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Abstract. The escape rates for a ball in a dynamical systems has been much studied.
Understanding the asymptotic behavior of the escape rate as the radius of the ball tends
to zero is an especially subtle problem. In the case of hyperbolic conformal systems this
has been addressed by various authors in several papers and these results apply in the case
of real one dimensional expanding maps and conformal expanding repellers, particularly
hyperbolic rational maps.

In this manuscript we consider a far more general realm of conformal maps where the
analysis is correspondingly more involved. We prove the asymptotic existence of escape
rates and calculate them in the context of countable alphabets, either finite or infinite,
uniformly contracting conformal graph directed Markov systems with their special case of
conformal countable alphabet iterated function systems. The reference measures are the
projections of Gibbs/equilibrium states of Hölder continuous summable potentials from a
countable alphabet subshifts of finite type to the limit set of the graph directed Markov
system under consideration.

This goal is achieved firstly by developing the appropriate theory of singular pertur-
bations of Perron-Frobenius (transfer) operators associated with countable alphabet sub-
shifts of finite type and Hölder continuous summable potentials. This is done on the purely
symbolic level and leads us also to provide a fairly full account of the structure of the cor-
responding open dynamical systems and, associated to them, surviving sets for the shift
map with the holes used for singular perturbations. In particular, we prove the existence
of escape rates for those open systems. Furthermore, we determine the corresponding
conditionally invariant probability measures that are absolutely continuous with respect
to the reference Gibbs/equilibrium/state. We also prove the existence and uniqueness of
equilibrium measures on the symbol surviving sets. We equate the corresponding topolog-
ical pressures with the negatives of escape rates. Eventually we show that these equilibria
exhibit strong stochastic properties, namely the Almost Sure Invariance Principle, and
therefore, also an exponential decay of correlations, the Central Limit Theorem and the
Law of Iterated Logarithm.

In particular, this includes, as a second ingredient in its own right, the asymptotic be-
havior of leading eigenvalues of perturbed operators and their first and second derivatives.

Our third ingredient is to relate the geometry and dynamics, roughly speaking to relate
the case of avoiding cylinder sets and that of avoiding Euclidean geometric balls. Towards
this end, in particular, we investigate in detail thin boundary properties relating the mea-
sures of thin annuli to the measures of the balls they enclose. In particular we clarify the
results in the case of expanding repellers and conformal graph directed Markov systems
with finite alphabet.

The setting of conformal graph directed Markov systems is interesting in its own and
moreover, in our approach, it forms the key ingredient for further results about other con-
formal systems. These include topological Collet-Eckmann multimodal interval maps and
topological Collet-Eckmann rational maps of the Riemann sphere (an equivalent formula-
tion is to be uniformly hyperbolic on periodic points), and also a large class of transcen-
dental meromorphic functions.

Our approach here,in particular in relation to the applications mentioned in the previous
paragraph, is firstly to note that all of these systems yield some sets, commonly referred
to as nice ones, the first return (induced) map to which is isomorphic to a conformal
countable alphabet iterated function system with some additional properties. Secondly,
with the help of appropriate large deviation results, to relate escape rates of the original
system with the induced one and then to apply the results of graph directed Markov
systems. The reference measures are again Gibbs/equilibrium states of some large classes
of Hölder continuous potentials.
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1. Introduction

The escape rate for a dynamical system is a natural concept which describes the speed
at which orbits of points first enter a small region of the space. The size of these sets is
usually measured with respect to an appropriate probability. More precisely, given a metric
space (X, d), we can consider a (usually) continuous transformation T : X → X and a ball

B(z, ε) = {x ∈ X : d(x, z) < ε}

of radius ε > 0 about a given point z. We then obtain an open system by removing B(z, ε)
and considering the new space X \ B(z, ε) and truncating those orbits that land in the
ball B(z, ε), which can be thought of informally as a “hole” in the system. This is the
reason that many authors speak of escape rates for the system, whereas it might be a more
suitable nomenclature to call them avoidable or survivor sets.

We can then consider for each n > 0 the set Rn(z, ε) of points x ∈ X for which all the
first n terms in the orbit omit the ball, i.e.,

x, T (x), . . . , T n−1(x) 6∈ B(z, ε).

It is evident that these sets are nested in both parameters ε and n, i.e.,

Rn+1(z, ε) ⊂ Rn(z, ε)

for all n ≥ 1 and that

Rn(z, ε) ⊂ Rn(z, ε′)

for ε > ε′. We can first ask about the behavior of the size of the sets Rn(z, ε) as n→ +∞.
If we assume that µ is a T -invariant probability measure, say, then we can consider the

measures µ(Rn(z, ε)) of the sets Rn(z, ε) as n → +∞. In particular, we can define the
lower and upper escape rates respectively as

Rµ(B(z, ε)) = − lim
n→+∞

1

n
log µ(Rn(z, ε)) and Rµ(B(z, ε)) = − lim

n→+∞

1

n
log µ(Rn(z, ε)).

We say that the escape rates exist if

Rµ(B(z, ε)) = Rµ(B(z, ε)),
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we denote this common number by

Rµ(B(z, ε))

and refer to is as the escape rate from B(z, ε). One can further consider how the escape
rates behave as the radii of the balls tend to zero. This, in the context of appropriate
conformal dynamics, is one of the three primary goals of the present work.

Our second goal is to understand the geometry of the avoiding/survivor sets

Kz(ε) := {x ∈ X : T n(x) /∈ B(z, ε) ∀n ≥ 0}.

Such sets are T -invariant, meaning that

T (Kz(ε)) ⊆ Kz(ε),

and are usually of measure µ zero, but there is another natural quantity to measure their
size and complexity, namely their Hausdorff dimension. Our goal is to put our hands on the
asymptotic values of HD(Kz(ε)) when ε↘ 0; again in the context of appropriate conformal
dynamics.

Escape rates and asymptotics of HD(Kz(ε)) are indeed natural and well–motivated quan-
tities to study in the context of open systems, they quantitatively measure the way points
avoid the holes under iteration. Gerhard Keller in [24] has unraveled some connections of
escape rates with non-singular perturbations of Perron–Frobenius operators. But these,
i.e. escape rates and asymptotics of HD(Kz(ε)), are not the only foci of our manuscript.
Our approach to survivor sets is more comprehensive. There are more concepts, notions
and results finely describing what is going on with the survivor sets. One should mention
here first of all the pioneering works [38], [37], and [9] respectively of G. Pianigiani, G. G.
Pianigiani and J. A. Yorke, and of P. Collet, S. Mart́ınez and B. Schmitt. Furthermore [8],
[11], [26], [24], [13],[14], [10], [28], [27], [12], [15], the references therein and many more; we
are far from pretending for this list of references to be complete. The concepts worked out
throughout these works include the following.

First one should notice that in all the above the ball B(z, ε) can be replaced by any open
set, and the concepts of survivor sets and escape rates remain unchanged. Let us denote
such arbitrary open set by U . We write then K(U) for the corresponding survivor set.

We call a Borel probability measure ν on X \ U conditionally invariant if there exists
α ∈ (0,+∞) such that

(1.1) ν((X \ U) ∩ T−1(A)) = αν(A)

for every Borel set A ⊂ X \ U . In slightly different terms, a Borel probability measure ν
on X is conditionally invariant with respect to X \ U if ν(X \ U) = 1 and

(1.2) ν ◦ T−1 = αν.

If ν is absolutely continuous with respect to µϕ, an equilibrium state of a “sufficiently
good” continuous potential ϕ : X → R, then we call a T -invariant Borel probability measure
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µ on K(U) a surviving equilibrium for ϕ if it is “an ordinary” equilibrium state on K(U)
for the map T : K(U)→ K(U), i.e. if

sup
{

hν(σ) +

∫
K(Un)

ϕdν
}

= hµ(σ) +

∫
K(Un)

ϕdµ,

where the supremum is taken over all Borel probability T–invariant measures ν on K(U)
for which

∫
K(U)

(−ϕ) dν < +∞, and if in addition the above quantity is equal to logα.

The most natural and intriguing questions are about the existence and uniqueness of
conditionally invariant measures absolutely continuous with respect the reference measure
µ, the existence and uniqueness of surviving equlibria, and the value of the supremum
above; the one being commonly expected to be equal to the negative escape rate. We
address all these questions in full on the symbolic level resulting from complex dynamics
considerations.

We begin by describing some of the background for this area. An early influential result
in the direction of understanding asymptotic escape rates was [51]. Perhaps the simplest
case is that of the doubling map E2 : [0, 1)→ [0, 1) defined by

E2(x) = 2x(mod 1)

and the usual Lebesgue measure λ. For this example it was Bunimovitch and Yurchenko
[4] (see also [26]) who proved the following, perhaps surprising, result showing that

(1.3)

lim
ε→0

Rλ(B(z, ε))

λ(B(x0, ε))
= lim

ε→0

Rλ(B(z, ε))

λ(B(x0, ε))
=

=

{
1 if z is not periodic

1− 2−p if Ep
2(z) = z is periodic (with minimal period p).

In particular, the asymptotic escape rate can only take a certain set of values which are
determined by the periods of periodic points. More results in this direction followed,
particularly in [26], [24], [20], [12], [11], [14].

We will return to generalizations of these ideas after discussing the problem of the Haus-
dorff dimension of surviving sets Kz(ε). The second named author already addressed this
question in the early 80s by showing in [49] and [50] that in the case of the the doubling
map E2, or more generally, of any map Eq(x) = qx ( mod 1), q being an integer greater
than 1 in absolute value, or even more generally, in the case of any C1+η expanding map
of the unit circle, the map

ε 7→ HD(Kz(ε))

is continuous. Moreover, he also showed that this function is almost everywhere locally
constant, in fact, the set of points where it fails to be locally constant is a closed set of
Hausdorff dimension 1 and Lebesgue measure zero. Rather curiously, the local Hausdorff
dimension at each point ε of this set is equal to HD(Kz(ε)). More about the function
e 7→ HD(Kz(ε)) and related questions can be found for example in [2] and [6]. All of
this suggests that it is interesting to study the asymptotic properties of HD(Kz(ε)) when
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ε ↘ 0. Andrew Ferguson and the first named author of this paper took up the challenge
by proving in [20] that
(1.4)

lim
ε→0

HD(J)− HD(Kz(r))

µb(B(z, r))
=


1/χµb if z is not a periodic point of T
1−|(T p)′(z)|−1

χµb
if z is a periodic point of T with prime period

p ≥ 1.

in the case of any conformal expanding repeller T : J → J ; where b here is just the Hausdorff
dimension HD(J) and µb is the equilibrium state of the Hölder continuous potential J 3
x 7→ −b log |T ′(x)|. They have also established the analogue of (1.3) for such systems.

The approach of [20] was based on the method of singular perturbations, pioneered in the
context of open systems by Véronique Maume–Deschamps and Carlangelo Liverani in [27],
of the Perron–Frobenius operators determined by the open sets B(z, ε). They first did this
for neighborhoods of z formed by finite unions of cylinders of nth refinements of a Markov
partition and then used appropriate approximation. This required leaving the realm of the
familiar Banach space of Hölder continuous functions, to work with a more refined space,
and they applied the seminal results of Keller and Liverani from [25] to control the spectral
properties of perturbed operators.

For completeness, we recall that Keller and Liverani introduced a different framework in
[26], whereby one considers a family Pε : V → V (0 ≤ ε ≤ ε0) of bounded linear operators
with a spectral gap, i.e.,

Pε = λενε(·)ϕε + Uε

with λε > 0 and normalization νε(ϕε) = 1, where PεUε = 0 and Uε has spectral radius
strictly smaller than λε. The approach of Keller-Liverani requires a series of functional
analytic assumptions. Firstly, they assume that

C1 :=
∞∑
n=0

sup
ε∈[0,ε0]

‖Un
ε ‖ < +∞ and C2 := sup

ε∈[0,ε0]

‖ϕε‖ < +∞ where ν0(ϕε) = 1.

Secondly, they denote ∆ε := ν0 ((P0 − Pε)(ϕ0)) and require that there exists C3 > 0 such
that

ηε‖(P0 − Pε)(ϕ0)‖ ≤ C3|∆ε| where ηε := ‖ν0(P − Pε)‖ → 0 as ε→ 0.

In particular, they can first write

λ0 − λε = λ0ν0(ϕε)− ν0(λε(ϕε)) = ν0((P0 − Pε)(ϕε)) ≤ C2ηε.

If ∆ε 6= 0 for sufficiently small ε > 0, then for k ≥ 0 they denote

qk := lim
ε→0

ν0((P0 − Pε)P k
ε (P0 − Pε))(ϕ0)

∆ε

and then they have an expression

lim
ε→0

λ0 − λε
∆ε

= 1−
∞∑
k=0

qk.
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Finally, to relate this formula to the escape rate problem, they apply these results to the
special choice of operator Pε := L(I− 11Uε) where L is the usual Perron-Frobenius operator
for piecewise monotone expansive maps on the Banach space V of functions of bounded
variation and where Uε are a nested sequence of intervals shrinking to a point.

For our purposes it was more natural and more suitable to advance the approach in [20]
rather than to deal with the one in [26].

We now turn to describing and discussing our results in relation to the three general
goals and questions described above. In the current manuscript we want to understand
the escape rates, in the sense of equations (1.3) and (1.4), of essentially all conformal dy-
namical systems with an appropriate type of expanding dynamics. By this we primarily
mean a large class of topologically exact smooth maps of the interval [0, 1], many rational

functions of the Riemann sphere Ĉ with degree ≥ 2, a vast class of transcendental mero-

morphic functions from C to Ĉ, and last, but not least, the class of all countable alphabet
conformal iterated function systems, and somewhat more generally, the class of all count-
able alphabet conformal graph directed Markov systems. This last class, i.e the collection
of all countable alphabet conformal iterated function systems (IFSs), has a special status
for us. The reasons for this are two-folded. Firstly, this class is interesting by itself, and
secondly, by means of appropriate inducing schemes (involving the first return map), it is
our indispensable tool for understanding the escape rates of all other systems mentioned
above.

In order to deal with escape rates for countable alphabet conformal IFSs and conformal
graph directed Markov systems (GDMSs), motivated by the work [20] of Andrew Ferguson
and the first named author of this paper, we first develop the singular perturbation theory
for Perron-Frobenius operators associated to Hölder continuous summable potentials on
countable alphabet shift of finite type symbol space.

A comprehensive account of the thermodynamic formalism in the symbolic context can
be found in [31], cf. also [29] and [30]. The general approach to control the above mentioned
singular perturbations is again based on the spectral results of Keller and Liverani from
[25]. Because of its critical importance to us, for the convenience of the reader and for
our convenience of reference, we bring up the setting of [25] in Appendix at the end of our
manuscript. We formulate there Theorem 1 of [25] and all its consequences that we shall
need.

The perturbations in the case of a countable infinite alphabet require further refinement
of the Banach space on which the original and perturbed Perron–Frobenius operators act.
This space, Bθ, with its (relatively) strong norm || · ||θ is defined already in the beginning of
Section 3. Its weak norm || · ||∗ is defined in Section 4 and plays a crucial role in Section 5
in showing the smallness of perturbations of Perron-Frobenius operators as acting from Bθ
endowed with the strong norm || · ||θ to Bθ endowed with the weak norm || · ||∗. As already
said, this method of perturbing the Perron–Frobenius operators from a strong norm to a
week one, was pioneered in the conext of open systems by Véronique Maume–Deschamps
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and Carlangelo Liverani in [27] and later was applied many times, for example in [24], [15],
and [20].

The culminating technical result, a kind of source of all that follows, of our investiga-
tions of singular perturbations of Perron-Frobenius operators (Part 1) is Proposition 5.2
establishing spectral gaps for perturbed operators. Its further versions (such as singular
perturbations of already perturbed operators) are needed and provided for example in Sec-
tion 10; see Lemma 10.4 therein. We prove Proposition 5.2 by applying Theorem 1 of [25]
and its consequences derived therein. As we have already said, for the convenience of the
reader and convenience of referring to, we bring up the setting of [25] in Appendix at the
end of our manuscript. We formulate there Theorem 1 of [25] and all its consequences we
need.

Already the definition of the Banach space Bθ is non-standard and non–canonical. Through
the definition of the norm || · ||θ, it involves the corresponding Gibbs/equilibrium measures.
These measures play a further prominent role when investigating singular perturbations.
Qualitatively new difficulties here, caused by an infinite alphabet, are many fold and a
great deal of them are related to the facts that the symbol space E∞A need not longer be
compact, that there are infinitely many cylinders of given finite length, and that summable
(particular geometric) potentials are unbounded in the supremum norm. Some remedy to
this unboundedness issue is our repetitive use of Hölder inequalities rather than estimating
by the supremum norms.

Part 2: Symbol Escape Rates and the Survivor Set K(Un), is still on the level of symbolic
dynamics, no geometry involved. The holes Un, being special unions of cylinders of length n,
are tailor crafted for the needs of the next part, Part 3: Escape Rates for Conformal GDMSs
and IFSs. However, these holes are of fairly general form, are of their own interest, and
become particularly simple if the alpabet E is finite. We present a full account of ergodic
theory and thermodynamic formalism for the open dynamical systems they generate.

Let E be a countable alphabet and let A : E × E → {0, 1} be a finitely primitive
incidence matrix. Let ϕ : E∞A → R be a Hölder continuous summable potential with
equilibrium/Gibbs state µϕ. Specifically, in Part 2, we prove the following results.

Theorem 1.1. If an integer n ≥ 0 is big enough as required in Proposition 5.2 then µ̂n, a
probability multiple of µϕ|Ucn is a unique conditionally invariant measure on U c

n absolutely
continuous with respect to µϕ|Ucn whose Radon-Nikodyn derivative dµ̂n/dµϕ belongs to Bθ.
In addition, the coefficient α of (1.1) and (1.2) is equal to λn(= µ̂n(σ−1(U c

n))) and for every
Borel set B ⊂ U c

n we have that

lim
k→+∞

µϕ(σ−k(B) ∩ U c
n)

µϕ(σ−k(U c
n) ∩ U c

n)
= µ̂n(B).

Theorem 1.2. Assume that
∫

(−ϕ) dµϕ < +∞. If an integer n ≥ 0 is big enough as
required in Proposition 5.2 then the escape rate Rµϕ(Un) exists and is equal to − log λn,
where (see Proposition 5.2) λn is the spectral radius of the perturbed operator Ln generated
by the hole Un.
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Theorem 1.3. If an integer n ≥ 0 is big enough as required in Proposition 5.2 then

sup
{

hν(σ)+

∫
K(Un)

ϕdν : ν ∈M+
n (σ)

}
= sup

{
hν(σ)+

∫
K(Un)

ϕdν : ν ∈M+e
n (σ)

}
= log λn,

where, as above, λn is the spectral radius of the perturbed operator Ln generated by the hole
Un.

Theorem 1.4. Assume that
∫

(−ϕ) dµϕ < +∞. If an integer n ≥ 0 is big enough as
required in Proposition 5.2 then there exists a unique (ergodic) surviving equilibrium state
on the survivor set K(Un).

Precisely, the bounded positive linear functional, defined in (10.1), restricted to the Ba-
nach space of bounded Hölder continuous functions on E∞A , extends uniquely to a Borel
probability measure µn on E∞A which is supported on K(Un), shift-invariant and ergodic.
This is the unique surviving equilibrium mentioned above. Being an equilibrium means that

hµn(σ) +

∫
K(Un)

ϕdµn = log λn.

Theorem 1.5. If an integer n ≥ 0 is big enough as required in Proposition 5.2 and µn is
the unique (ergodic) surviving equilibrium state on the survivor set K(Un), described in the
previous theorem, then the measure–preserving dynamical system (σ : K(Un)→ K(Un), µn)
satisfies an Almost Sure Invariance Principle. In particular, the Central Limit Theorem
and the Law of Iterated Logarithm hold:

Let d ≥ 1 be an integer. Fix an integer n ≥ 0 so large as required in Proposition 5.2.
Let g : K(Un)→ Rd be a bounded Hölder continuous function. Then there exists a matrix
Σ2 : {1, 2, . . . , d}2 → Rd such that the process(

g ◦ σk −
∫
K(Un)

g dµn

)∞
k=1

satisfies an almost sure invariance principle with the limiting covariance Σ2. In particular,
the sequence ( k−1∑

j=0

g ◦ σj − k
∫
K(Un)

g dµn

)∞
k=1

converges in distribution to the Gaussian (normal) distribution N (0, σ2). In addition, if
d = 1 then the Law of Iterated Logarithm holds in the form that for µn–a.e. ω ∈ K(Un),
we have that

lim sup
k→+∞

∑k−1
j=0 g ◦ σj(ω)− k

∫
K(Un)

g dµn
√
k log log k

=
√

2πσ,

where σ2 := Σ2 is a non-negative number. It is positive if an only if the function g :
K(Un)→ R is not cohomologous to a constant in L2(µn).
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Theorem 1.6 (Exponential Decay of Correlations). Suppose that (Un)∞n=0 is a sequence
of open subsets of E∞A satisfying conditions (U0)–(U5). Fix an integer n ≥ 0 so large
as required in Proposition 5.2. Then there exist κ ∈ (0, 1) and C ∈ (0,+∞) such that if
g : K(Un)→ R is a bounded Hölder continuous function and h ∈ L1(µn), then∣∣∣ ∫

K(Un)

(g ◦ σk · h) dµn −
∫
K(Un)

g dµn

∫
K(Un)

h dµn

∣∣∣ ≤ Cκn‖g‖θ
∫
K(Un)

|f | dµn

for every integer k ≥ 0.

We cannot really do much better with the uniqueness part of Theorem 1.1; the hypothesis
that the Radon-Nikodyn derivative dµ̂n/dµϕ belongs to Bθ is important. Indeed, it follows
from Theorem 3.1 in [14], that for every α ∈ (0, 1) there are uncountably (a continuum) of
many conditionally invariant measures absolutely continuous with respect to µϕ. Moreover,
if α ∈ (0, 1) is sufficiently small, then the Radon-Nikodym derivatives of all these measures
with respect to µϕ are bounded.

We would like to add that some of the results listed above were obtained in [11] in
the context of open systems generated by holes in an infinite alphabet finitely primitive
symbolic subshift of finite type. Their holes were unions of cylinders of length 1 and their
methods were different, i.e. not perturbative. For the case of finite alphabet the reader is
encouraged to consult the book [8].

We would also like to note that Parts 1, 3, and 4 are quite independent of Part 2. Except
that the results of Section 7 in Part 2 are absolutely indispensable for all the rest the
manuscript and the proof of (16.31) presented in Section 16 of Part3 is so simple because
we were able to show in Part 2 that the functionals µn appearing there are in fact measures.

Having analyzed the symbolic part of the problem, we turn to escape rates for conformal
GDMSs. With regard to formula (1.3), we consider the, already mentioned, measures on
the limit set of the given conformal GDMS, that are projections of Gibbs/equilibrium states
of Hölder continuous potentials from the symbol space. With respect to formula (1.4), we
must consider geometric potentials, i.e. those of the form

E∞A 3 ω 7−→ t log
∣∣ϕ′ω0

(πS(σ(ω)))
∣∣ ∈ R

where π : E∞A → X is the canonical map for modeling the dynamics on X. Of particular
interest are those for which t is close to bS , the Bowen parameter of the system conformal
GDMSS, which is defined as the only solution to the pressure equation

P
(
σ, t log

∣∣ϕ′ω0
(πS(σ(ω)))

∣∣) = 0,

provided that such a solution exists. We can then consider the projection of the Gibbs/equilibrium
state µt for the potential t log

∣∣ϕ′ω0
(πS(σ(ω)))

∣∣ on the limit set JS . This leads to the partic-
ularly technically involved task of calculating the asymptotic behavior of derivatives λ′n(t)
and λ′′n(t) of leading eigenvalues of perturbed operators when the integer n ≥ 0 diverges to
infinity and the parameter t approaches bS . This is again partially due to unboundedness
of the function E∞A 3 ω 7−→ t log

∣∣ϕ′ω0
(πS(σ(ω)))

∣∣ ∈ R in the supremum norm and partially
due to lack of uniform topological mixing on the sets Kz(ε).
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We say that a set J ⊆ Rd, d ≥ 1, is geometrically irreducible if it is not contained in any
countable union of conformal images of hyperplanes or spheres of dimension ≤ d − 1 (see
Definition 14.4). Our most general results about escape rates for conformal GDMSs can
now be formulated in the following four theorems. We postpone detailed definitions of the
hypotheses until later. We however want to mention that we adopt a simplified notation
for Birkhoff’s sums. Given a dynamical system T : X → X and a function ϕ : X → C we
set for every integer n ≥ 1:

ϕn :=
n−1∑
j=0

ϕ ◦ T j.

This notation does not encode the dynamical system T under considerations, but it will be
virtually always clear from the context which dynamical system is meant. For example, in
the realm of the symbol spaces E∞A , it will be always the shift map or its induced maps.
However, we will be sometimes more traditional and will also use the notation

Snϕ

for ϕn; particularly in contexts where lots of functions with indeces appear.

Theorem 1.7. Let S = {ϕe}e∈E be a finitely primitive Conformal GDMS with limit set
JS . Let ϕ : E∞A → R be a Hölder continuous summable potential with equilibrium/Gibbs
state µϕ. Assume that the measure µϕ ◦ π−1

S is weakly boundary thin (WBT) at a point
z ∈ JS . If z is either

(a) not pseudo-periodic,
or

(b) uniquely periodic, it belongs to IntX (and z = π(ξ∞) for a (unique) irreducible
word ξ ∈ E∗A with ξ∞ ∈ E∞A being the infinite concatenation of ξ), and ϕ is the
amalgamated function of a summable Hölder continuous system of functions,

then, with RS,ϕ(B(z, ε)) := Rµϕ

(
π−1
S (B(z, ε))

)
and RS,ϕ(B(z, ε)) := Rµϕ

(
π−1
S (B(z, ε))

)
, we

have that

(1.5)

lim
ε→0

RS,ϕ(B(z, ε))

µϕ ◦ π−1
S (B(z, ε))

= lim
ε→0

RS,ϕ(B(z, ε))

µϕ ◦ π−1
S (B(z, ε))

=

= dϕ(z) :=

{
1 if (a) holds

1− exp
(
ϕp(ξ)− pP(ϕ)

)
if (b) holds,

where in (b), {ξ} = π−1
S (z) and p ≥ 1 is the prime period of ξ under the shift map.

Theorem 1.8. Assume that S is a finitely primitive conformal GDMS whose limit set JS
is geometrically irreducible. Let ϕ : E∞A → R be a Hölder continuous strongly summable
potential. As usual, denote its equilibrium/Gibbs state by µϕ. Then, with RS,ϕ(B(z, ε)) :=
Rµϕ

(
π−1
S (B(z, ε))

)
, we have that

(1.6) lim
ε→0

RS,ϕ(B(z, ε))

µϕ ◦ π−1
S (B(z, ε))

= lim
ε→0

RS,ϕ(B(z, ε))

µϕ ◦ π−1
S (B(z, ε))

= 1
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for µϕ ◦ π−1
S –a.e. point z of JS .

These two theorems address the issue of (1.3). We would like to note that we do not know
whether the actual escape rates RS,ϕ(B(z, ε)) exist. As we have already explained it above
we know this, see Section 7 in Part 2, on the symbolic level for the open systems generated
bt the holes Un, n ≥ 1. However, all what our approach gives is that the balls B(z, ε),
in fact their inverse-images π−1

S (B(z, ε)), are, in an appropriate sense, better and better
approximated by the sets Un as ε ↘ 0 and n depends on ε, but are actually never equal.
This gives the asymptotic equality in (1.5) and (1.6) but no more. The symbol structure of
the sets π−1

S (B(z, ε)) themselves seems to be too complex (for example these sets usually
cannot be represented as unions of cylinders of the same length) for the strong norm versus
weak norm smallness of perturbations to hold. We are thus content with the asymptotic
results of (1.5) and (1.6).

We would like to bring to the reader’s attention a preprint [3] by H. Bruin, M.F. Demers
and M. Todd, with results related to the above three, which we have recently received.
In regard to (1.4), we have proved for conformal GDMSs the following two theorems. In
regard to (1.4), we have proved the following two theorems for conformal GDMSs.

Theorem 1.9. Let S be a finitely primitive strongly regular conformal GDMS. Assume
both that S is (WBT) and the parameter bS is powering at some point z ∈ JS which is
either

(a) not pseudo-periodic or else
(b) uniquely periodic and belongs to IntX (and z = π(ξ∞) for a (unique) irreducible

word ξ ∈ E∗A).

Then

(1.7) lim
r→0

HD(JS)− HD(Kz(r))

µb
(
π−1(B(z, r))

) =

{
1/χµb if (a) holds(
1− |ϕ′ξ(z)|

)
/χµb if (b) holds .

Corollary 1.10. If S be a finitely primitive strongly regular conformal GDMS whose limit
set JS is a geometrically irreducible, then

(1.8) lim
r→0

HD(JS)− HD(Kz(r))

µb
(
π−1(B(z, r))

) =
1

χµb

at µbS ◦ π−1–a.e. point z of JS .

As we have previously remarked, these four results are of independent interest, but they also
provide a gateway to all other results on escape rates in this paper. There are necessarily
several technical terms involved in formulations of these theorems. However, we hope that
they do not obscure the overall meaning of the four theorems and all terms are carefully
introduced and explained in appropriate sections dealing with them.
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We would however like to comment on one of these terms, namely on (WBT). Its meaning
can be understood as follows. Let

A(z; r, R) := B(z,R) \B(z, r)

be the annulus centered at z with the inner radius r and the outer radius R. We say that a
finite Borel measure µ is weakly boundary thin (WBT) (with exponent β > 0) at the point
x if

lim
r→0

µ
(
Aβµ(x, r)

)
µ(B(x, r))

= 0,

where we denote

Aβµ(x, r) := A
(
x; r − µ(B(x, r))β, r + µ(B(x, r))β

)
.

This is a version of the problem of thin annuli, one that is notoriously challenging in dealing
with the issue of relating dynamical and geometric properties, and which is particularly
acute in the contexts of escape rates and return rates. Due to the breakthrough of [36],
where some strong versions of the thin annuli properties are proved, we have been able
in the current paper to prove (WBT) for almost all points, which is reflected in both
Theorem 15.11 and Corollary 17.3. The (WBT) property allows us in turn to approximate
sufficiently well the symbolic sets π−1

S (B(z, ε)) by the sets Un, the significance of which we
discussed few paragraphs above.

In the case of finite alphabets E we have the following two results.

Theorem 1.11. Let S = {ϕe}e∈E be a primitive conformal GDMS with a finite alphabet
E acting in the space Rd, d ≥ 1. Assume that either d = 1 or that the system S is
geometrically irreducible. Let ϕ : E∞A → R be a Hölder continuous potential. As usual,
denote its equilibrium/Gibbs state by µϕ. Let z ∈ JS be arbitrary. If either z is

(a) not pseudo-periodic,
or

(b) uniquely periodic, it belongs to IntX (and z = π(ξ∞) for a (unique) irreducible
word ξ ∈ E∗A), and ϕ is the amalgamated function of a summable Hölder continuous
system of functions,

then,

(1.9)

lim
ε→0

RS,ϕ(B(z, ε))

µϕ ◦ π−1
S (B(z, ε))

= lim
ε→0

RS,ϕ(B(z, ε))

µϕ ◦ π−1
S (B(z, ε))

=

= dϕ(z) :=

{
1 if (a) holds

1− exp
(
ϕp(ξ)− pP(ϕ)

)
if (b) holds,

where in (b), {ξ} = π−1
S (z) and p ≥ 1 is the prime period of ξ under the shift map.

Theorem 1.12. Let S = {ϕe}e∈E be a primitive conformal GDMS with a finite alphabet
E acting in the space Rd, d ≥ 1. Assume that either d = 1 or that the system S is
geometrically irreducible. Let z ∈ JS be arbitrary. If either z is
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(a) not pseudo-periodic or else
(b) uniquely periodic and belongs to IntX (and z = π(ξ∞) for a (unique) irreducible

word ξ ∈ E∗A).

Then

(1.10) lim
r→0

HD(JS)− HD(Kz(r))

µb
(
π−1(B(z, r))

) =

{
1/χµb if (a) holds(
1− |ϕ′ξ(z)|

)
/χµb if (b) holds .

For these two theorems the two Thin Annuli Properties, Theorem 14.9 and Theorem 14.10,
were also instrumental. With having both Theorem 15.12 and Theorem 17.5 proved we
have fully recovered the results of [20].

As we have already explained, our next goal in this paper is to get the existence of escape
rates in the sense of (1.3) and (1.4) for a a large class of topologically exact smooth maps

of the interval [0, 1], many rational functions of the Riemann sphere Ĉ with degree ≥ 2,

and a vast class of transcendental meromorphic functions from C to Ĉ. In order to do this
we employ two principle tools. The first is formed by the escape rates results, described
above in detail, for the class of all countable alphabet conformal graph directed Markov
systems. The second is a method based on the first return (induced) map developed in
Section 19, Section 20, and Section 21. This method closely relates the escape rates of the
original map and the induced map. It turns out that for the above mentioned classes of
systems one can find a set of positive measure which gives rise to a first return map which
is isomorphic to a countable alphabet conformal IFS or full shift map; the task being highly
non-trivial and technically involved. But this allows us to conclude, for suitable systems,
the existence of escape rates in the sense of (1.3) and (1.4). However, in order to reach this
conclusion we need to know some non-trivial properties of the original systems. Firstly,
that the tails of the first return time and the first entrance time decay exponentially fast,
and secondly that the Large Deviation Property (LDP) of Section 20 holds. This in turn
leads to Theorem 21.6, a kind of Large Deviation Theorem.

We shall now describe in some detail the above mentioned applications to (quite) general
conformal systems. We start with one-dimensional systems. We consider the class of
topologically exact piecewise C3–smooth multimodal maps T of the interval I = [0, 1] with
non-flat critical points and uniformly expanding periodic points, the property commonly
referred to as Topological Collet–Eckmann. Topological exactness means that for every
non-empty subset U of I there exists an integer n ≥ 0 such that T n(U) = I. Furthermore,
our multimodal map T : I → I is assumed to be tame, meaning that

PC(T ) 6= I,

where

Crit(T ) := {c ∈ I : T ′(c) = 0}
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is the critical set for T and

PC(T ) :=
∞⋃
n=1

T n(Crit(T )),

is the postcritical set of T . A familiar example would be the famous unimodal map x 7→
λx(1− x) with 0 < λ < 4 for which the critical point 1/2 is not in its own omega limit set,
for example where λ is a Misiurewicz point.

The class of potentials, called acceptable in the sequel, is provided by all Lipschitz
continuous functions ψ : I → R for which

sup(ψ)− inf(ψ) < htop(T ).

The first escape rates theorem in this setting is this.

Theorem 1.13. Let T : I → I be a tame topologically exact Topological Collet–Eckmann
map. Let ψ : I → R be an acceptable potential. Let z ∈ I \ PC(T ) be a recurrent point.
Assume that the equilibrium state µψ is (WBT) at z. Then

lim
ε→0

Rµψ
(B(z, ε))

µψ(B(z, ε))
= lim

ε→0

Rµψ(B(z, ε))

µψ(B(z, ε))
=

=

{
if z is not any periodic point of T,

1− exp
(
ψp(z)− pP(f, ψ)

)
if z is a periodic point of T.

We have also the following.

Theorem 1.14. Let T : I → I be a tame topologically exact Topological Collet–Eckmann
map map. Let ψ : I → R be an acceptable potential. Then

lim
ε→0

Rµψ
(B(z, ε))

µψ(B(z, ε))
= lim

ε→0

Rµψ(B(z, ε))

µψ(B(z, ε))
= 1

for µψ–a.e. point z ∈ I.

In order to address formula (1.4) in this context we need a stronger assumption on the
map T : I → I. Our multimodal map T : I → I is said to be subexpanding if

Crit(T ) ∩ PC(T ) = ∅.

It is evident that each subexpanding map is tame and it is not hard to see that the subex-
panding property entails being Topological Collet–Eckmann. It is well known that in this
case there exists a unique Borel probability T -invariant measure µ absolutely continuous
with respect to Lebesgue measure λ. In fact, µ is equivalent to λ and (therefore) has full
topological support. It is ergodic, even K-mixing, has Rokhlin’s natural extension met-
rically isomorphic to some two sided Bernoulli shift. The Radon–Nikodym derivative dµ

dλ
is uniformly bounded above and separated from zero on the complement of every fixed
neighborhood of PC(T ). We prove in this setting the following.
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Theorem 1.15. Let T : I → I be a topologically exact multimodal subexpanding map. Fix
ξ ∈ I\PC(T ). Assume that the parameter 1 is powering at ξ with respect to the conformal
GDS ST defined in Section 22. Then the following limit exists, is finite, and positive:

lim
r→0

1− HD(Kξ(r))

µ(B(ξ, r))
.

Theorem 1.16. If T : I → I is a topologically exact multimodal subexpanding map, then
for Lebesgue–a.e. point ξ ∈ I \ PC(T ) the following limit exists, is finite and positive:

lim
r→0

1− HD(Kξ(r))

µ(B(ξ, r))
.

We now turn to complex one-dimensional maps. Let f : Ĉ → Ĉ be a rational map
of the Riemann sphere with degree deg(f) ≥ 2. The sets Crit(f) and PC(f) have the

same meaning as for the multimodal maps of the interval I. Let ψ : Ĉ → R be a Hölder

continuous function. Following [18] we say that ψ : Ĉ→ R has a pressure gap if

(1.11) nP(f, ψ)− sup
(
ψn
)
> 0

for some integer n ≥ 1. It was proved in [18] that there exists a unique equilibrium state µψ
for such ψ. Some more ergodic properties of µψ were established there, and a fairly extensive
account of them was provided in [48]. For example, if ψ = 0 then P(f, 0) = log deg(f) > 0
is the topological entropy of f and the condition automatically holds. More generally, it
always holds whenever

sup(ψ)− inf(ψ) < htop(f) (= log deg(f)).

We would like to also add that (1.11) always holds (with all n ≥ 0 sufficiently large) if

the function f : Ĉ → Ĉ restricted to its Julia set is expanding (also frequently referred to
as hyperbolic). This is the best understood and the easiest to deal with class of rational

functions. The rational map f : Ĉ → Ĉ is said to be expanding if the restriction f |J(f) :
J(f)→ J(f) satisfies

(1.12) inf{|f ′(z)| : z ∈ J(f)} > 1

or, equivalently,

(1.13) |f ′(z)| > 1

for all z ∈ J(f). Another, topological, characterization of the expanding property is the
following.

Fact 1.17. A rational function f : Ĉ→ Ĉ is expanding if and only if

J(f) ∩ PC(f) = ∅.
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It is immediate from this characterization that all the polynomials z 7→ zd, d ≥ 2, are
expanding along with their small perturbations z 7→ zd + ε; in fact expanding rational
functions are commonly believed to form the vast majority amongst all rational functions.

Being a tame rational function and Topological Collet–Eckmann both mean the same
as in the setting of multimodal interval maps. Nowadays this property is somewhat more
frequently used in its equivalent form of exponential shrinking (see (23.4)) (ESP), and we
this follow tradition. All expanding functions are tame and (ESP). Finally, as in the context
of interval maps, we have the following.

Theorem 1.18. Let f : Ĉ→ Ĉ be a tame rational function having the exponential shrinking

property (ESP). Let ψ : Ĉ → R be a Hölder continuous potential with pressure gap. Let

z ∈ J(f) \PC(f) be recurrent. Assume that the equilibrium state µψ is (WBT) at z. Then

lim
ε→0

Rµψ
(B(z, ε))

µψ(B(z, ε))
= lim

ε→0

Rµψ(B(z, ε))

µψ(B(z, ε))

=

{
1 if z is not a periodic point for f,

1− exp
(
Spψ(z)− pP(f, ψ)

)
if z is a periodic point of f.

Corollary 1.19. Let f : Ĉ→ Ĉ be a tame rational function having the exponential shrink-

ing property (ESP) whose Julia set J(f) is geometrically irreducible. If ψ : Ĉ → R is a
Hölder continuous potential with pressure gap, then

lim
ε→0

Rµψ
(B(z, ε))

µψ(B(z, ε))
= lim

ε→0

Rµψ(B(z, ε))

µψ(B(z, ε))
= 1

for µψ–a.e. z ∈ J(f).

As for the case of maps of an interval, in order to establish formula (1.4) in this context

we need a stronger assumption on the rational map f : Ĉ→ Ĉ. Because the Julia set need

not be equal to Ĉ (and usually it is not) the definition of subexpanding rational functions
is somewhat more involved, see Definition 23.13. It is evident that each subexpanding map
is tame and it is not hard to see that being subexpanding entails also being Topological
Collet–Eckmann. All expanding functions are necessarily subexpanding.

Theorem 1.20. Let f : Ĉ → Ĉ be a subexpanding rational function of degree d ≥ 2.
Fix ξ ∈ J(f) \ PC(f). Assume that the measure µh is (WBT) at ξ and the parameter
h := HD(J(f)) is powering at ξ with respect to the conformal GDS Sf defined in Section 23.
Then the following limit exists, is finite and positive:

lim
r→0

HD(J(f))− HD(Kξ(r))

µh(B(ξ, r))
.
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Theorem 1.21. If f : Ĉ → Ĉ be a subexpanding rational function of degree d ≥ 2 whose
Julia set J(f) is geometrically irreducible, then for µh–a.e. point ξ ∈ J(f) \ PC(f) the
following limit exists, is finite and positive:

lim
r→0

HD(J(f))− HD(Kξ(r))

µh(B(ξ, r))
.

Remark 1.22. We would like to note that if the rational function f : Ĉ→ Ĉ is expanding
(or hyperbolic as such functions are frequently called), then it is subexpanding and each
Hölder continuous potential has a pressure gap. In particular all four theorems above
pertaining to rational functions hold for it.

In both theorems µh is a unique (ergodic) Borel probability f–invariant measure on J(f)
equivalent to mh, a unique h-conformal measure mh on J(f) for f . Th was proved studied
in [53], comp. also [52].

The last applications are in the realm of transcendental meromorphic functions. There
is a large class of such systems, introduced in [33] and [34] for which it is possible to build
(see these two papers) a fairly rich and complete account of thermodynamic formalism.
Applying again our escape rates theorems for conformal graph directed Markov systems,
one prove in this setting four main theorems which are analogous of those for the multimodal
maps of an interval and rational functions of the Riemann sphere. These can be found with
complete proofs in Section 24, the last section of our manuscript.
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position and the content of the manuscript. The authors also wish to thank Tushar Das
for supplying them with some relevant references and for fruitful conversations (with the
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Part 1. Singular Perturbations of Countable Alphabet Symbol Space Classical
Perron–Frobenius Operators

2. The classical original Perron-Frobenius Operator Lϕ,
Gibbs and Equilibrium States µϕ,

Thermodynamic Formalism; Preliminaries

In this section we present some notation and basic results on Thermodynamic Formalism
as developed in [31], see also [30] and [7]. It will be the base for our subsequent work.

Let E be a countable, either finite or infinite, set, called in the sequel the alphabet. Let
A : E × E → {0, 1} an arbitrary matrix. For every integer n ≥ 0 let

En
A := {ω ∈ En : Aωjωj+1

= 1 ∀ 0 ≤ j ≤ n− 1},
denote the finite words of length n, let

E∞A := {ω ∈ EN : Aωjωj+1
= 1 ∀ j ≥ 0},
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denote the space of one-sided infinite sequences, and let

E∗ :=
∞⋃
n=0

En, and E∗A :=
∞⋃
n=0

En
A.

be set of all finite strings of words, the former being without restrictions and the latter
being called A-admissible.

We call elements of E∗A and E∞A A-admissible. The matrix A is called finitely primitive
(or aperiodic) if there exist an integer p ≥ 0 and a finite set Λ ⊆ Ep such that for all
i, j ∈ E there exists ω ∈ Λ such that iωj ∈ E∗A. Denote by σ : E∞A → E∞A the shift map, i.
e. the map uniquely defined by the property that

σ(ω)n := ωn+1

for every n ≥ 0. Fixing θ ∈ (0, 1) endow E∞A with the standard metric

dθ(ω, τ) := θ|ω∧τ |,

where for every γ ∈ E∗ ∪ EN, |γ| denotes the length of γ, i. e. the unique n ∈ N ∪ {∞}
such that γ ∈ En. Given 0 ≤ k ≤ |γ|, we set

γ|k := γ0γ1γ2 . . . γk.

We then also define

[γ] := {ω ∈ E∞A : ω|n = γ},
and call [γ] the (initial) cylinder generated by γ.

Given an element ξ ∈ E∗A and ξ ∈ {0, 1, 2, . . . ,+∞} we denote by ξk ∈ E∗A the concate-
nation of k copies of ξ; in particular ξ0 = ∅, the empty word, ξ1 = ξ, and ξ∞ = ξξξ . . . is
the infinite concatenation of the word ξ. We frequently refer to ξk as the kth power of ξ.

Let ϕ : E∞A → R be a Hölder continuous function, called in the sequel potential. We
assume that ϕ is summable, meaning that∑

e∈E

exp
(

sup(ϕ|[e]
)
< +∞.

It is well known (see [31] or [29]) that the following limit

P(ϕ) := lim
n→∞

1

n
log

∑
ω∈EnA

exp
(

sup(ϕ|[ω]

)
exists. It is called the topological pressure of ϕ. It was proved in [29] (compare [31]) that
there exists a unique shift-invariant Gibbs/equilibrium measure µϕ for the potential ϕ. The
Gibbs property means that

C−1
ϕ ≤

µϕ([ω|n])

exp
(
ϕn(ω)− P(ϕ)n

) ≤ Cϕ
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with some constant Cϕ ≥ 1 for every ω ∈ E∞A and every integer n ≥ 1, where here and in
the sequel

gn(ω) :=
n−1∑
j=0

g ◦ σj

for every function g : E∞A → C. For the measure µϕ being an equilibrium state for the
potential ϕ means that

hµϕ(σ) +

∫
E∞A

ϕdµϕ = P(ϕ).

It has been proved in [31] that

hµ(σ) +

∫
E∞A

ϕdµ < P(ϕ)

for any other Borel probability σ-invariant measure µ such that
∫
ϕdµ > −∞. For every

bounded function g : E∞A → R define Lϕ(g) : E∞A → R as follows

Lϕ(g)(ω) :=
∑

e∈E:Aeω0=1

g(eω) exp(ϕ(eω)).

Then Lϕ(g) is bounded again, and we get by induction that

Lkϕ(g)(ω) :=
∑

τ∈EkA:Aτk−1ω0
=1

g(τω) exp(ϕk(τω)).

Let Cb(A) be the Banach space of all complex-valued bounded continuous functions defined
on E∞A endowed with the supremum norm ||·||∞. Let Hb

θ(A) be its vector subspace consisting
of all Lipschitz continuous functions with respect to the metric dθ. Equipped with the norm

(2.1) Hθ(g) := ||g||∞ + vθ(g),

where vθ(g) is the least constant C ≥ 0 such that

(2.2) |g(ω)− g(τ)| ≤ Cdθ(ω, τ),

whenever dθ(ω, τ) ≤ θ (i. e. ω0 = τ0), the vector space Hb
θ(A) becomes a Banach space.

