. : B — B are quasicompact with essential spectral radius < «
and in particular (KL4) holds.

We now list the selected corollaries from Theorem derived in [25], the ones needed
to have the full proof of Proposition [5.2 The first one is a slightly simplified version of
Remark 4 from [25].

Corollary 24.10. If X is a simple eigenvalue of Py with |\| > « (so isolated), then for
every € € N sufficiently close to 0, there exists a unique simple eigenvalue \. of P. such
that

(24.6) lim A. = A\

e—0

Let A be as in this corollary. Take n > 0 so small that

(24.7) BOun) N o(By) = {A).
Define for every € € A sufficiently close to 0:
1
(24.8) Q. = — (z — P.) 'dz.
27 dB(A\n)

Note that Q). does not depend on 7 as long as (24.7)) is satisfied.
As an immediate consequence of the definition of (). and of item 1) of Corollary 1 from
[25], we get the following.

Corollary 24.11. If X is a simple eigenvalue of Py with |A\| > « (so isolated), then

(1) For every e € A sufficiently close to O the operator Q. : B — B is a projector
(meaning that Q* = Q.) onto the one-dimensional eigenspace of the eigenvalue \.
of P-..
(2)
lim [[|Q- — Qo] = 0.
e—0

Now, given r > « define:
1
(24.9) A= — (z — P.) ' dz.
21 JaB(o,r)

Before we deal with the next corollary we record the following, technical but crucial, con-
sequence of formula (KL8) of Theorem [24.8

(KL10) Ssr=sup{|[(z—=P.)"!|| : 0 < e <eo(6,7),2€ C\ Vs, } <400
for all 6 > 0 and all r € (o, M). We shall prove the following.
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Corollary 24.12. Let A be a simple eigenvalue of Py with |A| > « (so isolated). If v €
(o, min{ M, |A|}) and

(24.10) a(Po) \ {\} € B(0,7)

then for every € € A close enough to 0, we have that

(1)
(2)

Pe = )\6Q6+Aea

QSAE = AEQS =0,
(3) There exists a constant C' € (0,+00) such that

Q] < C,
and for every k > 0:

(4)
IAZ] < Cy*

Proof. Ttems (1) and (2) are immediate consequences of (24.8]) and (24.9)) and elementary
basic properties of Riesz Functional Calculus.

For the convenience of the reader we shall now provide the standard proof of item (4).
Since v € (a,min{M, |\|}), it follows from there exists 4 € (a, min{M, |A|,7})
such that o(P) \ {\} € B(0,%). Therefore there exists 6 > 0 so small that 0B(0,4) N
B(o(Py),20) = (). Hence, formula (KL10) applies to give

(24.11) S5 < +00.

It follows from ([24.9) and the already mentioned basic properties of Riesz Functional Cal-
culus that

1
AF = — 2z —P) e
21 Joapoa)
for every integer k > 0. Therefore, invoking (24.11]), we estimate as follows:
1 _ o _ R
181 o [ el = PO = 3 [ e = Pl < A,
27 JaB(0#4) 271 JoB(0.4)

and formula (4) is proved. B
Now, we shall prove item (3). It follows from (24.10) that B(X, |\| —v) Na(Py) = {A}.
Hence, invoking also (24.8) and (KL10), we get

1 .
1Q:]l < 2—/ 1(z = Po) "l dz| < (1 =) S(a—a)/2 < +00.
™ JoBOIA-)/2)

The proof of item (3) and, simultaneously, of entire Corollary [24.12|is complete. O
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