It is easy to see that the operator Lϕ preserves both Banach spaces Cb(A) (as we have
observed some half-page ago) and Hb

θ(A) and also acts continuously on each of them. The
adjective “original” indicates that we do not deal with its perturbations while “classical”
refers to standard Banach spaces Cb(A) and Hb

θ(A). The following theorem, describing fully
the spectral properties of Lϕ, has been proved in [31] and [29].

Theorem 2.1. If A : E × E → {0, 1} is finitely primitive and ϕ ∈ Hb
θ(A), then

(a) The spectral radius of the operator Lϕ considered as acting either on Cb(A) or Hb
θ(A)

is in both cases equal to eP(ϕ).
(b) In both cases of (a) the number eP(ϕ) is a simple eigenvalue of Lϕ and there exists

corresponding to it an everywhere positive eigenfunction ρϕ ∈ Hb
θ(A) such that log ρϕ

is a bounded function.
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(c) The reminder of the spectrum of the operator Lϕ : Hb
θ(A) → Hb

θ(A) is contained in
a closed disk centered at 0 with radius strictly smaller than eP(ϕ). In particular, the
operator Lϕ : Hb

θ(A)→ Hb
θ(A) is quasi-compact.

(d) There exists a unique Borel probability measure mϕ on E∞A such that

L∗ϕmϕ = eP(ϕ)mϕ,

where L∗ϕ : C∗b (A) → C∗b (A), is the operator dual to Lϕ acting on the space of all
bounded linear functionals from Cb(A) to C.

(e) If ρϕ : E∞A → (0,∞) is normalized so that mϕ(ρϕ) = 1, then ρϕmϕ = µϕ, where,
we recall, the latter is the unique shift-invariant Gibbs/equilibrium measure for the
potential ϕ.

(e) The Riesz projector Qϕ : Hb
θ(A)→ Hb

θ(A), corresponding to the eigenvalue eP(ϕ), is
given by the formula

Qϕ(g) = eP(ϕ)mϕ(g)ρϕ.

If we multiply the operator Lϕ : Hb
θ(A)→ Hb

θ(A) by e−P(ϕ) and conjugate it via the linear
homeomorphism

g 7→ ρ−1
ϕ g,

then the resulting operator T : Hb
θ(A)→ Hb

θ(A) has the same properties, described above,
as the operator Lϕ, with eP(ϕ) replaced by 1, ρϕ by the function 11 which is identically equal
to 1, and mϕ replaced by µϕ. Since in addition it is equal to Lϕ̃ : Hb

θ(A)→ Hb
θ(A) with

ϕ̃ := ϕ− P(ϕ) + log ρϕ,

we will frequently deal with the operator Lϕ̃ instead of Lϕ, exploiting its useful property

Lϕ̃11 = 11.

We will occasionally refer to Lϕ̃ as fully normalized. Sometimes, we will only need the
semi-normalized operator Lϕ given by the formula

L̂ϕ := e−P(ϕ)Lϕ.

It essentially differs from only by having eP(ϕ) replaced by 1. Now we bring up two standard
well-known technical facts about the above concepts. These can be found for example in
[31].

Lemma 2.2. There exists a constant Mϕ ∈ (0,+∞) such that

|ϕk(ω)− ϕk(τ)| ≤Mϕθ
m

for all integers k,m ≥ 1, and all words ω, τ ∈ E∞A such that ω|k+m = τ |k+m.

Lemma 2.3. With the hypotheses of Lemma 2.2 and increasing the constant Mϕ if neces-
sary, we have that ∣∣1− exp

(
ϕk(γω)− ϕk(γτ)

)∣∣ ≤Mϕ|ϕk(ω)− ϕk(τ)|.
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3. Non-standard original Perron-Frobenius Operator Lϕ;
Definition and first technical Results

We keep the setting of the previous section. We still deal with the original operator Lϕ
but we let it act on a different non-standard Banach space Bθ defined below. This space is
more suitable for consideration of perturbations of Lϕ.

Given a function g ∈ L1(µϕ) and an integer m ≥ 0, we define the function oscm(g) :
E∞A → [0,∞) by the following formula:

(3.1) oscm(g)(ω) := ess sup{|g(α)− g(β)| : α, β ∈ [ω|m]}
and

osc0(g) := esssup(g)− essinf(g).

We further define:

(3.2) |g|θ := sup
m≥0
{θ−m||oscm(g)||1},

where | · | denotes the L1-norm with respect to the measure µϕ. Note the subtle difference
between this definition and the analogous one, which motivated us, from [20]. Therein in
the analogue of formula (3.2) the supremum is taken over integers m ≥ 1 only. Including
m = 0 causes some technical difficulties, particularly the (tedious) part of the proof of
Lemma 3.2 for the integer m = 0. However, without the case m = 0 we would not be able
to prove Lemma 3.1, in contrast to the finite alphabet case of [20], which is indispensable
for our entire approach. The, previously announced, non-standard (it even depends on the
dynamics – via µϕ) Banach space is defined as follows:

Bθ := {g ∈ L1(µϕ) : |g|θ < +∞}
and we denote

(3.3) ||g||θ := ||g||1 + |g|θ.
Of course Bθ is a vector space and the function

(3.4) Bθ 3 g 7→ ||g||θ
is a norm on Bθ. This is the non-standard Banach space we will be working with throughout
the whole manuscript. We shall prove the following.

Lemma 3.1. If g ∈ Bθ, then g is essentially bounded and

||g||∞ ≤ ||g||θ.

Proof. For all ω ∈ E∞A , we have

|g(ω)| ≤
∣∣∣ ∫

E∞A

g dµϕ + osc0(g)(ω)
∣∣∣ =

∣∣∣ ∫
E∞A

g dµϕ +

∫
E∞A

osc0(g) dµϕ

∣∣∣
≤
∫
E∞A

|g| dµϕ + ||osc0(g)||1

≤ ||g||θ.
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The proof is complete. �

From now on, unless otherwise stated, we assume that the potential ϕ : E∞A → R is
normalized (by adding a constant and a coboundary) so that

Lϕ11 = 11.

For ease of notation we also abbreviate Lϕ to L. We shall prove the following.

Lemma 3.2. There exists a constant C > 0 for every integer k ≥ 0 and every g ∈ Bθ, we
have

|Lkg|θ ≤ C(θk|g|θ + ||g||1).

Proof. For every e ∈ E let

Ek
A(e) := {γ ∈ Ek

A : Aγke = 1}.

Fix first an integer m ≥ 1 and then ω, τ ∈ E∞A such that ω|m = τ |m. Using Lemmas 2.2
and 2.3, we then get

|Lkg(ω)− Lkg(τ)| ≤
∑

γ∈EkA(ω1)

eϕk(γω)|g(γω)− g(γτ)|+
∑

γ∈EkA(ω1)

|g(γτ)|
∣∣∣eϕk(γω) − eϕk(γτ)

∣∣∣
≤

∑
γ∈EkA(ω1)

osck+m(g)(γω)eϕk(γω) +

+
∑

γ∈EkA(ω1)

|g(γτ)|eϕk(γτ)
∣∣1− exp

(
ϕk(γω)− ϕk(γτ)

)∣∣
≤

∑
γ∈EkA(ω1)

osck+m(g)(γω)eϕk(γω) +

+
∑

γ∈EkA(ω1)

|g(γτ)|eϕk(γτ)Mϕ|ϕk(γω)− ϕk(γτ)|

≤ Lk(osck+m(g))(ω) +M2
ϕθ

m
∑

γ∈EkA(ω1)

(
|g(γω)|+ osck+m(g)(γω)

)
eϕk(γω)

≤ Lk(osck+m(g))(ω) +M2
ϕθ

mLk(|g|)(ω) +M2
ϕθ

mLk(osck+m(g))(ω)

≤ (1 +M2
ϕ)Lk(osck+m(g))(ω) +M2

ϕθ
mLk(|g|)(ω)

Hence,

oscm(Lkg)(ω) ≤ (1 +M2
ϕ)Lk(osck+m(g))(ω) +M2

ϕθ
mLk(|g|)(ω)
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Integrating against the measure µϕ, this yields

(3.5)

θ−m||oscm(Lkg)||1 ≤ (1 +M2
ϕ)θ−m

∫
E∞A

Lk(osck+m(g)) dµϕ +M2
ϕ

∫
E∞A

Lk(|g|) dµϕ

= (1 +M2
ϕ)θ−m

∫
E∞A

osck+m(g) dµϕ +M2
ϕ

∫
E∞A

|g| dµϕ.

≤ (1 +M2
ϕ)θk|g|θ +M2

ϕ||g||1
≤ (1 +M2

ϕ)(θk|g|θ + ||g||1).

Some separate considerations are needed if m = 0. However, we note that it would require
no special treatment in the case of a full shift, i. e. when the incidence matrix A consists
of 1s only. Let p ≥ 1 be the value in the definition of finite primitivity of the matrix A.
Replacing p by a sufficiently large integral multiple, we will have that the set

Ep
A(a, b) := {α ∈ Ep

A : aαb ∈ E∗A}

consisting of words of length p prefixed by a and suffixed by b is non-empty for all a, b ∈ E
and it is countable infinite if the alphabet E is infinite. For every function h : E∞A → R
and every finite word γ ∈ E∗A with associated cylinder [γ] consisting of all infinite sequences

beginning with γ let ĥ(γ) ∈ R be a number with the following two properties:

(a) ĥ(γ) ∈ h([γ]) and

(b) |ĥ(γ)| = inf{|h(ρ)| : ρ ∈ [γ]}.

Let us introduce the following two functions:

∆1Lk+p(g)(ρ) :=
∑
|γ|=k

∑
α∈EpA(γk,ρ1)

(
g(γαρ)eϕk(γαρ)eϕp(αρ) − ĝ(γ)eϕ̂k(γ)eϕp(αρ)

)
and

∆2Lk+p(g)(ω, τ) :=
∑
|γ|=k

ĝ(γ)eϕ̂k(γ)

 ∑
α∈EpA(γk,ω1)

eϕp(αω) −
∑

β∈EpA(γk,τ1)

eϕp(βτ)

 .

We then have

(3.6) Lk+p(g)(ω)− Lk+p(g)(τ) = ∆1Lk+p(g)(ω) + ∆2Lk+p(g)(ω, τ)−∆1Lk+p(g)(τ).



26 MARK POLLICOTT AND MARIUSZ URBAŃSKI

We will estimate the absolute value of each of these three summands in terms of ω only (i.
e. independently of τ) and then we will integrate against the measure µϕ. First:
(3.7)

|∆1Lk+p(g)(ρ)| ≤
∑
|γ|=k

∑
α∈EpA(γk,ρ1)

|g(γαρ)eϕk(γαρ) − ĝ(γ)eϕ̂k(γ)|eϕp(αρ)

≤
∑
|γ|=k

∑
α∈EpA(γk,ρ1)

(
|g(γαρ)− ĝ(γ)|eϕk+p(γαρ) + |eϕk(γαρ) − eϕ̂k(γ)| · |ĝ(γ)|eϕp(αρ)

)
≤
∑
|γ|=k

∑
α∈EpA(γk,ρ1)

(
osck

(
g|[γ]

)
eϕk+p(γαρ) +Mϕe

ϕk(γαρ)eϕp(αρ)|ĝ(γ)|
)

≤
∑
|γ|=k

∑
α∈EpA(γk,ρ1)

osck
(
g|[γ]

)
eϕk+p(γαρ) +Mϕ

∑
|γ|=k

∑
α∈EpA(γk,ρ1)

|g(γαρ)|eϕk+p(γαρ)

= Lk+p(osck(g))(ρ) +MϕLk+p(|g|)(ρ),

with some appropriately large constant Mϕ. Plugging into the above inequality, ρ = ω,
this gives

(3.8) |∆1Lk+p(g)(ω)| ≤ Lk+p(osck(g))(ω) +MϕLk+p(|g|)(ω).

Now notice that because of our choice of p ≥ 1 there exists a number Q ≥ 1 and for every
e ∈ E there exists an at most Q-to-1 function fe : Ep

A(e, τ1)→ Ep
A(e, ω1) (can be chosen to

be a bijection if the alphabet E is infinite). So, plugging in turn ρ = τ to (3.7), we get
(3.9)
|∆1Lk+p(g)(τ)| ≤

≤
∑
|γ|=k

∑
β∈EpA(γk,τ1)

osck
(
g|[γ]

)
eϕk+p(γβτ) +Mϕ

∑
|γ|=k

∑
β∈EpA(γk,τ1)

|g(γβτ)|eϕk+p(γβτ)

≤Mϕ

∑
|γ|=k

∑
β∈EpA(γk,τ1)

(
osck(g)(γfe(β)ω)eϕk+p(γfe(β)ω) +Mϕ|ĝ(γ)|eϕk+p(γfe(β)ω)

)
≤Mϕ

∑
|γ|=k

∑
β∈EpA(γk,τ1)

osck(g)(γfe(β)ω)eϕk+p(γfe(β)ω) +Mϕ

∑
|γ|=k

∑
β∈EpA(γk,τ1)

|g(γfe(β)ω)|eϕk+p(γfe(β)ω)

≤ QMϕ

∑
|γ|=k

∑
α∈EpA(γk,ω1)

osck(g)(γαω)eϕk+p(γαω) +Mϕ

∑
|γ|=k

∑
α∈EpA(γk,ω1)

|g(γαω)|eϕk+p(γαω)


= QMϕ

(
Lk+p(osck(g))(ω) +MϕLk+p(|g|)(ω)

)
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with some appropriate constant Q > 0. Turning to ∆2Lk+p(g), we get

(3.10)

|∆2Lk+p(g)(ω, τ)| ≤
∑
|γ|=k

|ĝ(γ)|eϕ̂k(γ)

 ∑
α∈EpA(γk,ω1)

eϕp(αω) +
∑

β∈EpA(γk,τ1)

eϕp(βτ)


≤
∑
|γ|=k

|ĝ(γ)|eϕ̂k(γ)
(
Lp11(ω) + Lp11(τ)

)
= 2

∑
|γ|=k

|ĝ(γ)|eϕ̂k(γ)

≤ 2Mϕ

∑
|γ|=k

|g(γα(γk, ω1)ω)|eϕk+p(γα(γk,ω1)ω)e−ϕp(α(γk,ω1)ω)

≤ 2Mϕe
−Cp

∑
|γ|=k

|g(γα(γk, ω1)ω)|eϕk+p(γα(γk,ω1)ω)

≤ 2Mϕe
−CpLk+p(|g|)(ω),

where α(γk, ω1) is one, arbitrarily chosen, element from Λ, a finite set witnessing finite
primitivity of A, such that γα(γk, ω1) ∈ E∗A, and Cp := min{inf{ϕp|[α] : α ∈ Λ} > 0.
Inserting now (3.10), (3.9), and (3.8) to (3.6), we get for all ω, τ ∈ E∞A that∣∣Lk+p(g)(ω)− Lk+p(g)(τ)

∣∣ ≤ C(Lk+p(osck(g))(ω) + Lk+p(|g|)(ω))

with some universal constant C > 0. Integrating against the measure µϕ, this gives

(3.11)

θ−0||osc0(Lk+p(g))||1 ≤ C

(∫
E∞A

Lk+p(osck(g)) dµϕ +

∫
E∞A

Lk+p(|g|) dµϕ

)

= C

(∫
E∞A

osck(g) dµϕ +

∫
E∞A

|g| dµϕ

)
≤ C(θk|g|θ + ||g||1)

≤ Cθ−p(θk+p|g|θ + ||g||1).

Along with (3.5) this gives that

(3.12) |Lkg|θ ≤ C(θk|g|θ + ||g||1)

for all k ≥ p with some suitable constant C > 0. Also, for every 0 ≤ k ≤ p we have

|Lkg|θ ≤ ||Lkg||θ ≤ max{||L||jθ : 0 ≤ j ≤ p}||g||θ
≤ θ−p max{||L||jθ : 0 ≤ j ≤ p}||g||θ(θk||g||θ)
≤ θ−p max{||L||jθ : 0 ≤ j ≤ p}||g||θ(θk|g|θ + ||g||1).

Along with (3.12) this finishes the proof. �

In conjunction with Theorem 2.1 this lemma gives the following.
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Proposition 3.3. The following hold:

(1)

Hb
θ(A) ⊆ Bθ,

(2)

L(Bθ) ⊆ Bθ,
In addition,

(3) The operator L : Bθ → Bθ is bounded, in fact all its iterates are uniformly bounded,

(4) The function 11 belongs Bθ and is an eigenfunction of the operator L : Bθ → Bθ
with the eigenfunction equal to 1. Prior to any normalization of the operator Lϕ
the corresponding statement would read:

The function ρϕ belongs Bθ and is an eigenfunction of the operator Lϕ : Bθ → Bθ
with the eigenfunction equal to eP(ϕ).

(5) The measure µϕ can be viewed as an element of the dual Banach space B∗θ and it
is an eigenmeasure of the dual operator L∗ : B∗θ → B∗θ with the eigenfunction equal
to 1. Prior to any normalization of the operator Lϕ the corresponding statement
would read:

The measure mϕ can be viewed as an element of the dual Banach space B∗θ and it
is an eigenmeasure of the dual operator L∗ϕ : B∗θ → B∗θ with the eigenfunction equal

to eP(ϕ).

(6) The operator Qϕ : Hb
θ(A)→ Hb

θ(A) extends to the Banach space Bθ by the same for-
mula (e) of Theorem 2.1 (Qϕ(g)µϕ(g)11 after normalizations) and the linear operator
Qϕ : Bθ → Bθ is bounded.

4. Singular Perturbations, generated by open holes Un,
of (original) Perron–Frobenius Operators Lϕ I:

Fundamental Inequalities

This is the first section in which we deal with singular perturbations of the operator Lϕ.
We work in the quite general setting described below. We keep the same non-standard
Banach space Bθ but, motivated by [20], we introduce an even more exotic norm || · ||∗,
which depends even more on dynamics than || · ||θ.

The ultimate goal of this and the next section is Proposition 5.2. We prove it by applying
Theorem 1 of [25] and its consequences derived therein. For the convenience of the reader
and convenience of our referring to, we bring up the setting of [25] in Appendix at the end
of our manuscript. We formulate there Theorem 1 of [25] and all its consequences we need.

Passing to details, in this section we assume that (Un)∞n=0, a nested sequence of open
subsets of E∞A is given, with the following properties:

(U0) U0 = E∞A ,
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(U1) For every n ≥ 0 the open set Un is a (disjoint) union of cylinders all of which are of
length n,

(U2) There exists ρ ∈ (0, 1) such that such that

µϕ(Un) ≤ ρn

for all n ≥ 0.

Let | · |∗, || · ||∗ : Bθ → [0,+∞] be the functions defined by respective formulas

|g|∗ := sup
j≥0

sup
m≥0

{
θ−m

∫
σ−j(Um)

|g| dµϕ
}

and

||g||∗ := ||g||1 + |g|∗.
Without loss of generality assume from now on that θ ∈ (ρ, 1). We shall prove the following.

Lemma 4.1. For all g ∈ Bθ, we have that

||g||∗ ≤ 2||g||∞ ≤ 2||g||θ.

Proof. By virtue of (U2), we get

|g|∗ ≤ sup
m≥0

{
θ−mµϕ(Um)||g||∞

}
≤ sup

m≥0

{
θ−mρm||g||∞

}
= sup

m≥0
{(ρ/θ)m||g||∞} = ||g||∞.

Hence,

||g||∗ = ||g||1 + |g|∗ ≤ ||g||∞ + ||g||∞ = 2||g||∞.
Combining this with Lemma 3.1 completes the proof. �

In particular, this lemma assures us that | · |∗ and || · ||∗, respectively, are a semi-norm and
a norm on Bθ. It is straightforward to check that Bθ endowed with the norm || · ||∗ becomes
a Banach space. For all integers k ≥ 1 and n ≥ 0 let

(4.1) 11kn :=
k−1∏
j=0

11σ−j(Ucn) =
k−1∏
j=0

11Ucn ◦ σ
j.

We also abbreviate

11n := 111
n

and set

11cn := 11Un = 11− 11n.

Let Ln : Bθ → Bθ be defined by the formula

Ln(g) := L(111
ng).

These, for n ≥ 0, are our perturbations of the operator L. The difference L − Ln in the
supremum, or even || · ||θ, norm can be quite large even for arbitrarily large n, however, as
Lemma 5.1 shows, the incorporation of the || · ||∗ norm makes this difference kind of small.
The main result of this section is Proposition 5.2, complemented by Proposition 5.3, which
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describes in detail how well the spectral properties of the operator L are preserved under
perturbations Ln. Note that for every k ≥ 1, we then have

Lkn(g) := Lk(11kng).

The results we now obtain, leading ultimately to Proposition 5.2 and Proposition 5.3, stem
from Lemma 3.9 and Lemma 3.10 in [20]. We develop these and extend them to the case of
infinite alphabets. Since the sets Un may, and in applications, will, consist of infinitely many
cylinders (of the same length), we are cannot take advantage of good mixing properties of
the symbol dynamical system (σ : E∞A → E∞A , µϕ). We use instead the Hölder inequality,
which also, as a by-product, simplifies some of the reasonings of [20]. In what follows, the
last fragment, directly preceding Proposition 5.2, and leading to verifying the requirements
(24.3), (24.4), (24.5) from Appendix, corresponding to Remark 3 in [25], is particularly
delicate and entirely different from the one of [20].

Lemma 4.2. For all integers k ≥ 1 and n ≥ 0 , we have

||Lkn||∗ ≤ 1.

Proof. Let g ∈ L1(µϕ). Then,

(4.2) ||Lkn(g)||1 =

∫
|Lk(11kng))| dµϕ ≤

∫
Lk(|11kng|) dµϕ =

∫
|11kng| dµϕ ≤ ||g||1.

Also, for all integers j,m ≥ 0, we have

θ−m
∫
σ−j(Um)

|Lk(11kng))| dµϕ ≤ θ−m
∫
σ−j(Um)

Lk(|11kng|) dµϕ = θ−m
∫
σ−(j+1)(Um)

|11kng| dµϕ

≤ θ−m
∫
σ−(j+1)(Um)

|g| dµϕ

≤ |g|∗.
Taking the supremum over j and m yields

|Lkn(g)|∗ ≤ |g|∗.
Combining this and (4.2) completes the proof. �

Lemma 4.3. For all integers j, n ≥ 0 and for g ∈ Bθ, we have that

|g11σ−j(Ucn)|θ ≤ |g|θ + θ−j||g||∗
Proof. Fix an integer m ≥ 1. We consider two cases. Namely: j + n ≤ m and m < j + n.
Suppose first that j + n ≤ m. Then, oscm

(
g11σ−j(Ucn)

)
(ω) ≤ oscm(g)(ω) for all ω ∈ E∞A .

Thus

(4.3) θ−m
∫

oscm
(
g11σ−j(Ucn)

)
dµϕ ≤ θ−m

∫
oscm(g) dµϕ ≤ |g|θ.

On the other hand, if m < j + n, then it is easy to see that if [ω|m] ⊆ σ−j(U c
n), then

(4.4) oscm
(
g11σ−j(Ucn)

)
(ω) = oscm(g)(ω).
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On the other hand, if [ω|m] ∩ σ−j(Un) 6= ∅, then

oscm
(
g11σ−j(Ucn)

)
(ω) = max{oscm(g)(ω), ||g11[ω|m]||∞}.

In this latter case

oscm
(
g11σ−j(Ucn)

)
≤ max{oscm(g)(ω), ||g11[ω|m]||∞} ≤ oscm(g)(ω) +

1

µϕ
(
[ω|m]

) ∫
[ω|m]

|g| dµϕ.

Together with (4.4) this implies that

(4.5) θ−m
∫

oscm
(
g11σ−j(Ucn)

)
dµϕ ≤ |g|θ + θ−m

∫
{ω∈E∞A :[ω|m]∩σ−j(Un)6=∅}

|g| dµϕ.

We now consider two further sub-cases. If m ≤ j, then we see that

(4.6) θ−m
∫
{ω∈E∞A :[ω|m]∩σ−j(Un)6=∅}

|g| dµϕ ≤ θ−j
∫
{ω∈E∞A :[ω|m]∩σ−j(Un)6=∅}

|g| dµϕ ≤ θ−j||g||1.

If j < m < j + n, the descending property of the sequence
(
Un
)∞
n=0

yields

{ω ∈ E∞A : [ω|m] ∩ σ−j(Un) 6= ∅} ⊆ σ−j(Um−j).

In this case

(4.7) θ−m
∫
{ω∈E∞A :[ω|m]∩σ−j(Un)6=∅}

|g| dµϕ ≤ θ−jθ−(m−j)
∫
σ−j(Um−j)

|g| dµϕ ≤ θ−j|g|∗.

Combining (4.3), (4.5), and (4.7) yields the desired inequality, and completes the proof. �

As a fairly straightforward inductive argument using Lemma 4.3, we shall prove the fol-
lowing.

Lemma 4.4. For all integers k ≥ 1 and n ≥ 0, and all functions g ∈ Bθ , we have that

(4.8) |11kng|θ ≤ |g|θ + θ(1− θ)−1θ−k||g||∗.
Proof. Keeping n ≥ 0 fixed, we will proceed by induction with respect to the integer k ≥ 1.
The case of k = 1 follows directly from Lemma 4.3. Assuming for the inductive step that
(4.8) for some integer k ≥ 1 and applying again Lemma 4.3, we get

|11k+1
n g|θ =

∣∣11σ−k(Ucn)(11
k
ng)
∣∣
θ
≤ |11kng|θ + θ−k||11kng||∗

≤ |11kng|θ + θ−k||g||∗
≤ |g|θ + θ(1− θ)−1θ−k||g||∗ + θ−k||g||∗
= |g|θ + θ(1− θ)−1θ−(k+1)||g||∗.

The proof is complete. �

As a fairly immediate consequence of Lemma 4.4 and Lemma 3.2, we get the following.

Corollary 4.5. There exists a constant c > 0 such that

(4.9) ||Lkng||θ ≤ c
(
θk||g||θ + ||g||∗

)
for all g ∈ Bθ and all integers k, n ≥ 0.
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Proof. Substituting 11kng for g into the statement of Lemma 3.2 and then applying Lemma 4.3,
we get

|Lkng|θ = |Lk(11kng)|θ ≤ C
(
θk|11kng|θ + ||g||1

)
≤ C

(
θk(|g|θ + θ(1− θ)−1θ−k||g||∗) + ||g||1

)
≤ C

(
θk(|g|θ + θ(1− θ)−1||g||∗ + ||g||1

)
.

Hence,

||Lkng||θ = |Lkng|θ + ||Lkng||1 ≤ |Lkng|θ + ||g||1
≤ (C + 1)

(
θk|g|θ + θ(1− θ)−1||g||∗ + ||g||1

)
≤ C̃

(
θk||g||θ + ||g||∗

)
,

for some sufficiently large C̃ > 0 depending only on C and θ. The proof is complete. �

5. Singular Perturbations, generated by open holes Un,
of (original) Perron–Frobenius Operators Lϕ II:

Stability of the Spectrum

As noted in the previous section, the ultimate goal of this and the previous section is
Proposition 5.2. We prove it by applying Theorem 1 of [25] and its consequences derived
therein. For the convenience of the reader and convenience of referring to, we bring up the
setting of [25] in Appendix at the end of our manuscript. We formulate there Theorem 1
of [25] and all its consequences we need.

For a linear operator Q : Bθ → Bθ define

|||Q||| := sup{||Qg||∗ : ||g||θ ≤ 1}.

From now on fix p, q > 1, q ≥ 2 being an integer, such that 1
p

+ 1
q

= 1 and, by taking

0 < ρ < 1 coming from (U2), sufficiently close to 1, assume without loss of generality that

θ ∈ (ρ1/p, 1).

We shall prove the following.

Lemma 5.1. For every n ≥ 0 we have

|||L − Ln||| ≤ 2(ρ1/q)n.

Proof. Fix an arbitrary g ∈ Bθ with ||g||θ ≤ 1. Using Lemma 3.1 we then get

(5.1)

||(L − Ln)g||1 = ||L(11− 111
n)g)||1 = ||L(11Ung)||1 = ||11Ung||1 ≤ µϕ(Un)||g||∞

≤ µϕ(Un)||g||θ ≤ µϕ(Un) ≤ ρn

≤ (ρ1/q)n
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Now fix also two integers m, j ≥ 0. Using the Hölder Inequality, we get

(5.2)

θ−m
∫
σ−j(Um)

|(L − Ln)g| dµϕ ≤ θ−mµϕ(σ−(j+1)(Um) ∩ Un)||g||θ =

= θ−m||g||θ
∫

11σ−(j+1)(Um)11Un dµϕ

≤ ||g||θθ−m
(∫

11σ−(j+1)(Um) dµϕ

)1/p(∫
11Un dµϕ

)1/q

= ||g||θθ−mµϕ(Um)1/pµϕ(Un)1/q

≤ ||g||θ
(
ρ1/p/θ

)m
ρn/q ≤ (ρ1/q)n||g||θ ≤ (ρ1/q)n,

where the second to the last inequality follows from the fact that θ ∈ (ρ1/p, 1). Along with
(5.1) this implies that ||L−Ln||∗ ≤ 2(ρ1/q)n. So, taking the supremum over all g ∈ Bθ with
||g||θ ≤ 1, we get that |||L − Ln||| ≤ 2(ρ1/q)n. The proof is complete. �

With Lemma 4.2, Corollary 4.5, and Lemma 4.3, we have checked that the respective
conditions (KL2), (KL3), and (KL5), from Appendix are satisfied. We shall now check that
condition (KL4) from there also holds. We will do this by showing that the requirements
(24.3)–(24.5) from Remark 24.9 in Appendix hold.

For every integer k ≥ 1 let Ak be the partition of E∞A into cylinders of length k. Let
π∗k : L1(µϕ) → L1(µϕ) be the operator of expected value with respect to the probability
measure µϕ and the σ-algebra σ(Ak) generated by the elements of Ak; i. e.

π∗k(g) = Eµϕ(g|σ(Ak)).
If g ∈ Bθ then |π∗k(g)− g| ≤ osck(g), and therefore

(5.3) ||π∗k(g)− g||1 =

∫
E∞A

|π∗k(g)− g| dµϕ ≤
∫
E∞A

osck(g) dµϕ ≤ θk|g|θ.

Let now Ak0 be a finite subset of Ak such that

(5.4) µϕ
(
Akc
)
≤ θk,

where

Akc :=
⋃

A∈Ak\Ak0

A.

Let also

Ak0 :=
⋃
A∈Ak0

A.

Let Âk be the partition of E∞A consisting of Akc and all elements of Ak0. Similarly as above,
let πk : L1(µϕ)→ L1(µϕ) be defined by the formula

πk(g) = Eµϕ(g|σ(Âqk)).
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We then have that

(5.5) ||πk||1 ≤ 1,

and for every g ∈ Bθ, because of (5.3) and Lemma 3.1, and (5.4):

(5.6)

||πk(g)− g||1 =

∫
E∞A

|πk(g)− g| dµϕ =

∫
Aqk0

|πk(g)− g| dµϕ +

∫
Aqkc

|πk(g)− g| dµϕ

=

∫
Aqk0

|π∗k(g)− g| dµϕ +

∫
Aqkc

|πk(g)− g| dµϕ

≤
∫
E∞A

|π∗k(g)− g| dµϕ + 2||g||∞µϕ(Aqkc )

≤ θqk|g|θ + 2||g||∞θqk

≤ 3θqk||g||θ.

Now, for all m and k we have that

oscm(πk(g)) =

{
0 if m ≥ qk

≤ osc0(g) ≤ 2||g||∞ ≤ 2||g||θ if m < qk.

Moreover, if ω ∈ Aqk0 and m < qk, then

oscm(πk(g))(ω) = oscm(π∗k(g))(ω) ≤ oscm(g)(ω).

Thus,

θ−m||oscm(πk(g))||1 = θ−m
∫
E∞A

oscm(πk(g) dµϕ

= θ−m
∫
Aqk0

oscm(πk(g)) dµϕ + θ−m
∫
Aqkc

oscm(πk(g)) dµϕ

≤ θ−m
∫
Aqk0

oscm(g) dµϕ + 2θ−k||g||θµϕ(Aqkc )

≤ |g|θ + 2||g||θ
≤ 3||g||θ.

Therefore |πk(g)|θ ≤ 3||g||θ. Together with (5.5), this gives ||πk||θ ≤ 4. In other words:

(5.7) sup
k≥1
{||πk||θ} ≤ 4 < +∞.

This means that condition (24.3) is satisfied. Now assume that ||g||θ ≤ 1. Recall that we
have fixed p, q > 1 such that (1/p) + (1/q) = 1. Using Hölder’s Inequality and (5.6) we
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then get for all integers k ≥ 1, j ≥ 0, and n ≥ 0, that∫
σ−j(Un)

|πk(g)− g| dµϕ =

∫
E∞A

11σ−j(Un)|πk(g)− g| dµϕ

≤

(∫
E∞A

11σ−j(Un) dµϕ

)1/p(∫
E∞A

|πk(g)− g|q dµϕ

)1/q

≤ µϕ(Un)1/p2
q−1
q

(∫
E∞A

|πk(g)− g| dµϕ

)1/q

≤ µϕ(Un)1/p
(
3θqk||g||θ

)1/q

≤ 3ρn/pθk.

Recall that θ ∈ (0, 1) was fixed so large that θ > ρ1/p. In other words ρ1/p/θ < 1, and we
get

θ−n
∫
σ−j(Un)

|πk(g)− g| dµϕ ≤ 3
(
ρ1/p/θ

)n
θk ≤ 3θk.

In other words |πk(g)− g|∗ ≤ 3θk. Together with (5.6) this gives

(5.8) ‖πk(g)− g‖∗ ≤ 3θqk + 3θk ≤ 6θk.

It therefore follows from formula (4.9) of Corollary 4.5 that formula (24.4) in Appendix is
satisfied with

(5.9) α = θ and M = 1.

Since all the operators πk : Bθ → Bθ have finite–dimensional ranges, all the operators
Ln ◦ πk : Bθ → Bθ are compact. This establishes formula (24.5) in Appendix.

All the hypotheses of Theorem 24.8 in Appendix (i.e. Theorem 1 in [25]) have been thus
verified. Note also that the number 1 is a simple eigenvalue of the operator L : Bθ → Bθ as
there exists exactly one Borel probability σ-invariant measure absolutely continuous with
respect to the Gibbs measure µϕ. Applying Theorem 24.8 in Appendix and all the corol-
laries listed therein, we get the following fundamental perturbative result which extends
Propositions 3.17, 3.19, and 3.7 from [20] to the case of infinite alphabet.

Proposition 5.2 (Fundamental Perturbative Result). For all n ≥ 0 sufficiently large there
exist two bounded linear operators Qn,∆n : Bθ → Bθ and complex numbers λn 6= 0 with the
following properties:

(a) λn is a simple eigenvalue of the operator Ln : Bθ → Bθ.

(b) Qn : Bθ → Bθ is a projector (Q2
n = Qn) onto the 1–dimensional eigenspace of λn.

(c) Ln = λnQn + ∆n.

(d) Qn ◦∆n = ∆n ◦Qn = 0.
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(e) There exist κ ∈ (0, 1) and C > 0 such that

||∆k
n||θ ≤ Cκk

for all n ≥ 0 sufficiently large and all k ≥ 0. In particular,

||∆k
ng||∞ ≤ ||∆k

ng||θ ≤ Cκk||g||θ
for all g ∈ Bθ.

(f) limn→∞ λn = 1.

(g) Enlarging the above constant C > 0 if necessary, we have

||Qn||θ ≤ C.

In particular,
||Qng||∞ ≤ ||Qng||θ ≤ C||g||θ

for all g ∈ Bθ.
(h) limn→∞ |||Qn −Qϕ||| = 0.

Proof. As there exists exactly one Borel probability σ-invariant measure absolutely con-
tinuous with respect to the Gibbs measure µϕ, the number 1 is a simple eigenvalue of
the operator L : Bθ → Bθ. Invoking also (5.9) and the fact that 1 > θ, the existence of
eigenvalues λn and items (a) and (f) follow immediately from Corollary 24.10 and (5.9).

The operators Qn : Bθ → Bθ are defined by formula (24.8). The items (b) and (h)
then directly follow from Corollary 24.11. The items (c), (d), (e), and (g) follow from
corresponding items (1), (2), (4), and (3) of Corollary 24.12. The proof is complete. �

From now on for all n ≥ 0 sufficiently large as following from Proposition 5.2 we denote

(5.10) gn := Qn11.

Then gn 6= 0 generates the range of the projector operator Qn : Bθ → Bθ and

(5.11) Lngn = λngn.

The proof of the next proposition is fairly standard. We provide it here for the sake of
completeness.

Proposition 5.3. All eigenvalues λn produced in Proposition 5.2 are real and positive,
and all operators Qn : Bθ → Bθ preserve Bθ(R) and B+

θ (R), the subsets of Bθ consisting,
respectively, of real–valued functions and positive real–valued functions.

Proof. Let ρn ∈ Bθ be an eigenfunction of the eigenvalue λn. Write λn = |λn|eiγn , with
γn ∈ [0, 2π). It follows from (b), (c), and (d) of Proposition 5.2 that

(5.12) |λn|ke−ikγnLkn11 = Qn11 + λ−kn ∆k
n11.

By (1) of Corollary 1 in [25] we have that Qn11 6= 0 for all n ≥ 0 large enough (so after
disregarding finitely many terms, we can assume this for all n ≥ 0) and |λn| > (1 + κ)/2.
Since also Lkn11 is a real–valued function, it therefore follows from (5.12) and (e) that the
arguments of Qn11(ω) are the same (mod 2π) whenever Qn11 6= 0. This in turn implies
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that the set of accumulation points of the sequence (kγn)∞k=0 is a singleton (mod 2π). This
yields γn = 0 (mod 2π). Thus λn ∈ R, and, as λn is close to 1 (by Proposition 5.2), it is
positive. Knowing this and assuming g ≥ 0, the equality

Qng = λ−kn Lkng − λ−kn ∆k
n(g),

along with (e) of Proposition 5.2, non-negativity of Lkng, and inequality |λn| > (1 + κ)/2,
yield Qng ≥ 0. Finally, for g ∈ Bθ(R), write canonically g = g+ − g− with g+, g− ∈ B+

θ (R)
and apply the invariance of B+

θ (R) under the action of Ln. The proof is complete. �

As an immediate consequence of this proposition and Proposition 5.2, we get the following.

Corollary 5.4. The function gn : Bθ → Bθ belongs to B+
θ (R).

Corollary 5.5. The projector operator Qn : Bθ → Bθ gives rise to the bounded linear

positive functional Q̂n : Bθ → R, uniquely determined by the formula

Qn(g) = Q̂n(g)gn.

Remark 5.6. We would like to note that unlike [20], we did not use the dynamics (i.e., the
interpretation of log λn as some topological pressure) to demonstrate item (f) of Proposi-
tion 5.2 and to prove Proposition 5.3. We instead used the full power of the perturbation
results from [25]. (+++ Redo this remark from here) The dynamical interpretation
will eventually emerge, and will be important for us, but not until Section 16. Therein
Lemma ?? will provide, at least in part, a dynamical interpretation.

6. An Asymptotic Formula for λns,
the Leading Eigenvalues of Perturbed Operators

In this section we keep the setting of the previous sections. Our goal here is to estblish the
asymptotic behavior of eigenvalues λn as n diverges to +∞. Let

U∞ :=
∞⋂
n=0

Un.

In addition to (U0), (U1), and (U2), we now also assume that:

(U3) U∞ is a finite set.

(U4) Either
(U4A)

U∞ ∩
∞⋃
n=1

σn(U∞) = ∅

or

(U4B) U∞ = {ξ}, where ξ is a periodic point of σ of prime period equal to some
integer p ≥ 1, the pre-concatenation by the first p terms of ξ with elements of
Un satisfy

(6.1) ξ|pUn ⊆ Un
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for all n ≥ 0, and

(6.2) lim
n→∞

sup{|ϕ(ω)− ϕ(ξ)| : ω ∈ Un} = 0.

(U5) There are no integer l ≥ 1, no sequence
(
ω(n)

)∞
n=0

of points in E∞A , and no increasing

sequence
(
sn
)∞
n=0

of positive integers with the following properties:

(U5A)

ω(n), σl(ω(n)) ∈ Usn
for all n ≥ 0,

(U5B)

lim
n→∞

dθ(ω
(n), U∞)

{
> 0 if (U4A) holds,

> θl if (U4B) holds,

(U5C)

lim
n→∞

l∑
i=1

ω
(n)
i < +∞,

for fixed l, where we identify E with the natural numbers to give ω
(n)
i their

numerical values.

These conditions may seem somewhat artificial and a little bit weird at the first look. In
fact these are tailored for the needs of Part 3 devoted to graph directed Markov systems.
Their meaning will be fully transparent when we pass to deal with these systems. At the
moment we would like only to make the following short comments:

• If U∞ happens to be a singleton (a very common case) then condition (U4A) just
means that this singleton is not a periodic point of the shift map σ; periodic points
are dealt with in (U4B).

• Condition (6.1) holds always if for example Un is contained in some cylinder [ξ|q]
and contains the cylinder [ξ|q+p].
• Condition (6.2) is just the continuity of ϕ at the point ξ if the sets Un form a

sequence of neighborhoods of ξ with diameters converging to 0. However, alluding
to the context of graph directed Markov systems from Part 3 and furthers, Un will
be then inverse images of some neighborhoods of singletons in the limit set under
the natural projection from the symbol space, and these inverse images may consist
of more than one point. More to it:
• If

(U5′) lim sup
n→∞

sup{distθ(ω, U∞) : ω ∈ Un} = 0,

then (U5B) cannot occur and condition (U5) is trivially satisfied. If however the
alphabet E is infinite, then even if the sets Un are inverse images of some small
neighborhoods of singletons in the limit set under the natural projection from the
symbol space, their diameters, i.e. of the sets Un, need not converge to 0, nor even
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(U5’) needs to hold. Note that condition (U2) does not rule out the possibility of
such phenomenon to happen. However even if (U5’) fails, condition (U5), being a
kind of its surrogate, will be satisfied for sets Un considered in Part 3. This condition
will be used several times in our proofs, perhaps most transparently, in the proof of
Lemma 6.2.

Having proved all the perturbation results of the previous section, we shall now derive
several further relations between measure µϕ, the operators L and Ln, and their respec-
tive eigenvalues. Unlike the previous sections we formulate these results for unnormalized
operators since this is the form (i.e. involving unnormalized operators), these results are
most suitable for applications in later sections. We however in the proofs assume fre-
quently anyway, without loss of generality, that the operators are normalized. We start
with the following analogue of Proposition 4.1 in [20], which is our main result concerning
the asymptotic behavior of eigenvalues λn as n→ +∞.

Proposition 6.1. With the setting of Sections 3 and 4, assume that (U0)–(U5) hold. Then

lim
n→∞

λ− λn
µϕ(Un)

=

{
λ if (U4A) holds,

λ(1− λ−peϕp(ξ)) if (U4B) holds,

where λ and λn are respective eigenvalues of original (i. e., we recall, not normalized)
operators L and Ln.

This proposition will follow from a sequence of several lemmas we shall prove now. We
need a bit of preparation. For every integer n ≥ 0 let νn be µϕ-conditional measure on Un,
i. e.:

νn :=
µϕ|Un
µϕ(Un)

.

We denote

11cn := 11Un = 11− 111
n.

We start with the following.

Lemma 6.2. If (U0)–(U4A) and (U5) hold, then

lim
n→∞

∫
Qn

(
L11cn

)
dνn

λ− λn
= lim

n→∞

∫
E∞A

Qn11 dνn = 1.
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Proof. Assume without loss of generality that L is normalized so that λ = 1 and L11 = 11.
With an aim to prove the first equality, we note that∫

Qn(L11cn) dνn =

∫
Qn(L11− L111

n) dνn =

∫
Qn(11− Ln11) dνn

=

∫
Qn11 dνn −

∫
QnLn11 dνn =

∫
Qn11 dνn −

∫
LnQn11 dνn

=

∫
Qn11 dνn − λn

∫
Qn11 dνn

= (1− λn)

∫
Qn11 dνn,

using Proposition 5.2. and the first equality is established. Now, fix an arbitrary integer
k ≥ 1. For every ω ∈ Un let

(6.3) σ−k0 (ω) := {τ ∈ σ−k(ω) : ∃ 0≤j≤k−1 σ
j(τ) ∈ Un}

and

(6.4) σ−kc (ω) := σ−k(ω) \ σ−k(ω).

If τ ∈ σ−k0 (ω), then σj(τ) ∈ Un for some 0 ≤ j ≤ k − 1. Denote σj(τ) by γ. Then

γ ∈ Un and σk−j(γ) ∈ Un; 1 ≤ k − j ≤ k.

Fix an arbitraryM > 0. We claim that for all n ≥ 0 sufficiently large, say n ≥ N := Nk(M),
we have that

(6.5)

k−j∑
i=1

γi ≥Mk

for any γ = σj(τ) for any τ ∈ σ−k0 (ω) Indeed, seeking a contradiction we assume that there
exist an increasing sequence (sn)∞0 of positive integers, a sequence

(
γ(n)

)∞
0
⊆ E∞A , and an

integer l ∈ [1, k] such that

(6.6) γ(n), σl(γ(n)) ∈ Usn ,
and

l∑
i=1

γ
(n)
i < Mk

for all n ≥ 0. It then follows from conditions (U4A) and (U5) that the contrapositive of
(U5B) holds, i.e.:

lim
n→∞

dθ(γ
(n), U∞) = 0.

Hence, from continuity of the shift map σ : E∞A → E∞A and from the finiteness of the set
U∞ (by (U3)),

lim
n→∞

dθ
(
σl(γ(n)), σl(U∞))

)
= 0.
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So, passing to a subsequence, and invoking finiteness of the set σl(U∞), we may assume
without loss of generality that the sequence

(
σl(γ(n))

)∞
0

has a limit, call it β, and then

β ∈ σl(U∞). But, since the sequence
(
Un

)∞
0

is descending, it follows from (6.6) that

β ∈ U q for every q ≥ 0. Thus β ∈
⋂∞
q=0 U q = U∞. We have therefore obtained that

U∞ ∩ σl(U∞) 6= ∅ as this set contains β. This contradicts (U4A) and finishes the proof of
(6.5). So, letting n ≥ Nk(M) and ω ∈ Un, we get

(6.7)

Lkn11(ω) = Lk(111
n)(ω)

=
∑

τ∈σ−kc (ω)

111
n(τ)eϕk(τ) +

∑
τ∈σ−k0 (ω)

111
n(τ)eϕk(τ)

=
∑

τ∈σ−kc (ω)

eϕk(τ) = Lk11(ω)−
∑

τ∈σ−k0 (ω)

eϕk(τ)

= 11(ω)−
∑

τ∈σ−k0 (ω)

eϕk(τ).

Now, if τ ∈ σ−k0 (ω), then γ := σjτ (τ) ∈ Un with some 0 ≤ jτ ≤ k − 1, and using (6.5), we
get

(6.8)

S0(ω) : =
∑

τ∈σ−k0 (ω)

eϕk(τ) �
∑

τ∈σ−k0 (ω)

µϕ([τ ]) = µϕ

 ∑
τ∈σ−k0 (ω)

[τ ]


≤ µϕ

(
k−1⋃
j=0

σ−j

(⋃
e≥M

[e]

))

≤
k−1∑
j=0

µϕ

(
σ−j

(⋃
e≥M

[e]

))
=

k−1∑
j=0

µϕ

(⋃
e≥M

[e]

)

= kµϕ

(⋃
e≥M

[e]

)
.

This means that there exists a constant C > 0 such that

S0(ω) ≤ Ckµϕ

(⋃
e≥M

[e]

)
.
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Denote the number Cµϕ
(⋃

e≥M [e]
)

by ηM . Using (6.8), (6.7), and Proposition 5.2, we get
the following.∣∣∣∣1− ∫ Qn11 νn

∣∣∣∣ =

∣∣∣∣∫ 11 dνn −
∫
Qn11 dνn

∣∣∣∣ =

∣∣∣∣∫ (Lkn11 + S0

)
dνn −

∫
Qn11 νn

∣∣∣∣
=

∣∣∣∣∫ (Lkn − λknQn

)
11 dνn +

∫
(λkn − 1)Qn11 dνn +

∫
S0 dνn

∣∣∣∣
≤
∫
|∆k

n11| dνn + |λkn − 1| · ||Qn11||∞ +

∫
S0 dνn

≤ Cκn + C|λkn − 1|+ kηM .

Now, fix ε > 0. Take then n ≥ 1 so large that Cκn < ε/3. Next, take M ≥ 1 so large
that kηM < ε/3. Finally take any n ≥ Nk(M) so large that C|λkn − 1| < ε/3. Then∣∣1− ∫ Qn11 νn

∣∣ < ε, and the proof is complete. �

The proof of the next lemma, corresponding to Lemma 4.3 in [20], goes through unaltered
in the case of an infinite alphabet. We include it here for the sake of completeness and for
the convenience of the reader.

Lemma 6.3. If (U1)-(U4A) and (U5) hold, then

lim
n→∞

∫
Qn

(
L11cn

)
dνn

µϕ(Un)
= λ.

Proof. We assume without loss of generality that λ = 1. Let τn : Un → Un be the first
return time from Un to Un under the shift map σ : E∞A → E∞A . It is defined as

τn(ω) := inf{k ≥ 1 : σk(ω) ∈ Un}.

By Poincaré’s Recurrence Theorem, τn(ω) < +∞ for µϕ–a.e. ω ∈ E∞A . We deal with the
concept of first return time and first return time more thoroughly in Sections 19, 20, and
21. We have∫

Un

τn dνn =
∞∑
i=1

iνn(τ−1
n (i)) =

∞∑
i=1

iνn
(
11τ−1

n (i)

)
= νn(τ−1

n (1)) +
∞∑
i=2

iνn
(
11i−1
n ◦ σ · 11cn ◦ σi

)
= νn(τ−1

n (1)) +
∞∑
i=2

i

µϕ(Un)
µϕ
(
11i−1
n ◦ σ · 11cn ◦ σi

)
= νn(τ−1

n (1)) +
∞∑
i=2

i

µϕ(Un)
µϕ
(
Li
((

11i−1
n ◦ σ · 11cn ◦ σi

))
.

Now using several times the property Lj(f · g ◦ σj) = gLj(f), a formal calculation leads to∫
Un

τn dνn = νn(τ−1
n (1)) +

∞∑
i=2

iνn
(
Li−1
n (L(11cn))

)
.
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Invoking at this point Proposition 5.2, we further get∫
Un

τn dνn = νn(τ−1
n (1)) +

∞∑
i=2

iνn
(
λi−1
n QnL(11cn) + ∆i−1

n L(11cn)
)

= νn(τ−1
n (1)) + νn

(
QnL(11cn)

) ∞∑
i=2

iλi−1
n +

∞∑
i=2

iνn
(
∆i−1
n L(11cn)

)
= νn(τ−1

n (1)) + νn
(
QnL(11cn)

)( 1

(1− λn)2
− 1

)
+
∞∑
i=2

iνn
(
∆i−1
n (L11− L11n)

)
= νn(τ−1

n (1)) + νn
(
QnL(11cn)

)( 1

(1− λn)2
− 1

)
+
∞∑
i=2

iνn
(
∆i−1
n (L11− Ln11)

)
= νn(τ−1

n (1)) + νn
(
QnL(11cn)

)( 1

(1− λn)2
− 1

)
+

+
∞∑
i=2

iνn
(
∆i−1
n (L11)

)
−
∞∑
i=2

iνn
(
∆i
n11)
)
.

Since, By Kac’s Theorem,
∫
Un
τn dνn = 1/µϕ(Un), multiplying both sides of this formula by

νn
(
QnL(11cn)

)
, we thus get

νn
(
QnL(11cn)

)
µϕ(Un)

=

(
νn
(
QnL(11cn)

)
1− λn

)2

+ νn
(
QnL(11cn)

)(
νn(τ−1

n (1))− νn
(
QnL(11cn)

)
+

+
∞∑
i=2

iνn
(
∆i−1
n (L11)

)
−
∞∑
i=2

iνn
(
∆n11)

)
.

Since, by Lemma 6.2,

lim
n→∞

νn
(
QnL(11cn)

)
1− λn

= 1,

we have that limn→∞ νn
(
QnL(11cn)

)
= 0, and since, applying Proposition 5.2 again, we

deduce that the four terms in the big parentheses above are bounded, we get that

lim
n→∞

νn
(
QnL(11cn)

)
µϕ(Un)

= 1.

The proof is complete. �

We shall prove the following.

Lemma 6.4. If (U1)-(U3), (U4B) and (U5) hold, then

lim
n→∞

∫
Qn

(
L11cn

)
dνn

λ− λn
= lim

n→∞

∫
E∞A

Qn11 dνn = 1− λ−peϕp(ξ).



44 MARK POLLICOTT AND MARIUSZ URBAŃSKI

Proof. Assume again without loss of generality that L is normalized so that λ = 1 and
L11 = 11. The first equality is general and has been established at the beginning of the
proof of Lemma 6.2. We will thus concentrate on the second one. So, fix ω ∈ Un and k, an
integral multiple of p, say k = qp with q ≥ 0. Define the sets σ−k0 (ω) and σ−kc (ω) exactly
as in the proof of Lemma 6.2, i.e. by formulae (6.3) and (6.4). We further repeat the proof
of Lemma 6.2 verbatim until formula (6.5), which now takes on the form:

Either both k − j ≥ p and γ|k−j = ξ|k−j or else

k−j∑
i=1

γi ≥Mk.

Indeed, this is an immediate consequence of (U4B) and (U5). In other words

σ−k0 (ω) = σ−k1 (ω) ∪ σ−k2 (ω),

where

σ−k1 (ω) :=
{
τ ∈ σ−k0 (ω) : ∃ (0 ≤ j ≤ q − 1) σpj(τ) ∈ Un and σpj(τ)|p(q−j) = (ξ|p)q−j

}
and

σ−k2 (ω) = σ−k0 (ω) \ σ−k1 (ω)

⊆
{
τ ∈ σ−k0 (ω) : ∃ (0 ≤ j ≤ k − 1) σj(τ) ∈ Un and

k∑
i=j+1

τi ≥Mk
}
.

Now, we shall prove that

(6.9) σ−k1 (ω) = Z :=
{
τ ∈ σ−k0 (ω) : σk−p(τ) ∈ [ξ|p]

}
.

Indeed, denote the set on the right-hand side of this equality by Z. If τ ∈ Z, then
σp(q−1)(τ)|p = ξ|p and

σp(q−1)(τ) =
(
σp(q−1)(τ)

)
|pσpq(τ) = ξ|pω ∈ ξ|pUn ⊆ Un,

where the last inclusion is due to (U4B). Thus, taking j = q − 1, we see that τ ∈ σ−k1 (ω).
So, the inclusion

(6.10) Z ⊆ σ−k1 (ω)

has been established. In order to prove the opposite inclusion, let τ ∈ σ−k1 (ω). Then there
exists j ∈ {0, 1, . . . , q − 1} such that σpj(τ) ∈ Un and σpj(τ)|p(q−j) = (ξ|p)q−j. Then

σk−p(τ)|p =
(
σp(q−j−1) ◦ σpj(τ)

)
|p = σpj(τ)|p(q−j)+1

p(q−j−1)+1 = ξ|p,

and so, τ ∈ Z. This establishes the inclusion σ−k1 (ω) ⊆ Z, and, together with (6.10)
completes the proof of (6.9).
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Therefore, keeping ω ∈ Un and using (6.9) and (6.7)we can write

(6.11)

Lkn11(ω) = Lk(111
n)(ω)

= 11(ω)−
∑

τ∈σ−k1 (ω)

eϕk(τ) −
∑

τ∈σ−k2 (ω)

eϕk(τ)

= 11(ω)−
∑

τ∈σ−k(ω)

11[ξ|p] ◦ σp(q−1)(τ)eϕk(τ) −
∑

τ∈σ−k2 (ω)

eϕk(τ)

= 11(ω)− Lpq
(
11[ξ|p] ◦ σp(q−1)

)
(ω)−

∑
τ∈σ−k2 (ω)

eϕk(τ)

= 11(ω)− Lp
(
11[ξ|p]

)
(ω)−

∑
τ∈σ−k2 (ω)

eϕk(τ).

Putting

S2(ω) :=
∑

τ∈σ−k2 (ω)

eϕk(τ)

and keeping ηM the same as in the proof of Lemma 6.2, the same estimates as in (6.8), give
us

S2(ω) ≤ kηM .

Hence, using also (6.11), we get∣∣∣1− eϕp(ξ) −
∫
Lkn11 dνn

∣∣∣ =

∣∣∣∣∫ Lp(11[ξ|p]

)
dνn − eϕp(ξ) +

∫
S2 dνn

∣∣∣∣ =

=

∣∣∣∣∫ (eϕp(ξ|pω)− eϕp(ξ)
)
dνn +

∫
S2 dνn

∣∣∣∣
≤
∫ ∣∣eϕp(ξ|pω)− eϕp(ξ)

∣∣dνn +

∫
S2 dνn

≤ εn + kηM ,

with some εn → 0 resulting from the last item of (U4B). Hence, keeping k fixed and letting
M and then n to infinity, we obtain

(6.12) lim
n→∞

∫
Lkn11 dνn = 1− eϕp(ξ)

for every k = qp ≥ 1. Using Proposition 5.2, we get∣∣∣ ∫ Lkn11 dνn −
∫
Qn11 dνn

∣∣∣ =
∣∣∣ ∫ (Lkn − λknQn

)
11 dνn +

∫ (
λkn − 1

)
Qn11 dνn

∣∣∣
≤
∥∥∥(Lkn − λknQn

)
11
∥∥∥
∞

+
∣∣λkn − 1

∣∣ · ∥∥Qn11
∥∥
∞

≤
∥∥∆k

n

∥∥
∞ + C

∣∣λkn − 1
∣∣

≤ Cκk + C
∣∣λkn − 1

∣∣.
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So, fixing ε > 0, we first take and fix k ≥ 1 large enough so that Cκk < ε/2, and then
using Proposition 5.2, we take n ≥ 1 large enough so that C

∣∣λkn − 1
∣∣ < ε/2. Combining

this with (6.12), we finally get the desired equality

lim
n→∞

∫
Qn11 dνn = 1− eϕ(p)(ξ).

The proof is complete. �

Applying Lemma 6.4 and proceeding along the lines of the proof of Lemma 6.3 (or Lemma
4.3 in [20]), we get the following analogue of Lemma 4.5 from [20].

Lemma 6.5. If (U1)-(U3), (U4B) and (U5) hold, then

lim
n→∞

∫
Qn

(
L11cn

)
dνn

µϕ(Un)
. = λ

(
1− λ−peϕp(ξ)

)2

Having proved Lemmas 6.2, 6.3, 6.4, and 6.5, Proposition 6.1 follows.

Part 2. Symbol Escape Rates and the Survivor Set K(Un)

7. The Existence and Values of Symbol Escape Rates Rµϕ(Un) and Their
Asymptotics as n→∞

We first recall the basic escape rates definitions. Let G be an arbitrary subset of E∞A .
We set

(7.1) Rµϕ(G) := − lim
k→+∞

1

k
log µϕ

({
ω ∈ E∞A : σi(ω) 6∈ G for all i = 0, 1, 2, · · · , k − 1

})
and

(7.2) Rµϕ(G) := − lim
k→+∞

1

k
log µϕ

({
ω ∈ E∞A : σi(ω) 6∈ G for all i = 0, 1, 2, · · · , k − 1

})
.

We call Rµϕ(G) and Rµϕ(G) respectively the lower and the upper escape rate of G. Of
course

Rµϕ(G) ≤ Rµϕ(G),

and if these two numbers happen to be equal, we denote their common value by

Rµϕ(G)

and call it the escape rate of G. We provide here for the sake of completeness and conve-
nience of the reader the short elegant proof, entirely taken from [20], of the following.

Theorem 7.1. If (U0)-(U5) hold, then for all integers n ≥ 0 large enough the escape rates
Rµϕ(Un) exist, and moreover

Rµϕ(Un) = log λ− log λn.
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Proof. Assume without loss of generality that the Perron-Frobenius operator L : Bθ → Bθ
is fully normalized so that λ = 1 and L11 = 11. By virtue of Proposition 5.2 (b), (c), and
(d), we have for every n ≥ 0 large enough and for all k ≥ 1 that

(7.3)

µϕ

({
ω ∈ E∞A :σi(ω) 6∈ Un for all i = 0, 1, 2, · · · , k − 1

})
=

= µϕ

(
k−1⋂
j=0

σ−j(U c
n)

)
=

∫
E∞A

11kn dµϕ =

∫
E∞A

Lk
(
11kn
)
dµϕ

=

∫
E∞A

Lkn(11) dµϕ =

∫
E∞A

(
λknQn11 + ∆k

n11
)
dµϕ

= λkn

∫
E∞A

Qn11 dµϕ +

∫
E∞A

∆k
n11 dµϕ.

So, employing Proposition 5.2 (b) and Proposition 5.3, the latter to make sure that
λn ∈ (0,+∞) and

∫
E∞A

Qn11 dµϕ ∈ (0,+∞), we conclude from (7.3) with the help of Propo-

sition 5.2 (e) and (g), that the limit

lim
k→+∞

1

k
log µϕ

({
ω ∈ E∞A : σi(ω) 6∈ Un for all i = 1, · · · , k

})
exists and is equal to log λn. The proof is complete. �

Now we are in position to prove the following main result of this section.

Proposition 7.2. With the setting of Sections 3 and 4, assume that (U0)–(U5) hold. Then

lim
n→∞

Rµϕ(Un)

µϕ(Un)
=

{
1 if (U4A) holds,

1− exp
(
ϕp(ξ)− pP(ϕ)

)
if (U4B) holds.

Proof. By Theorem 7.1 we have

Rµϕ(Un) =
log λ− log λn

µϕ(Un)
= − log λn − log λ

λn − λ
· λn − λ
µϕ(Un)

.

Therefore, invoking Proposition 6.1, we get that

lim
n→∞

Rµϕ(Un)

µϕ(Un)
= lim

n→∞

log λn − log λ

λn − λ
· lim
n→∞

λ− λn
µϕ(Un)

=
1

λ

{
λ if (U4A) holds,

λ(1− λ−p exp
(
ϕp(ξ)

)
if (U4B) holds.

=

{
1 if (U4A) holds,

1− exp
(
ϕp(ξ)− pP(ϕ)

)
if (U4B) holds.

The proof is complete. �
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8. Conditionally Invariant Measures on U c
n

Following [9] we call a Borel probability measure ν on U c
n conditionally invariant if there

exists α ∈ (0,+∞) such that

(8.1) ν(U c
n ∩ σ−1(A)) = αν(A)

for every Borel set A ⊂ U c
n. In slightly different terms, a Borel probability measure ν on

E∞A is conditionally invariant with respect to U c
n if ν(U c

n) = 1 and

(8.2) ν ◦ σ−1 = αν.

We will frequently treat conditionally invariant measures in this way, i.e., as Borel prob-
ability measures on E∞A with support on U c

n. Precisely, the phrase “a Borel probability
measure ν on U c

n” will mean a Borel probability measure ν on E∞A with ν(Un) = 0.
From (8.2) and the fact that ν(U c

n) = 1 we get

(8.3) α = αν(U c
n)) = ν(σ−1(U c

n)).

For the sake of completeness we shall prove the following two facts relating conditionally
invariant measures with the action of truncated Perron-Frobenius operator operators Ln
Lemma 8.1. A Borel probability measure ν on U c

n absolutely continuous with respect to
the equilibrium state µ = µϕ, with Radon–Nikodym derivative h, is conditionally invariant
if and only if

Ln(h)|Ucn = αh|Ucn
for some α ∈ (0, 1].

Proof. The measure hµ is conditionally invariant if and only if for every Borel set A ⊂ U c
n

we have that

α

∫
Λ

hdµ = αν(A) = ν(σ−1A)

= ν(11n11A ◦ σ) =

∫
E∞A

h11n11A ◦ σ dµ

=

∫
E∞A

L(h11n11A ◦ σ) dµ =

∫
A

L(11nh) dµ =

∫
A

Ln(h)dµ.

But this holds if and only if

Ln(h) = αh

µ–a.e., U c
n. This completes the proof. �

Corollary 8.2. If ν is a conditionally invariant measure on U c
n absolutely continuous with

respect to the equilibrium state µ = µϕ with Radon-Nikodym derivative h = dν/dm and
escaping factor α, then

Lkn(h)|Ucn = αkh|Ucn
for every integer k ≥ 0.
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Proof. We proceed by induction. For k = 0 the statement is trivially true. Next, suppose
that it holds for some integer k ≥ 0. Then Lknh|Ucn is a scalar multiple of h|Ucn . But then
by linearity of the operator Ln and Lemma 8.1 we get that Ln(Lknh)|Ucn = αLnh|Ucn . The
inductive hypothesis then gives that

Lk+1
n h|Ucn = αk+1h|Ucn

and the proof is complete. �

We shall prove the following theorem about conditionally invariant measures.

Theorem 8.3. If n ≥ 0 is big enough as required in Proposition 5.2 then

µ̂n := (µ(gn11n))−1gn|Ucnµϕ|Ucn
is a unique conditionally invariant measure on U c

n absolutely continuous with respect to
µϕ|Ucn whose Radon-Nikodyn derivative dµ̂n/dµϕ belongs to Bθ. In addition, the coefficient
α of (8.1) and (8.2) is equal to λn(= µ̂n(σ−1(U c

n))) and for every Borel set B ⊂ U c
n we have

that

lim
k→+∞

µϕ(σ−k(B) ∩ U c
n)

µϕ(σ−k(U c
n) ∩ U c

n)
= µ̂n(B).

Proof. Because of Corollary 5.4 µ̂n is a Borel (positive) probability measure on U c
n. Denote

β := (µϕ(gn11n))−1.

Using (5.10) we get that for every Borel set B ⊂ U c
n that

µ̂n(σ−1(B)) = βµϕ(11ngn11B ◦ σ) = βµϕ(L(11ngn11B ◦ σ))

= βµϕ(11BL(11ngn)) = βµϕ(11BLn(gn))

= βµϕ(11Bλngn) = λnβµϕ(11Bgn)

= λnµ̂n(B).

Thus, also

λn = λnµ̂n(U c
n) = µn(σ−1(U c

n))

Now we shall show the uniqueness of µ̂n. So suppose that hµ is a conditionally invariant
measure with h : E∞A → [0,+∞) belonging to Bθ and identically equal to zero on Un. Then
by Proposition 5.2, Corollary 5.5, and Corollary 8.2, we have that for every integer k ≥ 0
that

(8.4) αkh|Ucn = (λknQn(h) + ∆k
nh)|Ucn = (λknQ̂n(h)gn + ∆k

nh)|Ucn .

Assuming that n ≥ 0 is large enough that it follows from Proposition 5.2 (e) and (f) that
α = λn and limk→+∞ ‖λ−kn ∆k

nh‖∞ = 0. Therefore, after dividing both sides of (8.4) by λkn
and letting k → +∞, we conclude that h|Ucn = Q̂n(h)gn|Ucn , The proof of the first assertion
of our theorem is complete.

The second assertion, α = λn = µ̂n(σ−1(U c
n)) is now an immediate consequence of (8.3).
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The third and final assertion of the theorem follows from the following calculation.

lim
k→+∞

µϕ

(
σ−k(B) ∩

⋂k−1
j=0 σ

−j(U c
n)
)

µϕ

(
σ−k(Un) ∩

⋂k−1
j=0 σ

−j(U c
n)
) = lim

k→+∞

µϕ(11B ◦ σk11kU)

µϕ(11Ucn ◦ σk11
k
n)

=

= lim
k→+∞

µϕ(Lϕ(11B ◦ σk11kn))

µϕ(Lϕ(11Ucn ◦ σk11
k
n)

= lim
k→+∞

µϕ(11BLkϕ(11kn))

µϕ(11UcnLkϕ(11kn)

= lim
k→+∞

µϕ(11BLn(11)

µϕ(11UcnLn(11)

=
µϕ(11Bgn)

µϕ(11Ucngn

= µ̂n(B).

This complete the proof. �

We cannot really do much better with the uniqueness part of this theorem; the hypothesis
that the Radon-Nikodyn derivative dµ̂n/dµϕ belongs to Bθ is important. Indeed, it follows
from Theorem 3.1 in [14], that for every α ∈ (0, 1) there are uncountably (a continuum) of
many conditionally invariant measures absolutely continuous with respect to µϕ. Moreover,
if α ∈ (0, 1) is sufficiently small, then the Radon-Nikodym derivatives of all these measures
with respect to µϕ are bounded.

9. Symbol Escape Rates of Uns, I: The Variational Principle on the
Survivor Sets K(Un)

We assume again, what is very natural in the context of this section, that the Perron–
Frobenius Lϕ is fully normalized; in particular its leading eignevalue (simultaneously the
spectral radius) λ = 1. Theorem 7.1 then asserts that

(9.1) Rµϕ(Un) = − log λn.

for all integers n ≥ 0 large enough.
Since the survivor sets K(Un), n ≥ 1, are closed and forward invariant with respect to

the shift map σ : E∞A → E∞A we can consider the dynamical system

σ|K(Un) : K(Un)→ K(Un).

Let M(σ) denote the space of all Borel probability σ-invariant measures on E∞A endowed
with the the weak convergence topology. Let

Mn(σ) :=
{
ν ∈M(σ) : ν(K(Un)) = 1

}
,

M+
n (σ) :=

{
ν ∈M(σ) :

∫
ϕdν > −∞

}
,

and letMe
n(σ),Me

n(σ) andM+,e
n (σ) denote the respective subspaces of ergodic measures.

Our goal in the upcoming two sections is to prove the following two results.
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Theorem 9.1. (Variational Principle) If (Un)∞n=0 is a sequence of open subsets of E∞A
satisfying conditions (U0-U5), then

sup
{

hν(σ)+

∫
K(Un)

ϕdν : ν ∈M+
n (σ)

}
= sup

{
hν(σ)+

∫
K(Un)

ϕdν : ν ∈M+e
n (σ)

}
= log λn

for all n ≥ 1 large enough.

This is the first result. The other one is to show that there exists a unique measure in
M+

n (σ) (and that it belongs to M+e
n (σ)) maximizing the above suprema, and to define it

explicitly. We will call this measure the surviving equilibrium state for Un. In this section
we will show that

(9.2) sup
{

hν(σ) +

∫
K(Un)

ϕdν : ν ∈M+
n (σ)

}
≤ log λn.

All other assertions we mentioned above will be proved in the next two sections. Let
ν ∈M+

n (σ). For every k ≥ 1 let

Fn(k) :=
{
ω ∈ En

A : [ω] ∩K(Un) 6= ∅
}

and let

Zn(k) :=
∑

ω∈Fn(k)

exp(sup(ϕk|[ω])).

Denote by α the partition of E∞A into cylinders of length one, i.e,

α = {[e]}e∈E.

Then for every k ≥ 1,

αk := α ∨ σ−1(α) ∨ σ−2(α) ∨ · · · ∨ σ−(k−1)(α) = {[ω]}ω∈EkA .

Denote by h the function (0,+∞) 3 x 7→ −x log x ∈ R. Since this function is concave,
the following calculation, standard in thermodynamic formalism, gives us that for every
ν ∈M+

n (σ) and every integer k ≥ 1:
(9.3)

Hν(α
k) +

∫
ϕkdν ≤

∑
ω∈Fn(k)

ν([ω])
(
sup(ϕk|[ω])− log ν([ω])

)
= Zn(k)

∑
ω∈Fn(k)

Zn(k)−1 exp
(
sup(ϕk|[ω])

)
h
(
ν([ω] exp(− sup(ϕk|[ω])))

)

≤ Zn(k)h

 ∑
ω∈Fn(k)

Zn(k)−1 exp
(
sup(ϕk|[ω])

)
ν([ω] exp

(
− sup(ϕk|[ω])

)
= Zn(k)h(Z−1

n (k)) = logZn(k)
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Now our goal is to estimate Zn(k), Since the potential ϕ : E∞A → R is summable, there
exists l ≥ 1 such that

∞∑
e≥l+1

exp(sup(ϕ|[e])) <
1

2
.

We know from Proposition 5.2 that for every n ≥ 1 large enough

λn >
1

2
.

We have the estimate

Zn(k) ≤
k−1∑
j=0

∑
s≤l

∑
ω∈Fn(k)
ωj=s

exp
(

sup(ϕj|[ω])
) ∑
τ(Ncl )

k−j
A

exp
(

sup(ϕk−j|[τ ])
)

≤
k−1∑
j=0

∑
s≤l

Ljn11(γs)

(
1

2

)k−j
where γs ∈ K(Un) is fixed such that As(γs)0 = 1. Applying Proposition 5.2 we further
estimate

Zn(k) ≤
k∑
j=0

∑
s≤l

(
λjnQn11(γs) + ∆k

n11(γ0)

(
1

2

)k−j)

≤ Γl
k−1∑
j=0

λjn

(
1

2

)k−j
=
λkn −

(
1
2

)k
λn − 1

2

≤ 4λkn

if n ≥ 1 is large enough and Γ is a constant. Therefore,

lim sup
k→+∞

1

n
logZn(k) ≤ log λn.

Inserting this into (9.3) we get

hν(σ) +

∫
ϕdν = lim

k→+∞

1

k

(
Hν(α

k) +

∫
ϕkdν

)
≤ log λn.

This establishes formula (9.2).

10. Symbol Escape Rates of Uns, II: The Variational Principle and
Equilibrium States on the Survivor Sets K(Un); Their Existence and

Stochastic Properties

Because of Proposition 5.2 and Proposition 5.3, for every n ≥ 1 large enough the formula

(10.1) Bθ 3 g 7→ Qn(gng) = µn(g)gn

where, we recall, gn = Qn11, defines a linear continuous positive functional µn : Bθ → R.
Speaking a little vaguely, the ultimate goal of this section is to prove that this functional

gives rise to a shift invariant Borel probability measure on K(Un) which maximizes the
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supremum in (9.2) with the value equal to log λn. Our first step in achieving this goal is
to prove the following.

Lemma 10.1. The linear functional Bθ 3 g 7→ µn(g) ∈ R restricted to Hb
θ(A) extends

(uniquely) to a positive linear functional from Cb(E
∞
A ) to R and thus it represents a Borel

finite measure on E∞A . We use the same notation of µn for this extension.

The most natural way to prove this lemma would be to apply the Daniell-Stone Rep-
resentation theorem, but we do not see any reasonable way to show that if a monotone
decreasing sequence of positive bounded Hölder continuous functions converges pointwise
to zero, then the sequence of respective values of the functional µn also converges to zero.
We therefore take a somewhat different way. We first approximate each set Un from above
by some suitable sets Un(q), q ≥ 1, apply the corresponding analogue of Proposition 5.2
for perturbations of the operator Ln and define the appropriate measures on the, what will
turn out to be compact, shift invariant sets K(Un(q)) by means of the Stone Represen-
tation Theorem of positive linear operators “on compact spaces”; the application of this
theorem does not require to show that the continuity (pointwise convergence) hypothesis
of the Daniell-Stone Representation Theorem is satisfied.

Then we will show that these shift-invariant measures on K(Un(q)) converge weakly as
q goes to infinity. The resulting weak limit is necessarily shift–invariant and supported on
K(Un). We will show that this is the required extension of µn.

So, given an integer l ≥ 1 we denote

Nl := {1, 2, . . . , l}.

Given also n ≥ 0 we set

U (l)
n := Un ∪

n−1⋃
j=0

σ−j(Nc
l ).

Given q ≥ n let lq ≥ 1 be the least integer such that

µϕ(Nc
lq) ≤ ρq/n.

Then

(10.2) µϕ

(
n−1⋃
j=0

σ−j(Nc
l )

)
≤ ρq.

Set

Un(q) := U lq
n .

Of course each open set Un(q) is a disjoint union of cylinders of length q so that condition
(U1) is satisfied for the sequence (Un(q))∞q=n. L := Lϕ is now the fully normalized transfer
operator associated to ϕ. As in Section 4 we define the operators

Ln,q(g) := L
(
11Ucn(q)g

)
.
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The space Bθ and the norm || · ||θ remain unchanged. We however naturally adjust the
seminorm | · |∗ to depend on our sequence (Un(q))∞q=n. We set for g ∈ B:

|g|∗n := sup
i≥0

sup
m≥1

{
θ−m

∫
σ−i(

⋃n−1
j=0 σ

−j(Nclm ))
|g| dµϕ

}
and

||g||∗n := ||g||1 + |g|∗n.
We intend to apply Keller and Liverani (see [25]) perturbation results. Because of (10.2),
Lemma 4.1 goes through for the norm || · ||∗n. We put

11kn,q :=
k−1∏
j=0

11σ−j(Ucn(q)) =
k−1∏
j=0

11Ucn(q) ◦ σj,

11k,∗n,q :=
k−1∏
j=0

11σ−j(
⋃n−1
j=0 σ

−j(Ncl ))
=

k−1∏
j=0

11⋃n−1
j=0 σ

−j(Ncl )
◦ σj,

and note that
11kn,q = 11kn · 11k,∗n,q.

The proof of Lemma 4.2 goes the same way for the operators Lkn,q with only formal change

of 11kn by 11kn,q and Um by Um(q). It gives:

Lemma 10.2. For every k ≥ 1 and for every q ≥ n, we have that

||Lkn,q||∗n ≤ 1.

Lemmas 4.3, 4.4, and Corollary 4.5 used only the (U1) property of the sequence (Un)∞n=0,
and therefore these apply to the sets Un(q), q ≥ n, and the operators Lkn,q (to be clear, the
role of n is in these three results is now played by the pair (n, q)). Fix a, b > 1 such that
1
a

+ 1
b

= 1 and

ρ1/a < θ.

We shall prove the following analogue of Lemma 5.1.

Lemma 10.3. For every n ≥ 0 we have

|||Ln − Ln,q||| ≤ 2(ρ1/b)q.

Proof. Fix an arbitrary g ∈ Bθ with ||g||θ ≤ 1. Using Lemma 3.1 and (10.2), we get

(10.3)

||(Ln − Ln,q)g||1 = ||L(11Ucn\Ucn(q)g)||1 = ||11Ucn\Ucn(q)g||1 ≤ µϕ(U c
n \ U c

n(q))||g||∞

= µϕ(U c
n ∩ Un(q))||g||∞ = µϕ

(
U c
n ∩

(
Un ∪

n−1⋃
j=0

σ−j(Nc
l )

))
||g||∞

= µϕ

(
U c
n ∩

n−1⋃
j=0

σ−j(Nc
l )

)
||g||∞ ≤ µϕ

(
n−1⋃
j=0

σ−j(Nc
l )

)
||g||θ

≤ ρq||g||θ ≤ ρq ≤ (ρ1/b)q.
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Also, using Cauchy-Schwarz Inequality, we get

θ−m
∫
σ−i(

⋃n−1
j=0 σ

−j(Nclm ))

∣∣(Ln − Ln,q)g∣∣ dµϕ =

= θ−m
∫
E∞A

11⋃n−1
j=0 σ

−j(Nclm ) ◦ σ
i
∣∣L(11Ucn\Ucn(q)g

)∣∣ dµϕ
≤ θ−m||g||∞

∫
E∞A

11⋃n−1
j=0 σ

−j(Nclm ) ◦ σ
iL
(
11Ucn\Ucn(q)

)
dµϕ

= θ−m||g||∞
∫
E∞A

L
(

11⋃n−1
j=0 σ

−j(Nclm ) ◦ σ
i+111Ucn\Ucn(q)

)
dµϕ

= θ−m||g||∞
∫
E∞A

11⋃n−1
j=0 σ

−j(Nclm ) ◦ σ
i+111Ucn\Ucn(q) dµϕ

≤ θ−m||g||∞
∫
E∞A

11⋃n−1
j=0 σ

−j(Nclm ) ◦ σ
i+111⋃n−1

j=0 σ
−j(Nclq ) dµϕ

= θ−m||g||∞
∫
E∞A

11σ−(i+1)(
⋃n−1
j=0 σ

−j(Nclm ))11⋃n−1
j=0 σ

−j(Nclq ) dµϕ

≤ θ−m||g||θµ1/a
ϕ

(
n−1⋃
j=0

σ−j(Nc
lm)

)
µ1/b
ϕ

(
n−1⋃
j=0

σ−j(Nc
lq)

)
≤ ||g||θ(ρ1/a/θ)mρq/b ≤ ρq/b||g||θ ≤ ρq/b.

Therefore,
∣∣(Ln−Ln,q)g∣∣∗n ≤ ρq/b, and together with (10.3), this completes the proof of our

lemma. �

Having all of this, particularly the last lemma, and taking into account the considerations
between the end of the proof of Lemma 5.1 and Proposition 5.2, we get the following
analogue of the latter for the operator L replaced by Ln, and the operators Ln replaced by
Ln,q.

Lemma 10.4. For all integers n ≥ 0 large enough and for all q ≥ n large enough there
exist two bounded linear operators Qn,q,∆n,q : Bθ → Bθ and complex numbers λn,q 6= 0 with
the following properties:

(a) λn,q is a simple eigenvalue of the operator Ln,q : Bθ → Bθ.

(b) Qn,q : Bθ → Bθ is a projector (Q2
n,2 = Qn,q) onto the 1–dimensional eigenspace of

λn,q.

(c) Ln,q = λn,qQn,q + ∆n,q.

(d) Qn,q ◦∆n,q = ∆n,q ◦Qn,q = 0.
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(e) There exist κn ∈ (0, 1) and C > 0 such that for every integer k ≥ 0 we have that

||∆k
n,n||θ ≤ C(κnλn)k.

In particular,
||∆k

n,qg||∞ ≤ ||∆k
n,qg||θ ≤ C(κnλn)k||g||θ

for all g ∈ Bθ.
(f) limq→∞ λn,q = λn.

(g) Enlarging the above constant C > 0 if necessary, we have

||Qn,q||θ ≤ C.

In particular,
||Qn,qg||∞ ≤ ||Qn,qg||θ ≤ C||g||θ

for all g ∈ Bθ.
(h) limq→∞ |||Qn,q −Qn||| = 0.

The following lemma can be proved in exactly the same way as was Proposition 5.3.

Lemma 10.5. All eigenvalues λn,q produced in Lemma 10.4 are real and positive, and
all operators Qn,q : Bθ → Bθ preserve Bθ(R) and B+

θ (R), the subspaces of Bθ consisting,
respectively, of real–valued functions and positive real–valued functions.

Remark 10.6. How large n needs to be in Lemmas 10.4 and 10.5 is determined by the
requirement that the assertions of Proposition 5.2 hold for such n.

Now, let us consider the dynamical systems σ : K(Un(q))→ K(Un(q)), where, we recall,

K(Un(q)) =
∞⋂
k=0

σ−k(U c
n(q)),

and we denote
Kn(q) := π

(
K(Un(q))

)
.

Note that all sets K(Un(q)) are compact. A straightforward elementary calculation shows
that if f, g ∈ Bθ, then

(10.4) ||fg||θ ≤ 3||f ||θ||g||θ.
Hence in particular fg ∈ Bθ. This allows us to define a linear functional µn,q : Bθ → R by
the requirement that

Qn,q(ggn,q) = µn,q(g)gn,q.

Since, by Lemma 10.5, Qn,q is a positive (Qn,q(B+
θ (R)) ⊆ B+

θ (R)) operator and Qn,q 6= 0 all
q ≥ n large enough, it follows that µn,q is a positive (µn,q(B+

θ (R)) ⊆ [0,+∞)) functional
and

(10.5) µn,q(11) = 1.
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Positivity of µn,q immediately implies its monotonicity in the sense that if f, g ∈ Bθ and
f(x) ≤ g(x) µϕ-a.e. in E∞A , then

(10.6) µn,q(f) ≤ µn,q(g).

Now, let Cu
b (E∞A ) be the vector subspace of Cb(E

∞
A ) consisting of all functions that are uni-

formly continuous with respect to the metric dθ. Let us define a function µ̂n,q : Cu
b (E∞A )→

[0,+∞) by the following formula:

(10.7) µ̂n,q(g) := sup
{
µn,q(f) : f ≤ g and f ∈ Hb

θ(A)
}
.

Of course by (10.6) we get that

(10.8) µ|Hbθ(A) = µn,q|Hbθ(A).

Given g ∈ Cu
b (E∞A ) and k ≥ 1 define two functions

g
k
(ω) := inf{g(τ) : τ ∈ [ω|k]} and gk(ω) := sup{g(τ) : τ ∈ [ω|k]}.

Of course

g
k
≤ g ≤ gk

and

(10.9) lim
k→∞
||g − g

k
||∞ = lim

k→∞
||g − gk||∞ = 0.

We shall prove that for every g ∈ Cu
b (E∞A ) we have that

(10.10) µ̂n,q(g) = µn,q(g) := inf
{
µn,q(f) : f ≥ g and f ∈ Hb

θ(A)
}
.

Then for every k ≥ 1 we have that

µ̂n,q(g) ≤ µn,q(gk) = µn,q
(
g
k

+ (gk − gk)
)

= µn,q(gk) + µn,q(gk − gk)
≤ µ̂n,q(g) + µ(||gk − gk||∞)

= µ̂n,q(g) + ||gk − gk||∞,

and invoking (10.9), we obtain µ̂n,q(g) ≤ µn,q(g) ≤ µ̂n,q(g), completing the proof of (10.10).
We now prove the next axiliary fact.

Lemma 10.7. The function µ̂n,q : Cu
b (E∞A ) → R is a positive linear functional such that

µ̂n,q(11) = 1 and µ̂n,q|Hbθ(A) = µn,q|Hbθ(A).

Proof. Positivity is immediate from formula (10.7). It is also immediate from this formula
that

(10.11) µ̂n,q(αg) = αµ̂n,q(g)
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for every α ≥ 0. Employing also (10.10), we get that

µ̂n,q(−g) = inf
{
µn,q(f) : f ≥ −g and f ∈ Hb

θ(A)
}

= inf
{
− µn,q(−f) : −f ≤ g and f ∈ Hb

θ(A)
}

= inf
{
− µn,q(f) : f ≤ g and f ∈ Hb

θ(A)
}

= − sup
{
µn,q(f) : f ≤ g and f ∈ Hb

θ(A)
}

= −µ̂n,q(g).

Along with (10.12) this implies that

(10.12) µ̂n,q(αg) = αµ̂n,q(g)

for every g ∈ Cu
b (E∞A ) and all α ∈ R. Now fix two functions f, g ∈ Cu

b (E∞A ). Because of
(10.10) and (10.7) there exist four sequences (f−k )∞1 , (f+

k )∞1 , (g−k )∞1 , and (g+
k )∞1 of elements

of Hb
θ(A) such that

f−k ≤ f ≤ f+
k , g−k ≤ g ≤ g+

k ,

and

lim
k→∞

µn,q(f
−
k ) = lim

k→∞
µn,q(f

+
k ) = µ̂n,q(f) and lim

k→∞
µn,q(g

−
k ) = lim

k→∞
µn,q(g

+
k ) = µ̂n,q(g).

Therefore, applying again (10.10) and (10.7), we obtain

µ̂n,q(f + g) ≥ lim
k→∞

µn,q(f
−
k + g−k ) = lim

k→∞
µn,q(f

−
k ) + lim

k→∞
µn,q(g

−
k ) = µ̂n,q(f) + µ̂n,q(g)

and

µ̂n,q(f + g) ≤ lim
k→∞

µn,q(f
+
k + g+

k ) = lim
k→∞

µn,q(f
+
k ) + lim

k→∞
µn,q(g

+
k ) = µ̂n,q(f) + µ̂n,q(g).

Hence,
µ̂n,q(f + g) = µ̂n,q(f) + µ̂n,q(g),

and along with (10.12) this finishes the proof of Lemma 10.7 (the last two assertions of this
lemma are immediate consequences of (10.5) and (10.8). �

Now we shall prove the following auxiliary fact.

Lemma 10.8. If g ∈ Cu
b (E∞A ) and g|K̃n,q = 0, then µ̂n,q(g) = 0.

Proof. Let
Fn,q =

{
ω ∈ En

A : [ω] ⊆ U c
n,q

}
,

and note that Fn,q is a finite set. For every k ≥ 1 let

U ck
n,q :=

k−1⋂
j=0

σ−j(U c
n).

We shall prove the following.

Claim 1: There exists p ≥ 1 such that if ω ∈ Ekn
A and [ω] ⊆ U ck

n,q, then [ω|kn−pn] ∩
K(Un(q)) 6= ∅.
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Proof. Let

(10.13) p := #Fn,q + 1 < +∞.

Seeking a contradiction suppose that k > p and

(10.14) [ω|(k−p)n] ∩K(Un(q)) = ∅

for some ω ∈ Ekn
A with [ω] ⊆ U ck

n,q. Because |ω|kn(k−p)n+1| = pn and because ω|kn(k−p)n+1 is

a concatenation of non-overlapping blocks from Fn,q, it follows from (10.13) that there
are two non-overlapping subblocks of ω|kn(k−p)n+1 forming the same element of Fn,q. Let

ω|ln(l−1)n+1, k−p ≤ l−1 ≤ k−1 be the latter of these two blocks, and let the former, denote

it by τ , have the last coordinate j (j ≤ (l − 1)n). But then the infinite word

ω|ln(ω|lnj+1)∞ = ω|j−n(τω|(l−1)n+1
j+1 )∞

is an element of E∞A and each of its subblocks of length n is a subblock of length n of ω.
So, ω|ln(ω|lnj+1)∞ ∈ K(Un(q)). Thus, [ω|ln] ∩K(Un(q)) 6= ∅. As l ≥ k − p, this contradicts
(10.14) and finishes the proof of Claim 1. �

Now passing to the direct proof of our lemma, fix ε > 0 arbitrary. Since g|K(Un(q)) = 0 and
g ∈ Cu

b (E∞A ), there exists l ≥ 1 sufficiently large that

(10.15) |g|
∣∣
[ω]
≤ ε/2

if |ω| ≥ l (ω ∈ E∗A) and [ω]∩K(Un(q)) 6= ∅. Take any k ≥ l+ p so large that ||gkn− g||∞ ≤
ε/2. Employing Claim 1, (10.15), Lemma 10.7, and (10.8), we get

µ̂n,q(g)gn,q ≤ µ̂n,q(gkn)gn,q = µn,q(gkn)gn,q = Qn,q(gkngn,q) = λ−knn,q Lknn,qQn,q(gkngn,q)

= λ−knn,q Qn,qLknn,q(gkngn,q)

= λ−knn,q Qn,q

(
τ 7−→

∑
[ω]⊆Uckn,q :Aωknτ0=1

gkn(ωτ)gn,q(ωτ)eϕkn(ωτ)
)

≤ λ−knn,q Qn,q

(
τ 7−→ ε

∑
Aωknτ0=1

11knn (ωτ)gn,q(ωτ)eϕkn(ωτ)
)

= ελ−knn,q Qn,qLknn,q(gn,q) = εQn,q(gn,q) ≤ ε||gn,q||∞Qn,q(11)

= ε||gn,q||∞gn,q ≤ ε||gn,q||θgn,q.

Hence,

µ̂n,q(g) ≤ ||gn,q||θε.
Likewise, -µ̂n,q(g) = µ̂n,q(−g) ≤ ||gn,q||θε, and in consequence.

|µ̂n,q(g)| ≤ ||gn,q||θε.

Letting ε↘ 0 we thus get that µ̂n,q(g) = 0 finishing the proof of Lemma 10.8 �
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Since every function g ∈ C
(
K(Un(q))

)
is uniformly continuous, it extends to some uniformly

continuous function g̃ : E∞A → R. The value

µ̃n,q(g) := µ̂n,q(g̃)

is then, by virtue of, Lemma 10.8, independent of the choice of extension g̃ ∈ Cu
b (E∞A ) of

g. By Lemma 10.7, we get the following.

Lemma 10.9. The function µ̃n,q : C(K(Un(q))) → R (also denoted in the sequel just by
µn,q) is a positive linear functional such that µ(11) = 1. Thus by the Riesz Representation
Theorem µ̃ represents a Borel probability measure on K(Un(q)).

We shall prove the following.

Lemma 10.10. The measure µ̃n,q (as indicated above also denoted in the sequel just by
µn,q) on K(Un(q)) is σ-invariant.

Proof. Let g ∈ C
(
K(Un(q))

)
. Let g̃ ∈ Cu

b (E∞A ) be an extension of g. Then g̃ ◦σ ∈ Cu
b (E∞A )

and it extends g ◦ σ. Fix ε > 0 and take g̃+ and g̃− both in Hb
θ(A), such that g̃− ≤ g̃ ≤ g̃+

and
µn,q(g̃+)− ε ≤ µ̂n,q(g̃) ≤ µn,q(g̃−) + ε.

Of course then we also have g̃+ ◦σ, g̃− ◦σ ∈ Hb
θ(A) and g̃− ◦σ ≤ g̃ ◦σ ≤ g̃+ ◦σ. We thus get

µ̃n,q(g ◦ σ)gn,q = µ̂n,q(g̃ ◦ σ)gn,q ≤ µn,q(g̃+ ◦ σ)gn,q = Qn,q(gn,qg̃+ ◦ σ)

= λ−knn,q Lknn,qQn,q(gn,qg̃+ ◦ σ)

= λ−knn,q Qn,qLknn,q(gn,qg̃+ ◦ σ)

= λ−knn,q Qn,q

(
g̃+Lknn,q(gn,q)

)
= Qn,q(g̃+gn,q)

= µn,q(g̃+)gn,q

≤ (µ̂n,q(g̃) + ε)gn,q = (µ̃n,q(g̃) + ε)gn,q.

Hence, µ̃n,q(g ◦σ) ≤ µ̃n,q(g̃)+ε. By letting ε↘ 0 this yields µ̃n,q(g ◦σ) ≤ µ̃n,q(g̃). Likewise,
working with g̃− instead of g̃+, we get µ̃n,q(g ◦ σ) ≥ µ̂n,q(g̃). Thus µ̃n,q(g ◦ σ) = µ̃n,q(g̃) and
the proof is complete. �

As we have already indicated, our goal now is to prove that the sequence (µn,q)
∞
q=1

converges weakly. For this we bring in the concept of Wasserstein metric. We denote it
by dW and recall that in the setting of the symbol space E∞A it is defined by the following
formula:

dW (ν1, ν2) = sup
{
|ν2(g)− ν1(g)| : g ∈ Hb

θ(A) and Hθ(g) ≤ 1
}
,

where ν1 and ν2 are Borel probability measures on E∞A .
The Wasserstein metric dW induces the weak convergence topology on E∞A . We shall

prove the following.

Lemma 10.11. The sequence (µn,q)
∞
q=1 is fundamental (Cauchy) with respect to the Wasser-

stein metric dW .
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Proof. Fix p, q ≥ 1 large enough so that Lemma 10.4 holds. Fix g ∈ Hb
θ(A) with ‖g‖θ ≤ 1.

Using item (g) of this lemma, Proposition 5.2 and formula (5.10) we get for µϕ–a.e. ω ∈ E∞A
(even on the zero sets of gn,q and gn,p since in the formula just above the first equality below,
both gn,q and gn,p cancel out) that

|µn,q(g)− µn,p(g)| =
∣∣∣∣Qn,q(ggn,q)(ω)

gn,q(ω)

− Qn,p(ggn,p)(ω)

gn,p(ω)

∣∣∣∣ =

=

∣∣∣∣Qn,q(ggn,q)(ω)gn,p(ω)−Qn,p(ggn,p)(ω)gn,q(ω)

gn,q(ω)gn,p(ω)

∣∣∣∣
=

∣∣∣∣∣gn,p(ω)
(
Qn,q(ggn,q)(ω)−Qn,p(ggn,p)(ω)

)
+Qn,p(ggn,p)(ω)

(
gn,p(ω)− gn,q(ω)

)
gn,q(ω)gn,p(ω)

∣∣∣∣∣
≤ |(Qn,q(ggn,q)(ω)−Qn,p(ggn,p)(ω))|

gn,q(ω)
+
|Qn,p(ggn,p)(ω)||gn,p(ω)− gn,q(ω)|

gn,q(ω)gn,p(ω)

≤
∣∣(Qn,q

(
ggn,q − ggn,p

)
(ω) + (Qn,q −Qn,p)(ggn,p)(ω)

∣∣
gn,q(ω)

+

+
Qn,p(‖g‖∞gn,p)(ω)|
gn,q(ω)gn,p(ω)

|gn,p(ω)− gn,q(ω)|

≤ ‖g‖∞Qn,q(|gn,q − gn,p|)(ω)

gn,p(ω)
+
|(Qn,q −Qn,p)(ggn,p)(ω)|

gn,q(ω)
+

+
‖g‖∞gn,p(ω)

gn,q(ω)gn,p(ω)
|gn,q(ω)− gn,p(ω)|

≤ Qn,q(|gn,q − gn,p|)(ω)

gn,q(ω)
+
|(Qn,q −Qn,p)(ggn,p)(ω)|

gn,q(ω)
+

+
|gn,p(ω)− gn,q(ω)|

gn,q(ω)

≤ g−1
n,q(ω)

(
Qn,q(|gn,q − gn,p|)(ω)) + |(Qn,q −Qn,p)(ggn,p)(ω)|+ |(gn,p − gn,q)(ω)|

)
.

Multiplying both sides of this inequality by gn,q(ω) we thus get that
(10.16)
|µn,q(g)− µn,p(g)|gn,q(ω) ≤

≤ Qn,q(|gn,q − gn,p|)(ω) + |(Qn,q −Qn,p)(ggn,p)(ω)|+ |(gn,p − gn,q)(ω)|
≤ Qn,q(|gn,q − gn|)(ω) +Qn,q(gn,p − gn)(ω)|+ |(Qn,q −Qn)(ggn,p)(ω)|+

+ |(Qn,p −Qn)(ggn,p)(ω)|+ |gn,q − gn|(ω) + |gn,p − gn|(ω).

Now we integrate both sides of this inequality with respect to the measure µϕ. We treat
each each summand seperately. We start with the last terms. Fix ε ∈ (0, ‖gn‖L1(µϕ)/2).
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Then by Lemma 10.4 (h), we get for all q ≥ 1 large enough, say q ≥ l1, that

(10.17)

∫
|gn,q − gn| dµϕ =

∫
|(Qn,q −Qn)11| dµϕ ≤ ‖(Qn,q −Qn)11‖∗

≤ |||(Qn,q −Qn)|||.‖11‖θ
= |||(Qn,q −Qn)|||
< ε.

So, also

(10.18)

∫
|gn,p − gn|dµϕ < ε

if p ≥ l1. Next, by Lemma 10.4 (g), we get

(10.19) ‖gn,p‖θ = ‖Qn,p11‖θ ≤ ‖Qn,p‖θ‖11‖θ ≤ C

if p ≥ 1 is large enough, say p ≥ l2 ≥ l1. Hence, by (10.4)we get that

‖ggn,p‖ ≤ 3C.

We therefore get for all q, p ≥ l2 that∫
|(Qn,q −Qn)(ggn,p)| dµϕ ≤ ‖(Qn,q −Qn)(ggn,p)‖∗

≤ |||(Qn,q −Qn)||| · ‖ggn,p‖θ
≤ 3Cε

and in the same way

(10.20)

∫
|(Qn,p −Qn)(ggn,p)| dµϕ ≤ 3Cε

Next using (10.18) and Lemma 10.4 (g) we get∫
Qn,q(|gn,p − gn|) dµϕ ≤ ‖Qn,q‖L1(µϕ)

∫
|gn,p − g| dµϕ

≤ ‖Qn,q‖θ
∫
|gn,p − g| dµϕ

≤ Cε

and in the same way, with (10.18) replaced by (10.17), we get that

(10.21)

∫
Qn,q(|gn,q − gn|) dµϕ ≤ Cε.

As the (almost) last step we get from (10.17) and the choice of ε > 0, that∫
gn,qdµϕ =

∫
gndµϕ +

∫
(gn,q − gn)dµϕ

> ‖gn‖L1(µϕ) − ε ≥
1

2
‖g‖L1(µϕ).
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Therefore, we conclude from the above inequalities, that after integrating both sides of
(10.16) we get that

|µn,q(g)− µn,p(g)| ≤ 2‖gn‖−1
L1(µq)

(8C + 2)ε

for all p, q ≥ l2. Hence
dW (µn,q, µn,p) < ‖gn‖−1

L1(µq)
(8C + 2)ε

for all p, q ≥ l2. The proof is complete. �

Having this lemma, we can easily prove the following.

Proposition 10.12. For every n ≥ 1 large enough the sequence (µn,q)
∞
q=1 converges weakly.

Denoting its limit by µn, we have the following:

(a) µn(K(Un)) = 1;
(b) µn ◦ σ−1 = µn, i.e., the measure µn is shift invariant; and
(c) Qn(gng) = µn(g)gn for every g ∈ Hb

θ(A).

Proof. Since the Wasserstein metric is complete if the underlying metric space is com-
plete (more precisely, the underlying topological space is completely metrizable) and the
space E∞A is completely metrizable, the convergence of the sequence (µn,q)

∞
q=1 follows from

Lemma 10.11. The item 9a) then follows from the fact that K(Un) is a closed subset of
E∞A and K(Un(q)) ⊂ K(Un) for every q ≥ 1. Item (b) follows from Lemma 10.10 and the
fact that µn is the weak limit of the measures µn,q, q ≥ 1.

In order to prove item (c) first note that by the definition of the measures µn,q, q ≥ 1, and
by the the very first assertion of the present proposition, we have that for every g ∈ Hb

θ(A)
that µn(g) = limq→+∞ µn,q(g) and then, after multiplying both sides of this equality by
gn,q, we get

(10.22) 0 = lim
q→∞

(µn(g)gn,q − µn,q(g)gn,q) = lim
q→∞

(µn(g)gn,q −Qn,q(ggn,q))

µϕ–a.e. But since all the functions involved are uniformly bounded, the formula (10.27)
also holds if the limit is understood to be in the space L1(µϕ) and because of (10.20) along
with (10.21), we have that

lim
q→+∞

Qn,q(ggn,q) = Qn(ggn,q)

in L1(µϕ). In conclusion:
Qn(gng) = µn(g)gn

in L1(µϕ). The proof of item (c) is thus complete. We are done. �

Now we shall prove the following.

Proposition 10.13. . If ϕ ∈ Hθ(A) is a summable potential and
∫

(−ϕ)dµϕ < +∞, then∫
(−ϕ)dµn < +∞

for all n ≥ 0 large enough.
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Proof. Since the potential ϕ : E∞A → R is summable, there exists an integer l ≥ 1 such
that for all e ≥ l,

ϕ|[e] ≤ 0.

Therefore, by Proposition 5.2 we have for every e ≥ l and every ω ∈ E∞A that

L(gn
(
− ϕ)11[e]

)
(ω) ≥ Ln

(
gn(−ϕ)11[e]

)
(ω) = λnQn

(
gn(−ϕ)11[e]

)
(ω) + ∆n

(
gn(−ϕ)11[e]

)
(ω).

So, by Proposition 5.3,

QnL
(
gn(−ϕ)11[e]

)
(ω) ≥ λnQ

2
n

(
gn(−ϕ)11[e]

)
(ω) = λnQn

(
gn(−ϕ)11[e]

)
(ω)

≥ λn inf(−ϕ)|[e]Qn(gn11[e]),

where writing the last inequality sign of this formula we also used the inequality (−ϕ)11[e] ≥
inf(−ϕ)|[e]11[e]. By Proposition5.2 there exists p ≥ 1 such that for all n ≥ p we have that
λn ≥ 1/2. Therefore,

inf(−ϕ)|[e]Qn(gn11[e])(ω) ≤ 2QnL(gn(−ϕ)11[e])(ω).

Hence ∑
e≥l

inf(−ϕ)|[e]Qn(gn11[e])(ω) ≤ 2
∑
e≥l

QnL(gn(−ϕ)11[e])(ω).

Equivalently,

(10.23)
∑
e≥l

inf(−ϕ)|[e]µn([e])gn(ω) ≤ 2
∑
e≥l

QnL(gn(−ϕ)11[e])(ω)

Furthermore,

2
∑
e≥l

L(gn(−ϕ)11[e])(ω) ≤
∑
e≥l

sup(−ϕ)|[e] sup(gn|[e])e− inf(ϕ|[e]) � ‖gn‖∞
∑
e≥l

sup(−ϕ)|[e]µϕ([e]).

So, by Proposition 5.3 again and by Proposition5.2 (g), we get that

2
∑
e≥l

QnL(gn(−ϕ)11[e])(ω) � ‖gn‖∞
∑
e≥l

sup(−ϕ)|[e]µϕ([e])Qn11(ω)

≤ C‖gn‖∞
∑
e≥l

sup(−ϕ)|[e]µϕ([e])

≤ C2
∑
e≥l

sup(−ϕ)|[e]µϕ([e]).

Inserting this to (10.23), gives

(10.24)
∑
e≥l

inf(−ϕ)|[e]µn([e])gn(ω) �
∑
e≥l

sup(−ϕ)|[e]µϕ([e]).

Now, recalling that

(10.25) C ′ := sup
e∈E

{
sup(−ϕ)− inf(−ϕ)

}
= sup

e∈E

{
sup(ϕ)− inf(ϕ)

}
< +∞
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and that ‖gn‖∞ ≤ C for all n ≥ 1 large enough, because of (10.24), we get that

(10.26)

∑
e≥l

inf(−ϕ)|[e]µn([e])gn(ω) �
∑
e≥l

inf(−ϕ)|[e]µϕ([e]) +
∑
e≥l

µϕ([e])

≤
∫

[l,+∞)

(−ϕ)dµϕ.

Now fix ω ∈ E∞A such that gn(ω) > 0. We then and obtain from (10.25) and (10.26) that∫
[l,+∞)

(−ϕ)dµn ≤
∑
e≥l

sup(−ϕ)|[e]µn(11[e]) ≤
∑
e≥l

(C ′ + inf(−ϕ)|[e])µn(11[e])

≤ C ′ +
∑
e≥l

inf(−ϕ)|[e])µn([e])

� g−1
n (ω)

∫
[l,+∞)

(−ϕ)dµ+ C ′.

Therefore, ∫
E∞A

(−ϕ)dµn =

∫
[1,l−1]

(−ϕ)dµn +

∫
[l,+∞]

(−ϕ)dµn < +∞,

and the proof is finished. �

Proposition 10.14. Assume
∫

(−ϕ)dµϕ < +∞. If n ≥ 1 is large enough and µn is the
measure produced in Proposition 10.12, then µn is the surviving equilibrium state for Un,
i.e.,

∫
(−ϕ)dµn < +∞ and

(10.27) hµn(σ) +

∫
K(Un)

ϕdµn = log λn

Proof. That
∫

(−ϕ)dµn < +∞ was proved in Proposition 10.13. Because of (9.2) we are
now only left to show that

(10.28) hµn(σ) +

∫
K(Un)

ϕdµn ≥ log λn.

Indeed, if τ ∈ Ek
A, k ≥ 1, then

µn([τ ])gn = Qn(gn11[τ ]) = QnQn(gn11[τ ])

= λ−kn (Lkn
(
Qn(gn11[τ ]))−∆k

n(Qn(gn11[τ ]))
)

= λ−kn Lkn
(
Qn(gn11[τ ])

)
= λ−kn QnLkn(gn11[τ ]).

Now,
Lkn(gn11[τ ]) ≤ ‖gn‖∞Lkn(11[τ ]) ≤ ‖gn‖∞ exp

(
− inf(ϕk|[τ ])

)
.

Therefore, invoking Proposition 5.3 we get that

QnLkn(gn11[τ ]) ≤ ‖gn‖∞ exp
(
− inf(ϕk|[τ ])

)
Qn(11) = ‖gn‖∞ exp

(
− inf(ϕk|[τ ])

)
gn.
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Hence,

(10.29) µn([τ ]) ≤ ‖gn‖∞λ−kn exp
(
− inf(ϕk|[τ ])

)
.

So, using also the Bounded Distortion Property for ϕk we get

− log µ([τ ]) ≥ k log λn + inf
(
ϕk|[τ ]

)
− log ‖gn‖∞

≥ k log λn + sup
(
ϕk|[τ ]

)
− log ‖gn‖∞ − C

with some constant C > 0. Therefore

Hµn(αk) =
∑
τ∈EkA

−µn([τ ]) log µn([τ ])

≥ k log λn +
∑
τ∈EkA

µn([τ ]) sup(ϕk|[τ ])− log ‖gn‖∞ − C

≥ k log λn +

∫
ϕkdµn − log ‖gn‖∞ − C

= k log λn + k

∫
ϕdµn − log ‖gn‖∞ − C.

Hence

Hµn(σ) = Hµn(σ, α) = lim
k→+∞

1

k
Hµn(αk) ≥ log λn +

∫
ϕdµn,

and the proof of (10.28) is complete. Simultaneously, the proof of Proposition 10.14 is
complete. �

We would like to end this section with showing how stochastically sound are the measures
µn. Indeed, it directly follows from Proposition 5.2 and Proposition 10.12 that conditions
(2.1), (2.2), and (I) of Gouëzel, from [21] are all satisfied for the measure–preserving dy-
namical systems (σ : K(Un) → K(Un), µn), and therefore Theorem 2.1 from [21] (comp.
also [1] for a more dynamical setting) applies to give the following.

Theorem 10.15. Suppose that (Un)∞n=0 is a sequence of open subsets of E∞A satisfying
conditions (U0)–(U5). Let d ≥ 1 be an integer. Fix an integer n ≥ 0 so large as required
in Proposition 5.2. Let g : K(Un) → Rd be a bounded Hölder continuous function. Then
there exists a matrix Σ2 : {1, 2, . . . , d}2 → Rd such that the process(

g ◦ σk −
∫
K(Un)

g dµn

)∞
k=1

satisfies an almost sure invariance principle with the limiting covariance Σ2. In particular,
the sequence ( k−1∑

j=0

g ◦ σj − k
∫
K(Un)

g dµn

)∞
k=1
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converges in distribution to the Gaussian (normal) distribution N (0, σ2). In addition, if
d = 1 then the Law of Iterated Logarithm holds in the form that for µn–a.e. ω ∈ K(Un),
we have that

lim sup
k→+∞

∑k−1
j=0 g ◦ σj(ω)− k

∫
K(Un)

g dµn
√
k log log k

=
√

2πσ,

where σ2 := Σ2 is a non-negative number. It is positive if an only if the function g :
K(Un)→ R is not cohomologous to a constant in L2(µn).

As the last stochastic law following from Proposition 5.2 and Proposition 10.12 in a
standard way, we record the following exponential decay of correlations.

Theorem 10.16. Suppose that (Un)∞n=0 is a sequence of open subsets of E∞A satisfying
conditions (U0)–(U5). Fix an integer n ≥ 0 so large as required in Proposition 5.2. Then
there exist κ ∈ (0, 1) and C ∈ (0,+∞) such that if g : K(Un) → R is a bounded Hölder
continuous function and h ∈ L1(µn), then∣∣∣ ∫

K(Un)

(g ◦ σk · h) dµn −
∫
K(Un)

g dµn

∫
K(Un)

h dµn

∣∣∣ ≤ Cκn‖g‖θ
∫
K(Un)

|f | dµn

for every integer k ≥ 0.

11. Symbol Escape Rates of Uns, III: The Variational Principle and
Equilibrium States on the Survivor Sets K(Un); Uniqueness

The ultimate goal of the last two sections and the current one is to prove the following.

Theorem 11.1. Assume that
∫

(−ϕ) dµϕ < +∞. If (Un)∞n=0 is a sequence of open subsets
of E∞A satisfying conditions (U0)–(U5) then

sup
{

hν(σ)+

∫
K(Un)

ϕdν : ν ∈M+
n (σ)

}
= sup

{
hν(σ)+

∫
K(Un)

ϕdν : ν ∈M+e
n (σ)

}
= log λn

for all n ≥ 1 large enough.
Moreover, µn is a unique (surviving) equilibrium state on the survivor set K(Un), i.e.,

the unique (ergodic) σ-invariant Borel probability measure on K(Un) for which

hµn(σ) +

∫
K(Un)

ϕdµn = log λn.

We first shall prove the following.

Proposition 11.2. If n ≥ 1 is large enough, then the shift invariant measure µn on K(Un)
is ergodic.

Proof. We first shall prove a weak version of ergodicity. Precisely,

Claim 10. If g, h ∈ Hb
θ(A) then

lim
k→+∞

µn(g ◦ σkh) = µn(g)µn(h)
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In particular,

lim
k→+∞

µn

(
g

1

k
Skh

)
= µn(g)µn(h).

Proof. We have

(11.1)

µn(g ◦ σkh)gn = Qn(g ◦ σkhgn) = QnQn(g ◦ σkhgn)

= Qn

(
λ−kn Lkn(g ◦ σkhgn)− λ−kn ∆k

n(g ◦ σkhgn)
)

= λ−kn QnLkn(g ◦ σkhgn)

= λ−kn Qn(gLkn(hgn))

= λ−kn Qn

(
g(λknQn(hgn) + ∆k

n(hgn))
)

= Qn

(
gQn(hgn)

)
+ λ−kn Qn

(
g∆k

n(hgn)
)

= Qn(gµn(h)gn) + λ−kn Qn

(
g∆k

n(hgn)
)

= µn(h)Qn(ggn) + λ−kn Qn

(
g∆k

n(hgn))
)

= µn(h)µn(g)gn + λ−kn Qn

(
g∆k

n(hgn))
)

Now, because of Proposition 5.2 (g) and (e) and (10.4), we have that

‖λ−kn Qn

(
g∆k

n(hgn)
)
‖∞ ≤ ‖λ−kn Qn

(
g∆k

n(hgn)
)
‖θ ≤ λ−kn C‖g∆k

n(hgn)‖θ
≤ 3C‖g‖θλ−kn ‖∆k

n(hgn))‖θ
≤ 3C‖g‖θ‖hgn‖θκkλ−kn .

Therefore, knowing that κ < 1 and invoking Proposition 5.2 (f) we conclude that for all
n ≥ 1 large enough limn→+∞ ‖λ−kn Qn(g∆k

n(hgn)
)
‖∞ = 0. Inserting this into (11.1) we get

that

lim
k→+∞

µn(g ◦ σkh) = µn(g)µn(h)

and the proof of Claim 10 is now complete. �

Now, we shall prove the following.

Claim 20. The vector space Hb
θ(A) is dense in L∞µn(E∞A ) with respect to the L1(µn)-norm

on L∞µn(E∞A ).

Proof. Let h : E∞A → R be a Borel bounded function. Since E∞A is a completely metrizable
topological space, for every ε > 0 there exists a compact set Kε ⊂ E∞A such that

µn(E∞A \Kε) ≤
ε

6M
,

where M := max{1, ‖h‖∞} and h|Kε is continuous. Since Kε is compact, h|Kε is thus
uniformly continuous. Let q ≥ 1 be so large that

sup
(
h|Kε∩[ω])− inf(h|Kε∩[ω]

)
<

ε

6M
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for every ω ∈ Eq
A. Define the function ĥε : E∞A → [0,+∞) as follows:

ĥε(ω) =

{
sup

(
h|Kε∩[ω|q]

)
if Kε ∩ [ω|q] 6= ∅

0 if Kε ∩ [ω|q] = ∅

Then ĥε ∈ Hθ(E
∞
A ), ‖ĥε‖∞ ≤ 2M , |ĥε − h| ≤ ε

6M
on Kε and

‖ĥε − h‖L1(µn) =

∫
E∞A

|ĥε − h|dµn +

∫
Kε

|ĥε − h|dµn =

∫
E∞A \Kε

|ĥε − h|dµn

≤ ε

2M
µn(Kε) + 3Mµn(E∞A \Kε)

≤ ε

2
+ 3M

ε

6M

=
ε

2
+
ε

2
= ε.

The proof of Claim 20 is thus complete. �

Claim 30. If g ∈ Hb
θ(A) then for all n ≥ 1 large enough,

lim
k→+∞

1

k

k−1∑
j=0

g ◦ σj(ω) = µn(g)

for µn–a.e. ω ∈ E∞A (or K(Un) equivalently).

Proof. By Birkhoff’s Ergodic Theorem there exists g̃ ∈ L∞µn(E∞A ) such that g̃ ◦ σ = g̃ and

(11.2) lim
k→+∞

1

k

k−1∑
j=0

g ◦ σj(ω) = g̃(ω)

for µn–a.e. ω ∈ E∞A . By subtracting µn(g) from g we may assume without loss of generality
that

(11.3) µn(g) = 0

Assume for a contraction that g̃ 6= 0 in L∞µn(E∞A ). Then there exist ε > 0 and a compact
set Lε ⊂ E∞A such that

g̃(ω) ≥ ε and µn(Lε) ≥ ε

for every ω ∈ Lε. By Claim 20 there exists h ∈ Hb
θ(A) such that∫

E∞A

|h− 11Lε|dµn <
1

2
ε2.

Then ∫
hg̃d µn =

∫
11Lε g̃ dµn +

∫
(h− 11Lε)g̃ dµn ≥ ε2 − 1

2
ε2 =

1

2
ε2 > 0.
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Inserting this into (11.2) we thus get that

lim
k→+∞

µn

(
1

k

k−1∑
j=0

g ◦ σjh

)
= µn(hg̃) =

ε2

2
> 0.

On the other hand, it follows from Claim 1 and (11.3) that

lim
k→+∞

µn

(
1

k

k−1∑
j=0

g ◦ σjh

)
= µn(g)µn(h) = 0. · µn(h) = 0.

This contradiction finishes the proof of Claim 30. �

Claim 40. If g ∈ L∞µn(E∞A ) then

lim
k→+∞

µn

(∣∣∣∣∣1k
k−1∑
j=0

g ◦ σj − µn(g)

∣∣∣∣∣
)

= 0

for µn–a.e. ω ∈ E∞A (or equivalently on K(Un)).

Proof. We can assume without loss of generality that µn(g) = 0. Fix ε > 0. By Claim 20

there exists gε ∈ Hb
θ(A) such that ∫

E∞A

|gε − g|dµn < ε/2.

Then
|µn(gε)| < ε/2.

It therefore follows from Claim 30 and Lebesgue Dominated Convergence Theorem that

lim
k→+∞

µn

(∣∣∣∣∣1k
k−1∑
j=0

g ◦ σj
∣∣∣∣∣
)

= lim
k→+∞

µn

(∣∣∣∣∣1k
k−1∑
j=0

gε ◦ σj +
1

k

k−1∑
j=0

(g − gε) ◦ σj
∣∣∣∣∣
)

≤ lim
k→+∞

µn

(∣∣∣∣∣1k
k−1∑
j=0

gε ◦ σj
∣∣∣∣∣
)

+ lim
k→+∞

µn

(∣∣∣∣∣1k
k−1∑
j=0

(g − gε) ◦ σj
∣∣∣∣∣
)

= µn(|µn(gε)|) + lim
k→+∞

1

k

k−1∑
j=0

µn(|g − gn|)

≤ µn(|gε|) +
ε

2
< ε.

Hence

lim
k→+∞

µn

(∣∣∣∣∣1k
k−1∑
j=0

g ◦ σj
∣∣∣∣∣
)

= 0.

This completes the proof of Claim 40. �

With Claim 40 having been proved, the proof of Proposition 11.2 is complete. �
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We know from (9.2) and from Proposition 10.14 that for all n ≥ 1 large enough µn is a
surviving equilibrium state onK(Un). Thus, in order to conclude the proof of Theorem 11.1,
we are only left to establish the following.

Proposition 11.3. For all n ≥ 1 large enough νn is a unique surviving equilibrium state
on K(Un).

Proof. In order to prove this proposition we follow the reasoning taken from the proof of
Theorem 1 in [16]. So, suppose that ν 6= µn is a surviving conditional equilibrium state
for the potential ϕ : E∞A → R on K(Un). Applying the ergodic decomposition theorem, we
may assume that ν is ergodic. Then, using (10.29) and the Bounded Distortion Property
for ϕl, we get, with an appropriate constant C ∈ (0,+∞0 for every integer l ≥ 1 that:

0 = l
(

hν(σ) +

∫
K(Un)

(ϕ− log λn) dν
)
≤ Hν(α

l) +

∫
K(Un)

(ϕl − log λnl) dν

= −
∑
|ω|=l

ν([ω])

(
log ν([ω])− 1

ν([ω])

∫
[ω]

(ϕl − log λnl) dν

)
≤ −

∑
|ω|=l

ν([ω])
(

log ν([ω])− (ϕl(τω)− log λnl)
)

for a suitable τω ∈ [ω] ∩K(Un)

= −
∑
|ω|=l

ν([ω])
(

log
(
ν([ω]) exp

(
log λnl − ϕl(τω)

)))
≤ −

∑
|ω|=l

ν([ω])
(

log
(
ν([ω])(µn([ω])C)−1

))
= logC −

∑
|ω|=l

ν([ω]) log

(
ν([ω])

µn([ω])

)
.

Therefore, in order to conclude the proof, it suffices to show that

lim
l→∞

−∑
|ω|=l

ν([ω]) log

(
ν([ω])

µn([ω])

) = −∞.

Since both measures ν and µn are ergodic, the former by assumption, the latter by Proposi-
tion 11.2, and ν 6= µn, the measures ν and µn are therefore mutually singular. In particular,

lim
l→∞

ν

({
ω ∈ K(Un) :

ν([ω|l])
µn([ω|l])

≤ S

})
= 0

for every S > 0. For every j ∈ Z and every l ≥ 1, set

Fl,j =

{
ω ∈ K(Un) : e−j ≤ ν([ω|l])

µn([ω|l])
< e−j+1

}
.



72 MARK POLLICOTT AND MARIUSZ URBAŃSKI

Then

ν(Fl,j) =

∫
Fl,j

ν([ω|l])
µn([ω|l])

dµn(ω) ≤ e−j+1µn(Fl,j) ≤ e−j+1.

Notice

−
∑
|ω|=l

ν([ω]) log

(
ν([ω|l])
µn([ω|l])

)
= −

∫
log

(
ν([ω|l])
µn([ω|l])

)
dν(ω) ≤

∑
j∈Z

jν̃(Fl,j).

Now, for each k = −1,−2,−3, . . . we have

−
∑
|ω|=l

ν([ω]) log

(
ν([ω|l])
µn([ω|l])

)
≤ k

∑
j≤k

ν̃(Fl,j) +
∑
j≥1

je−j+1

= kν

({
ω ∈ K(Un) :

ν([ω|l])
µn([ω|l])

≥ e−k
})

+
∑
j≥1

je−j+1.

Thus, we have for each negative integer k,

lim sup
n→∞

−∑
|ω|=n

ν([ω]) log

(
ν([ω])

µn([ω])

) ≤ k +
∑
j≥1

je−j+1.

So, letting k go to −∞ completes the proof. �

Combining formula (9.2), Proposition 10.14, and Proposition 11.3, we conclude that the
proof of Theorem 11.1 is complete.

Part 3. Escape Rates for Conformal GDMSs and IFSs

Our approach to proving results on escape rates for conformal graph directed Markov
systems and conformal iterated function systems is based on the symbolic dynamics, more
precisely, the symbolic thermodynamic formalism, developed in the preceding sections.

12. Preliminaries on Conformal GDMSs

A Graph Directed Markov System (abbr. GDMS) consists of a directed multigraph and
an associated incidence matrix, (V,E, i, t, A). As earlier A is the incidence matrix, i. e.

A : E × E → {0, 1}

The multigraph consists of a finite set V of vertices and a countable (either finite or infinite)
set of directed edges E and two functions i, t : E → V together with a set of nonempty
compact metric spaces {Xv}v∈V , a number s, 0 < s < 1, and for every e ∈ E, a 1-to-1
contraction ϕe : Xt(e) → Xi(e) with a Lipschitz constant ≤ s. For brevity, the set

S = {ϕe : Xt(e) → Xi(e)}e∈E
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is called a Graph Directed Markov System (abbr. GDMS). The main object of interest in
this book will be the limit set of the system S and objects associated to this set. We now
describe the limit set. For each ω ∈ E∗A, say ω ∈ En

A, we consider the map coded by ω:

ϕω = ϕω1 ◦ . . . ◦ ϕωn : Xt(ωn) → Xi(ω1).

For ω ∈ E∞A , the sets {ϕω|n
(
Xt(ωn)

)
}n≥1 form a descending sequence of non-empty compact

sets and therefore
⋂
n≥1 ϕω|n

(
Xt(ωn)

)
6= ∅. Since for every n ≥ 1, diam

(
ϕω|n

(
Xt(ωn)

))
≤

sndiam
(
Xt(ωn)

)
≤ sn max{diam(Xv) : v ∈ V }, we conclude that the intersection⋂

n≥1

ϕω|n
(
Xt(ωn)

)
is a singleton and we denote its only element by π(ω). In this way we have defined the map

π : E∞A −→ X :=
⊕
v∈V

Xv

from E∞A to
⊕

v∈V Xv, the disjoint union of the compact sets Xv. The set

J = JS = π(E∞A )

will be called the limit set of the GDMS S.
In order to pass to geometry, we call a GDMS conformal (CGDMS) if the following

conditions are satisfied.

(a) For every vertex v ∈ V , Xv is a compact connected subset of a euclidean space Rd

(the dimension d common for all v ∈ V ) and Xv = Int(Xv).
(b) For every vertex v ∈ V there exists an open connected set Wv ⊇ Xv (where X =
∪v∈VXv) such that for every e ∈ I with t(e) = v, the map ϕe extends to a C1

conformal diffeomorphism of Wv into Wi(e).

(c) There are two constants L ≥ 1 and α > 0 such that∣∣∣∣ |ϕ′e(y)|
|ϕ′e(x)|

− 1

∣∣∣∣ ≤ L||y − x||α.

for every e ∈ E and every pair of points x, y ∈ Xt(e), where |ϕ′ω(x)| means the norm
of the derivative.

(d) (Open Set Condition) For all a, b ∈ E, a 6= b,

ϕa(Int(Xt(a))) ∩ ϕb(Int(Xt(b))) = ∅,
(e) (Geometric Condition) At least one of the following two conditions hold:

(e1) (Strong Open Set Condition)

JS ∩ Int(X) 6= ∅.
or
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(e2) There exist two numbers l > 0 and κ ∈ (0, 1] such that for every x ∈ ∂X ⊆ Rd

and every r ∈ (0, l],

Lebd
(
B(x, r) ∩X

)
≥ κLebd

(
B(x, r)

)
.

Remark 12.1. If d ≥ 2 and a family S = {ϕe}e∈E satisfies the conditions (a) and (c),
then, due to Koebe’s Distortion Theorem in dimension d = 2 and the Louisville Represen-
tation Theorem (stating that if d ≥ 3 then each conformal map is necessarily a Möbius
transformation) it also satisfies condition (d) with α = 1.

Remark 12.2. In the papers [30] and [31] there appeared also the following condition
called the Cone Condition:

There exist two numbers γ, l > 0 such that for every x ∈ ∂X ⊆ Rd there exists an open
cone Con(x, γ, l) ⊆ Int(X) with vertex x, central angle of Lebesgue measure γ, and altitude
l.

This condition was however exclusively needed in [30] and [31] (and essentially all re-
lated papers) to have (e2). We will comment more on the Geometric Condition (e) in
Remark 12.12 at the end of this section.

We will frequently need to use the concept of incomparable words. We call two words
ω, τ ∈ E∗ incomparable if none of them is an extension of the other; equivalently

[ω] ∩ [τ ] = ∅.
What concerns geometric applications, we will be dealing throughout the manuscript

with projections of equilibrium states µϕ from the symbol space E∞A to the limit set JS
via the projection map πS : E∞A → JS . We begin to deal with such projections now. The
following theorem was proved in [31], although its formulation there involved the Cone
condition rather than (e2).

Theorem 12.3. If (e2) holds and µ is a Borel shift-invariant ergodic probability measure
on E∞A , then

(12.1) µ ◦ π−1
(
ϕω(Xt(ω)) ∩ ϕτ

(
Xt(τ))

)
= 0

for all incomparable words ω, τ ∈ E∗.

This theorem is of particular importance if measure µ is a Gibbs state of a Hölder continuous
function. The following slight strengthening of Theorem 12.3 however immediately follows
from the Strong Open Set Condition.

Theorem 12.4. If the Strong Open Set Condition (e1) holds and µ is a Borel shift-invariant
ergodic probability measure on E∞A with full topological support, then

(12.2) µ ◦ π−1
(
ϕω(Xt(ω)) ∩ ϕτ

(
Xt(τ))

)
= 0

for all incomparable words ω, τ ∈ E∗.
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Proof. Indeed, the Strong Open Set Condition ensures that for such measures µ

µ(Int(X)) > 0

and, since we clearly have,

σ−1(π−1(Int(X)) ⊆ Int(X),

we thus conclude from ergodicity of µ that µ(Int(X)) = 1. The assertion of Theorem 12.4
thus follows. �

Note now that all Gibbs states are of full topological support, so for them either condition
(e1) or (e2) is fine.

Moving more toward geometry let ζ : E∞A → R be defined by the formula

(12.3) ζ(ω) := log |ϕ′ω0
(π(σ(ω))|.

For every s ≥ 0 we denote:

P(s) := P(σ, sζ) ∈ (−∞,+∞].

We call P(s) the topological pressure of s. We recall from [30] and [31] the following other
definitions:

θS := inf ΓS , where ΓS :=

{
s ≥ 0 :

∑
e∈E

||ϕ′e||s∞ < +∞

}
.

The proofs of the following two statements can be found in [31].

Proposition 12.5. If S is an irreducible conformal GDMS, then for every s ≥ 0 we have
that

ΓS = {s ≥ 0 : P(s) < +∞}.
In particular,

θS := inf {s ≥ 0 : P(s) < +∞} .

Theorem 12.6. If S is a finitely irreducible conformal GDMS, then the function ΓS 3
s 7−→ P(s)ıR is

• strictly decreasing,

• real-analytic,

• convex, and

• lims→+∞ P(s) = −∞.

We also introduce the following important characteristic of the system S.

bS := inf{s ≥ 0 : P(s) ≤ 0} ≥ θS .

We call bS the Bowen’s parameter of the system S. The following theorem, providing a
geometrical interpretation of this parameter has been proved in [31].
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Theorem 12.7. If S is an finitely irreducible conformal GDMS, then

HD(JS) = bS ≥ θS
1.

Following [30] and [31] we call the system S regular if there exists s ∈ (0,+∞) such that

P(s) = 0.

Then by Theorem12.6, such a zero is unique and if exists it is equal to bS .

We call the system S strongly regular if there exists s ∈ [0,+∞) (in fact in (γS ,+∞)) such
that

0 < P(s) < +∞.
By Theorem 12.6 each strongly regular conformal GDMS is regular. We need one concept
more:

Let F = {f (e) : Xt(e) → R : e ∈ E} be a family of real-valued functions. For every n ≥ 1
and β > 0 let

Vn(F ) = sup
ω∈En

sup
x,y∈Xt(ω)

{|f (ω0)(ϕσ(ω)(x))− f (ω0)(ϕσ(ω)(y))|}eβ(n−1),

We have made the conventions that the empty word ∅ is the only word of length 0 and
ϕ∅ = IdX . Thus, V1(F ) <∞ simply means the diameters of the sets f (e)(X) are uniformly
bounded. The collection F is called a Hölder family of functions (of order β) if

(12.4) Vβ(F ) = sup
n≥1
{Vn(F )} <∞.

We call the Hölder family F , summable (of order β) if (12.4) is satisfied and

(12.5)
∑
e∈E

exp
(

sup
(
f |[e]

))
< +∞.

In order to get the link with the previous sections on thermodynamic formalism on symbol
spaces, we introduce now a potential function or amalgamated function, f : E∞A → R,
induced by the family of functions F as follows.

f(ω) = f (ω0)(π(σ(ω))).

Our convention will be to use lower case letters for the potential function corresponding to
a given Hölder system of functions. The following lemma is a straightforward, see [31] for
a proof.

Lemma 12.8. If F is a Hölder family (of order β) then the amalgamated function f is
Hölder continuous (of order β). If F is summable, then so is f .

Let us record the following obvious observation.

1As the relevant proof in [31] shows, the Geometric Condition (e) is not needed at all for this theorem;
comp. Remark 12.12
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Observation 12.9. For every t ≥ 0, tζ : E∞A → R is the amalgamated function of the
following family of functions:

tΞ := {Xt(e) 3 x 7→ t log |ϕ′e(x)| ∈ R}e∈E.
The following proposition is easy to prove; see [31, Proposition 3.1.4] for complete details.

Proposition 12.10. For every real t ≥ 0 the function tζ : E∞A → R is Hölder continuous
and tΞ is a Hölder continuous family of functions.

Observation 12.11. For every t ≥ 0 we have that t ∈ ΓS if and only if the Hölder
continuous potential tζ is summable and this happens if and only if the Hölder continuous
family of functions tΞ is summable.

For every t ∈ ΓS we denote by µt the unique equilibrium state of the potential tζ : E∞A →
R and by mt the probability eigenmeasure of the dual operator L∗t := Ltζ∗. Of particular
geometric importance for us will be the measures µbS and mbS for regular systems S. Lots
of our geometric and dynamical considerations throughout the rest of the manuscript will
concern equilibrium states µt and their projections from the symbol space E∞A to the limit
set JS via the projection map πS : E∞A → JS .

Remark 12.12. We want to emphasize the following.

(1) As the relevant proof in [31] shows the Geometric Condition (e) is not needed at all
for Theorem 12.7.

(2) The primary power of the Geometric Condition (e) is that it yields Theorems 12.3
and 12.4 that in turn have significant dynamical and geometric consequences; for
example that the measures µ ◦ π−1

S are dimensional exact and

HD
(
µ ◦ π−1

S
)

=
hµ(σ)

χµ
,

where hµ(σ) is the Kolmogorov–Sinaj metric entropy of the dynamical system σ :
E∞A → E∞A with respect to the measure µ and

χµ := −
∫
E∞A

log
∣∣ϕ′ω0

(
πS(σ(ω))

)∣∣ dµ(ω)

is the corresponding Lyapunov exponent.

(3) Another result, important for us, for which the Geometric Condition (e) is needed
(via Theorems 12.3 and 12.4), is that if f : E∞A → R is the amalgamated function
of a Hölder family of F functions, then

mf ◦ π−1
S
(
ϕω(H)

)
=

∫
H

exp
(
Sω(F )− P(f)|ω|

)
dmf ◦ π−1

S ,

for every ω ∈ E∗A and every Borel set H ⊆ Xt(ω), where

Sω(F ) =
n∑
j=1

f (ωj) ◦ ϕσjω.
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In particular, we have then for every t ∈ ΓS that

mt ◦ π−1
S (ϕω(H)) = e−P(t)

∫
A

|ϕ′ω|tdmt ◦ π−1
S .

(4) The Strong Open Set Condition (e1) is natural and easy to occur; it is equivalent
to the condition that

ϕω(Xt(ω)) ⊆ Int(Xi(ω))

for some ω ∈ E∗A. And this one holds for example if

ϕe(Xt(e)) ⊆ Int(Xi(e))

for some e ∈ E.

(5) Condition (e2) is also easy to have. For example it holds if the boundaries ∂Xv,
v ∈ V , are piecewise smooth or the sets Xv are convex.

(6) No Geometric Condition (e) is needed at all if the alphabet E is finite.

We would like however to complete this comment by saying that in the case of finite
alphabet E the Open set Condition alone suffices, and the item (b2) is not needed at all. It
is not needed in the case of infinite alphabet either as long as we are only interested in the
Hausdorff dimension of the limit set, i. e. as long as we only want prove Bowen’s Formula.

13. More Technicalities on Conformal GDMSs

We keep the setting and notation from the previous section.

• We call a point z ∈ X pseudo-periodic for S if there exists ω ∈ E∗A such that
z ∈ Xt(ω0) and ϕω(z) = z.

• We call a point z ∈ S periodic for S if z = π(ω) for some periodic element ω ∈ E∞A .

• Of course every periodic point is pseudo-periodic. Also obviously, for maximal graph
directed Markov systems, in particular for conformal iterated function systems,
periodic points and pseudo-periodic points coincide.

• We call a periodic point z ∈ JS uniquely periodic if π−1(z) is a singleton and there
is exactly one ξ ∈ E∗A such that the infinite concatenation ξ∞ ∈ E∞A , ϕξ(z) = z,
and if ϕα(z) = z for some α ∈ E∗A, then α = ξq, the concatenation of q copies of ξ
for some integer q ≥ 1.

We shall prove the following.

Lemma 13.1. If z ∈ JS is not pseudo-periodic for S, then

π−1(z) ∩
⋃
n=1

σn(π−1(z)) = ∅.
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Proof. Assume for a contradiction that there exists ω ∈ π−1(z) such that σn(ω) ∈ π−1(z)
for some n ≥ 1. We then have

ϕω|n(z) = ϕω|n
(
π(σn(ω))

)
= π

(
ω|nσn(ω)

)
= π(ω) = z.

So, z is pseudo-periodic, and this contradiction finishes the proof. �

In fact, we will need more:

Lemma 13.2. Assume that z ∈ JS is not pseudo-periodic for the system S. If k ≥ 1 is
an integer, (ln)∞n=1 is a sequence of integers in {1, 2, . . . , k}, and

(
τ (n)
)∞
n=1

is a sequence of
points in E∞A such that

lim
n→∞

π
(
τ (n)
)

= lim
n→∞

π
(
σln(τ (n))

)
= z,

then

lim
n→∞

ln∑
i=0

τ
(n)
i = +∞.

Proof. Seeking a contradiction suppose that

lim
n→∞

ln∑
i=0

τ
(n)
i < +∞.

Passing to a subsequence, we may assume without loss of generality

lim
n→∞

ln∑
i=0

τ
(n)
i < +∞.

There then exists M ∈ (0,+∞) such that

ln∑
i=0

τ
(n)
i ≤M

for all n ≥ 1. Hence,

τ
(n)
i ≤M

for all n ≥ 1 and all i = 0, 1, 2, . . . , ln. So, passing to yet another subsequence, we may
further assume that the sequence (ln)∞n=1 is constant, say ln = l for all n ≥ 1, and that for

every i = 0, 1, 2, . . . , ln the sequence
(
τ (n)
)∞
n=1

is constant, say τ
(n)
i = τi ≤M for all n ≥ 1.

Let
τ := τ1τ2 . . . τl.

it then follows from our hypothesis that

ϕτ (z) = ϕτ
(

lim
n→∞

π
(
σl(τ (n))

))
= lim

n→∞
ϕ
(
τ
(
π
(
σl(τ (n))

)))
= lim

n→∞
π
(
σl(τ (n))

)
= lim

n→∞
π
(
τ (n)
)

= z.
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Thus z is a pseudo-periodic point for the graph directed Markov system S, and this con-
tradiction finishes the proof. �

A statement corresponding to Lemma 13.2 in the case of periodic points is the following.

Lemma 13.3. Assume that z ∈ JS is uniquely periodic for the system S (i.e., π−1(z) is a
singleton and that there exists a unique point ξ ∈ E∗A such that ξ∞ ∈ E∞A , ϕξ(z) = z, and
if ϕα(z) = z for some α ∈ E∗A, then α = ξq for some integer q ≥ 1). Then if k ≥ 1 is
an integer, (ln)∞n=1 is a sequence of integers in {1, 2, . . . , k}, and

(
τ (n)
)∞
n=1

is a sequence of
points in E∞A such that

(a)

lim
n→∞

π
(
τ (n)
)

= lim
n→∞

π
(
σln(τ (n))

)
= z,

and

(b)

lim
n→∞

ln∑
i=0

τ
(n)
i < +∞,

then ln is an integral multiple of |ξ|, say ln = qn|ξ|, and

τ (n)|ln = ξqn

for all n ≥ 1 large enough.

Proof. It follows from item (b) that there exists M ≥ 1 such that τ
(n)
i ≤ M for all n ≥ 1

and all 1 ≤ i ≤ ln. Assuming the contrapositive statement to our claim and passing
to a subsequence, we may assume without loss of generality that the sequence (ln)∞n=1 is
constant, say ln = l for all n ≥ 1, and we may further assume that for every 1 ≤ i ≤ ln the

sequence
(
τ (n)
)∞
n=1

is constant, say τ
(n)
i = τi ∈ {1, 2, . . . ,M} for all n ≥ 1 and

(13.1) τ
(n)
j 6= ξj

for all n ≥ 1 and some 1 ≤ j ≤ l. Let

τ := τ1τ2 . . . τl.

We now conclude, in exactly the same way as in the proof of Lemma 13.2 that ϕτ (z) = z.
Therefore, since z is uniquely pseudo-periodic, we get τ = ξq with some q ≥ 1. In particular
q|ξ| = l, and so, using (13.1), we deduce that τ 6= ξq. This contradiction finishes the
proof. �

14. Weakly Boundary Thin (WBT) Measures and Conformal GDMSs

In this section we first introduce the concept of Weakly Bounded Thin (WBT) measures.
Roughly speaking, this notion relates the measure of an annulus to the measure of the
ball it encloses. We prove some basic properties of (WBT) and provide some sufficient
conditions for (WBT) to hold for a large class of measures on the limit set of a CGDMS.
We were able to establish these properties, mainly due to the progress achieved in [36],
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Let µ be a Borel probability measure on a separable metric space (X, d). For all β > 0,
x ∈ X and r > 0, let

Aβµ(x, r) := A
(
x; r − µ(B(x, r))β, r + µ(B(x, r))β

)
,

where, in general,

A(z; r, R) := B(z,R) \B(z, r)

is the annulus centered at z with the inner radius r and the outer radius R; in order not to
overlook a possible cases of negative numbers r− µ(B(x, r))β, we naturally declare B(z, r)
to be the empty set if r ≤ 0. We say that the measure µ is weakly boundary thin (WBT)
with exponent β at the point x if

lim
r→0

µ
(
Aβµ(x, r)

)
µ(B(x, r))

= 0.

We simply say that measure µ is weakly boundary thin (WBT) if it is is weakly boundary
thin with some exponent β > 0. Given α > 0, we further define:

Aβ,αµ (x, r) := A
(
x; r − αµ(B(x, r))β, r + αµ(B(x, r))β

)
.

The following proposition is obvious.

Proposition 14.1. If µ is a Borel probability measure on a separable metric space X, then
for every point x ∈ supp(µ), the following are equivalent.

(a) µ is (WBT) at x.

(b) There exists β > 0 such that the measure µ is (WBT) at x with exponent γ > 0
either if and only if γ ∈ (β,+∞) or if and only if γ ∈ [β,+∞). Denote this β by
βµ(x).

(c) There exist α, β > 0 such that

lim
r→0

µ
(
Aβ,αµ (x, r)

)
µ(B(x, r))

= 0.

(d) For every α > 0 and every β ∈ (βµ(x),+∞),

lim
r→0

µ
(
Aβ,αµ (x, r)

)
µ(B(x, r))

= 0.

We say that a measure is weakly boundary thin (WBT) if it is (WBT) at every point
of its topological support. We also say that a measure is weakly boundary thin almost
everywhere (WBTAE) if it is (WBT) at almost every point. Of course (WBT) implies
(WBTAE).

Now we aim to provide sufficient conditions for a Borel probability measure to be (WBT)
and (WBTAE). Let µ be an arbitrary Borel probability measure on a separable metric space.
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Let α > 0. We say that µ is α-upper Ahlfors (α-up) at a point x ∈ X if there exists a
constant C > 0 (which may depend on x) such that

µ(B(x, r)) ≤ Crα

for all radii r > 0. Equivalently, for all radii r > 0 sufficiently small. Following [42], the
measure µ is said to have the Thin Annuli Property (TAP) at a point x ∈ X if there exists
κ > 0 (which may depend on x) such that

lim
r→0

µ(A(x; r, r + rκ))

µ(B(x, r))
= 0

We shall easily show the following.

Proposition 14.2. Let (X, d) be a separable metric space, let µ be a Borel probability
measure on X and let α > 0. If µ is α-upper Ahlfors with the Thin Annuli Property (TAP)
at some x ∈ X, then µ is (WBT) at x.

Proof. Taking β > 0 so large that Cβrβα ≤ rκ for r > 0 small enough. Then for such radii
r > 0 we have that Aβµ(x, r) ⊂ A(x; r, r + rκ) and thus

0 ≤ lim sup
r→0

µ(Aβµ(x, r))

µ(B(x, r))
≤ lim sup

r→0

µ(A(x; r, r + rκ))

µ(B(x, r))
= 0

The proof is then complete. �

We recall from the book [42] that

HD∗(µ) = inf{HD(Y ) : Y ⊂ X is Borel and µ(Y ) > 0}.

We call HD∗(µ) the lower Hausdorff dimension of µ. The Hausdorff Dimension of µ is
commonly defined to be

HD(µ) = inf{HD(Y ) : Y ⊂ X is Borel and µ(Y ) = 1}

The reader should be aware that in [42] the above infimum is denoted HD∗(µ) and is called
the upper Hausdorff Dimension of µ. We however, will use the more commonly accepted
tradition rather than the point of view taken in [42]. Referring to the well-known fact (see
[42] for instance) that if µ(B(x, t)) ≥ Crγ for the points x belonging to some Borel set
F ⊂ X then HD(F ) ≤ γ, we immediately obtain the following.

Lemma 14.3. If HD∗(µ) > 0 then µ is α-upper Ahlfors for every α ∈ (0,HD∗(µ)) and
µ–a.e. x ∈ X with some constant C ∈ (0,+∞) and every r > 0 small enough.

Definition 14.4. We say that a set J ⊆ Rd, d ≥ 1, is geometrically irreducible if it is
not contained in any countable union of conformal images of hyperplanes or spheres of
dimension ≤ d− 1.

Observation 14.5. Every set J ⊆ Rd, d ≥ 1, with HD(J) > d − 1 is geometrically
irreducible.
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Observation 14.6. If a set J ⊆ C is not contained in any countable union of real analytic
curves, then J is geometrically irreducible.

Now we can apply the results obtained above, in the context of CGMS. We shall prove
the following.

Theorem 14.7. Let S = {ϕe}e∈E be a finitely primitive CGDS with a phase space X ⊂ Rd.
Let ψ : EN

A → R be a Hölder continuous strongly summable potential, the latter meaning
that

(14.1)
∑
e∈E

exp
(
inf(ϕ|[e])

)
‖ϕ′e‖−β < +∞

for some β > 0. As usual, let µψ denote its unique equilibrium state. If the limit set of JS
is geometrically irreducible, then

(a) HD∗(µψ ◦ π−1
S ) = HD(µψ ◦ π−1

S ) > 0;
(b) The measure µψ ◦ π−1

S satisfies the Thin Annuli Property (TAP) at µψ ◦ π−1
S a.e.

point of S
(c) µψ ◦ π−1

S is (WBT) at µψ a.e. point of JS .

Proof. The proof of Theorem 4.4.2 in [30] [31] gives in fact that the measure µψ is dimen-
sionally exact, i.e., that

lim
r→0

log µψ ◦ π−1
S (B(x, r))

log r

exists for µψ ◦ π−1
S for a.e. x ∈ JS and is equal to hµψ(σ)/χµψ > 0. A complete proof with

all the details can be found in the last section of [7]. Therefore, property (a) is established.
Property (b) follows now immediately from Theorem 30 in [36]. Condition (c) is now an
immediate consequence of (a),(b), Lemma 14.3 and Proposition 14.2. �

Remark 14.8. Condition 14.1 is satisfied for instance for all potentials of the form

EN
A 3 ω 7→ tζ(ω) = t log

∣∣(ϕ′S(πω0(σ(ω)))
∣∣ ∈ R,

where t ∈ ΓS .

Now we shall deal with the case of a finite alphabet. We shall show that in the case of
a finite alphabet (under a mild geometric condition in dimension d ≥ 2) the equilibrium
states of all Hölder continuous potentials satisfy (WBT) at every point of the limit set.
Thus our approach is complete in the case of the finite alphabet and present paper entirely
covers the case of conformal IFSs (even GDMSs) with finite alphabet. We shall prove the
following.

Theorem 14.9. Let E be a finite set and let S = {ϕe}e∈E be a primitive conformal GDMS
acting in the space R. If ψ : E∞A → R is an arbitrary Hölder continuous (with the phase
space sets Xv ⊂ Wv ⊂ R, v ∈ V ) and µϕ is the corresponding equilibrium state on E∞A then
the projection measure µψ ◦ π−1

S is (WBT) at every point of JS .
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Proof. Put

u := K−1 min
{
‖ϕ′e‖ : e ∈ E

}
so that

|ϕ′e(x)| ≥ u

for all e ∈ E and all x ∈ Xt(e). For ease of notation we denote

µ̂ψ := µψ ◦ π−1
S .

Fix β > 0. Consider the family

Fβψ(z, r) := {ω ∈ Ek
A : Aβµψ(z, r) ∩ ϕω(Jω|ω|−1

) 6= ∅ and ‖ϕ′ω‖ ≥ µψ(B(z, r)β)}

Now consider F̂βψ(z, r), the family of all words in Fβψ(z, r) that have no extensions to

elements in Fβψ(z, r), where we don’t consider a finite word to be an extension of itself.
Note that then:

(a) F̂βψ(z, r) consists of mutually incomparable words;

(b)
⋃
ω∈F̃βψ(z,r)[w] ⊃ π−1

S (Aβµψ(z, r)); and

(c) ∀ω ∈ F̂βψ(z, r), µψ(B(z, r))β ≤ ‖ϕ′ω‖ ≤ u−1µψ(B(z, r))β

Therefore the family

{ϕω(Int(Xt(ω))) : ω ∈ F̂βψ(z, r)}
consists of mutually disjoint open sets each of which contains a ball of radiusK−1Rµψ(B(z, r))β

where R is as in the proof of Lemma 14.13. Since also⋃
ω∈F̂βψ(z,r)

ϕω(Xt(ω)) ⊂ A(z, r − (1 +DM−1)µψ(B(z, r))β, r − (1 +DM−1)µψ(B(z, r))β)

we obtain that
(14.2)

#F̂βψ(z, r) ≤ Leb1(A(z, r − (1 +DM−1)µψ(B(z, r)β), r − (1 +Du−1)µψ(B(z, r))β)

2K−1Rµψ(B(z, r))β

≈
µβψ(B(z, r))

µβψ(B(z, r))
= 1.

So we have shown that the number of elements of F̃βψ(z, r) is uniformly bounded above,

and in order to estimate µ̂ψ(Aβµψ(z, r)). i.e. in order to complete the proof we now only

need a sufficiently good upper bound on µψ([ω]) for all ω ∈ F̂βψ(z, r). We will do so now.
It is well known (see [30], [31]) that there are two constants η ∈ (0,+∞) and C ∈ (0,+∞)
such that

(14.3) µψ([τ ]) ≤ C exp(−η(|τ |+ 1))
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for all τ ∈ E∗A. Fix ω ∈ F̂βψ(z, r). Denote k := |ω|. Invoking (c) we get that uk ≤ ‖ϕ′ω‖ ≤
u−1µβψ(B(z, r)), whence

k + 1 ≥ β log µψ(B(z, r))

log u
.

Inserting this into (14.3) we get that

µψ([ω]) ≤ C exp

(
−βη log µψ(B(z, r))

log u

)
= Cµγβ(B(z, r))

where γ = η
log(1/u)

∈ (0,+∞). Having this and invoking (b) and (14.2) we obtain that

µ̂ψ(Aβµψ(z, r))

µψ(B(z, r))
≤ µ̂ψ(B(z, r))γβ

µ̂ψ(B(z, r))
≤ µψ(B(z, r))γβ−1

and the proof is complete by noting that limr→0 µψ(B(z, r))γβ−1 = 0 provide that we take
γ > 1/β. �

Now we pass to the case of d ≥ 2. We get the same full result as in the case of d = 1 but
with a small additional assumption that the conformal system S is geometrically irreducible.

Theorem 14.10. Let E be a finite set and let S = {ϕe}e∈E be a primitive geometrically
irreducible conformal GDMS with the phase space sets Xv ⊂ Wv ⊂ Rd. If ψ : EN

A → R is
an arbitrary Hölder continuous potential and µϕ is the corresponding equilibrium state then
the projection measure µψ ◦ π−1

S is (WBT) at every point of JS

Proof. The meaning of µ̂ψ is exactly the same as in the proof of the previous theorem. The
proof of the current theorem is entirely based on the following.

Claim 1: There are a constant α > 0 and C ∈ (0,+∞) such that

µ̂ψ
(
A(z;R− r, R + r)

)
≤ Crα

for all z ∈ Rd and all radii r, R > 0.

This claim is actually a sub-statement of formula (2.19) from [54] in a more specific setting.
In particular:

(a) [54] deals with finite IFSs rather than finite alphabet CGDMS;

(b) [54] deals with Hölder continuous families of functions and their corresponding equi-
librium states rather than Hölder continuous potentials on the symbol space EN

A and
their projections; and

(c) with the restrictions of (a) and (b) Claim 1 is a sub-statement of formula (2.19)
from [54] only in the case of d ≥ 3.
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However, a close inspection of arguments leading to (2.19) of [54] indicates that the dif-
ference of (a) is inessential for these arguments, and for (b) that the only property of
equilibrium states of Hölder continuous families of functions was that of being projections
of Hölder continuous potentials from the symbol space E∞A . Concerning (c) it only remains
to consider the case d = 2. We then redefine the family F0 from section 2, page 225 of
[54] to conclude that also all the intersections of the form X ∩ L, where L ⊂ C where is a
round circle (of arbitrary center and radius). The argument in [54] leading to (2.19) goes
through with obvious minor modifications. Claim 1 is then established.

Using this claim, we obtain

µ̂ψ(Aβµψ(z, r))

µ̂ψ(B(x, r))
≤
Cµ̂αβψ (B(z, r))

µ̂ψ(B(x, r))
= Cµ̂αβ−1

ψ (B(z, r))

and the proof is complete and by noting that limr→0 µ
αβ−1
ψ (B(z, r)) for every β > 1/α. �

Fixing a κ > 0 let

Nκ(x, r) :=

[
−1

κ
log µ(B(x, r)),

]
∈ N ∪ {+∞}

where [t], t ∈ R, denotes the integer part of t. Let us make right away an immediately
evident, but extremely important, observation.

Observation 14.11. If µ is a Borel probability measure on X, then for every r > 0, we
have that

e−κNκ(x,r) ≤ µ(B(x, r)) ≤ eκe−κNκ(x,r).

Now, let in addition S = {ϕe}e∈E be a finitely primitive CGDMS with a phase space
X ⊆ Rd. For every x ∈ X and r > 0 and an integer n ≥ 0, let

A∗n(x, r) :=
⋃{

ϕω(JS) : ω ∈ En
A, ϕω(J) ∩B(x, r) 6= ∅ and ϕω(JS) ∩Bc(x, r) 6= ∅

}
.

We say that the measure µ is dynamically boundary thin (DBT) at the point x ∈ JS if
for some κ > 0

(14.4) lim
r→0

µ
(
A∗Nκ(x,r)(x, r)

)
µ(B(x, r))

= 0.

We say that the measure µ is Dynamically Boundary Thin (DBT) almost everywhere if
the set of points where it fails to be (DBT) is measure zero, and that the measure µ is
Dynamically Boundary Thin (DBT) if it is (DBT) at every point of its topological support.
We shall prove the following.

Proposition 14.12. If a Borel probability measure µ on JS is (WBT) at some point
x ∈ JS , then it is (DBT) at x.
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Proof. Let β > 0 be as in the definition of (WBT) of µ at x. Since S is a conformal GDMS,
there exist constants η > 0 and D ≥ 1 such that

diam(ϕω(X)) ≤ Dη−η|ω|

for all ω ∈ E∗A. Therefore, if κ > 0 is sufficiently small, then for every x ∈ JS and every
r > 0 we have

A∗Nκ(x,r)(x, r) ⊆ A
(
x; r −De−κNκ(x,r), r +De−κNκ(x,r)

)
⊆ A

(
x; r −D(µ(B(x, r))η/κ, r +D(µ(B(x, r))η/κ

)
= Aη/κ,Deµ (x, r).

For every r > 0, sufficiently small, we then have

µ
(
A∗Nκ(x,r)(x, r)

)
µ(B(x, r))

≤
µ
(
A
η/κ,De
µ (x, r)

)
µ(B(x, r))

.

Now, if κ > 0 is sufficiently small, then η/κ > β and, in consequence,

0 ≤ lim
r→0

µ
(
A∗Nκ(x,r)(x, r)

)
µ(B(x, r))

≤ lim
r→0

µ
(
A
η/κ,De
µ (x, r)

)
µ(B(x, r))

= 0.

This means that µ is (DBT) at x and the proof is complete. �

Now we shall provide some sufficient conditions, different than (WBT), for (DBT) to
hold at every point of JS . We will do it by developing the reasoning of Lemma 5.2 in [5].
We will not really make use of these conditions in the current manuscript but these are
very close to the subject matter of the current section and will not occupy too much space.
These may be needed in some future. We shall first prove the following.

Lemma 14.13. Let S = {ϕe}e∈E be a finitely primitive CGDMS satisfying SOSC. Assume
that a number t > max{θS , d− 1} satisfies

(14.5) t > d− 1 +
P(t)

log s

Recallthat µt is the unique equilibrium state of the potential E∞A 3 ω 7→ t log |ϕω1(π(σω))|.
Then there exists constants α > 0 and C ∈ [0,+∞] such that

µt ◦ π−1
S (A∗k(z, r)) ≤ Ce−αk

for all z ∈ JS , all radii r > 0 and all integers n ≥ 0.

Proof. For all a ∈ E, let r > 0. Set

Ja :=
⋃

b∈E:Aab=1

πS([b]).

r ∈ (0, 1]. For k ≥ 0 consider the set

Ek
A(z, r) :=

{
ω ∈ Ek

A : ϕω(Jw|n|−1
) ∩B(z, r) 6= ∅ and ϕω(Jw|w|−1

) ∩B(z, r)c 6= ∅
}
.
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Furthermore, for every k ≥ 0 let

Ek
A(z, r;n) := {ω ∈ Ek

A(z, r) : sn+1 < ‖ϕ′w‖ ≤ sn}

Then the family

Fk(z, r;n) :=
{
ϕω(Int(X)) : ω ∈ Ek

A(z, r;n)
}

consists of mutually disjoint open sets contained in

A(z; r −Dsn, r +Dsn)

each of which contains a ball of radius K−1Rsn+1 where R > 0 is the radius of an open
ball entirely contained in IntXv for all v ∈ V . So, then

#Fk(z, r;n) ≤ Lebd(A(z; r −Dsn, r +Dsn))

Lebd(0, k−1Rsn+1)
≤ C1

rd−1sn

snd
= C1r

d−1s(1−d)n ≤ C1s
(1−d)n

with the same universal constant C1 ∈ (0,+∞). Since Ek
A(z, r, n) = ∅ for every n < k,

then knowing that t > max{θS , d− 1} gives that

µt ◦ π−1
S (A∗k(z, v)) =

∞∑
n=k

µt

 ⋃
ω∈EkA(z,r;k)

ϕω(Jω|ω|−1
)


≤

∞∑
n=k

#Fk(z, r; ) sup{µt(ϕω(X)) : ω ∈ EA(z, r;n)}

≤ C1

∞∑
n=k

s(1−d)ne−P (t)kstn

= C1e
−P(t)k

∞∑
n=k

s(t+1−d)n

= C1(1− st+1−d)−1e−P (t)ks(t+d−1)k

= C1(1− st+d−1)−1 exp(((t+ 1− d) log s− P(t))k)

But (t+ 1− d) log s− P(t) < 0 by virtue of (14.5) and the proof is complete. �

As an immediate consequence of this lemma we get the following.

Theorem 14.14. Let S = {ϕe}e∈E be a finitely primitive CGDMS. If a number t >
max{θS , d− 1} satisfies

(14.6) t > d− 1 +
P(t)

log s

then µt ◦ π−1
S , the projection of the corresponding equilibrium state µt on E∞A , is DBT at

every point of JS
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Proof. Because of the Lemma 14.13 for all z ∈ JS and all radii r > 0, we have that

µt ◦ π−1
S
(
A∗Nκ(z,r)(z, r)

)
≤ C exp(−αNκ(z, k))

≤ C exp

(
−α
(

1

κ
log µt ◦ π−1

S (B(z, r))− 1

))
= Ceα(µt ◦ πS(B(z, r)))α/κ

= Ceα
(
µt ◦ π−1

S (B(z, r))
)α
κ
−1
µt ◦ π−1

S (B(z, r))

Equivalently,
µt ◦ π−1

S (A∗Nk(z,r)(z, r))

µt ◦ π−1
S (B(z, r))

≤ Ceα
(
µt ◦ π−1

S (B(z, r))
)α
κ
−1

and the proof is complete since the right hand-side of this inequality converges to 0 as
r → 0 for every κ ∈ (0, α).

�

As an immediate consequence of this theorem we get the following.

Corollary 14.15. Let S be a finitely primitive strongly regular CGDMS. Then there exists
η > 0 such that if t ∈ (max{θS , d − 1},HD(JS) + η), then µt ◦ π−1

S , the projection of the
corresponding equilibrium state µt on E∞A , is DBT at every point of JS .

Proof. We only need to check that if t ∈ (max{θS , d − 1},HD(JS) + η) for some η > 0
sufficiently small then (14.6) holds. Indeed, since P(bS) = 0 (by strong regularity of S) this
is an immediate consequence of continuity of the function (θS ,+∞) 3 t 7→ P(t) ∈ R. �

15. Escape Rates for Conformal GDMSs; Measures

In this section we continue the analysis from the previous section and we prove our first
main results concerning escape rates; the one for conformal GDMSs and equilibrium/Gibbs
measures. We first work for a while in full generality. Indeed, let µ be an arbitrary Borel
probability measure on a metric space (X, d). Fix κ > 0. Fix z ∈ X. Let

Γ := Γκ(z) := {Nκ(z, r) : 0 < r ≤ 2diam(X)}.
Represent Γ as a strictly increasing sequence (ln)∞n=0 of non-negative integers. Let us record
the following.

Observation 15.1. If z ∈ supp(µ), then Γκ(z) ⊆ N. Moreover, the set Γ is infinite if and
only z is not an atom of µ.

We shall prove the following.

Lemma 15.2. If µ is a Borel probability measure on X which is (WBT) at some point
z ∈ X, then the set Γκ(z) has bounded gaps, precisely meaning that

∆l(z) := sup
n≥0
{ln+1 − ln} < +∞
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Proof. Fix n ≥ 0. There then exists rn > 0 such that

Nκ(z, r) ≤ ln + 1

for all r > rn, and
Nκ(z, r) ≥ ln+1

for all r < rn. Therefore, by Observation 14.11

µ(B(z, rn)) ≤ eκ exp
(
− κln+1

)
and

µ(B(z, rn)) ≥ exp
(
− κ(ln + 1)

)
.

Hence,
µ
(
B
(
z, rn + µβ

(
B(z, rn)

)))
µ(B(z, rn))

≥ e−κ exp
(
κ(ln+1 − (ln + 1))

)
.

for all β > 0, in particular for β > βµ(z). But since the measure µ is (WBT) at z, we
therefore have that

lim
n→∞

exp
(
κ(ln+1 − (ln + 1))

)
≤ eκ lim

n→∞

µ
(
B
(
z, rn + µβ

(
B(z, rn)

)))
µ(B(z, rn))

≤ eκ.

Thus
lim
n→∞

(ln+1 − (ln + 1)) < +∞
and the proof is complete. �

For every n ≥ 0 let
Rn := {r ∈ (0, 2diam(X)) : Nκ(z, r) = ln},

and, given in addition 0 ≤ m ≤ n, let

(15.1) R(m,n) :=
n⋃

k=m

Rk.

Now we make an additional substantial assumption that

S = {ϕe}e∈E,
a conformal GDMS is given, and

(15.2) µ
(
JS
)

= 1.

For any z ∈ JS and r ∈ (0, 2diam(X)), define

(15.3) W−(z, r) := BJS (z, r) \ A∗Nκ(z,r)(z, r) and W+(z, r) := BJS (z, r) ∪ A∗Nκ(z,r)(z, r).

Let us record the following two immediate consequences of this definition.

Observation 15.3. For every z ∈ JS and r ∈ (0, 2diam(X)), we have

W−(z, r) ⊆ BJS (z, r) ⊆ W+(z, r).

Observation 15.4. For every z ∈ JS and r ∈ (0, 2diam(X)) both sets W−(z, r) and
W+(z, r) can be represented as unions of cylinders of length Nκ(z, r).
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In the sequel we will frequently, without explicit mentioning it, use the formula

µ
(
BJS (z, r)

)
= µ(B(z, r)),

which follows immediately from (15.2).
Fix κ > 0 so small that (14.4) holds and so that η/κ > βµ(z). We shall prove the following.

Lemma 15.5. For all k ≥ 0 large enough, if n− k ≥ 2, then

W+(z, s) ⊆ W−(z, r)

for all r ∈ Rk and all s ∈ Rn.

Proof. The assertion of our lemma is equivalent to the statement that

W+(z, s) ∩ A∗lk(z, r) = ∅.

Assume for a contradiction that there are sequences
(
nj
)∞
j=0

and
(
kj
)∞
j=0

of positive integers

such that limj→∞ kj = +∞ and nj − kj ≥ 2 for all j ≥ 0, and also there are radii rj ∈ Rkj

and sj ∈ Rnj such that

W+(z, sj) ∩ A∗lkj (z, rj) 6= ∅,
for all j ≥ 0. Since we know that for each ω ∈ E∗A,

diam
(
ϕω(J)

)
≤ De−η|ω|,

using Observation 14.11, we therefore conclude that

sj +Dµη/κ(B(z, rj)) ≥ sj +D exp
(
− ηNκ(z, rj)

)
≥ sj +Dε−ηlkj

≥ sj +Dε−ηlnj ≥ rj −Dε−ηlkj

= rj −D exp
(
− ηNκ(z, rj)

)
≥ rj −Dµη/κ(B(z, rj)).

Hence, sj ≥ rj − 2Dµη/κ(B(z, rj)), and therefore,

(15.4)
µ(B(z, sj))

µ(B(z, rj))
≥
µ(B(z, rj))− µ

(
A
η/κ,2D
µ (z, rj)

)
µ(B(z, rj))

= 1−
µ
(
A
η/κ,2D
µ (z, rj)

)
µ(B(z, rj))

.

On the other hand,it follows from Observation 14.11 that

µ(B(z, sj)) ≤ eκe−κlnj and µ(B(z, rj)) ≥ e−κlkj .

This yields

µ(B(z, sj))

µ(B(z, rj))
≤ eκ exp

(
− κ(lnj − lkj)

)
≤ eκ exp

(
− κ(nj − kj)

)
≤ eκe−2κ = e−κ.

Along with (15.4) this implies that

(15.5)
µ
(
A
η/κ,2D
µ (z, rj)

)
µ(B(z, rj))

≥ 1− e−κ.
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However, since limj→∞ rj = 0, since the measure µ is (WBT), and since κ > 0 was taken so
small that η/κ > βµ(z), we conclude that (15.5) may hold for finitely many integers j ≥ 0
only, and the proof of Lemma 15.5 is complete. �

As an immediate consequence of this lemma and Observation 15.3, we get the following.

Lemma 15.6. For all integers k ≥ 0 large enough, if n− k ≥ 2, then

W−(z, s) ⊆ W−(z, r) and W+(z, s) ⊆ W+(z, r)

for all r ∈ Rk and all s ∈ Rn.

Now we shall prove the following.

Proposition 15.7. Let S be a conformal GDMS. Let µ be a Borel probability measure
supported on JS . Suppose that µ is (WBT) at some point z ∈ JS which is not an atom of
µ. Let R be an arbitrary countable set of positive reals containing 0 in its closure. Then
there exists (nj = nj(R))∞j=0, a strictly increasing sequence of non-negative integers, with
the following properties.

(a) nj+1 − nj ≤ 4,

(b) nj+1 − nj ≥ 2,

(c) The set R∩Rnj 6= ∅ for infinitely many js.

Proof. We construct the sequence (nj)
∞
j=0 inductively. Assume without loss of generality

that r0 = 2diam
(
JS
)

and set n0 := 0. For the inductive step suppose that nj ≥ 0 with
some j ≥ 0 has been constructed. Look at the set R(nj + 2, nj + 4); see (15.1) for its
definition. If

{lk : nj + 2 ≤ k ≤ nj + 4} ∩ {Nκ(z, r) : r ∈ R} 6= ∅,
take nj+1 to be an arbitrary number from {nj + 2, nj + 3, nj + 4} such that

lnj+1
∈ {Nκ(z, r) : r ∈ R}.

If, on the other hand,

{lk : nj + 2 ≤ k ≤ nj + 4} ∩ {Nκ(z, r) : r ∈ R} = ∅,
set

nj+1 = nj + 2.

Properties (a) and (b) are immediate from our construction. In order to prove (c) suppose
on the contrary that

R∩
∞⋃
j=p

Rnj = ∅

with some p ≥ 0. This yields nj+1 = nj + 2 for all j ≥ p, i.e. nj = np + 2(j − p) and
∞⋃
j=p

{lk : np + 2(j + 1− p) ≤ k ≤ np + 2(j + 2− p)} ∩ {Nκ(z, r) : r ∈ R} = ∅
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But
∞⋃
j=p

{lk : np + 2(j + 1− p) ≤ k ≤ np + 2(j + 2− p)} = {lk : k ≥ np + 2}.

Thus, Nκ(z, r) ≤ np + 1 for all r ∈ R. By Observation 14.11 this gives that µ(B(z, r)) ≥
exp

(
−κ(np + 1)

)
for all r ∈ R, contrary to the facts that 0 ∈ R and that z is not an atom

of µ. We are done. �

Keep R arbitrary, with properties as in Proposition 15.7, until the proof of Theo-
rem 15.10, where it will be determined. Let nj = nj(R), j ≥ 1, be the integers produced in
Proposition 15.7. For every j ≥ 0 fix arbitrarily rj ∈ Rnj requiring in addition that rj ∈ R
if R∩Rnj 6= ∅. Set

(15.6) U−lnj
(z) := π−1

(
W−(z, rj)

)
and U+

lnj
(z) := π−1

(
W+(z, rj)

)
.

These sets are well defined as the function l : N → N is 1-to-1 and, by (b), the function
j 7→ nj is also 1-to-1. Furthermore, for every j ≥ 0 and every lnj ≤ k < lnj+1

, define

(15.7) U±k (z) := U±lnj
(z).

In this way we have well-defined two sequences of open neighborhoods of π−1(z). We shall
prove the following.

Proposition 15.8. With hypotheses exactly as in Proposition 15.7, both
(
U±k (z)

)∞
k=0

are
descending sequences of open subsets of E∞A satisfying conditions (U0)–(U2).

Proof. (U0) is immediate from the very definition. If k ≥ 0 and then j = jk ≥ 0 is
uniquely chosen so that lnj ≤ k < lnj+1

, then U±k (z) := U±lnj
(z), and both sets are disjoint

unions of cylinders of length nj by Observation 15.4 and since rj ∈ Rnj , so also of length

k as k ≥ lnj . Thus (U1) holds. That both sequences
(
U±k (z)

)∞
k=0

are descending follows
immediately from Lemmas 15.6, property (b) of Proposition 15.7, and formulas (15.7) and
(15.6). Applying formulas (15.7) and (15.6) along with Proposition 15.7 (b), Lemma 15.5,
Observation 15.3, Observation 14.11, Lemma 15.2, and Proposition 15.7 (a), we get
(15.8)

µ
(
U±k (z)

)
≤ µ

(
U+
k (z)

)
= µ

(
Ulnj (z)

)
= µ

(
π−1
(
W+(z, rj)

))
≤ µ

(
π−1
(
W+(z, rj−1)

))
= µ

(
π−1
(
W−(z, rj−1)

))
≤ µ

(
π−1
(
B(z, rj−1)

))
≤ eκ exp

(
− κNκ(z, rj−1)

)
= eκe−lnj−1 = eκe−lnj+1 exp

(
κ(lnj+1

− lnj−1
)
)

≤ eκe−lnj+1 exp
(
κ∆l(z)

(
nj+1 − nj−1

))
≤ eκe8κ∆l(z) exp

(
− κlnj+1

)
≤ exp

(
κ((1 + 8∆l(z))

)
e−κk,

and thus condition (U2) is satisfied with any ρ ∈ (e−κ, 1) sufficiently close to 1. The proof
is complete. �

Proposition 15.9. With hypotheses exactly as in Proposition 15.7, both
(
U±k (z)

)∞
k=0

satisfy
condition (U3). If in addition either z is not pseudo-periodic for S or it is uniquely periodic
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and z ∈ IntX, then (U5) holds. In the former case also (U4) holds while in the latter case
it holds if in addition µ is an equilibrium state of the amalgamated function of a summable
Hölder continuous system of functions.

Proof. With the same arguments as in (15.8) we get that

(15.9) π−1(z) ⊆
∞⋂
k=0

U−n (z) ⊆
∞⋂
k=0

U+
n (z) ⊆

∞⋂
j=1

π−1
(
B
(
z, rj−1

))
⊆ π−1(z).

So (U3) holds as π−1(z) is a finite set. Assume now that z is not pseudo-periodic. Then
condition (U4A) holds because of Lemma 13.1 and (15.9), while (U5) directly follows from
Lemma 13.2 and the inclusion U±lnj

(z) ⊆ π−1
(
B(z, rj−1)

)
.

Assume in turn that z ∈ IntX is uniquely periodic point of S with prime period p. Then
U∞ consists of a periodic point, call it ξ, of period p because of (15.9). So, ξ = τ∞ for a
unique point τ ∈ E∞A . Condition (U5) directly follows from Lemma 13.3. Now we shall
show that the sequence

(
U+
i (z)

)∞
i=0

satisfies the property (U4B). Indeed, without loss of

generality we may assume that i = lk, where k = nj, j ≥ 0. Take an arbitrary ω ∈ U+
lk

(z).

This means that ω|lk ∈ E
lk
A and ϕω|lk (J) ∩B(z, rj) 6= ∅. Then

ϕτω|lk (J) ∩B(z, rj) ⊇ ϕτω|lk (J) ∩ ϕτ (B(z, rj)) = ϕτ
(
ϕω|lk (J) ∩B(z, rj)

)
6= ∅.

Hence, ϕω|lk (J)∩B(z, rj) 6= ∅, meaning that τω ∈ U+
lk

(z). So, the inclusion τU+
lk

(z) ⊆ U+
lk

(z)

has been proved and (6.1) of (U4B) holds for the sequence
(
U+
i (z)

)∞
i=0

.

In order to establish (6.1) of (U4B) for the sequence
(
U−i (z)

)∞
i=0

, recall that η > 0 is so

small that ||ϕ′ω|| ≤ e−η|ω| for all ω ∈ E∗A. Take now κ > 0 as small as previously required
and furthermore so small that βηκ−1 > 2. On the other hand, for every k := nj, j ≥ 1, we
have

(15.10) ϕτ (W
−(z, rj)) ⊆ ϕτ (B(z, rj)) ⊆ B

(
z, |ϕ′τ (z)|rj)

)
⊆ B

(
z, e−η|τ |rj

)
.

On the other hand, by (15.3) and the definition of lnj , we have that

W−(z, rj) ⊇ B
(
z, rj −De−ηlj

)
⊇ B

(
z, rj −Dµη/κ(B(z, rj))

)
⊇ B

(
z, rj −DCη/κr

βη/κ
j

)
⊇ B

(
z, e−η|τ |rj

)
provided that κ > 0 is taken sufficiently small (independently of j). Along with (15.10)
this gives,

ϕτ
(
W−(z, rj)

)
⊆ W−(z, rj)).

Hence,

π
(
τU−lk (z)

)
= π

(
τπ−1(W−(z, rj))

)
= ϕτ

(
π
(
π−1(W−(z, rj))

))
= ϕτ

(
W−(z, rj)

)
.
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Thus

τU−lk (z) ⊆ π−1(W−(z, rj)) = U−lk (z).

Thus, the part (6.1) of (U4B) is established. In order to prove (6.2) of (U4B), let k ≥ 0
and jk ≥ 0 be as in the proof of Proposition 15.8. The proof of this proposition gives that

U±k (z) ⊆ π−1
(
W−(z, rjk−1)

)
.

Since we now assume that ϕ(ω) = fω0(π(σ(ω))), ω ∈ E∞A , where
(
f e
)
e∈E is a Hölder

continuous summable system of functions, condition (6.2) of (U4B) follows from continuity
of the function f τ0 : Xt(τ0) → R and the fact that limk→∞ jk = +∞. The proof of our
proposition is complete. �

Now, we are in position to prove the following main result of this section, which is also one
of the main results of the entire paper. Recall that the lower and upper escape rates Rµ

and Rµ have been defined by formulas (7.1) and (7.2).

Theorem 15.10. Let S = {ϕe}e∈E be a finitely primitive Conformal Graph Directed
Markov System. Let ϕ : E∞A → R be a Hölder continuous summable potential. As usual,
denote its equilibrium/Gibbs state by µϕ. Assume that the measure µϕ ◦ π−1

S is (WBT) at
a point z ∈ JS . If z is either

(a) not pseudo-periodic,
or

(b) uniquely periodic, it belongs to IntX (and z = π(ξ∞) for a (unique) irreducible
word ξ ∈ E∗A), and ϕ is the amalgamated function of a summable Hölder continuous
system of functions,

then, with RS,ϕ(B(z, ε)) := Rµϕ

(
π−1
S (B(z, ε))

)
and RS,ϕ(B(z, ε)) := Rµϕ

(
π−1
S (B(z, ε))

)
, we

have that

(15.11)

lim
ε→0

RS,ϕ(B(z, ε))

µϕ ◦ π−1
S (B(z, ε))

= lim
ε→0

RS,ϕ(B(z, ε))

µϕ ◦ π−1
S (B(z, ε))

=

= dϕ(z) :=

{
1 if (a) holds

1− exp
(
ϕp(ξ)− pP(ϕ)

)
if (b) holds,

where in (b), {ξ} = π−1
S (z) and p ≥ 1 is the prime period of ξ under the shift map.

Proof. Assume for a contradiction that (15.11) does not hold. This means that there exists
a strictly decreasing sequence sn(z) → 0 of positive reals such that at least one of the
sequences (

RS,ϕ(B(z, sn(z)))

µϕ ◦ π−1
S (B(z, sn(z)))

)∞
n=0

or

(
RS,ϕ(B(z, sn(z)))

µϕ ◦ π−1
S (B(z, sn(z)))

)∞
n=0

does not have dϕ(z) as its accumulation point. Let

R := {sn(z) : n ≥ 0}.
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Let
(
U±n (z)

)∞
n=0

be the corresponding sequence of open subsets of E∞A produced in formula
(15.7). Then, because of both Proposition 15.8 and Proposition 15.9, Proposition 7.2
applies to give

(15.12) lim
n→∞

Rµϕ(U±n (z))

µϕ(U±n (z))
= dϕ(z).

Let (nj)
∞
j=0 be the sequence produced in Proposition 15.7 with the help of R defined above.

By this proposition there exists an increasing sequence (jk)
∞
k=0 such that R ∩ Rnjk

6= ∅
for all k ≥ 1. For every k ≥ 1 pick one element rk ∈ R ∩ Rnjk

. Set qk := lnjk . By

Observation 15.3 and formula (15.6), we then have

(15.13)

Rµϕ(U−qk(z))

µϕ(U−qk(z))
·
µϕ(U−qk(z))

µϕ(B(z, rk))
≤

RS,ϕ(B(z, rk))

µϕ ◦ π−1
S (B(z, rk))

≤ RS,ϕ(B(z, rk))

µϕ ◦ π−1
S (B(z, rk))

≤

≤
Rµϕ(U+

qk
(z))

µϕ(U+
qk

(z))
·
µϕ(U+

qk
(z))

µϕ(B(z, rk))
.

But, since µϕ ◦ π−1
S is (WBT) at z, it is (DBT) at z by Proposition 14.12, and it therefore

follows from (14.4) along with formulas (15.3) and (15.6) that

lim
k→∞

µϕ(U−qk(z))

µϕ(B(z, rk))
= 1 = lim

k→∞

µϕ(U+
qk

(z))

µϕ(B(z, rk))
.

Inserting this to (15.12) and (15.13), yields:

lim
k→∞

RS,ϕ(B(z, rk))

µϕ ◦ π−1
S (B(z, rk))

= lim
k→∞

RS,ϕ(B(z, rk))

µϕ ◦ π−1
S (B(z, rk))

= dϕ(z).

Since rk ∈ R for all k ≥ 1, this implies that dϕ(z) is an accumulation point of both
sequences

(
RS,ϕ(B(z, rk))

/
µϕ ◦ π−1

S (B(z, rk))
)∞
n=1

,
(
RS,ϕ(B(z, rk))

/
µϕ ◦ π−1

S (B(z, rk))
)∞
n=1

,
and this contradiction finishes the proof of Theorem 15.10. �

Now, as an immediate consequence of Theorem 15.10 and Theorem 14.7, we get the fol-
lowing.

Theorem 15.11. Assume that S is a finitely primitive conformal GDMS whose limit set
JS is geometrically irreducible. Let ϕ : E∞A → R be a Hölder continuous strongly summable
potential. As usual, denote its equilibrium/Gibbs state by µϕ. Then

(15.14) lim
ε→0

RS,ϕ(B(z, ε))

µϕ ◦ π−1
S (B(z, ε))

= lim
ε→0

RS,ϕ(B(z, ε))

µϕ ◦ π−1
S (B(z, ε))

= 1

for µϕ ◦ π−1
S –a.e. point z of JS .

In the realm of finite alphabets E, by virtue of Theorem 15.10 and both Theorem 14.9
and Theorem 14.10, we get the following stronger result.
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Theorem 15.12. Let S = {ϕe}e∈E be a primitive Conformal Graph Directed Markov
System with a finite alphabet E acting in the space Rd, d ≥ 1. Assume that either d = 1
or that the system S is geometrically irreducible. Let ϕ : E∞A → R be a Hölder continuous
potential. As usual, denote its equilibrium/Gibbs state by µϕ. Let z ∈ JS be arbitrary. If
either z is

(a) not pseudo-periodic,
or

(b) uniquely periodic, it belongs to IntX (and z = π(ξ∞) for a (unique) irreducible
word ξ ∈ E∗A), and ϕ is the amalgamated function of a summable Hölder continuous
system of functions,

then

(15.15)

lim
ε→0

RS,ϕ(B(z, ε))

µϕ ◦ π−1
S (B(z, ε))

= lim
ε→0

RS,ϕ(B(z, ε))

µϕ ◦ π−1
S (B(z, ε))

=

= dϕ(z) :=

{
1 if (a) holds

1− exp
(
ϕp(ξ)− pP(ϕ)

)
if (b) holds,

where in (b), {ξ} = π−1
S (z) and p ≥ 1 is the prime period of ξ under the shift map.

16. The derivatives λ′n(t) and λ′′n(t) of Leading Eigenvalues

In this section we have S = {ϕe}e∈E, a finitely primitive strongly regular conformal graph
directed Markov system. We keep a parameter t > θS and consider the Hölder continuous
summable potential ϕt : E∞A → R given by the formula

ϕt(ω) := t log |ϕ′ω0
(π(σ(ω)))|.

We further assume that a sequence (Un)∞n=0 of open subsets of E∞A is given satisfying the
conditions (U0)-(U5). The eigenvalues λ and λn along with other objects associated to the
potential ϕt are now indicated with the letter/number t.

Our goal in this section is to calculate the asymptotic behavior of derivatives λ′n(t) and
λ′′n(t) of leading eigenvalues of unnormalized operators Lt,n when the integer n ≥ 0 diverges
to infinity and the parameter t approaches bS . Because of dealing with derivatives and
because of wanting/needing our results about them to be of full strength and generality, we
do impose in this section no normalizations on the operators L and Ln. Note for example
that the normalization λ(t) = 1 for all t > θS “artificially” yields the derivatives of all
orders of λ(t) equal to 0. Also, the equation λ(t) = 1 (with no normalizations), known
as Bowen’s equation, has a rich geometric meaning; its (unique) solution is the Hausdorff
dimension of the limit set JS , the meaning entirely lost after normalization.

The task of calculate the asymptotic behavior of derivatives λ′n(t) and λ′′n(t) is truly
tedious and technically involved. This is partially due to unboundedness of the function ϕt
in the supremum norm and partially due to lack of uniform topological mixing on the sets
Kz(ε) introduced below.
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The main theorems of this section form the crucial ingredients in the escape rates con-
siderations of the next section, i.e. Section 17.

We start with the following.

Theorem 16.1. For every 0 ≤ n ≤ +∞, the function (θS ,+∞) 3 t 7→ λn(t) ∈ (0,+∞) is
real analytic and

(16.1) λ′(t) = lim
n→∞

λ′n(t).

Proof. By extending the transfer operators Lt,n : Bθ → Bθ in the natural way to complex
operators for all t ∈ C with Re(t) < θS , and applying Kato-Rellich Perturbation Theorem
(see [55]), along with Proposition 5.2, we see that for every 0 ≤ n ≤ +∞ there exists Vn, an
open neighborhood of (θS ,+∞), such that each function (θS ,+∞) 3 t 7→ λn(t) ∈ (0,+∞)
extends (and we keep the same symbol λn for this extension) to a holomorphic function

from Vn to C, and also each function (θS ,+∞) 3 t 7→ Q
(t)
n 11 ∈ Bθ extends to a holomorphic

function from Vn to C belonging to Bθ. Denote these latter extensions by

gn : Vn → C, n ≥ 0.

It is also a part of Kato-Rellich Theorem that

(16.2) Lt,ngn(t) = λn(t)gn(t)

for all 0 ≤ n ≤ +∞ and all t ∈ Vn. In particular, all the functions (θS ,+∞) 3 t 7→ λn(t) ∈
(0,+∞), 0 ≤ n ≤ +∞, are real analytic. In order to prove (16.1), we shall derive first a
”thermodynamical” formula for λ′n(t). Differentiating both sides of (16.2), we obtain

(16.3) L′t,ngn(t) + Lt,ng′n(t) = λ′n(t)gn(t) + λn(t)g′n(t),

where

(16.4) L′t,n(u)(ω) :=
∑

ε∈E:Aeω0=1

11Ucn(eω)u(eω) log |ϕ′e(π(u))| · |ϕ′e(π(u))|t,

and all four terms involved in (16.3) belong to Bθ. Applying the operator Q
(t)
n to both sides

of this equation, we get

Q(t)
n

(
L′t,ngn(t)

)
+Q(t)

n Lt,n
(
g′n(t)

)
= λ′n(t)Q(t)

n

(
gn(t)

)
+ λn(t)Q(t)

n

(
g′n(t)

)
.

Since
Q(t)
n

(
gn(t)

)
= gn(t)

and
Q(t)
n Lt,n

(
g′n(t)

)
= Lt,nQ(t)

n

(
g′n(t)

)
= λn(t)Q(t)

n

(
g′n(t)

)
,

we thus get

(16.5) λ′n(t)gn(t) = Q(t)
n

(
L′t,ngn(t)

)
.

Since in addition Q
(t)
n is a projector onto the 1-dimensional space Cgn(t), this operator

gives rise, similarly as in Section 10, to a unique bounded positive linear functional

νt,n : Bθ → C
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determined by the property that

Q(t)
n (u) = νt,n(u)gn(t)

for every u ∈ Bθ. So, we can write (16.5) in the form

(16.6) λ′n(t) = νt,n
(
L′t,ngn(t)

)
.

Now, writing

`(ω) := log |ϕ′ω0
(π(σ(ω))|,

formula (16.4) readily gives

L′t,n(u) = Lt,n(u`),

so that (16.5) takes on the form

(16.7) λ′n(t) = νt,n
(
Lt,n(`gn(t))

)
.

Keeping t ∈ (θS ,+∞) and for the rest of the proof set

ψn := Lt,n(`gn(t)) and ψ := Lt,n(`g(t)),

but remember that all ψn and ψ depend on t too. Now, we have

Q(t)
n (ψn)−Q(t)(ψ) = νt,n(ψn)gn(t)− νt(ψ)g(t)

=
(
νt,n(ψn)− νt(ψ)

)
g(t) + (gn(t)− g(t))νt,n(ψn),

and keep in mind that all objects considered here are understood in their unnormalized
meaning. Hence,(

νt,n(ψn)− νt(ψ)
)
g(t) = Q(t)

n (ψn)−Q(t)(ψ) + (g(t)− gn(t))νt,n(ψn).

Therefore, recalling that the function g(t) is everywhere positive and that νt(g(t)) = 1, we
get the following.∣∣∣νt,n(ψn)− νt(ψ)

∣∣∣ =

∫ ∣∣∣Q(t)
n (ψn)−Q(t)(ψ) + νt,n(ψn)(g(t)− gn(t))

∣∣∣d νt
≤
∫ ∣∣∣Q(t)

n (ψn)−Q(t)(ψ)
∣∣∣d νt + νt,n(−ψn)

∫
|gn(t)− g(t)|d νt.

But, because of Proposition 5.2 (h),

(16.8)

∫
|gn(t)− g(t)|d νt ≤ ||gn(t)− g(t)||∗ =

∥∥∥Q(t)
n (11)−Q(t)(11)

∥∥∥
∗

≤
∣∣∣∣∣∣∣∣∣Q(t)

n (11)−Q(t)
∣∣∣∣∣∣∣∣∣‖11‖θ

=
∣∣∣∣∣∣∣∣∣Q(t)

n (11)−Q(t)
∣∣∣∣∣∣∣∣∣ −→ 0

as n→ 0. Hence, in view (16.7), in order to conclude the theorem, it suffices to show that

(16.9) lim
n→∞

∫ ∣∣∣Q(t)
n (ψn)−Q(t)(ψ)

∣∣∣d νt = 0
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and

(16.10) M := sup
n≥1
{νt,n(−ψn)} < +∞.

We first deal with the latter. We note that it follows from Proposition 5.2 (g) that

(16.11) ||gn(t)||∞ ≤ ||gn(t)||θ = ||Q(t)
n (11)||θ ≤ C(t) < +∞.

with some constant C(t) ∈ (0,+∞) and all integers n ≥ 0. Now, since t > θS , it directly
follows from the inequality

(16.12)
∣∣ log |ϕ′e|

∣∣ ≤ ||ϕ′e||−ε
for every ε > 0 and all e ∈ N large enough that

(16.13)

||ψn||∞ = ||Lt,n
(
`gn(t)

)
||∞ ≤ ||gn(t)||∞||Lt,n`||∞

≤ C(t)||Lt,n`||∞
≤ C(t)||Lt`||∞ < +∞

for all n ≥ 1 (including infinity) large enough. Now note that the same argument (only
easier) as the one leading to Lemma 10.1 shows that all νt,n are in fact positive measure
on E∞A , and, by (16.11), are uniformly bounded above by C(t). So, (16.10) immediately
follows from (16.13).

Now we shall prove that (16.9) holds. Write, as usually, ||h||1 := ||h||L1(νt) for all h ∈
L1(νt). With the use of (16.18) we then estimate

||Q(t)
n (ψn)−Q(t)(ψ)||1 = ||(Q(t)

n −Q(t))ψn +Q(t)(ψn − ψ)||1
≤ ||(Q(t)

n −Q(t))ψn||1 + ||Q(t)(ψn − ψ)||1
≤ ||(Q(t)

n −Q(t))ψn||∗ + ||Q(t)||1||ψn − ψ||1
≤ |||(Q(t)

n −Q(t))||| · ||ψn||θ + ||Q(t)||1||ψn − ψ||1
≤Mt|||(Q(t)

n −Q(t))|||+ ||Q(t)||1||ψn − ψ||1.

Hence, applying Proposition 5.2 (h), we see that in order to prove that (16.9) holds, and
by having done this, to conclude the proof of Theorem 16.1, it suffices to show that

(16.14) lim
n→∞

||ψn − ψ||1 = 0.
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It is well-known, and follows easily from (16.12) that ` ∈ Lp(νt) for all real p > 0. Using
Cauchy-Schwarz inequality we then estimate:

||ψn − ψ||1 =
∥∥Lt(`γn)− Lt(`γ)

∥∥
1

=
∥∥Lt(`γn − `γ)

∥∥
1

= ||`(γn − γ)||1
≤ ||`||2||γn − γ||2 = ||`||2||gn(t)11− g(t)||2
= ||`||2||11n(γn(t)− γ(t)) + γ(t)(11n − 11)||2
≤ ||`||2

(
||11n(γn(t)− γ(t))||2 + ||γ(t)11Un||2

)
≤ ||`||2

(
||γn(t)− γ(t)||2 + ||11Un ||2

)
≤ ||`||2

(
||γn(t)− γ(t)||2 +

√
νt(Un)

)
≤ ||`||2

(
||γn(t)− γ(t)||4 +

√
νt(Un)

)
But limn→∞ νt(Un) = 0 and limn→∞ ||gn(t) − g(t)||4 = 0 because of (16.8) and (16.11).
Hence, the formula (16.14) holds and the proof of Theorem 16.1 is complete. �

Now our goal is to show that the derivatives λ′′n(t) are uniformly bounded above in
appropriate domains of t and n. In order to do this we will need several auxiliary results.
Our strategy is to apply the results of [25] for the family of operators(

Lt,n : t ∈ (s− δ, s+ δ), n ≥ 0
)
,

where s > θS and δ > 0 is small enough. It is evident from the form of our potentials
ϕt(ω) = t log |ϕ′ω0

(π(σ(ω)))| that the distortion constants Mϕ of Lemma 2.2 and Lemma 2.3
can be taken of common value for all t ∈ (0, 2s − θS ]. Denote this common constant by
Ms. An inspection of the proof of Lemma 3.2 leads to the following.

Lemma 16.2. For every δ ∈ (0, s− θS) there exists a constant Cδ ∈ (0,+∞) such that for
every t ∈ [s− δ, s+ δ], every integer k ≥ 0, and every g ∈ Bθ, we have

|Lkt g|θ ≤ Cδ(θλ(t))k(t)|g|θ + λk(t)||g||1.

Since the function (θS ,+∞) 3 t 7→ λ(t) is strictly decreasing, denoting λ(s− δ) by M , as
an immediate consequence of Lemma 16.2 we get the following.

Lemma 16.3. For every δ ∈ (0, s− θS), every t ∈ [s− δ, s + δ], every integer k ≥ 0, and
every g ∈ Bθ, we have

|Lkt g|θ ≤ Cδ(θM)k|g|θ +Mk||g||1.

Lemma 4.2 directly translates into the following.

Lemma 16.4. For every δ ∈ (0, s− θS), every t ∈ [s− δ, s + δ], every integer k ≥ 0, and
every n ≥ 0, we have

||Lkt,n||∗ ≤ λk(t) ≤Mk.

The proof of Corollary 4.5 provides exact estimates of constants, and gives the following.
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Lemma 16.5. For every δ ∈ (0, s− θS), every t ∈ [s− δ, s+ δ], every integer k ≥ 0, every
integer n ≥ 0, and every g ∈ Bθ, we have

||Lkt,ng||θ ≤ (Cδ + 1)(θM)k||g||θ + (Cδ + 1)(1 + θ(1− θ)−1)Mk||g||∗,

with some constant Cδ ∈ (0,+∞).

From now on throughout the entire section we assume that condition (U2) holds in the
following uniform version:

(U2*) There exists ρ ∈ (0, 1) such that for some δ > 0 and for all integers n ≥ 0 we have

sup
{
µt(Un) : t ∈ [s− δ, s+ δ]

}
≤ ρn.

We now have the following.

Lemma 16.6. For every δ ∈ (0, s − θS), every t ∈ [s − δ, s + δ] and every integer n ≥ 0,
we have

|||L − Ln||| ≤ 2λ(t)(ρ1/q)n ≤ 2Mρn/q.

Now, Lemmas 16.4, 16.2, and 16.6, along with formula (5.8), and compactness (in fact
finite dimensionality) of the operators πk : Bθ → Bθ imply that Theorem 1 in [25] along
with all corollaries therein, applies to the family of operators(

Lt,n : t ∈ (s− δ, s+ δ), n ≥ 0
)
,

(i. e. Ls corresponds to P0 and Lt,n correspond to operators Pε) with

(t, n)→ s ⇔ t→ s and n→ +∞

to give the following extension of Proposition 5.2.

Proposition 16.7. Fix s > θS . Then there exist δ ∈ (0, s − θS) sufficiently small and an
integer ns ≥ 0 sufficiently large such that for all (t, n) ∈ (s − δ, s + δ) × {ns, ns + 1, . . . , }
there exist bounded operators Q

(t)
n ,∆

(t)
n : Bθ → Bθ and complex numbers λn(t) 6= 0 with the

following properties:

(a) λn(t) is a simple eigenvalue of the operator Lt,n : Bθ → Bθ.

(b) Q
(n)
t : Bθ → Bθ is a projector (Q

(n)2
t = Q

(n)
t ) onto the 1–dimensional eigenspace of

λn(t).

(c) Lt,n = λn(t)Q
(n)
t + ∆t,n.

(d) Q
(n)
t ◦∆t,n = ∆t,n ◦Q(n)

t = 0.
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(e) There exist κ ∈ (0, 1) and C > 0 (independent of (t, n) ∈ (s− δ, s + δ)× {ns, ns +
1, . . . , }) such that

||∆k
t,n||θ ≤ C(κλ(t))k

for all k ≥ 0. In particular,

||∆k
t,ng||∞ ≤ ||∆k

t,ng||θ ≤ C(κλ(t))k||g||θ

for all g ∈ Bθ.

(f) lim(t,n)→s λn(t) = λ(s).

(g) Enlarging the above constant C > 0 if necessary, we have

||Q(n)
t ||θ ≤ C.

In particular,

||Q(n)
t g||∞ ≤ ||Q(n)

t g||θ ≤ C||g||θ
for all g ∈ Bθ.

(h) lim(t,n)→s |||Q(n)
t −Qs||| = 0.

We now pass to deal with the second derivatives λ′′n(t). We start with close scrutiny of
Lt,n

(
`γ
)
, γ ∈ Bθ. We estimate for every γ ∈ Bθ:

(16.15)

||Lt,n
(
`γ
)
||1 ≤ ||Lt,n

(
`γ
)
||∞ ≤ ||Lt,n

(
` · ||γ||∞

)
||∞

= ||γ||∞||Lt,n
(
`
)
||∞

≤ ||Lt,n`||∞||γ||θ
≤ ||Lt`||∞||γ||θ.

We have already got a uniform upper bound on |ψn|∞. Let us now also estimate |ψn|θ.
Write

(16.16) γn := gn(t)11Ucn .

Then

(16.17) ψn = Lt,n(`gn(t)) = Lt(`γn).

We will in fact proceed more generally than merely estimating |ψn|θ. We shall prove, and
we will need, the following.

Lemma 16.8. There exists a constant Ct > 0 such that for every γ ∈ Bθ, we have that

||Lt(`γ)||θ ≤ Ct||γ||θ.
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Proof. By virtue of 16.15 it suffices to estimate |Lt(`γ)|θ. Fix an integer m ≥ 0, ω ∈ E∞A ,
and α, β ∈ [ω|m]. Let e ∈ E be such that Aeα0 = Aeβ0 = 1. Then∣∣∣`(eβ)γ(eβ)|ϕ′e(π(β))|t − `(eα)γ(eα)|ϕ′e(π(α))|t

∣∣∣
=
∣∣∣`(eβ)

(
γ(eβ)|ϕ′e(π(β))|t − γ(eα)|ϕ′e(π(α))|t

)
+ γ(eα)|ϕ′e(π(α))|t

(
`(eβ)− `(eα)

)∣∣∣
≤
∣∣∣`(eβ)

(
γ(eβ)

(
|ϕ′e(π(β))|t − |ϕ′e(π(α))|t

)
+ |ϕ′e(π(α))|t(γ(eβ)− γ(eα))

)∣∣∣
+ oscm+1(`)(eω)γ(eα)|ϕ′e(π(α))|t

≤ Aθ2m|`(eβ)γ(eβ)| · |ϕ′e(π(β))|t + |ϕ′e(π(α))|toscm+1(γ)(eω)+

+ Aθ2mγ(eα)|ϕ′e(π(α))|t

with some constant A ∈ (0,+∞) and some constant θ ∈ (0, 1) sufficiently close to 1. Hence,
using also (16.15) and Lemma 3.1, we get∣∣Lt(`γ)(β)− Lt(`γ)(α)

∣∣
≤ Aθ2m

(
|Lt(|`|γ)(β) + Lt(γ)(α)

)
+KtLt

(
oscm+1(γ

)
)(ω)

≤ Aθ2m
(
||Lt(`)||∞||γ||θ + ||Lt(γ)||∞

)
+KtLt

(
oscm+1(γ

)
)(ω)

≤ Aθ2m
(
||Lt(`)||∞||γ||θ + ||Lt(γ)||θ

)
+KtLt

(
oscm+1(γ

)
)(ω)

≤ Aθ2m
(
||Lt(`)||∞||γ||θ + ||Lt||θ||γ||θ

)
+KtLt

(
oscm+1(γ

)
)(ω)

≤ Aθ2m
(
||Lt||θ + ||Lt(`)||∞

)
||γ||θ +KtLt

(
oscm+1(γ

)
)(ω)

Therefore,

osc
(
Lt(`γ)

)
(ω) ≤ Aθ2m

(
||Lt||θ + ||Lt(`)||∞

)
||γ||θ +KtLt

(
oscm+1(γ

)
)(ω).

Thus, after integrating against measure νt, we get

||oscm
(
Lt(`γ)

)
||L1(νt) ≤ Aθ2m

(
||Lt||θ + ||Lt(`)||∞

)
||γ||θ +Kt

∫
Lt
(
oscm+1(γ)

)
dνt

= Aθ2m
(
||Lt||θ + ||Lt(`)||∞

)
||γ||θ +Kt

∫
oscm+1(γ) dνt

≤ Aθ2m
(
||Lt||θ + ||Lt(`)||∞

)
||γ||θ +Ktθ−(m+1)|γ|θ.

Therefore,

θ−2m||oscm
(
Lt(`γ)

)
||L1(νt) ≤

(
A(||Lt||θ + ||Lt(`)||∞) +Ktθ−1

)
||γ||θ.

Combining this with (16.15) we finally get

||Lt(`γ)||θ ≤
(
||Lt`||∞ + A(||Lt||θ + ||Lt(`)||∞) +Ktθ−1

)
||γ||θ.

So, the proof is complete. �

As a fairly straightforward consequence of this lemma we get the following.
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Corollary 16.9. There exists a constant C ′t > 0 such that for every γ ∈ Bθ and all n ≥ 1,
we have that

||Lt,n(`γ)||θ ≤ C ′t||γ||θ.

Proof. By virtue of Lemma 4.4 (with k = 1) and Lemma 4.1 we get

|11nγ|θ ≤ |γ|θ + (1− θ)−1||γ||∗ ≤ (1 + 2(1− θ)−1)||γ||θ.

Of course,

||11nγ||L1(νt) ≤ ||γ||L1(νt) ≤ ||γ||θ.
Hence,

||11nγ||θ ≤ 2(1 + (1− θ)−1)||γ||θ.
As

Lt,n(`γ) = Lt(`γ11n) = Lt(`(11nγ)),

applying Lemma 16.8, we thus get

||Lt,n(`γ)||θ = ||Lt(`(11nγ))||θ ≤ 2Ct(1 + (1− θ)−1)||γ||θ.

The proof is complete. �

It immediately follows from this corollary, along with (16.17) and (16.11), that

(16.18) ||ψn||θ ≤Mt

with some constant Mt ∈ (0,∞) and all integers n ≥ 0.

Now we are ready to prove the following.

Lemma 16.10. For every s > θS there exists η ∈ (0, 1) such that

Γ := sup
n≥ns

sup{λ′′n(t) : t ∈ (s− η, s+ η)} < +∞.

Proof. Throughout the whole proof we always assume that t ∈ (s − δ, s + δ) and n ≥ ns,
where δ > 0 is the one produced in Proposition 16.7. Fix an integer N ≥ 1 and differentiate
the eigenvalue equation

LNt,ngn(t) = λNn (t)gn(t)

with respect the variable t two times. This gives in turn

(LNt,n)′(gn(t)) + LNt,n(g′n(t)) = Nλ′n(t)λN−1
n (t)gn(t) + λNn (t)g′n(t)

and

(LNt,n)′′(gn(t)) + (LNt,n)′(g′n(t)) + (LNt,n)′(g′n(t)) + LNt,n(g′′n(t)) =

= N(N − 1)λN−2
n (t)(λ′n(t))2gn(t) +NλN−1

n (t)λ′n(t)g′n(t)+

+NλN−1
n (t)λ′′n(t)gn(t) +NλN−1

n (t)λ′n(t)g′n(t) + λNn (t)g′′n(t).
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Equivalently:

(LNt,n)′′(gn(t)) + 2(LNt,n)′(g′n(t)) + LNt,n(g′′n(t)) =

= N(N − 1)λN−2
n (t)(λ′n(t))2gn(t) + 2NλN−1

n (t)λ′n(t)g′n(t)+

+NλN−1
n (t)λ′′n(t)gn(t) + λNn (t)g′′n(t).

Noting that

Q
(n)
t LNt,n(g′′n(t)) = LNt,nQ

(n)
t (g′′n(t)) = λNn (t)Q

(n)
t (g′′n(t))

and applying to both sides of this equality the linear operator Q
(n)
t , we get

Q
(n)
t (LNt,n)′′(gn(t)) + 2Q

(n)
t (LNt,n)′(g′n(t)) =

= N(N − 1)λN−2
n (t)(λ′n(t))2gn(t) + 2NλN−1

n (t)λ′n(t)Q
(n)
t (g′n(t)) +NλN−1

n (t)λ′′n(t)gn(t).

Now since (LNt,n)′(gn(t)) = LNt,n(gn(t)SN`), and so (LNt,n)′′(gn(t)) = LNt,n(gn(t)(SN`)
2), and

since also (LNt,n)′(g′n(t)) = LNt,n(g′n(t)SN`), we thus get
(16.19)

Q
(n)
t LNt,n(gn(t)(SN`)

2) + 2Q
(n)
t LNt,n(g′n(t)SN`) =

= N(N − 1)λN−2
n (t)(λ′n(t))2gn(t) + 2NλN−1

n (t)λ′n(t)Q
(n)
t (g′n(t)) +NλN−1

n (t)λ′′n(t)gn(t).

We first deal with the term Q
(n)
t LNt,n(g′n(t)SN`). We have

(16.20)

Q
(n)
t LNt,n(g′n(t)SN`) = Q

(n)
t LNt,n

(
g′n(t)

N−1∑
j=0

` ◦ σj
)

=
N−1∑
j=0

Q
(n)
t LNt,n

(
g′n(t)` ◦ σj

)
=

N−1∑
j=0

Q
(n)
t L

N−j
t,n

(
`Ljt,n)′(g′n(t))

)
=

N−1∑
j=0

LN−j−1
t,n Q

(n)
t Lt,n

(
`Ljt,n)′(g′n(t))

)
=

N−1∑
j=0

λn(t)N−j−1Q
(n)
t Lt,n

(
`Ljt,n)′(g′n(t))

)
.
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Now, by virtue of Proposition 16.7, particularly by its parts (c) and (e), and by Corol-
lary 16.9, we get∥∥∥Lt,n(`Ljt,n(g′n(t)

)
− λn(t)jLt,n

(
`Q

(n)
t (g′n(t)

)∥∥∥
∞
≤

≤
∥∥∥Lt,n(`Ljt,n(g′n(t)

)
− λn(t)jLt,n

(
`Q

(n)
t (g′n(t)

)∥∥∥
θ

=
∥∥∥Lt,n(`(Ljt,n(g′n(t))− λn(t)jQ

(n)
t (g′n(t))

))∥∥∥
θ

=
∥∥Lt,n(`∆j

n(g′n(t))
)∥∥

θ

≤ C ′||∆j
n(g′n(t))||θ

≤ C ′C(κλ(t))j||g′n(t)||θ.

Therefore, by item (g) of Proposition 16.7 we get

(16.21)
∥∥∥Q(n)

t Lt,n
(
`Ljt,n(g′n(t))

)
− λjn(t)Q

(n)
t Lt,n

(
`Q

(n)
t (g′n(t))

)∥∥∥
∞
≤ C ′C2(κλ(t))j||g′n(t)||θ.

On the other hand, because of (16.7), we get

λ′n(t)Q
(n)
t (g′n(t)) = νt,n(g′n(t))λ′n(t)gn(t) = νt,n(g′n(t))Q

(n)
t Lt,n

(
`gn(t)

)
= Q

(n)
t Lt,n

(
`νt,n(g′n(t))gn(t)

)
= Q

(n)
t Lt,n

(
`Q

(n)
t (g′n(t))

)
Therefore, using (16.20) and (16.21), we get∥∥∥λ1−N

n (t)N−1
(
Q

(n)
t Lt,n

(
g′n(t)SN(`)

)
−NλN−1

n (t)λ′n(t)Q
(n)
t (g′n(t))

)∥∥∥
∞

=

=
∥∥∥ 1

N

N−1∑
j=0

λn(t)−jQ
(n)
t Lt,n

(
`Ljt,n(g′n(t))

)
−Q(n)

t Lt,n
(
`Q

(n)
t (g′n(t)

)
)
∥∥∥
∞

=
∥∥∥ 1

N

N−1∑
j=0

[
λn(t)−jQ

(n)
t Lt,n

(
`Ljt,n(g′n(t))

)
−Q(n)

t Lt,n
(
`Q

(n)
t (g′n(t))

)]∥∥∥
∞

≤ 1

N

N−1∑
j=0

∥∥∥λn(t)−jQ
(n)
t Lt,n

(
`Ljt,n(g′n(t))

)
−Q(n)

t Lt,n
(
`Q

(n)
t (g′n(t))

)∥∥∥
∞

≤ 1

N

N−1∑
j=0

C ′C2||g′n(t)||θκj.

Therefore, for all pairs (t, n) sufficiently close to s, we have

lim
N→∞

∥∥∥2N−1λ1−N
n (t)

(
Q

(n)
t LNt,n

(
g′n(t)SN(`)

)
−NλN−1

n (t)λ′n(t)Q
(n)
t (g′n(t))

)∥∥∥
∞

= 0
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where the convergence, in the supremum norm || · ||∞ is uniform with respect to all t
sufficiently close to s. Inserting this to (16.19), we thus get
(16.22)

λ′′n(t)gn(t) = lim
n→∞

[
N−1λ1−N

n (t)Q
(n)
t LNt,n

(
gn(t)(SN(`))2

)]
− λ−1

n (t)(N − 1)gn(t)(λ′n(t))2gn(t),

with the same meaning of convergence as above.

Let us first deal with the term Q
(n)
t LNt,n(gn(t)(SN`)

2). We have
(16.23)

Q
(n)
t LNt,n(gn(t)(SN`)

2) =

= 2
N−1∑
i=0

N−1∑
j=i+1

Q
(n)
t LNt,n

(
gn(t)` ◦ σi · ` ◦ σj

)
+

N−1∑
j=0

Q
(n)
t LNt,n

(
gn(t)`2 ◦ σj

)
=

N−1∑
j=0

Q
(n)
t LNt,n

(
gn(t)`2 ◦ σj

)
+ 2

N−1∑
i=0

N−1∑
j=i+1

Q
(n)
t LNt,n

(
gn(t)(` · ` ◦ σj−i) ◦ σi

)
=

N−1∑
j=0

Q
(n)
t L

N−j
t,n

(
`2Ljt,n(gn(t))

)
+ 2

N−1∑
i=0

N−1∑
j=i+1

Q
(n)
t LN−it,n

(
` · ` ◦ σj−iLit,n(gn(t))

)
= λjn(t)

N−1∑
j=0

Q
(n)
t L

N−j
t,n

(
gn(t)`2

)
+ 2λin(t)

N−1∑
i=0

N−1∑
j=i+1

Q
(n)
t LN−it,n

(
gn(t)` · ` ◦ σj−i)

)
= λjn(t)

N−1∑
j=0

Q
(n)
t L

N−j
t,n

(
gn(t)`2

)
+ 2λin(t)

N−1∑
i=0

N−1∑
j=i+1

Q
(n)
t L

N−j
t,n

(
`Lj−it,n (`gn(t))

)
= λN−1

n (t)
N−1∑
j=0

Q
(n)
t Lt,n

(
gn(t)`2

)
+ 2

N−1∑
i=0

N−1∑
j=i+1

λN+i−(j+1)
n (t)Q

(n)
t Lt,n

(
`Lj−it,n (`gn(t))

)
= λN−1

n (t)Q
(n)
t Lt,n

(
gn(t)`2

)
+ 2

N−1∑
k=1

λN−k−1
n (t)(N − k)Q

(n)
t Lt,n

(
`Lkt,n(`gn(t))

)
.
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Now, using Proposition 16.7 (c) (and (d)) and denoting ψn = Lt,n`gn(t)), we get

Q
(n)
t Lt,n

(
`Lkt,n(`gn(t))

)
= Q

(n)
t Lt,n

(
`Lk−1

t,n

(
Lt,n`gn(t))

))
= Q

(n)
t Lt,n

(
`Lk−1

t,n (ψn)
)

= Q
(n)
t Lt,n

(
`(λk−1

n (t)Q
(n)
t (ψn) + ∆k−1

n (ψn))
)

= λk−1
n (t)Q

(n)
t Lt,n

(
`Q

(n)
t (ψn)

)
+Q

(n)
t Lt,n

(
∆k−1
n (ψn)

)
= λk−1

n (t)Q
(n)
t Lt,n

(
`νt,n(ψn)gn(t)

)
+Q

(n)
t Lt,n

(
∆k−1
n (ψn)

)
= λk−1

n (t)νt,n(ψn)Q
(n)
t Lt,n

(
`gn(t)

)
+Q

(n)
t Lt,n

(
∆k−1
n (ψn)

)
= λk−1

n (t)νt,n(ψn)Q
(n)
t (ψn) +Q

(n)
t Lt,n

(
∆k−1
n (ψn)

)
= λk−1

n (t)
(
νt,n(ψn)

)2
gn(t) +Q

(n)
t Lt,n

(
∆k−1
n (ψn)

)
= λk−1

n (t)
(
λ′n(t)

)2
gn(t) +Q

(n)
t Lt,n

(
∆k−1
n (ψn)

)
.

Therefore, using Proposition 16.7 again, we get

2
N−1∑
k=1

λN−k−1
n (t)(N − k)Q

(n)
t Lt,n

(
`Lkt,n(`gn(t))

)
=

= λN−2
n (t)N(N − 1)

(
λ′n(t)

)2
gn(t) + 2

N−1∑
k=1

λN−k−1
n (t)Q

(n)
t Lt,n

(
∆k−1
n (ψn)

)
= λN−2

n (t)N(N − 1)
(
λ′n(t)

)2
gn(t) + 2

N−1∑
k=1

λN−k−1
n (t)Lt,nQ(n)

t

(
∆k−1
n (ψn)

)
= λN−2

n (t)N(N − 1)
(
λ′n(t)

)2
gn(t) + 2λN−2

n (t)Lt,nQ(n)
t (ψn)

= λN−2
n (t)N(N − 1)

(
λ′n(t)

)2
gn(t) + 2λN−2

n (t)Lt,n
(
νt,n(ψn)gn(t)

)
= λN−2

n (t)N(N − 1)
(
λ′n(t)

)2
gn(t) + 2λN−2

n (t)νt,n(ψn)Lt,n
(
gn(t)

)
= λN−2

n (t)N(N − 1)
(
λ′n(t)

)2
gn(t) + 2λN−1

n (t)λ′n(t)gn(t).

In consequence, denoting by TN(t, n) the function whose limit (as n→∞) is calculated in
(16.22), and utilizing (16.23), we get

TN(t, n) = Q
(n)
t Lt,n

(
gn(t)`2

)
+

2

N
λ′n(t)gn(t)

It thus follows from (16.22) that

(16.24) λ′′n(t)gn(t) = Q
(n)
t Lt,n

(
gn(t)`2

)
.

Since, by Proposition 5.3, all the operators Q
(n)
t : Bθ → Bθ are positive, and because of

this also non-decreasing, and gn(t) = Q
(n)
t 11 is non-negative, the formula (16.24) yields the
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following.

λ′′n(t)gn(t) ≤ ||gn(t)||∞Q(n)
t

(
Lt,n(`2)

)
≤ ||gn(t)||∞||Lt,n(`2)||∞Q(n)

t 11

≤ ||gn(t)||∞||Lt(`2)||∞gn(t)

≤ 2||gn(t)||∞||Ls(`2)||∞gn(t),

where the last inequality was written for t sufficiently close to s. Canceling out gn(t) and

noticing that by Proposition 16.7 (g), ||gn(t)||∞ = ||Q(n)
t 11||∞ ≤ C, we now finally obtain

that

λ′′n(t) ≤ 2C||Ls(`2)||∞,
and the proof is complete. �

Now we shall prove the following.

Lemma 16.11. We have

(a) For every n ≥ 1 the function (θS ,+∞) 3 t 7→ λn(t) is decreasing.

(b) For every s ∈ (θS ,+∞) and for every n ≥ 1 large enough there exists δ > 0 such that
the function λn|(s−δ,s+δ) is strictly decreasing, in fact λ′n ≤ 1

4
λ′(s) on (s− δ, s+ δ).

(c) For every t ∈ (θS ,+∞) and for every n ≥ 1, λn(t) ≤ λ(t).

(d) For every n ≥ 1, limt→+∞ λn(t) = 0.

(e) For every n ≥ 1 large enough there exists a unique bn > 0 such that λn(bn) = 1.

Proof. For part (a), Proposition 16.7 implies that

(16.25) λn(t) = lim
k→∞

∣∣∣∣Lkt,n11
∣∣∣∣1/k
∞ ,

and since for each n ≥ 1 the function t 7→
∣∣∣∣Lkt,n11

∣∣∣∣
∞ is decreasing, item (a) follows

immediately. For part (b) note that λ′(s) < 0. Hence, by Theorem 16.1, λ′n(s) < 1
2
λ′(s) < 0

for all n ≥ 1 large enough, say n ≥ N1. Take now δ ∈ (0, η) so small that Γδ ≤ −1
4
λ′(s),

where Γ ≥ 0 is the constant coming from Lemma 16.10. By the Mean Value Theorem
λ′n(t) = λ′n(s)+λ′′n(u)(t−s) for every t ∈ (s−δ, s+δ) and some u ∈ (s−δ, s+δ) depending
on t. Hence, applying Lemma 16.10, we get for all n ≥ N1 and all t ∈ (s− δ, s+ δ) that

λ′n(t) <
1

2
λ′(s) + Γδ < 0.

Thus item (b) is proved. Similarly as in item (a), item (c) immediately follows from (16.25)
and inequality Lkt,n11 ≤ Lkt 11. Item (d) is an immediate consequence of item (c) and the
well-known fact (see [31]) that limt→+∞ λ(t) = 0. Proving (e), it is well-known (see again
[31]) that there exists a unique b ∈ (θS ,+∞) such that

λ(b) = 1.



111

Let δ > 0 be the value produced in item (b) for s = b. We know that

λ
(
b− 1

2
δ
)
> 0 and λ

(
b+

1

2
δ
)
< 0.

It the follows from Proposition 16.7 (f) that

λn
(
b− 1

2
δ
)
≥ 1

2
λ
(
b− 1

2
δ
)
> 0 and λn

(
b+

1

2
δ
)
≤ 1

2
λ
(
b+

1

2
δ
)
< 0

for all n ≥ 1 large enough, say n ≥ N2. Because of the choice of δ > 0 and because of item
(b), we may also have N2 ≥ 1 so large that the function λn

∣∣
[b− 1

2
δ,b+ 1

2
δ]

is strictly decreasing

for every n ≥ N2. Therefore, for every n ≥ N2 the function λn
∣∣
[b− 1

2
δ,b+ 1

2
δ]

has a unique

zero. Along with item (a) this finishes the proof of item (e). The proof of Lemma 16.11 is
complete. �

Remark 16.12. With the help of Proposition 16.7 we could have strengthened Theo-
rem 16.1 to show uniform convergence with respect to t ranging over compact subsets of
(θS ,+∞). However, we really do not need this in the current paper.

By analogy to the unperturbed case, we call the numbers bn produced in this lemma Bowen’s
parameters. Now we can prove the following.

Proposition 16.13. With the settings of the current section (in particular with the stronger
condition (U2*) replacing (U2)), we have

lim
n→∞

b− bn
µb(Un)

=

{
1/χµb if (U4A) holds(
1− |ϕ′ξ(π(ξ∞))|

)
/χµb if (U4B) holds

Proof. Since the functions (θS ,+∞) 3 t 7→ λn(t), n ≥ 1, are all real-analytic by the Kato-
Rellich Perturbation Theorem, making use of Lemma 16.10, we can apply Taylor’s Theorem
to get

1 = λn(bn) = λn(b) + λ′(b) +O((b− bn)2).

Equivalently,
1− λn(b)

b− bn
= −λ′(b) +O(b− bn).

Denoting by d(ξ) the right-hand side of the formula appearing in Proposition 6.1, and using
this proposition along with the fact that λ(b) = 1, we thus get

lim
n→∞

µb(Un)

b− bn
= −λ′(b)d−1(ξ).

Equivalently,

(16.26) lim
n→∞

b− bn
µb(Un)

= − 1

λ′(b)
d(ξ).

But expanding (16.7) with n = ∞, we get λ′(b) = −λ(b)χµb = −χµb , and inserting this
into (16.26) completes the proof. �
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Now we shall link Bowen’s parameters bn to geometry. We shall prove the following.

Theorem 16.14. Let S = {ϕe}e∈E be a finitely primitive strongly regular conformal graph
directed Markov system. Let (Un)∞n=0 be a nested sequence of open subsets of E∞A satisfying
conditions (U0), (U1), and (U2*) with s = bS . Recall that

K(Un) =
∞⋂
k=0

σ−k(U c
n) =

{
ω ∈ E∞A : ∀(k≥0) σ

k(ω) /∈ Un
}

for all n ≥ 0 and denote
Kn := πS(K(Un)).

Then
HD(Kn) = bn

for all n ≥ 0 large enough.

Proof. Put
hn := HD(Kn).

We first shall prove that
hn ≤ bn

for all n ≥ 0 large enough. Assume that δ > 0 is chosen so small that the conclusion of
Lemma 16.11 (b)holds. Take then an arbitrary t > bn. Fix any q ≥ 1. Define

Kq(Un) :=
{
ω ∈ K(Un) : ωn = q for infinitely many n

}
and

Kn(q) := π(Kq(Un)).

Our first goal is to show that

(16.27) HD(Kn(q)) ≤ bn

for all n ≥ 0 large enough. Indeed, for every k ≥ 1 let

Ẽk(q) :=
{
ω|k : ω ∈ Kq(Un) and ωk+1 = q

}
.

Fix an arbitrary α ∈ E∞A such that qα ∈ E∞A . Then, using (BDP), Proposition 16.7 (c),
(e), and (g), along with Lemma 3.1, we get∑

τ∈Ẽk(q)

diamt
(
ϕτ (Xt(τ))

)
=

∑
τ∈Ẽk(q)

diamt
(
ϕτ (Xt(q))

)
�

∑
τ∈Ẽk(q)

||ϕ′τ ||t

�
∑

τ∈Ẽk(q)

|ϕ′τ (π(qα))|t ≤ Lkt (11kn)(qα) = Lkt,n(11)(qα)

= λkn(t)Q
(n)
t (11)(qα) + Sk(11)(qα)

≤ λkn(t)||Q(n)
t (11)||∞ + ||Sk(11)||∞

≤ Cλkn(t) + C(κλ(t))k

= C(λkn(t) + (κλ(t))k).
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Therefore, for every k ≥ 0, using the facts that λn(t) < 1 (Lemma 16.11(b)), that κ < 1,
and that κλ(t) < 1 if n ≥ 1 is sufficiently large so that the perturbed Bowen’s parameter
bn is sufficiently close to the (unperturbed) Bowen’s parameter b, we get

(16.28)

∞∑
k=l

∑
τ∈Ẽk(q)

diamt
(
ϕτ (Xt(τ))

)
≤ C

∞∑
k=l

(λkn(t) + (κλ(t))k)

≤ C
(
1− λn(t))−1λln(t) + (1− κλ(t))−1(κλ(t))l

)
.

Since
⋃∞
k=l

⋃
τ∈Ẽk(q) ϕτ (Xt(τ)) is a cover of Kn(q) whose diameters converge (exponentially

fast) to zero as l → ∞, formula (16.28) yields Ht(Kn(q)) = 0.Therefore, HD(Kn(q)) ≤ t.
As t > bn was arbitrary, this gives formula (16.27). Let

K∞(Un) : =
{
ω ∈ K(Un) : at least one q ∈ N appears in ω infinitely many times

}
=
∞⋃
q=1

Kq(Un)

and let

Kn(∞) := π
(
K∞(Un)

)
=
∞⋃
q=1

Kn(q).

Formula (16.27) and σ-stability of Hausdorff dimension then imply that

(16.29) HD(Kn(∞)) ≤ bn.

Now, for every integer l ≥ 1 let

K∗l (Un) :=
{
ω ∈ E∞A : the letters 1, 2, . . . , l appear in ω only finitely many times

}
and

K0
l (Un) :=

{
ω ∈ E∞A : the letters 1, 2, . . . , l do not appear in ω at all

}
.

Furthermore,

K∗n(l) := π
(
K∗l (Un)

)
and K0

n(l) := π
(
K0
l (Un)

)
.

But

K∗n(l) ⊆
⋃
ω∈E∗A

ϕω(K0
n(l)),

and therefore

HD(K∗n(l)) = HD(K0
n(l)).

But Kn \Kn(∞) ⊆
⋂∞
l=1K

∗
n(l). Hence, applying Theorem 4.3.6 in [31], we get

HD(Kn \Kn(∞)) ≤ inf
l≥1
{HD(K∗n(l))} = inf

l≥1
{HD(K0

n(l))} = θS < bS(= b).

Since limn→∞ bn = b, this implies that for all n ≥ 1 large enough HD(Kn \Kn(∞)) < bn.
Along with (16.29) this yields

(16.30) HD(Kn) ≤ bn.
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Passing to proving the opposite inequality, let µbn,n be the shift–invariant ergodic measure
supported on K(Un) produced in for the potential

E∞A 3 ω 7−→ −bn log
∣∣ϕ′ω0

(
πS(σ(ω))

)∣∣ ∈ R.

Then µbn,n◦π−1
S is a Borel probability measure on Kn and by the definition of bn, by (+++

insert a theorem for the 2nd equality below) and by Theorem 4.4.2 in [31], we get
that

(16.31) HD(Kn) ≥ HD
(
µbn,n ◦ π−1

S
)

=
hµbn,n(σ)

χµbn,n
=

log λn(bn) + bnχµbn,n
χµbn,n

=
bnχµbn,n
χµbn,n

= bn.

Along with (16.30), this completes the proof of Theorem 16.14. �

As a direct consequence of this theorem and Proposition 16.13, we get the following.

Proposition 16.15. With the hypotheses of Theorem 16.14 we have that

(16.32) lim
n→∞

HD(JS)− HD(Kn)

µb(Un)
=

{
1/χµb if (U4A) holds(
1− |ϕ′ξ(π(ξ∞))|

)
/χµb if (U4B) holds .

17. Escape Rates for Conformal GDMSs; Hausdorff Dimension

This mini-section is the main fruit of the labor in the previous section. It pertains to the
rate of decay of Hausdorff dimension of the set of avoiding/survivor points. It contains,
in particular, Theorem 17.1, the second main result of this manuscript. Given z ∈ JS and
r > 0 let

Kz(r) := πS(K̃z(r)),

where

K̃z(r) :=
{
ω ∈ E∞A : ∀n≥0 σ

n(ω) /∈ π−1(B(z, r)
}

=
∞⋂
n=0

σ−n
(
π−1(Bc(z, r))

)
.

More generally, given a set G ⊆ Rd, we denote

K̃(G) :=
{
ω ∈ E∞A : ∀n≥0 σ

n(ω) /∈ π−1(G)
}

=
∞⋂
n=0

σ−n
(
π−1(Gc)

)
and

K(G) := πS(K̃(G)).

We say that a parameter t > θS is powering at a point z ∈ JS if there exist α > 0, C > 0,
and δ > 0 such that

(17.1) µs ◦ π−1
(
B(z, r)

)
≤ C

(
µt ◦ π−1

(
B(z, r)

))α
for every s ∈ (t − δ, t + δ) and for all radii r > 0 small enough. The constant α is called
the powering exponent of t and z. The following is one of the main results of our paper.

Theorem 17.1. Let S be a finitely primitive strongly regular conformal GDMS. Assume
that both S is (WBT) and parameter bS is powering at some point z ∈ JS which is either
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(a) not pseudo-periodic or else
(b) uniquely periodic and belongs to IntX (and z = π(ξ∞) for a (unique) irreducible

word ξ ∈ E∗A).

Then

(17.2) lim
r→0

HD(JS)− HD(Kz(r))

µb
(
π−1(B(z, r))

) =

{
1/χµb if (a) holds(
1− |ϕ′ξ(z)|

)
/χµb if (b) holds .

Proof. Denote the right-hand side of (16.32) by ξ(z). Put

h := HD(JS) = bS and hr := HD(Kz(r)).

Seeking contradiction assume that (17.2) fails to hold at some point z ∈ JS . This means
that there exists a strictly decreasing sequence (sn(z))∞n=0 of positive reals such that the
sequence (

h− hsn(z)

µb
(
π−1(B(π(z), sn(z)))

))∞
n=0

does not have ξ(z) as its accumulation point. Let

R := {sn(z) : n ≥ 0}.
Let (U±n (z))∞n=0 be the corresponding sequence of open subsets of E∞A produced in formula
(15.7). We shall prove the following.

Claim 10: Both sequences (U±n (z))∞n=0 satisfy the (U2*) condition for the parameter h.

Proof. Let α > 0 be a powering exponent of h = bS at z and let δ > 0 come from this
powering property. Let s ∈ (h− δ, h+ δ). Applying then formula (15.8) to the measure µh,
we get, with notation used in this formula, that

µs
(
U±k (z)

)
≤ µs◦π−1(B(z, rj−1)) ≤ C

(
µh◦π−1(B(z, rj−1))

)α ≤ C expα
(
κ(1+8∆l(z))e−ακk.

The claim is proved. �

By this claim and because of Propositions 15.8 and 15.9, Proposition 16.15 applies to give

(17.3) lim
n→∞

h− h±n
µb(U±n (z))

= ξ(z),

where h±n := HD(K(U±n (z)). Let (nj)
∞
j=0 be the sequence produced in Proposition 15.7 with

the help of R. By virtue of this proposition there exists an increasing sequence (jk)
∞
k=1 such

that R ∩ Rnjk
6= ∅ for all k ≥ 1. For every k ≥ 1 pick one element rk ∈ R ∩ Rnjk

. Set

qk := lnjk . By Observation 15.3 and formula (15.6), we have

(17.4)

h− h−qk
µb(U−qk(z))

·
µb(U

−
qk

(z))

µb
(
π−1(B(π(z), rk))

) ≤ h− hrk
µb
(
π−1(B(π(z), rk))

) ≤
≤

h− h+
qk

µb(U+
qk

(z))
·

µb(U
+
qk

(z))

µb
(
π−1(B(π(z), rk))

)
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But since µb ◦ π−1 is WBT, it is DBT by Proposition 14.12, and it therefore follows from
(14.4) along with formulas (15.3) and (15.6) that

lim
k→∞

µb(U
−
qk

(z))

µb
(
π−1(B(π(z), rk))

) = 1 = lim
k→∞

µb(U
+
qk

(z))

µb
(
π−1(B(π(z), rk))

) .
Inserting this and (17.3) to (17.4) yields

lim
k→∞

h− hrk
µb
(
π−1(B(π(z), rk))

) = ξ(z).

Since rk ∈ R for all k ≥ 1, this implies that ξ(z) is an accumulation point of the sequence‘(
h− hsn(z)

µb
(
π−1(B(π(z), sn(z)))

))∞
n=0

,

and this contradiction finishes the proof of Theorem 17.1. �

We have discussed at length the (WBT) condition in Section 14, particularly in Theo-
rem 14.7; we now would like also to note that since any two measures µt, t > θS , are either
equal or mutually singular, the standard covering argument gives the following simple but
remarkable result.

Proposition 17.2. If S is a finitely primitive regular conformal GDMS, then every pa-
rameter t > θS is powering with exponent 1 at µt ◦ π−1–a.e. point of JS .

Now, as an immediate consequence of Theorem 17.1, Theorem 14.7, and Proposition 17.2,
we get the following result, also one of our main.

Corollary 17.3. If S be a finitely primitive strongly regular conformal GDMS whose limit
set JS is geometrically irreducible, then

(17.5) lim
r→0

HD(JS)− HD(Kz(r))

µb
(
π−1(B(z, r))

) =
1

χµb

at µbS ◦ π−1–a.e. point z of JS .

In the case of finite alphabet E, we can say much more for the parameter bS than established
in Proposition 17.2. Namely, we shall prove the following.

Proposition 17.4. If S is a finite alphabet primitive conformal GDMS, then S is powering
at the parameter bS at each point ξ ∈ JS .

Proof. The proof of Theorem 7.20 in [7] (see also Theorem 7.17 therein for the main geomet-
ric ingredient of this proof) produces for every radius r ∈

(
0, 1

2
min{diam(Xv) : v ∈ V } a

family Z(r) ⊆ E∗A consisting of mutually incomparable words with the following properties.

(1) C−1
1 r ≤ ‖ϕ′ω‖∞, diam

(
ϕω(Xt(ω))

)
≤ C1r for all ω ∈ Z(r)

(2) ϕω(Xt(ω)) ∩B(ξ, r) 6= ∅ for all ω ∈ Z(r)
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(3) π−1
S (B(ξ, r)) ⊆

⋃
ω∈Z(r)[ω],

(4) #Z(r) ≤ C2,

where C1 and C2 are some finite positive constants independent of ξ and r. Abbreviate

b := bS .

It easily follows from [31] that there exist a constant δ ∈ (0, bS/4) and a constant Q ∈
(1,+∞) such that

Q−1 ≤ µs([τ ])

e−P(s)|τ |‖ϕ′τ‖s∞
≤ Q

for every s ∈ (b− δ, b+ δ) and for all τ ∈ E∗A. We therefore get for every s ∈ (b− δ, b+ δ)
and all ω ∈ Z(r) that

(17.6) µs([ω]) ≤ Qe−P(s)|ω|‖ϕ′ω‖s∞ ≤ QCs
1e
−P(s)|ω|rs

and

(17.7) µb([ω]) ≥ QC−b1 rb.

It is also known from [7] that, with perhaps larger Q ≥ 1:

(17.8) µb ◦ π−1
S
(
B(ξ, r)

)
≥ Q−1rb

This formula follows for example from (17.7) applied to a sufficiently small fixed fraction
of r. If b/2 ≤ s ≤ b, then P(s) ≥ 0, and we get

(17.9)

µs([ω]) ≤ QCs
1r
s ≤ QCb

1r
s = QCb

1

(
rb
)s/b

≤ QCb
1Q

s
bµ

s
b
b ◦ π

−1
S
(
B(ξ, r)

)
≤ Q2Cb

1µ
s
b
b ◦ π

−1
S
(
B(ξ, r)

)
≤ Q2Cb

1µ
1
2
b ◦ π

−1
S
(
B(ξ, r)

)
.

Now we assume that s ≥ b. We set

κ := max{‖ϕ′e‖∞ : e ∈ E} < 1,

and we recall that

χb := χµb = −
∫
E∞A

log |ϕ′ω0
(πS(σ(ω)))| dµb(ω) > 0.

By taking δ ∈ (0, b/4) small enough, we will have

s− b
2

s− b
≥ 2χb
log(1/κ)

and P(s) ≥ −2χb(s− b)

for all s ∈ (b, b+ δ). Hence(
s− b

2

)
log κ ≤ −2χb(s− b) ≤ P(s).
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Equivalently κ(s− b2) ≤ eP(s). Thus

κ(s− b2)|ω| ≤ eP(s)|ω|.

As ‖ϕ′ω‖∞ ≤ κω| and s ≥ b, we therefore get

µs([ω]) ≤ Qe−P(s)|ω|‖ϕ′ω‖s∞ ≤ Q‖ϕ′ω‖
b
2∞ ≤ QC

b
2
1 r

b
2

≤ Q2C
b
2
1 Q

b
2µ

1
2
b ◦ π

−1
S
(
B(ξ, r)

)
= Q3/2C

b
2
1 µ

1
2
b ◦ π

−1
S
(
B(ξ, r)

)
≤ Q2Cb

1µ
1
2
b ◦ π

−1
S
(
B(ξ, r)

)
.

Combining this along with (17.9) we get that

µs([ω]) ≤ Q2Cb
1µ

1
2
b ◦ π

−1
S
(
B(ξ, r)

)
.

for all s ∈ (b− δ, b+ δ) and all ω ∈ Z(r). Thus, looking also up at (4) and (3), this yields

µs ◦ π−1
S
(
B(ξ, r)

)
≤ C2Q

2Cb
1µ

1
2
b ◦ π

−1
S
(
B(ξ, r)

)
for all s ∈ (b − δ, b + δ) and all radii r ∈

(
0, 1

2
min{diam(Xv) : v ∈ V }

)
. The proof of

Proposition 17.4 is complete. �

As an immediate consequence of Theorem 17.1, Theorem 14.9, and Proposition 17.4, we
get the following considerably stronger/fuller result.

Theorem 17.5. Let S = {ϕe}e∈E be a primitive Conformal Graph Directed Markov System
with a finite alphabet E acting in the space Rd, d ≥ 1. Assume that either d = 1 or that
the system S is geometrically irreducible. Let z ∈ JS be arbitrary. If either z is

(a) not pseudo-periodic or else
(b) uniquely periodic and belongs to IntX (and z = π(ξ∞) for a (unique) irreducible

word ξ ∈ E∗A).

Then

(17.10) lim
r→0

HD(JS)− HD(Kz(r))

µb
(
π−1(B(z, r))

) =

{
1/χµb if (a) holds(
1− |ϕ′ξ(z)|

)
/χµb if (b) holds .

18. Escape Rates for Conformal Parabolic GDMSs

In this section, following [32] and [31], we first shall provide the appropriate setting
and basic properties of conformal parabolic iterated function systems, and more generally
of parabolic graph directed Markov systems. We then prove for them the appropriate
theorems on escaping rates.

As in Section 12 there are given a directed multigraph (V,E, i, t) (E countable, V finite),
an incidence matrix A : E ×E → {0, 1}, and two functions i, t : E → V such that Aab = 1
implies t(b) = i(a). Also, we have nonempty compact metric spaces {Xv}v∈V . Suppose
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further that we have a collection of conformal maps ϕe : Xt(e) → Xi(e), e ∈ E, satisfying
the following conditions:

(1) (Open Set Condition) ϕi(Int(X)) ∩ ϕj(Int(X)) = ∅ for all i 6= j.

(2) |ϕ′i(x)| < 1 everywhere except for finitely many pairs (i, xi), i ∈ E, for which xi is
the unique fixed point of ϕi and |ϕ′i(xi)| = 1. Such pairs and indices i will be called
parabolic and the set of parabolic indices will be denoted by Ω. All other indices
will be called hyperbolic. We assume that Aii = 1 for all i ∈ Ω.

(3) ∀n ≥ 1 ∀ω = (ω1, ..., ωn) ∈ En if ωn is a hyperbolic index or ωn−1 6= ωn, then ϕω
extends conformally to an open connected set Wt(ωn) ⊆ Rd and maps Wt(ωn) into
Wi(ωn).

(4) If i is a parabolic index, then
⋂
n≥0 ϕin(X) = {xi} and the diameters of the sets

ϕin(X) converge to 0.

(5) (Bounded Distortion Property) ∃K ≥ 1 ∀n ≥ 1 ∀ω = (ω1, ..., ωn) ∈ In ∀x, y ∈ V if
ωn is a hyperbolic index or ωn−1 6= ωn, then

|ϕ′ω(y)|
|ϕ′ω(x)|

≤ K.

(6) ∃s < 1 ∀n ≥ 1 ∀ω ∈ En
A if ωn is a hyperbolic index or ωn−1 6= ωn, then ||ϕ′ω|| ≤ s.

(7) (Cone Condition) There exist α, l > 0 such that for every x ∈ ∂X ⊆ Rd there
exists an open cone Con(x, α, l) ⊆ Int(X) with vertex x, central angle of Lebesgue
measure α, and altitude l.

(8) There exists a constant L ≥ 1 such that∣∣|ϕ′i(y)| − |ϕ′i(x)|
∣∣ ≤ L||ϕ′i|||y − x|

for every i ∈ I and every pair of points x, y ∈ V .

We call such a system of maps
S = {ϕi : i ∈ E}

a subparabolic iterated function system. Let us note that conditions (1),(3),(5)-(7) are
modeled on similar conditions which were used to examine hyperbolic conformal systems.
If Ω 6= ∅, we call the system {ϕi : i ∈ E} parabolic. As declared in (2) the elements of the
set E \Ω are called hyperbolic. We extend this name to all the words appearing in (5) and
(6). It follows from (3) that for every hyperbolic word ω,

ϕω(Wt(ω)) ⊆ Wt(ω).

Note that our conditions ensure that ϕ′i(x) 6= 0 for all i ∈ E and all x ∈ Xt(i). It was
proved (though only for IFSs but the case of GDMSs can be treated completely similarly)
in [32] (comp. [31]) that

(18.1) lim
n→∞

sup
|ω|=n
{diam(ϕω(Xt(ω)))} = 0.
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As its immediate consequence, we record the following.

Corollary 18.1. The map π : E∞A → X :=
⊕

v∈V Xv, {π(ω)} :=
⋂
n≥0 ϕω|n(X), is well

defined, i.e. this intersection is always a singleton, and the map π is uniformly continuous.

As for hyperbolic (attracting) systems the limit set J = JS of the system S = {ϕe}e∈e is
defined to be

JS := π(E∞A )

and it enjoys the following self-reproducing property:

J =
⋃
e∈E

ϕe(J).

We now, following still [54] and [31], want to associate to the parabolic system S a canonical
hyperbolic system S∗. The set of edges is this.

E∗ :=
{
inj : n ≥ 1, i ∈ Ω, i 6= j ∈ E, Aij = 1

}
∪ (E \ Ω) ⊆ E∗A.

We set

V∗ = t(E∗) ∪ i(E∗)
and keep the functions t and i on E∗ as the restrictions of t and i from E∗A. The incidence
matrix A∗ : E∗ × E∗ → {0, 1} is defined in the natural (the only reasonable) way by
declaring that A∗ab = 1 if and only if ab ∈ E∗A. Finally

S∗ := {ϕe : Xt(e) → Xt(e) : e ∈ E∗}.
It immediately follows from our assumptions (see [54] and [31] for details) that the following
is true.

Theorem 18.2. The system S∗ is a hyperbolic conformal GDMS and the limit sets JS and
JS∗ differ only by a countable set.

We have the following quantitative result, whose complete proof can be found in [48].

Proposition 18.3. Let S be a conformal parabolic GDMS. Then there exists a constant
C ∈ (0,+∞) and for every i ∈ Ω there exists some constant βi ∈ (0,+∞) such that for all
n ≥ 1 and for all z ∈ Xi :=

⋃
j∈I\{i} ϕj(X),

C−1n
−βi+1

βi ≤ |ϕ′in(z)| ≤ Cn
−βi+1

βi .

In fact we know more: if d = 2 then all constants βi are integers ≥ 1 and if d ≥ 3 then all
constants βi are equal to 1.

Let

β = βS := min{βi :∈∈ Ω}
Passing to equilibrium/Gibbs states and their escape rates, we now describe the class of
potentials we want to deal with. This class is somewhat narrow as we restrict ourselves to
geometric potentials only. There is no obvious natural larger class of potentials for which
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our methods would work and trying to identified such classes would be of dubious value
and unclear benefits. We thus only consider potentials of the form

E∞A 3 ω 7→ ζt(ω) := t log
∣∣ϕ′ω0

(πS(σ(ω)))
∣∣ ∈ R, t ≥ 0.

We then define the potential ζ∗t : E∞∗A∗ → R as

ζ∗t (injω) =
n∑
k=0

ζt(σ
k(injω)), i ∈ Ω, n ≥ 0, j 6= i and injω ∈ E∞∗A∗ .

We shall prove the following.

Proposition 18.4. If S is a conformal parabolic GDMS, then the potential ζ∗t is Hölder
continuous for each t ≥ 0 it is summable if and only if

t >
β

β + 1

Proof. Hölder continuity of potentials ζ∗t , t ≥ 0, follows from the fact that the system S∗
is hyperbolic, particularly from its distortion property, while the summability statement
immediately follows from Proposition 18.3. �

So, for every t > β
β+1

we can define µ∗t to be the unique equilibrium/Gibbs state for

the potential ζ∗t with respect to the shift map σ∗ : E∞∗A∗ → E∞∗A∗ . We will not use this
information in the current paper but we would like to note that µ∗t gives rise to a Borel
σ-finite, unique up to multiplicative constant, σ-invariant measure µt on E∞A , absolutely
continuous, in fact equivalent, with respect to µ∗t ; see [31] for details in the case of t = bS =
bS∗ , the Bowen’s parameter of the systems S and S∗ alike. The case of all other t > β

β+1

can be treated similarly. It follows from [31] that the measure µt is finite if and only if
either

(a) t ∈
(

β
β+1

, bS

)
or

(b) t = bS and bS >
2β
β+1

.

Now having all of this, as an immediate consequence of theorems Theorem 15.10 and
Theorem 15.11 we get the following two results.

Theorem 18.5. Let S = {ϕe}e∈E be a parabolic Conformal Graph Directed Markov System.
Fix t > β

β+1
and assume that the measure µ∗t ◦ π−1

S∗ is (WBT) at a point z ∈ JS∗. If z is

either

(a) not pseudo-periodic with respect to the system S∗,
or

(b) uniquely periodic with respect to S∗, it belongs to IntX (and z = πS∗(ξ
∞) for a

(unique) irreducible word ξ ∈ E∗∗A∗),
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then, with RS∗,µ∗t (B(z, ε) := Rµ∗t

(
π−1
S∗ (B(z, ε))

)
and RS∗,µ∗t (B(z, ε) := Rµ∗t

(
π−1
S∗ (B(z, ε))

)
,

we have

(18.2)

lim
ε→0

RS∗,µ∗t (B(z, ε))

µ∗t ◦ π−1
S∗ (B(z, ε))

= lim
ε→0

RS∗,µ∗t (B(z, ε))

µ∗t ◦ π−1
S∗ (B(z, ε))

= dϕ(z) :=

{
1 if (a) holds

1−
∣∣ϕ′ξ(z)

∣∣e−pPS∗ (t) if (b) holds,

where in (b), {ξ} = π−1
S∗ (z) and p ≥ 1 is the prime period of ξ under the shift map

σ∗ : E∞∗A∗ → E∞∗A∗.

Theorem 18.6. Let S = {ϕe}e∈E be a parabolic Conformal Graph Directed Markov System
whose limit set JS is geometrically irreducible. If t > β

β+1
then

(18.3) lim
ε→0

RS∗,µ∗t (B(z, ε))

µ∗t ◦ π−1
S∗ (B(z, ε))

= lim
ε→0

RS∗,µ∗t (B(z, ε))

µ∗t ◦ π−1
S∗ (B(z, ε))

= 1

for µt ◦ π−1–a.e. point of JS .

Sticking to notation of Section 17, given z ∈ E∞∗A∗ and r > 0 let

K∗z (r) := πS∗(K̃
∗
z (r)),

where

K̃∗z (r) :=
{
ω ∈ E∞∗A∗ : ∀n≥0 σ

n
∗ (ω) /∈ π−1

S∗ (B(πS∗(z), r)
}

=
∞⋂
n=0

σ−n∗
(
π−1
S∗ (B(πS∗(z), r))

)
.

As immediate consequences respectively of Theorem 17.1 and Corollary 17.3, we get the
following two results.

Theorem 18.7. Let S = {ϕe}e∈E be a parabolic Conformal Graph Directed Markov System.
Assume that both S∗ is (WBT) and parameter bS is powering at some point z ∈ JS∗. If z
is either

(a) not pseudo-periodic with respect to the system S∗,
or

(b) uniquely periodic with respect to S∗, it belongs to IntX (and z = πS∗(ξ
∞) for a

(unique) irreducible word ξ ∈ E∗∗A∗),

then,

(18.4) lim
r→0

HD(JS)− HD(K∗z (r))

µ∗b
(
π−1
S∗ (B(z, r))

) =

{
1/χµ∗b if (a) holds(
1− |ϕ′ξ(z)|

)
/χµ∗b if (b) holds .

Theorem 18.8. Let S = {ϕe}e∈E be a parabolic Conformal Graph Directed Markov System
whose limit set JS is geometrically irreducible. Then

(18.5) lim
r→0

HD(JS)− HD(K∗z (r))

µ∗b
(
π−1
S∗ (B(z, r))

) =
1

χµ∗b
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for µb∗S ◦ π
−1–a.e. point z of JS .

Part 4. Applications: Escape Rates for Multimodal Interval Maps and
One–Dimensional Complex Dynamics

Our goal in this part of the manuscript is to get the existence of escape rates in the sense
of (1.3) and (1.4) for a large class of topologically exact piecewise smooth multimodal maps

of the interval [0, 1], many rational functions of the Riemann sphere Ĉ with degree ≥ 2, and

a vast class of transcendental meromorphic functions from C to Ĉ. In order to do this we
employ two primary tools. The first one is formed by the escape rates results for the class
of all countable alphabet conformal graph directed Markov systems obtained in Sections 15
and 17. The other one is the method based on the first return (induced) map developed in
Section 19, Section 20, and Section 21 of this part. This method closely relates the escape
rates of the original map and the induced one. It turns out that for the above mentioned
class of systems one can find a set of positive measure which gives rise to the first returned
map which is isomorphic to a countable alphabet conformal IFS or full shift map; the task
highly non-trivial and technically involved in general. In conclusion, the existence of escape
rates in the sense of (1.3) and (1.4) follows.

19. First Return Maps

Let (X, ρ) be a metric space and let F ⊆ X be a Borel set. Let T : X → X be a Borel
map. Define

F∞ := F ∩
∞⋂
k=0

∞⋃
n=k

T−k(F ),

i. e. F∞ is the set of all those points in F that return to F infinitely often under the
iteration of the map T . Then for every x ∈ F∞ the number

τF (x) := min{n ≥ 1 : T n(x) ∈ F} = min{n ≥ 1 : T n(x) ∈ F∞}
is well-defined, i. e. it is finite. The number τF (x) is called the first return of x to F under
the map F . Having the function τF : F∞ → N1 defined one defines the first return map
TF : F∞ → F∞ by the formula

(19.1) TF (x) : T τF (x)(x) ∈ F∞ ⊆ F.

Let B be a Borel subsets of F . As in the two previous sections let

K(B) = KT (B) :=
∞⋂
n=0

T−n(X \B) and KF (B) :=
∞⋂
n=0

T−nF (F∞ \B).

In particular, this definition applies for the set B = F . A straightforward observation is
that KF (B) = F∞ ∩K(B), so that we have the following.

(19.2) KF (B) = F∞ ∩K(B) ⊆ F ∩K(B).
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We shall prove the following.

Theorem 19.1. If the map T : X → X is locally bi-Lipschitz and B ⊆ F are Borel subsets
of X, then

HD(K(B)) = max{HD(KF (B)),HD(K(F ))}.

Proof. Since K(F ) ⊆ K(B), we have that HD(K(F )) ≤ HD(K(B)), and by (19.2) we have
HD(KF (B)) ≤ HD(K(B)). We are thus let to show only that

HD(K(B)) ≤ max{HD(KF (B)),HD(K(F ))}.
Indeed, fix x ∈ K(B). Let

Nx := {n ≥ 0 : T n(x) ∈ F}.
Consider two cases:

Case 10: The set Nx is finite. Denote then by nx its largest element. Then T nx+1(x) ∈
K(F ). Hence

x ∈
∞⋃
n=0

T−n(K(F ));

note that this relation holds even if Nx = ∅.
Case 10: The set Nx is infinite. Then there exists mx ≥ 0 such that Tmx(x) ∈ F∞. Hence,

x ∈
∞⋃
n=0

T−n(F∞).

In conclusion

K(B) ⊆
∞⋃
n=0

T−n(K(F )) ∪
∞⋃
n=0

T−n(F∞).

But then, using (19.2), we get

K(B) ⊆

(
∞⋃
n=0

T−n(K(F ))

)
∪

(
K(B) ∩

∞⋃
n=0

T−n(F∞)

)

⊆
∞⋃
n=0

T−n(K(B) ∩K(F ))
⋃ ∞⋃

n=0

T−n(K(B) ∩ F∞)

=
∞⋃
n=0

T−n(K(F ))
⋃ ∞⋃

n=0

T−n(KF (B))

Therefore, using σ-stability of Hausdorff dimension and local bi-Lipschitzness of T , we get

HD(K(B)) ≤ sup
n≥0

{
max{HD(T−n(K(F ))),HD(T−n(KF (B)))}

}
≤ sup

n≥0

{
max{HD(T−n(K(F ))),HD(T−n(KF (B)))}

}
= max{HD(K(F )),HD(KF (B))}
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The proof of Theorem 19.1 is complete. �

As an immediate consequence of this theorem we get the following.

Corollary 19.2. If the map T : X → X is locally bi-Lipschitz, B ⊆ F are Borel subsets
of X, and HD(K(F )) < HD(K(B)), then

HD(K(B)) = HD(KF (B)).

20. First Return Maps and Escaping Rates, I

As in Section 19 (X, ρ) is a metric space, F ⊆ X be a Borel set and T : X → X is a
Borel map. The symbols F∞, τF , and TF have the same meaning as in Section 19. Now in
addition we also assume that the system T : X → X preserves a Borel probability measure
µ on X. It is well-known that then the first return map TF : F∞ → F∞ preserves the
conditional measure µF on F (or F∞ alike). This measure is given by the formula

µF (A) =
µ(A)

µ(F )

for every Borel set A ⊆ F . The famous Kac’s Formula tells us that∫
F

τF dµF =
1

µ(F )
.

For every n ≥ 1 denote

τ
(n)
F :=

n−1∑
j=0

τF ◦ T jF ,

so that

T nF (x) = T τ
(n)
F (x)(x).

If B, as in Section 19, is a Borel subset of F , then for every n ≥ 1 we denote

Bc
n :=

n−1⋂
j=0

T−j(X \B), Bc
n(F ) := F∞ ∩Bc

n, and Bc
n(TF ) :=

n−1⋂
j=0

T−jF (X \B).

For every η ∈ (0, 1) and every integer k ≥ 1 denote

Fk−1(η) :=

{
x ∈ F∞ :

(
1

µ(F )
− η
)
k ≤ τ

(k)
F (x) ≤

(
1

µ(F )
+ η

)
k

}
.

Let us record the following straightforward observation.

(20.1) Fn−1(η) ∩Bc

( 1
µ(F )

+η)n ⊆ Fn−1(η) ∩Bc
n(TF ) ⊆ Fn−1(η) ∩Bc

( 1
µ(F )

−η)n.

This simple relation will be however our starting point for relating the escape rates of B
with respect to the map T and the first return map TF : F∞ → F∞.
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Definition 20.1. We say that the pair (T, F ) satisfies the large deviation property (LDP)
if for all η ∈ (0, 1) there exist two constants η̂ > 0 and Cη ∈ [1,+∞) such that

µ(F c
n(η)) ≤ Cηe

−η̂n

for all integers n ≥ 1.

In what follows we will need one (standard) concept more. We define for every x ∈ X the
number

EF (x) := min
{
n ∈ {0, 1, 2, . . . ,∞} : T n(x) ∈ F

}
.

This number is called the first entrance time to F under the map T and it is closely related
to τF ,

τF (x) = EF (T (x)) + 1

if x ∈ F , but of course it is different.

Definition 20.2. We say that the pair (T, F ) has exponential tail decay (ETD) if

µ
(
E−1
F ([n,+∞]

)
≤ Ce−αn

for all integers n ≥ 0 and some constants C, α ∈ (0,+∞).

Let B be a Borel subset of F . Following the previous sections denote respectively by
RT,µ(B) and RTF ,µ(B) the respective escape rates of B by the maps T : X → X and
TF : F∞ → F∞, i. e.

RT,µ(B) := − lim
n→∞

1

n
log µ(Bc

n) ≤ RT,µ(B) := − lim
n→∞

1

n
log µ(Bc

n),

and

RTF ,µ
(B) := − lim

n→∞

1

n
log µF (Bc

n(TF )) = − lim
n→∞

1

n
log µ(Bc

n(TF )),

RTF ,µ(B) := − lim
n→∞

1

n
log µF (Bc

n(TF )) = − lim
n→∞

1

n
log µ(Bc

n(TF )),

with obvious inequality

RTF ,µ
(B) ≤ RTF ,µ(B).

We shall prove the following.

Theorem 20.3. Assume that a pair (T, F ) satisfies the large deviation property (LDP)
and has exponential tail decay (ETD). Let (Bk)

∞
k=0 be a sequence of Borel subsets of F such

that

(a) limk→∞ µ(Bk) = 0,

(b) The limits

lim
k→∞

RTF ,µ
(Bk)

µF (Bk)
and lim

k→∞

RTF ,µ(Bk)

µF (Bk)

exist, are equal, and belong to (0,+∞); denote their common value by RF (µ).
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Then the limits

lim
k→∞

RT,µ(Bk)

µ(Bk)
and lim

k→∞

RT,µ(Bk)

µ(Bk)

also exist, and, denoting their common value by RT (µ), we have that

RT (µ) = RF (µ).

Proof. Fix η, ε ∈ (0, 1). Fix two integers k, n ≥ 1. Denote the sets (Bk)
c

( 1
µ(F )

+η)n
and

(Bk)
c

( 1
µ(F )

−η)n
respectively by B−k,n(η) and B+

k,n(η). Because of (20.1), we have

(20.2) µ
(
Fn−1(η) ∩ (Bk)

c
n(TF )

)
≤ µ

(
B+
k,n(η)

)
.

Fix M1 ≥ 1 so large that

(20.3) (1− ε)RF (µ) ≤
RTF ,µ

(Bk)

µF (Bk)
≤ RTF ,µ(Bk)

µF (Bk)
≤ (1 + ε)RF (µ)

and

(20.4) 4RF (µ)µF (Bk) ≤ min{ε, η̂/2}
for all k ≥M1. Fix such a k. Fix then Nk ≥ 1 so large that

exp
(
− (1 + ε)RTF ,µ(Bk)n

)
≤ µ

(
(Bk)

c
n(TF )

)
≤ exp

(
− (1− ε)RTF ,µ

(Bk)n
)

for all n ≥ N
(1)
k . Along with (20.3) this gives

(20.5) exp
(
−(1+ε)2RF (µ)µF (Bk)n

)
≤ µ

(
(Bk)

c
n(TF )

)
≤ exp

(
−(1−ε)2RF (µ)µF (Bk)n

)
.

Therefore, using also Definition 20.1, we get for all k ≥M1 and all n ≥ N
(1)
k that

µ
(
Fn−1(η) ∩ (Bk)

c
n(TF )

)
µ
(
(Bk)cn(TF )

) =
µ
(
(Bk)

c
n(TF )

)
− µ

(
F c
n−1(η) ∩ (Bk)

c
n(TF )

)
µ
(
(Bk)cn(TF )

)
≥
µ
(
(Bk)

c
n(TF )

)
− µ

(
F c
n−1(η)

)
µ
(
(Bk)cn(TF )

) = 1−
µ
(
F c
n−1(η)

)
µ
(
(Bk)cn(TF )

)
≥ 1− Cηe

−η̂(n−1)

exp
(
− 4RF (µ)µF (Bk)n

)
= 1− Cηeη̂ exp

(
(4RF (µ)µF (Bk)− η̂)n

)
≥ 1− Cηeη̂ exp

(
− 1

2
η̂n
)
≥ 1/2,

where the last inequality holds for all n ≥ N
(1)
k large enough, say n ≥ N

(2)
k ≥ N

(1)
k . Along

with (20.2) this gives

µ
(
B+
k,n(η)

)
≥ 1

2
µ
(
(Bk)

c
n(TF )

)
.

Hence

− lim
n→∞

1

n
log µ

(
B+
k,n(η)

)
≤ RTF ,µ(Bk).
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Since

(Bk)
c
n ⊇ B+

k,

[
n

1
µ(F )

−η

]
+1

,

we get

lim
n→∞

1

n
log µ

(
B+
k,n(η)

)
≤
(

1

µ(F )
− η
)

lim
n→∞

1

n
log µ

(
(Bk)

c
n

)
.

Therefore,

RTF ,µ(Bk) ≥
(

1

µ(F )
− η
)
RT,µ(Bk).

Dividing both sides of this inequality by µ(Bk) and passing to the limit with k →∞, this
entails

RF (µ) ≥ (1− ηµ(F )) lim
k→∞

RT,µ(Bk)

µ(Bk)
.

By letting in turn η ↘ 0, this yields

(20.6) RF (µ) ≥ lim
k→∞

RT,µ(Bk)

µ(Bk)
.

Passing to the proof of the opposite inequality, denote
(

1
µ(F )

+ η
)
n by n+ and

(
1

µ(F )
+ η
)−1

n

by n−. We have

(20.7)

B−k,n(η) =
n+⋃
j=0

(
B−k,n(η) ∩ E−1

F (j)
)
∪ E−1

F ((n+,+∞])

= E−1
F ((n+,+∞]) ∪

n+⋃
j=0

E−1
F (j) ∩ T−j

(
(Bk)

c
n+−j

)
.

Now,
(20.8)
E−1
F (j) ∩ T−j

(
(Bk)

c
n+−j

)
= E−1

F (j) ∩ T−j(F ) ∩ T−j
(
(Bk)

c
n+−j

)
= E−1

F (j) ∩ T−j
(
F ∩ (Bk)

c
n+−j

)
= E−1

F (j) ∩
(
T−j

(
F(n+−j)−−1(η) ∩ (Bk)

c
n+−j

)
∪ T−j

(
F c

(n+−j)−−1(η) ∩ (Bk)
c
n+−j

))
.

By (20.1) we have

(20.9)

F c
(n+−j)−−1(η) ∩ (Bk)

c
n+−j = F c

(n+−j)−−1(η) ∩ (Bk)
c
((n+−j)−)+

⊆ F c
(n+−j)−−1(η) ∩ (Bk)

c
(n+−j)−(TF )

⊆ (Bk)
c
(n+−j)−(TF ).
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Now take p, q > 1 such that 1
p

+ 1
q

= 1. By applying Hölder inequality, T -invariance of the

measure µ, (20.5), and making use of Definition 20.2, we get for all 0 ≤ j ≤ N
(1)
k , that

µ
(
E−1
F (j) ∩ T−j

(
F(n+−j)−−1(η) ∩ (Bk)

c
n+−j

))
≤ µ

(
E−1
F (j) ∩ T−j

(
(Bk)

c
(n+−j)−(TF )

))
=

=

∫
X

11E−1
F (j)11T−j

(
(Bk)c

(n+−j)−
(TF )
) dµ

≤
(∫

X

11E−1
F (j) dµ

)1/p(∫
X

11
T−j
(

(Bk)c
(n+−j)−

(TF )
) dµ)1/q

= µ1/p(E−1
F (j))µ1/q

(
T−j

(
(Bk)

c
(n+−j)−(TF )

))
= µ1/p(E−1

F (j))µ1/q
(
(Bk)

c
(n+−j)−(TF )

)
≤ C1/pe−

α
p
j exp

(
−(1− ε)2

q
RF (µ)µF (Bk)(n

+ − j)−
)

= C1/pe−
α
p
j exp

(
−(1− ε)2

q
RF (µ)µF (Bk)

(
1

µ(F )
+ η

)−1((
1

µ(F )
+ η

)
n− j

))

= C1/p exp

(
−(1− ε)2

q
RF (µ)µF (Bk)n

)
·

· exp

(
−

(
α

p
− (1− ε)2

q

(
1

µ(F )
+ η

)−1

RF (µ)µF (Bk)

)
j

)
Together with the left-hand side of (20.5) this gives that

µ
(
E−1
F (j) ∩ T−j

(
F(n+−j)−−1(η) ∩ (Bk)

c
n+−j

))
µ
(
(Bk)cn(TF )

) ≤

≤ C1/p exp

(
RF (µ)µF (Bk)

(
(1 + e)2 − 1

q
(1− ε)2

)
n

)
·

· exp

(
−

(
α

p
− (1− ε)2

q

(
1

µ(F )
+ η

)−1

RF (µ)µF (Bk)

)
j

)
.

Taking now q > 1 sufficiently close to 1 and looking at (20.4) we will have for every ε > 0
small enough that

(1+e)2−1

q
(1−ε)2 ≤ 1−1

q
+6ε ≤ 7ε and

α

p
− (1− ε)2

q

(
1

µ(F )
+ η

)−1

RF (µ)µF (Bk) >
α

2p
.

Therefore, for all k ≥M1 and for all 0 ≤ j ≤ n+ −N (1)
k , we have that

(20.10)
µ
(
E−1
F (j) ∩ T−j

(
F(n+−j)−−1(η) ∩ (Bk)

c
n+−j

))
µ
(
(Bk)cn(TF )

) ≤ C1/pe7εne−
α
2p
j.
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For n+ − N
(1)
k < j ≤ n+, using (20.4), the left-hand side of (20.5), and looking up at

Definition 20.2, we have the easier estimate:

(20.11)

µ
(
E−1
F (j) ∩ T−j

(
F(n+−j)−−1(η) ∩ (Bk)

c
n+−j

))
µ
(
(Bk)cn(TF )

) ≤
µ
(
E−1
F (j)

)
µ
(
(Bk)cn(TF )

) ≤
≤ C−αj exp

(
(1 + ε)2RF (µ)µF (Bk)n

)
≤ C exp

(
− α(n+ −N (1)

k )
)

exp
(
(1 + ε)2RF (µ)µF (Bk)n

)
= CeαN

(1)
k exp

((
(1 + ε)2RF (µ)µF (Bk)− α

(
1

µ(F )
+ η

))
n

)
≤ CeαN

(1)
k .

Now we can estimate the second part of (20.8). We note that

E−1
F (j) ∩ T−j

(
F(n+−j)−−1(η) ∩ (Bk)

c
n+−j

)
⊆ E−1

F (j) ∩ T−j
(
F c

(n+−j)−−1(η)
)
,

and use again Hölder inequality, T -invariance of measure µ, and Definitions 20.2 and 20.1,
to estimate:

µ
(
E−1
F (j) ∩ T−j

(
F c

(n+−j)−−1(η) ∩ (Bk)
c
n+−j

))
≤

≤ µ
(
E−1
F (j) ∩ T−j

(
F c

(n+−j)−−1(η)
)

=

∫
X

11E−1
F (j)11T−j

(
F c
(n+−j)−−1

(η)
dµ

≤ µ1/p(E−1
F (j)) · ν1/q

(
T−j

(
F c

(n+−j)−−1(η)
))

= µ1/p(E−1
F (j)) · ν1/q

(
F c

(n+−j)−−1(η)
)

≤ C1/pe−
α
p
jC1/q

η e−
η̂
q

(
(n+−j)−−1

)
= C1/pC1/q

η e
η̂
q e−

α
p
j exp

(
−

(
α

p
− η̂

q

(
1

µ(F )
+ η

)−1
)
j

)
.

Combining this with the left-hand side of (20.5) this gives that

(20.12)

µ
(
E−1
F (j) ∩ T−j

(
F c

(n+−j)−−1(η) ∩ (Bk)
c
n+−j

))
µ
(
(Bk)cn(TF )

)
≤ C1/pC1/q

η e
η̂
q exp

(
−
(
η̂

q
− (1 + ε)2RF (µ)µF (Bk)

)
n

)
·

· exp

(
−

(
α

p
− η̂

q

(
1

µ(F )
+ η

)−1
)
j

)
.

Now, first take q > 1 so large that

α

p
− η̂

q

(
1

µ(F )
+ η

)−1

>
α

2
.
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Then take k ≥M1, say k ≥M1,q ≥M1 so large that

η̂

q
− (1 + ε)2RF (µ)µF (Bk) ≥

η̂

2q
.

Inserting these two inequalities into (20.12), yields

(20.13)
µ
(
E−1
F (j) ∩ T−j

(
F c

(n+−j)−−1(η) ∩ (Bk)
c
n+−j

))
µ
(
(Bk)cn(TF )

) ≤ C1/pC1/q
η e

η̂
q e−

η̂
2q
ne−

α
2
j.

Finally, by Definition 20.2, the left-hand side of (20.5), and (20.4),

m
(
E−1
F ((n+,+∞])

)
µ
(
(Bk)cn(TF )

) ≤ Ce−αn
+

exp
(
(1 + ε)2RF (µ)µF (Bk)n

)
= C exp

(
−
(
α

(
1

µ(F )
+ η

)
− (1 + ε)2RF (µ)µF (Bk)n

))
≤ C

for every ε > 0 small enough and n ≥ M1. Combining this inequality, (20.10), (20.11),
(20.9), (20.8), and (20.7), we get for every k ≥ 1 large enough, every e > 0, and every

n ≥ N
(1)
k , that

µ
(
B−k,n(η)

)
µ
(
(Bk)cn(TF )

) ≤ C
(
1 + eαN

(1)
k

)
+ C ′

n+∑
j=0

e−
α
2
j + C ′′e7εn

n+−N(1)
k∑

j=0

e−
α
2p
j ≤ C ′′′e7εn

with some constants C,C ′, C ′′, C ′′′ ∈ (0,+∞) and p > 1 independent of k ≥ 1 large enough,

n ≥ N
(1)
k , and ε ∈ (0, 1) small enough. Hence,

− lim
n→∞

1

n
log µ

(
B−k,n(η)

)
≥ RTF ,µ

(Bk)− 7ε

for every ε > 0 and every k ≥ 1 large enough. Therefore,

− lim
n→∞

1

n
log µ

(
B−k,n(η)

)
≥ RTF ,µ

(Bk)

for every k ≥ 1 large enough. Since

(Bk)
c
n ⊆ B−

k,

[
n

1
µ(F )

+η

] ,
we get

lim
n→∞

1

n
log µ

(
(Bk)

c
n

)
≤ 1

1
µ(F )

+ η
lim
n→∞

1

n
log µ

(
B−k,n(η)

)
.

Therefore,

RTF ,µ
(Bk) ≤

(
1

µ(F )
+ η

)
RT,µ(Bk)
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for every k ≥ 1 large enough. Dividing both sides of this inequality by µ(Bk) and passing
to the limit with k →∞, this gives

RF (µ) ≤ (1 + ηµ(F )) lim
k→∞

RT,µ(Bk)

µ(Bk)
.

By letting in turn η ↘ 0, this yields

RF (µ) ≤ lim
k→∞

RT,µ(Bk)

µ(Bk)
.

Together with (20.6) this finishes the proof of Theorem 20.3. �

21. First Return Maps and Escaping Rates, II

In this section we keep the settings of Section 20; more specifically that described between
its beginning until formula (20.1). In particular, we do not assume appriori that (LDP)
holds. In fact our goal in this section is provide natural sufficient conditions for (LDP) to
hold. Let ϕ : X → R be a Borel measurable function. We define the function ϕF : F → R
by the formula

(21.1) ϕF (x) :=

τF (x)−1∑
j=0

ϕ ◦ T j(x).

It is well-known

(21.2)

∫
X

ϕdµ = µ(F )

∫
F

ϕF dµF .

In particular,

11F = τF ,

and, inserting this to (21.2), we obtain the familiar, discussed in the previous section, Kac’s
Formula ∫

F

τF dµF =
1

µ(F )
.

Definition 21.1. We say that a pentacle (X,T, F, µ, ϕ), or just T , is of symbol return type
(SRT) if the following conditions are satisfied:

(a) F = E∞A for some countable alphabet E and some finitely irreducible incidence
matrix A.

(b) TF = σ : E∞A → E∞A .

(c) ϕF : F → R is a Hölder continuous summable potential.

(d) P(ϕF ) = 0.

(e) µ = µϕF is the Gibbs/equilibrium state for the potential ϕF : F → R
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(f) There are two constants C, α > 0 such that

µ
(
τ−1
F (n)

)
≤ Ce−αn

for all integers n ≥ 1.

Since
τ−1
F (n) ⊆ T−1(E−1

F (n− 1))

and since the measure µ is T -invariant, we immediately obtain the following.

Observation 21.2. If a pentacle (X,T, F, µ, ϕ) satisfies all conditions (a)–(e) of Defini-
tion 21.1 and it also has exponential tail decay (ETD), then (X,T, F, µ, ϕ) also satisfies
condition (f) of Definition 21.1; thus in conclusion, the pentacle (X,T, F, µ, ϕ) is then of
symbol return type (SRT).

Given θ ∈ R we consider the potential

ϕθ := ϕF + θτF : F → R.
We shall prove several lemmas. We start with the following.

Lemma 21.3. If T is an (SRT) system, then the potential ϕθ : F → R is summable for
every θ < α.

Proof. Since T is SRT, we have that∑
e∈E

exp
(

sup
(
ϕθ|[e]

))
=
∑
e∈E

exp
(

sup
(
(ϕF + θτF )|[e]

))
=
∑
e∈E

exp
(

sup
(
ϕF |[e]

))
exp

(
θτF (e)

)
�
∑
e∈E

µ([e]) exp
(
θτF (e)

)
=
∞∑
n=1

∑
τF (e)=n

µ([e])eθn =
∞∑
n=1

eθn
∑

τF (e)=n

µ([e])

=
∞∑
n=1

eθnµ
(
τ−1
F (n)

)
≤ C

∞∑
n=1

exp
(
(θ − α)n

)
< +∞,

whenever θ < α. The proof is complete. �

Lemma 21.4. If T is an (SRT) system, then the function (−∞, α) 3 θ 7→ P(ϕθ) ∈ R is
real-analytic.

Proof. In the terminology of Corollary 2.6.10 in [31], condition (c) of Definition 21.1 says
that ϕF ∈ Kβ, where β > 0 is the Hölder exponent of ϕF . Of course τF ∈ Kβ since τF is
constant on cylinders of length one. Lemma 21.3 says that ϕθ ∈ Kβ for all θ < α; in fact
the proof of this lemma shows that ϕθ ∈ Kβ for all θ ∈ C with Re(θ) < α. This now means
that all hypotheses of Corollary 2.6.10 from [31] are satisfied. The upshot of this corollary
is that the function

{θ ∈ C : Re(θ) < α} 3 θ 7→ Lϕθ ∈ L(Kβ)



134 MARK POLLICOTT AND MARIUSZ URBAŃSKI

is holomorphic, where Lϕθ is the Perron-Frobenius operator associated to the potential
ϕθ and the shift map σ = TF . The proof is now concluded by applying Kato-Rellich
perturbation Theorem and the fact that exp

(
P(ϕθ)

)
is a simple isolated eigenvalue of Lϕθ

for all real θ < α (it is not really relevant here but in fact exp
(
P(ϕθ)

)
is equal to the

spectral radius of the operator Lϕθ ∈ L(Kβ)), see the paragraph of [31] located between
Remark 2.6.11 and Theorem 2.6.12 for more details. �

Because of Lemma 21.3, for every θ < α there exists a unique Gibbs/equilibrium state µθ
for the potential ϕθ : F → R. Having the previous two lemmas, Proposition 2.6.13 in [31]
applies to give the following.

Lemma 21.5. If T is an (SRT) system, then

d

dθ
P(ϕθ) =

∫
F

τF dµθ

for every θ < α.

Now having all the three previous lemmas along with Definition 21.1, employing the stan-
dard (by now) tools of [31], exactly the same proof as in [17] yields the following.

Theorem 21.6. If T is an (SRT) system, then for every θ < α we have that

lim
n→∞

1

n
log µ

({
x ∈ F : sgn(θ)τ

n)
F (x) ≥ sgn(θ)n

∫
F

τF dµθ
})

= −θ
∫
F

τF dµθ + P(ϕθ).

In order to make use of this theorem we shall prove the following.

Lemma 21.7. If T is an (SRT) system and the first return map function τF : F∞ → N is
unbounded, then for every non-zero θ < α we have that

P(ϕθ)− θ
∫
F

τF dµθ < 0.

Proof. Since µθ is an equilibrium state for ϕθ, we have that

P(ϕθ)− θ
∫
F

τF dµθ = hµθ(σ) +

∫
F

ϕF dµθ + θ

∫
F

τF dµθ − θ
∫
F

τF dµθ

= hµθ(σ) +

∫
F

ϕF dµθ

≤ P(ϕF ) = 0.

Hence, in order to complete the proof we only need to show that the inequality sign above is
strict. In order to do this suppose for a contradiction that hµθ(σ)+

∫
F
ϕF dµθ = P(ϕF ). But

then the fact that µ is the only equilibrium state for ϕF , implies that µθ = µ. But because
of Theorem 2.2.7 in [31] this in turn implies that the function ϕθ−ϕF is cohomologous to a
constant in the class of Hölder continuous functions defined on E∞A = F . But ϕθ−ϕF = θτF
is, by our hypotheses, unbounded unless θ = 0. This finishes the proof. �

Now we can prove the main result of this section:
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Lemma 21.8. If T is an (SRT) system and the first return map function τF : F∞ → N is
unbounded, then the pair (TF , F ) satisfies the large deviation property (LDP).

Proof. Fix η ∈ (0, 1). It follows from Lemma 21.4 and Lemma 21.5 that the function

(−∞, α) 3 θ 7→
∫
F

τF dµθ ∈ [1,+∞)

is continuous. Therefore, there exists δ ∈ (0, α) such that∫
F

τF dµ− η ≤
∫
F

τF dµδ,

∫
F

τF dµ−δ ≤
∫
F

τF dµ+ η.

Equivalently:

µ(F )−1 − η ≤
∫
F

τF dµδ,

∫
F

τF dµ−δ ≤ µ(F )−1 + η.

Hence for every k ≥ 1:

F c
k−1(η) ⊆

{
x ∈ F : τ

k)
F (x) ≥ k

∫
F

τF dµδ
}
∪
{
x ∈ F : τ

k)
F (x) ≤ k

∫
F

τF dµ−δ
}
.

So, denoting

η̂ :=
1

2
min

{
δ

∫
F

τF dµδ − P(ϕd),−δ
∫
F

τF dµ−δ − P(ϕ−δ)
}
,

which is positive by Lemma 21.7, we conclude from Theorem 21.6, that

µ
(
F c
k−1(η)

)
≤ Cηe

−η̂k

for all k ≥ 1. The proof is complete. �

22. Escape Rates for Interval Maps

In this and the next sections we will reap the benefits of our work in the previous sections,
most notably of that on escape rates of conformal countable alphabet IFSs and of that on
the first return map techniques including large deviations. This section is devoted to the
study of the multimodal smooth maps of an interval.

We start with the definition of the class of dynamical systems and potentials we consider.

Definition 22.1. Let I = [0, 1] be the closed interval. Let T : I → I be a C3 differentiable
map with the following properties:

(a) T has only a finitely many maximal closed intervals of monotonicity; or equivalently
Crit(T ) = {x ∈ I : T ′(x) = 0}, the set of all critical points of T is finite.

(b) The dynamical system T : I → I is topologically exact, meaning that for every
non-empty subset U of I there exists an integer n ≥ 0 such that T n(U) = I.

(c) All critical points are non-flat.
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(d) T : I → I is a topological Collet-Eckmann map, meaning that

inf{(|(T n)′(x)|)1/n
: T n(x) = x for n ≥ 1} > 1

where the infimum is taken over all integers n ≥ 1 and all fixed points of T n.

We then call T : I → I a topologically exact topological Collet-Eckmann map (teTCE). If
(c) and (d) are relaxed and only (a) and (b) are assumed then T is called a topologically
exact multimodal map.

We set

PC(T ) :=
∞⋃
n=1

T n(Crit(T ))

and call this the postcritical set of T . We say that the map T : I → I is tame if

PC(T ) 6= I.

The following theorem is due to many authors and a detailed and readable discussion on
this topic can be found, for example, in [40]

Theorem 22.2 (Exponential Shrinking Property). If T : I → I satisfies conditions (a)–(c)
of Definition 22.1, then T is a (te)TCE, i.e. condition (d) holds if and only if there exist
δ > 0, γ > 0 and C > 0 such that if z ∈ I and n ≥ 0 then

diam(W ) ≤ Ce−γn

for each connected component W of T−n(B(z, 2δ)).

The hard part of this theorem is its “if” part. The converse is easy. There are more con-
ditions equivalent to teTCE, but we need only the above Exponential Shrinking Property
(ESP) and we do not bring them up here. We now however articulate two standard suf-
ficient conditions for (ESP) to hold. It is implied by the Collet-Eckmann condition which
requires that there exist λ > 1 and C > 0 such that for every integer n ≥ 0 we have that

|(fn)′(f(c))| ≥ Cλn.

If also suffices to assume that the map T is semi-hyperbolic, i.e., that no critical points c
in the Julia belongs to its own omega limit set ω(c) for (ESP) to hold. This so for example,
if T is a classical unimodal map of the form I 3 x 7→ λx(1 − x), with 0 < λ ≤ 4 and the
critical point 1/2 is not in its own omega limit set, i.e., 1/2 6∈ ω(1/2).

We call a potential ψ : I → R acceptable if it is Lipschitz continuous and

sup(ψ)− inf(ψ) < htop(T ).

We would also like to mention that for the purposes of this section it would suffice that
ψ : I → R is Hölder continuous (with any exponent) and of bounded variation. We denote
by BVI the vector space of all functions in L1(λ), where λ denotes Lebesgue measure on I,
that have a version of bounded variation. This vector space becomes a Banach space when
endowed with the norm

‖g‖BV := ‖g‖Leb1 + vI(g)
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where vI(g) denotes the variation of g on I. For every g ∈ BVI define the Perron-Frobenius
operator associated to ψ by

Lψ(g)(x) =
∑

y∈T−1(x)

g(y)eψ(y).

It is well known and easy to check that Lψ(BVI) ⊂ BVI and Lψ : BVI → BVI is a bounded
linear operator.

The following theorem collects together some fundamental results of [22] and [23]

Theorem 22.3. If T : I → I is a topologically exact multimodal map and ψ : I → R is an
acceptable potential then

(a) there exists a Borel probability eigenmeasure mψ for the dual operator L∗ψ whose

corresponding eigenvalue is equal to eP(ψ). It then follows that supp(mψ) = I.
(b) there exists a unique Borel T -invariant probability measure µψ on I absolutely con-

tinuous with respect to mψ. Furthermore, µψ is equivalent to mψ;
(c) hµψ(T ) +

∫
I
ψdµψ = P (ψ), meaning that µψ is an (ergodic) equilibrium state for

ψ : I → R with respect to the dynamical system T : I → I.
(d) The Perron-Frobenius Lψ : BVI → BVI is quasi-compact.
(e) r(Lψ) = eP (ψ).
(f) sp(Lψ) ∩ ∂B(0, eP (ψ)) = {eP (ϕ)}
(g) The number eP (ψ) is a simple isolated eigenvalue (this follows from (f), (e) and (f))

of Lψ : BVI → BVI with eigenfunction ρψ :=
dµψ
dmψ

which is Lipschitz continuous

and log-bounded.

We shall use the commonly accepted convention, used throughout this article, that for
every r ∈ (0, 1] and every bounded interval ∆ ⊂ R we denote by r∆ the (smaller) interval
of length r|∆| centered at the same point as ∆. We now consider the following version of
the bounded distortion property taken from [40] whose proof has a long history and is well
documented therein.

Theorem 22.4. Let T : I → I be a teTCE. Then for every r ∈ (0, 1) there exists K(r) ∈
(0,+∞) such that if ∆ ⊂ I is an interval, n ≥ 0 is an integer, the map T n|∆ is 1-to-1, and
x, y ∈ ∆ are such that T n(x), T n(y) ∈ rT n(∆), then∣∣∣∣ (T n)′(y)

(T n)′(x)
− 1

∣∣∣∣ ≤ K(r)|(T n)(y)− (T n)(x)|.

We next recall the following definition.

Definition 22.5. An interval V ⊂ I is called a nice set for a multimodal map T : I → I if

int(V ) ∩
∞⋃
n=0

T n(∂V ) = ∅

The proof of the following theorem is both standard and straightforward, and has been
presented in various similar settings. We provide the proof below because of the critical
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importance for us of the theorem it proves and the brevity of the proof, for the sake of
completeness, and for the convenience of the reader.

Theorem 22.6. If T : I → I is topologically exact multimodal map then for every point
ξ ∈ (0, 1) and every R > 0 there exists a nice set V ⊂ I such that ξ ∈ V ⊂ B(ξ, R).

Proof. Since the map T : I → I is topologically exact it has a dense set of periodic points.
Fix one periodic point ω, say of prime period p ≥ 1, such that ξ 6∈ ∪∞k=0T

−k({T j(ω) : 0 ≤
j ≤ p− 1}). Again because of topological exactness of T ,

ξ ∈ (0, ξ) ∩
∞⋃
k=0

T−k({T j(ω) : 0 ≤ j ≤ p− 1})

and

ξ ∈ (ξ, 1) ∩
∞⋃
k=0

T−k({T j(ω) : 0 ≤ j ≤ p− 1}).

For every n ≥ 1, sufficiently large denote by ξ−n ∈ I the point closest to ξ in

(0, ξ) ∩
n⋃
k=0

T−k({T j(ω) : 0 ≤ j ≤ p− 1})

and by ξ+
n ∈ I the point closest to ξ in

(ξ, 1) ∩
n⋃
k=0

T−k({T−j(ω) : 0 ≤ j ≤ p− 1}).

We then denote

Vn := (ξ−n , ξ
+
n ).

Then obviously ξ ∈ Vn, T k(ξ±n ) 6∈ (ξ−n , ξ
+
n ) for all k = 0, 1, · · · , n − 1, and T k(ξ±n ) ∈

{T j(w) : 0 ≤ j ≤ n − 1} for all k ≥ n. Since limn→+∞ ξ
±
n = ξ it then follows that

T k(ξ±n ) 6∈ Vn for all k ≥ n. In conclusion, Vn are the required nice sets for all integers
n ≥ 1. Since in addition limn→+∞ diam(Vn) = 0 the proof is complete. �

Given a set F ⊆ I and an integer n ≥ 0, we denote by CF (n) the collection of all connected
components of T−n(F ). From their definitions, nice sets enjoy the following property.

Theorem 22.7. If V is a nice set for a multimodal map T : I → I, then for every integer
n ≥ 0 and every U ∈ CV (n) either

U ∩ V = ∅ or U ⊂ V.

From now on throughout this section we assume that T : I → I is a tame teTCE map.
Fix a point ξ ∈ I\PC(T ). By virtue of Theorem 22.4 there is a nice set V such that

ξ ∈ V and 2V ∩ PC(T ) = ∅.
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The nice set V canonically gives rise to a countable alphabet conformal iterated function
system in the sense considered in the previous sections of the present paper. Namely, put

C∗V :=
∞⋃
n=1

CV (n).

For every U ∈ C∗V let τV (U) ≥ 1 the unique integer n ≥ 1 such that U ∈ CV (n). Put further

ϕU := f
−τV (U)
U : V → U

and keep in mind that
ϕU(V ) = U.

Denote by EV the subset of all elements U of C∗V such that

(a) ϕU(V ) ⊂ V ,
(b) fk(U) ∩ V = ∅ for all k = 1, 2, . . . , τV (U)− 1.

The collection
SV := {ϕU : V → V }

of all such inverse branches forms obviously an iterated function system in the sense con-
sidered in the previous sections of the present paper. In other words the elements of SV
are formed by all inverse branches of the first return map fV : V → V . In particular,
τV (U) is the first return time of all points in U = ϕU(V ) to V . We define the function
NV : E∞V → N1 by setting

NV (ω) := τV (ω1).

Let
πV : E∞V → R

be the canonical projection induced by the iterated function system SV . Let

JV := πV
(
E∞V )

be the limit set of the system SV . Clearly

JV ⊆ I.

It is immediate from our definitions that

τV (π(ω)) = NV (ω)

for all ω ∈ EN
V .

We shall now prove the following.

Proposition 22.8. Let T : I → I be a tame teTCE map. Let ψ : I → R be an acceptable
potential. If V is a nice set for T , then

(a) ψ̃V := ψV ◦ πV − P (ψ)NV : EN → R is a summable Hölder continuous potential;

(b) P (σ, ψ̃V ) = 0 for the pressure for the shift map σ : EN
V → EN

V ;

(c) µϕ,V = µψ̃V ◦ π
−1
V , where µψ̃V is the equilibrium state for ψ̃V and the shift map

σ : ENV → ENV ;
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(d) In addition, ψV is the amalgamated function of a summable Hölder continuous sys-
tem of functions.

Proof. Hölder continuity of ψ̃V follows directly from Theorem 22.2 (the Exponential Shrink-
ing Property) and the fact that the function NV is constant on cylinders of length 1. Hölder

continuity of ψ̃V follows directly from Theorem 22.2 (the Exponential Shrinking Property)
and the fact that the function NV is constant on cylinders of length 1. We define a Hölder
continuous system of functions G = {g(l) : V → R}e∈E by putting

g(e) :=
(
ψV − P(ϕ)τV

)
◦ ϕe, e ∈ E.

Theorem 22.3 then implies the system G is summable, P(G) = 0, and mψ,V is the unique
G-conformal measure for the IFS SV . According to [31], g : EN

V → R, the amalgamated
function of G is defined by the formula

g(ω) = g(ω1)(πV (σ(ω))) = ψV ◦ ϕω1(πV (σ(ω)))− P(ψ)τV ◦ ϕω1(πV (σ(ω)))

= ψV ◦ πV (ω)− P(ψ)NV (ω)

= ψ̃V (ω).

By Proposition 3.1.4 in [31] we thus have that

P
(
σ, ψ̃V

)
= P(G) = 0.

Now, since πV ◦ σ = TV ◦ πV , i.e. since the dynamical system TV : JV → JV is a factor of
the shift map σ : EN

V → EN
V via the map πV : EN

V → JV , we see that µψ̃V ◦ π
−1
V is a Borel

fV -invariant probability measure on JV equivalent to mψ̃V
◦π−1

V = mg ◦π−1 = mG = mψ,V .

Since mψ,V is equivalent to µψ,V , we thus conclude that the measures mψ̃V
◦ π−1

V and µψ,V
are equivalent. Since both these measures are TV -invariant and µψ,V is ergodic, they must
be equal. The proof is thus complete. �

Since πV : EN
V → JV = V∞, where, we recall the latter is the set of points returning

infinitely often to V , is a measurable isomorphism sending the σ-invariant measure µψ̃V to

the fV -invariant probability measure µψ,V , by identifying the sets EN
V and V∞(= JV ), we

can prove the following.

Lemma 22.9. With all the hypotheses of Proposition 22.8, the pentacle (I, T, V, ψ̃V , µψ̃V )
is an SRT system having exponential tail decay (ETD), where we recall that V∞ is identified

with EN
V , ψ̃V is identified with ψV − P(ψ)τV , and µψ̃V is identified with µψ,V .

Proof. By virtue of Proposition 22.8 and Observation 21.2 we only need to prove that the
pentacle (I, T, V, ψ̃V , µψ̃V ) has exponential tail decay (ETD). We can assume without loss
of generality that ψ : I → R is normalized so that

P(ψ) = 0 and mψ = µψ.

Now define

C0
V (n) :=

{
U ∈ CV (n) : ∀(0≤k≤n−1) T

k(U) ∩ V = ∅
}
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and

C∗V (n) := {U ∈ CV (n) : U ⊆ V } = {U ∈ CV (n) : U ∩ V 6= ∅}.

Since the map T : I → I is topologically exact, there exists an integer q ≥ 1 such that

T q(V ) ⊇ I.

Therefore for every e ∈ CV (n) there exists (at least one) ê ∈ C∗V (n+ q) such that

T q ◦ ϕê = ϕe.

By conformality of the measure µψ, for every e ∈ CV (n), we have

µψ
(
ϕê(V )

)
≥ exp(−q||ψ||∞)µψ(ϕe(V )).

So, since ⋃
a∈C0V (n+q)

ϕa(V ) ⊆
⋃

b∈CV (n+q)

Tq◦ϕb∈C
0
V

(n)

ϕb(V ) \
⋃

e∈C0V (n)

ϕê(V ),

we therefore get

µψ

 ⋃
a∈C0V (n+q)

ϕa(V )

 ≤ µψ

 ⋃
b∈CV (n+q)

Tq◦ϕb∈C
0
V

(n)

ϕb(V ) \
⋃

e∈C0V (n)

ϕê(V )



= µψ

 ⋃
b∈CV (n+q)

fq◦ϕb∈C
0
V

(n)

ϕb(V )

− µ
 ⋃
e∈C0V (n)

ϕê(V )



= µψ

T−q
 ⋃
c∈C0V (n)

ϕc(V )

− ∑
e∈C0V (n)

µψ
(
ϕê(V )

)

= µψ

 ⋃
c∈C0V (n)

ϕc(V )

− ∑
e∈C0V (n)

µψ
(
ϕê(V )

)

≤ µψ

 ⋃
c∈C0V (n)

ϕc(V )

− exp(−q||ψ||∞)
∑

e∈C0V (n)

µψ
(
ϕe(V )

)

= γµψ

 ⋃
c∈C0V (n)

ϕc(V )

 ,



142 MARK POLLICOTT AND MARIUSZ URBAŃSKI

where γ := 1− exp(−q||ψ||∞) ∈ [0, 1). An immediate induction then yields

µψ

 ⋃
e∈C0V (n)

ϕe(V )

 ≤ γ−1γn/q

for all n ≥ 0. But, as

E−1
V ([n,+∞]) = E−1

V ({+∞}) ∪
∞⋃
k=n

⋃
e∈C0V (k)

ϕe(V )

and since µψ
(
E−1
V ({+∞})

)
= 0 by ergodicity of µψ and of µψ(V ) > 0, we therefore get

that

(22.1) µψ
(
E−1
V ([n,+∞])

)
≤
(
γ(1− γ1/q)

)−1
γn/q

for all n ≥ 0. This just means that the pentacle (I, T, V, ψ̃V , µψ̃V ) has exponential tail
decay (ETD), and the proof is complete. �

Denote by IR(T ) the set of all recurrent points of T in I. Formally

IR(T ) := {z ∈ I : lim
n→∞

|T n(z)− z| = 0}.

Of course IR(T ) ⊆ JT and µψ(I \ IR(T )) = 0 because of Poincaré’s Recurrence Theorem.
The set IR(T ) is significant for us since

IR(T ) ∩ V ⊆ JV .

Now we can harvest the fruits of the work we have done. As a direct consequence of Theo-
rem 15.10, Theorem 15.11, Proposition 22.8, Lemma 22.9, Lemma 21.8, and Theorem 20.3,
we get the following two results.

Theorem 22.10. Let T : I → I be a tame teTCE map. Let ψ : I → R be an acceptable
potential. Let z ∈ IR(T )\PC(T ).

Assume that the equilibrium state µψ is (WBT) at z. Then

lim
ε→0

Rµψ
(B(z, ε))

µψ(B(z, ε))
= lim

ε→0

Rµψ(B(z, ε))

µψ(B(z, ε))
=

=

{
if z is not any periodic point of T,

1− exp
(
Spψ(z)− pP(f, ψ)

)
if z is a periodic point of T.

Theorem 22.11. Let T : I → I be a tame teTCE map. Let ψ : I → R be an acceptable
potential. Then

lim
ε→0

Rµψ
(B(z, ε))

µψ(B(z, ε))
= lim

ε→0

Rµψ(B(z, ε))

µψ(B(z, ε))
= 1

for µψ–a.e. point z ∈ I.
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Definition 22.12. A multimodal map T : I → I is called subexpanding if

Crit(T ) ∩ PC(T ) = ∅.
It is not hard to see (good references for a proof can be found in [40]) that the following

it true.

Proposition 22.13. Any topologically exact multimodal subexpanding map of the interval
I is a tame teTCE map.

Let us quote another well-known result which can be found, for example, in the book of
de Melo and van Strien [35].

Theorem 22.14. If T : I → I is a topologically exact multimodal subexpanding map, then
there exists a unique Borel probability T -invariant measure µ absolutely continuous with
respect to Lebesgue measure λ. In fact,

(a) µ is equivalent to λ and (therefore)
(b) has full topological support.
(c) The Radon–Nikodym derivative dµ

dλ
is uniformly bounded above and separated from

zero on the complement of every fixed neighborhood of PC(T ).
(d) µ is ergodic, even K-mixing,
(e) µ has Rokhlin’s natural extension metrically isomorphic to some two sided Bernoulli

shift and
(f) µ charges with full measure both topologically transitive and radial points of T .

As an immediate consequence of this theorem, particularly of its item (c), we get the
following.

Corollary 22.15. If T : I → I is a topologically exact multimodal subexpanding map,
then the T -invariant measure µ absolutely continuous with respect to Lebesgue measure λ
is (WBT) at every point of I \ PC(T ).

Passing to Hausdorff dimension, by a small obvious modification (see [40] for details)
of the proof of Theorem 22.6 for all c ∈ Crit(T ) ∪ {ξ} there are arbitrarily small open
intervals Vc, c ∈ Vc, such that Vc ∩ PC(T ) = ∅ and the collection T−n∗ , n ≥ 1, of all
continuous (equivalently smooth inverse branches of T n) defined on Vc, c ∈ Crit(T ) ∪ {ξ},
and such that for some c′ ∈ Crit(T ) ∪ {ξ},

T−n∗ (Vc) = Vc′

and
n−1⋃
k=1

T k(T−n∗ (Vc)) ∩
⋃{

Vz : z ∈ Crit(T ) ∪ {ξ}
}

= ∅

forms a finitely primitive conformal GDS, which we will call ST , whose limit set contains
Trans(T ). Another characterization of ST is that its elements are composed of continuous
inverse branches of the first return map of f from

V :=
⋃{

Vz : z ∈ Crit(T ) ∪ {ξ}
}
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to V . It has been proved in [40] that HD(K(V )) < 1.
So, since by Theorem 17.1, limr→0 HD

(
K(B(ξ, r))

)
= HD(I) = 1, we conclude that

HD(K(V )) < HD
(
K(B(ξ, r))

)
for all r > 0 small enough. Therefore, since bST = 1 and since µh,V = µbSf , applying

Theorem 17.1, Corollary 17.3 and Corollary 19.2, we get the following two theorems.

Theorem 22.16. Let T : I → I be a topologically exact multimodal subexpanding map. Fix
ξ ∈ I\PC(T ). Assume that the parameter 1 is powering at ξ with respect to the conformal
GDS ST . Then the following limit exists, is finite, and positive:

lim
r→0

1− HD(Kξ(r))

µ(B(ξ, r))
.

Theorem 22.17. If T : I → I is a topologically exact multimodal subexpanding map, then
for Lebesgue–a.e. point ξ ∈ I \ PC(T ) the following limit exists, is finite and positive:

lim
r→0

1− HD(Kξ(r))

µ(B(ξ, r))
.

23. Escape Rates for Rational Functions of the Riemann Sphere

Now, we will apply the results of sections 14 and 15 to two large classes of conformal

dynamical systems in te complex plane: rational functions of the Riemann sphere Ĉ in this
section and, in the next section, transcendental meromorphic functions on C. This section
considerably overlaps in some of its parts with the previous section on the multimodal
interval maps. We provide here its full exposition for the sake of coherent completeness
and convenience of the readers not necessarily interested in interval maps.

As said, now we deal with rational functions. Let f : Ĉ → Ĉ be a rational function of
degree d ≥ 2. Let J(f) denote the Julia sets of f and let

Crit(f) := {c ∈ Ĉ : f ′(c) = 0}
be the set of all critical (branching) points of f . As in the case of interval maps set

PC(f) :=
∞⋃
n=1

fn(Crit(f))

and call it the postcritical set of f . The best understood and the easiest (nowadays)
to deal with class of rational functions is formed by expanding (also frequently called

hyperbolic) maps. The rational map f : Ĉ → Ĉ is said to be expanding if the restriction
f |J(f) : J(f)→ J(f) satisfies

(23.1) inf{|f ′(z)| : z ∈ J(f)} > 1

or, equivalently,

(23.2) |f ′(z)| > 1

for all z ∈ J(f). Another, topological, characterization of the expanding property is this.
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Fact 23.1. A rational function f : Ĉ→ Ĉ is expanding if and only if

J(f) ∩ PC(f) = ∅.

It is immediate from this characterization that all the polynomials z 7→ zd, d ≥ 2, are
expanding along with their small perturbations z 7→ zd+ε; in fact expanding rational func-
tions are commonly believed to form a vast majority amongst all rational functions. This
is known at least for polynomials with real coefficients. We however do not restrict our-
selves to expanding rational maps only. We start with all rational functions, no restriction
whatsoever, and then make some, weaker than hyperbolicity, appropriate assumptions.

Let ψ : Ĉ → R be a Hölder continuous function, referred to in the sequel as potential.

We say that ψ : Ĉ→ R has a pressure gap if

(23.3) nP(ψ)− sup
(
ψn
)
> 0

for some integer n ≥ 1, where P(ψ) denotes the ordinary topological pressure of ψ|J(f) and
the Birkhoff’s sum ψn is also considered as restricted to J(f).

We would like to mention that (23.3) always holds (with all n ≥ 0 sufficiently large) if

the function f : Ĉ → Ĉ restricted to its Julia set is expanding (also frequently referred to
as hyperbolic).

The probability invariant measure we are interested in comes from the following.

Theorem 23.2 ([18]). If f : Ĉ→ Ĉ is a rational function of degree d ≥ 2 and if ψ : Ĉ→ R
is a Hölder continuous potential with a pressure gap, then ψ admits a unique equilibrium
state µψ, i.e. a unique Borel probability f -invariant measure on J(f) such that

P(ψ) = hµψ(f) +

∫
J(f)

ψ dµψ.

In addition,

(a) the measure µψ is ergodic, in fact K-mixing, and (see [48]) enjoys further finer
stochastic properties.

(b) The Jacobian

J(f) 3 z 7−→ dµψ ◦ T
dµψ

(z) ∈ (0,+∞)

is a Hölder continuous function.

In [41] a rational function f : Ĉ→ Ĉ was called tame (comp. Section 22 devoted to interval
maps) if

J(f) \ PC(f) 6= ∅.
Likewise, following [44], we adopt the same definition for (transcendental) meromorphic

functions f : C→ Ĉ.

Remark 23.3. Tameness is a very mild hypothesis and there are many classes of maps foe
which these hold. These include:

(1) Quadratic maps z 7→ z2 + c for which the Julia set is not contained in the real line;
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(2) Rational maps for which the restriction to the Julia set is expansive which includes
the case of expanding rational functions; and

(3) Misiurewicz maps, where the critical point is not recurrent.

In this paper the main advantage of dealing with tame functions is that these admit Nice
Sets. Let us define and discuss them now.

Analogously as in the case of interval maps, given a set F ⊆ Ĉ and n ≥ 0, we denote by
CF (n) the collection of all connected components of f−n(F ). J. Rivera-Letelier introduced
in [43] the concept of Nice Sets in the realm of the dynamics of rational maps of the
Riemann sphere. In [19] N. Dobbs proved their existence for tame meromorphic functions

from C to Ĉ. We quote now his theorem.

Theorem 23.4. Let f : C→ Ĉ be a tame meromorphic function. Fix a non-periodic point
z ∈ J(f) \ PC(f), κ > 1, and K > 1. Then for all L > 1 and for all r > 0 sufficiently

small there exists an open connected set V = V (z, r) ⊆ C \ PC(f) such that

(a) If U ∈ CV (n) and U ∩ V 6= ∅, then U ⊆ V .
(b) If U ∈ CV (n) and U ∩ v 6= ∅, then, for all w,w′ ∈ U,

|(fn)′(w)| ≥ L and
|(fn)′(w)|
|(fn)′(w′)|

≤ K.

(c) B(z, r) ⊂ U ⊂ B(z, κr) ⊆ C \ PC(f).

Each nice set canonically gives rise to a countable alphabet conformal iterated function
system in the sense considered in the previous sections of the present paper. Namely, put

C∗V =
∞⋃
n=1

CV (n).

For every U ∈ C∗V let τV (U) ≥ 1 the unique integer n ≥ 1 such that U ∈ CV (n). Put further

ϕU := f
−τV (U)
U : V → U

and keep in mind that

ϕU(V ) = U.

Denote by EV the subset of all elements U of C∗V such that

(a) ϕU(V ) ⊆ V ,

(b) fk(U) ∩ V = ∅ for all k = 1, 2, . . . , τV (U)− 1.

The collection

SV := {ϕU : V → V }
of all such inverse branches forms obviously a conformal iterated function system in the
sense considered in the previous sections of the present paper. In other words the elements
of SV are formed by all holomorphic inverse branches of the first return map fV : V → V .
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In particular, τV (U) is the first return time of all points in U = ϕU(V ) to V . We define
the function NV : EN

V → N1 by setting

NV (ω) := τV (ω1).

Let
πV : EN

V → Ĉ
be the canonical projection induced by the iterated function system SV . Let

JV : πV
(
EN
V

)
be the limit set of the system SV . Clearly

JV ⊆ J(f).

It is immediate from our definitions that

τV (π(ω)) = NV (ω)

for all ω ∈ EN
V .

Now, having in addition a Hölder continuous potential ψ : Ĉ→ R with pressure gap, we
already know from the previous sections that µψ,V , the conditional measure of µψ on V is
fV -invariant and ergodic.

Definition 23.5. We say that the rational function f : Ĉ → Ĉ has the Exponential
Shrinking Property (ESP) if there exist δ > 0, γ > 0, and C > 0 such that if z ∈ J(f) and
n ≥ 0, then

(23.4) diam(W ) ≤ Ce−γn

for each W ∈ CB(z,2δ)(n).

Remark 23.6. This property has been throughly explored in the papers including [39]
and the references therein. These papers provide several different characterizations of
Exponential Shrinking Property, most notably the one called Topological Collet-Eckmann;
one of them being uniform hyperbolicity of periodic points in the Julia set. We do not
recall any more of them here as we will only need (ESP).

Exactly as in the case of interval maps, we now provide two standard sufficient conditions
for (ESP) to hold. It is implied by the Collet-Eckmann condition which requires that there
exist λ > 1 and C > 0 such that for every integer n ≥ 0 we have that

|(fn)′(f(c))| ≥ Cλn.

If also suffices for (ESP) to hold to assume that a rational map is semi-hyperbolic, i.e.,
that no critical point c in the Julia belongs to its own omega limit set ω(c). This so for
example, if T is a classical unimodal map of the form I 3 x 7→ λx(1− x), with 0 < λ ≤ 4
and the critical point 1/2 is not in its own omega limit set, i.e., 1/2 6∈ ω(1/2).

Last observation: all expanding rational functions have the Exponential Shrinking Prop-
erty (ESP).

We shall prove the following.
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Proposition 23.7. Let f : Ĉ → Ĉ be a tame rational function satisfying (ESP). Let

ψ : Ĉ → R be a Hölder continuous potential with pressure gap. If V is a nice set for f ,
then

(a)

ψ̃V := ψV ◦ πV − P(ψ)NV : EN
V → R

is a Hölder continuous potential,

(b) P
(
σ, ψ̃V

)
= 0,

(c)

µψ,V = µψ̃V ◦ π
−1
V ,

where µψ̃V is the equilibrium/Gibbs state for the potential ψ̃V and the shift map

σ : EN
V → EN

V .

(d) In addition, ψ̃V is the amalgamated function of a summable Hölder continuous sys-
tem of functions.

Proof. Hölder continuity of ψ̃V follows directly from (ESP) i.e Definition 23.5, and the fact
that the function NV is constant on cylinders of length one. Now, it follows from [18] that
there exists a unique exp(P(ψ) − ψ)-conformal measure on J(f), i.e. a Borel probability
measure mψ on J(f) such that

mψ

(
f(A)

)
= eP(ψ)

∫
A

e−ψ dmψ

for every Borel set A ⊆ J(f) such that the map f |A is 1-to-1. In addition mψ is equivalent
to µψ with logarithmically bounded Hölder continuous Radon-Nikodym derivative. It im-
mediately follows from this formula that for every e ∈ EV and every Borel set A ⊆ V , we
have that

(23.5) mψ,V

(
ϕe(A)

)
=

∫
A

exp
(
(ψV − P(ψ)τV ) ◦ ϕe

)
dmψ,V ,

where mψ,V is the conditional measure of mψ on V . Now we define a Hölder continuous
system of functions G := {g(e) : V → R}e∈E by putting

g(e) := (ψV − P(ψ)τV ) ◦ ϕe, e ∈ EV .

Formula (23.5) thus means that the system G is summable, P(G) = 0, and mψ,V is the
unique G-conformal measure for the IFS SV . According to [31], g : EN

V → R, the amalga-
mated function of G is defined by the formula

g(ω) = g(ω1)(πV (σ(ω))) = ψV ◦ ϕω1(πV (σ(ω)))− P(ψ)τV ◦ ϕω1(πV (σ(ω)))

= ψV ◦ πV (ω)− P(ψ)NV (ω)

= ψ̃V (ω).
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By Proposition 3.1.4 in [31] we thus have that

P
(
σ, ψ̃V

)
= P(G) = 0.

Now, since πV ◦ σ = fV ◦ πV , i.e. since the dynamical system fV : JV → JV is a factor of
the shift map σ : EN

V → EN
V via the map πV : EN

V → JV , we see that µψ̃V ◦ π
−1
V is a Borel

fV -invariant probability measure on JV equivalent to mψ̃V
◦π−1

V = mg ◦π−1 = mG = mψ,V .

Since mψ,V is equivalent to µψ,V , we thus conclude that the measures mψ̃V
◦ π−1

V and µψ,V
are equivalent. Since both these measures are fV -invariant and µψ,V is ergodic, they must
be equal. The proof is thus complete. �

Since πV : EN
V → JV = V∞, where, we recall the latter is the set of points returning

infinitely often to V , is a measurable isomorphism sending the σ-invariant measure µψ̃V to

the fV -invariant probability measure µψ,V , by identifying the sets EN
V and V∞(= JV ), we

can prove the following.

Lemma 23.8. With the hypotheses of Proposition 23.7, the pentacle (J(f), f, V, ψ̃V , µψ̃V ) is
an SRT system and has exponential tail decay (ETD), where we recall that V∞ is identified

with EN
V , ψ̃V is identified with ψV − P(ψ)τV , and µψ̃V is identified with µψ,V .

Proof. By virtue of Proposition 23.7 and Observation 21.2 we only need to prove that the
pentacle (J(f), f, V, ψ̃V , µψ̃V ) has exponential tail decay (ETD). We can assume without

loss of generality that ψ : Ĉ→ R is normalized so that

P(ψ) = 0 and mψ = µψ.

Now define

C0
V (n) :=

{
U ∈ CV (n) : ∀(0≤k≤n) f

k(U) ∩ V = ∅
}

Since the map f : J(f) → J(f) is topologically exact, there exists an integer q ≥ 1 such
that

f q(V ) ⊇ J(f).

Therefore for every e ∈ CV (n) there exists (at least one) ê ∈ C∗V (n+ q) such that

f q ◦ ϕê = ϕe.

By conformality of the measure µψ, for every e ∈ CV (n), we have

µψ
(
ϕê(V )

)
≥ exp(−q||ψ||∞)µψ(ϕe(V )).

So, since ⋃
a∈C0V (n+q)

ϕa(V ) ⊆
⋃

b∈CV (n+q)

fq◦ϕb∈C
0
V

(n)

ϕb(V ) \
⋃

e∈C0V (n)

ϕê(V ),
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we therefore get

µψ

 ⋃
a∈C0V (n+q)

ϕa(V )

 ≤ µψ

 ⋃
b∈CV (n+q)

fq◦ϕb∈C
0
V

(n)

ϕb(V ) \
⋃

e∈C0V (n)

ϕê(V )



= µψ

 ⋃
b∈CV (n+q)

fq◦ϕb∈C
0
V

(n)

ϕb(V )

− µ
 ⋃
e∈C0V (n)

ϕê(V )



= µψ

f−q
 ⋃
c∈C0V (n)

ϕc(V )

− ∑
e∈C0V (n)

µψ
(
ϕê(V )

)

= µψ

 ⋃
c∈C0V (n)

ϕc(V )

− ∑
e∈C0V (n)

µψ
(
ϕê(V )

)

≤ µψ

 ⋃
c∈C0V (n)

ϕc(V )

− exp(−q||ψ||∞)
∑

e∈C0V (n)

µψ
(
ϕe(V )

)

= γµψ

 ⋃
c∈C0V (n)

ϕc(V )

 ,

where γ := 1− exp(−q||ψ||∞) ∈ [0, 1). An immediate induction then yields

µψ

 ⋃
e∈C0V (qn)

ϕe(V )

 ≤ γn

for all n ≥ 0. An immediate induction then yields

µψ

 ⋃
e∈C0V (n)

ϕe(V )

 ≤ γ−1γn/q

for all n ≥ 0. But, as

E−1
V ([n,+∞]) = E−1

V ({+∞}) ∪
∞⋃
k=n

⋃
e∈C0V (k)

ϕe(V )

and since µψ
(
E−1
V ({+∞})

)
= 0 by ergodicity of µψ and of µψ(V ) > 0, we therefore get

that

(23.6) µψ
(
E−1
V ([n,+∞])

)
≤
(
γ(1− γ1/q)

)−1
γn/q
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for all n ≥ 0. This just means that the pentacle (I, f, V, ψ̃V , µψ̃V ) has exponential tail decay
(ETD), and the proof is complete. �

Denote by JR(f) the set of all recurrent points of f in J(f). Formally

JR(f) := {z ∈ J(f) : lim
n→∞

|fn(z)− z| = 0}.

Of course JR(f) ⊆ Jf and µψ(J(f)\JR(f)) = 0 because of Poincaré’s Recurrence Theorem.
The set JR(f) is significant for us since

JR(f) ∩ V ⊆ JV .

Now we can now apply the conclusions of the work done. As a direct consequence of
Theorem 15.10, Proposition 23.7, Lemma 23.8, Lemma 21.8, and Theorem 20.3, we get the
following.

Theorem 23.9. Let f : Ĉ→ Ĉ be a tame rational function having the exponential shrinking

property (ESP). Let ψ : Ĉ → R be a Hölder continuous potential with pressure gap. Let

z ∈ JR(f) \ PC(f). Assume that the equilibrium state µψ is (WBT) at z. Then

lim
ε→0

Rµψ
(B(z, ε))

µψ(B(z, ε))
= lim

ε→0

Rµψ(B(z, ε))

µψ(B(z, ε))

=

{
1 if z is not any periodic point of f,

1− exp
(
Spψ(z)− pP(f, ψ)

)
if z is a periodic point of f.

Remark 23.10. Theorem 23.9holds in fact for a larger set than JR(f). Indeed, it holds
for every point in V ∩ JSV , where V is an arbitrary nice set.

As a fairly immediate consequence of Theorem 23.9 and Theorem 14.7, we get the following.

Corollary 23.11. Let f : Ĉ → Ĉ be a tame rational function having the exponential

shrinking property (ESP) whose Julia set J(f) is geometrically irreducible. If ψ : Ĉ → R
is a Hölder continuous potential with pressure gap, then

lim
ε→0

Rµψ
(B(z, ε))

µψ(B(z, ε))
= lim

ε→0

Rµψ(B(z, ε))

µψ(B(z, ε))
= 1

for µψ–a.e. z ∈ J(f).

Indeed in order to prove this corollary it suffices to note that if the Julia set J(f) is geomet-
rically irreducible, then neither is the limit set of the iterated function system constructed
in the arguments leading to Theorem 23.9.

Remark 23.12. We would like to note that if the rational function f : Ĉ→ Ĉ is expanding,
then it is tame, satisfies (ESP), and each Hölder continuous potential has pressure gap. In
particular the two above theorems hold for it.

Now turn to the asymptotics of Hausdorff dimension. We recall the following.
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Definition 23.13. Let f : Ĉ→ Ĉ be a rational function of degree d ≥ 2. We say that the
map f is sub-expanding if one of the following two equivalent conditions holds:

(a)

∞⋃
n=0

fn
(
Crit(f) \ J(f)

)
∩ J(f) = ∅ and Crit(f) ∩

∞⋃
n=1

fn
(
Crit(f) ∩ J(f)

)
= ∅,

(b)

Crit(f) ∩
∞⋃
n=1

fn
(
Crit(f) ∩ J(f)

)
= ∅ and f has no rationally indifferent periodic points.

Let

h := HD(J(f)).

It was proved in [52] and [53] that there exists a unique h–conformal measure mh on J(f)
for f and a unique f -invariant (ergodic) measure µh on J(f) equivalent to mh. In addition
µh is supported on the intersection of the transitive and radial points of f . It has been
proved in [53] that any subexpanding rational function enjoys ESP. It therefore follows
from [39] that there are arbitrarily small open connected sets Vc, c ∈ J(f) ∩ Crit(f), and
Vξ, respectively containing points c and ξ such that the collection of all holomorphic inverse
branches f−n∗ of fn, n ≥ 0, defined on Vz, z ∈ (J(f) ∩ Crit(f)) ∪ {ξ}, and such that for
some z′ ∈ (J(f) ∩ Crit(f)) ∪ {ξ},

f−n∗ (Vz) ⊆ Vz′

and
n−1⋃
k=1

fk
(
f−n∗ (Vz)

)
∩
⋃{

Vw : w ∈ (J(f) ∩ Crit(f)) ∪ {ξ}
}

= ∅.

forms a finitely primitive conformal GDS, call it Sf . Another characterization of Sf is that
its elements are composed of analytic inverse branches of the first return map of f from

V :=
⋃{

Vw : w ∈ (J(f) ∩ Crit(f)) ∪ {ξ}
}

V . It has been proved in [46] and [46] that the system Sf is strongly regular. It follows from
Lemma 6.2 in [39] that HD(K(V )) < h. So, as by Theorem 17.1, limr→0 HD

(
K(B(ξ, r))

)
=

h, we conclude that

HD(K(V )) < HD
(
K(B(ξ, r))

)
for all r > 0 small enough. Therefore, since h = bSf and since µh,V = µbSf , applying

Theorem 17.1, Corollary 17.3, and Corollary 19.2, we get the following two theorems.

Theorem 23.14. Let f : Ĉ→ Ĉ be a subexpanding rational function of degree d ≥ 2. Fix
ξ ∈ J(f) \ PC(f). Assume that the measure µh is (WBT) at ξ and the parameter h is
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powering at ξ with respect to the conformal GDS Sf . Then the following limit exists, is
finite and positive:

lim
r→0

HD(J(f))− HD(Kξ(r))

µh(B(ξ, r))
.

Theorem 23.15. If f : Ĉ→ Ĉ be a subexpanding rational function of degree d ≥ 2 whose
Julia set J(f) is geometrically irreducible, then for µh–a.e. point ξ ∈ J(f) \ PC(f) the
following limit exists, is finite and positive:

lim
r→0

HD(J(f))− HD(Kξ(r))

µh(B(ξ, r))
.

Remark 23.16. We would like to note that if the rational function f : Ĉ→ Ĉ is expanding,
then it is automatically subexpanding and the two above theorems apply.

24. Escape Rates for Meromorphic Functions on the Complex Plane

We deal in this final section with transcendental meromorphic functions. We also apply
here the results on escape rates for conformal GDMS and the techniques of first return maps.

Let f : C→ Ĉ be a meromorphic function. Let Sing(f−1) be the set of all singular points

of f−1, i. e. the set of all points w ∈ Ĉ such that if W is any open connected neighborhood
of w, then there exists a connected component U of f−1(W ) such that the map f : U → W
is not bijective. Of course if f is a rational function, then Sing(f−1) = f(Crit(f)). As in
the case of rational functions, we define

PS(f) :=
∞⋃
n=0

fn(Sing(f−1)).

The function f is called topologically hyperbolic if

distEuclid(Jf ,PS(f)) > 0,

and it is called expanding if there exist c > 0 and λ > 1 such that

|(fn)′(z)| ≥ cλn

for all integers n ≥ 1 and all points z ∈ Jf \ f−n(∞). Note that every topologically hyper-
bolic meromorphic function is tame. A meromorphic function that is both topologically

hyperbolic and expanding is called hyperbolic. The meromorphic function f : C → Ĉ is
called dynamically semi-regular if it is of finite order, commonly denoted by ρf , and satisfies
the following rapid growth condition for its derivative.

(24.1) |f ′(z)| ≥ κ−1(1 + |z|)α1(1 + |f(z)|)α2 , z ∈ Jf ,

with some constant κ > 0 and α1, α2 such that α2 > max{−α1, 0}. Set α := α1 + α2.
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Remark 24.1. A particularly simple example of such maps are meromorphic functions
fλ(z) = λez where λ ∈ (0, 1/e) since these maps have an attracting periodic point. A good
reference is [33].

Let h : Jf → R be a weakly Hölder continuous function in the sense of [34]. The
definition, introduced in [34] is somewhat technical and we will not provided it in the
current paper. What is important is that each bounded, uniformly locally Hölder function
h : Jf → R is weakly Hölder. Fix τ > α2 as required in [34]. For t ∈ R, let

(24.2) ψt,h = −t log |f ′|τ + h

where |f ′(z)|τ is the norm, or, equivalently, the scaling factor, of the derivative of f evalu-
ated at a point z ∈ Jf with respect to the Riemannian metric

|dτ(z)| = (1 + |z|)−τ |dz|.
Following [34] functions of the form (24.2)(frequently referred to as potentials) are called
loosely tame. Let Lt,h : Cb(Jf ) → Cb(Jf ) be the corresponding Perron-Frobenius operator
given by the formula

Lt,hg(z) :=
∑

w∈f−1(z)

g(w)eψt,h(w).

It was shown in [34] that, for every z ∈ Jf and for the function 11 : z 7→ 1, the limit

lim
n→∞

1

n
logLt,h11(z)

exists and takes on the same common value, which we denote by P(t) and call the topological
pressure of the potential ψt. The following theorem was proved in [34].

Theorem 24.2. If f : C→ Ĉ is a dynamically semi-regular meromorphic function and h :
Jf → R is a weakly Hölder continuous potential, then for every t > ρf/α there exist uniquely
determined Borel probability measures mt,h and µt,h on Jf with the following properties.

(a) L∗t,hmt,h = mt,h.

(b) P
(
ψt,h
)

= sup
{

hµ(f) +
∫
ψt,h dµ : µ ◦ f−1 = µ and

∫
ψt,h dµ > −∞

}
.

(c) µt,h ◦ f−1 = µt,h,
∫
ψt,h dµt,h > −∞, and hµt,h(f) +

∫
ψt,h dµt,h = P

(
ψt,h
)
.

(d) The measures µt,h and mt,h are equivalent and the Radon–Nikodym derivative
dµt,h
dmt,h

has a nowhere-vanishing Hölder continuous version which is bounded above.

The exact analogue of Theorem 23.4 holds, with the same references, for all hyperbolic
meromorphic functions; we will refer to this theorem as Theorem 23.4(M). Also, for the
system SV and the projection πV : EN

V → JV have the same meaning. As in the case of
rational functions denote by JR(f) the set of all recurrent points of f in J(f). Formally

JR(f) := {z ∈ J(f) : lim
n→∞

|fn(z)− z| = 0}.
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Of course JR(f) ⊆ Jf and µψ(J(f)\JR(f)) = 0 because of Poincaré’s Recurrence Theorem.
The set JR(f) is significant for us since

JR(f) ∩ V ⊆ JV .

The Exponential Shrinking Property (ESP) holds since now the function f : C → Ĉ is
expanding. The proof of Proposition 23.7 goes through unchanged except that instead of
using [18] we now invoke Theorem 24.2 (a). We also will refer this proposition (23.7) as
Proposition 23.7 (M). Lemma 23.8 also carries on to the meromorphic case (we refer to
it as Lemma 23.8 (M); the proof of items (a)–(e) Definition 21.1 required by this lemma
to hold, follows as in the case of rational functions, from proposition 23.7 (M), while the
proof of item (f) of this definition is now a direct consequence of Lemma 4.1 in [45]. Now,
in exactly the same way as in the case of rational functions, as a direct consequence of
Theorem 15.10, Theorem 15.11, Proposition 23.7 (M), Lemma 23.8 (M), Lemma 21.8, and
Theorem 20.3, we get the following two theorems.

Theorem 24.3. Let f : C→ Ĉ be a dynamically semi-regular meromorphic function. Let
t > ρf/α and let h : J(f) → R be a weakly Hölder continuous function. Let z ∈ JR(f).
Assume that the corresponding equilibrium state µt,h is (WBT) at z. Then

lim
ε→0

Rµt,h
(B(z, ε))

µt,h(B(z, ε))
= lim

ε→0

Rµt,h(B(z, ε))

µt,h(B(z, ε))
=

=

{
1 if z is not any periodic point of f,

1− exp
(
Spψt,h(z)− pP(ψt,h)

)
if z is a periodic point of f.

Theorem 24.4. Let f : C→ Ĉ be a dynamically semi-regular meromorphic function whose
Julia set is geometrically irreducible. Let t > ρf/a and let h : J(f)→ R be a weakly Hölder
continuous function. Then

lim
ε→0

Rµt,h
(B(z, ε))

µt,h(B(z, ε))
= lim

ε→0

Rµt,h(B(z, ε))

µt,h(B(z, ε))
= 1

for µt,h–a.e. z ∈ J(f).

Remark 24.5. Theorem 24.3 holds in fact for a larger set than JR(f). Indeed, it holds for
every point in V ∩ JSV , where V is an arbitrary nice set.

Turning to the asymptotics of Hausdorff dimension, let Jr(f) be the set of radial (or
conical) points in J(f), i. e. the set of all those points in J(f) that do not escape to

infinity under the action of the map f : C→ Ĉ. Assume now more, namely that f : C→ Ĉ
is dynamically regular in the sense of [33] and [34]. What at the moment is important for
us is that P(hr) = 0, where

hr := HD(Jr(f)).

We already know that there exists a nice set V containing ξ and the elements of the
corresponding conformal IFS Sf are composed of analytic inverse branches of the the first
return map from V to V . Since ξ ∈ JR(f), we have that ξ ∈ JV . Corollary 6.4 in [44]
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tells us that HD(K(V )) < hr. So, since by Theorem 17.1, limr→0 HD(K(B(ξ, r))) = hr, we
conclude that

HD(K(V )) < HD(K(B(ξ, r)))

for all r > 0 small enough. Therefore, since hr = bSV and since µh,V = µbSV , applying
Theorem 17.1, Corollary 17.3, and Corollary 19.2, we get the following two theorems.

Theorem 24.6. Let f : C → Ĉ be a dynamically regular meromorphic function. Fix
ξ ∈ JR(f). Assume that the measure µhr (i.e. µhr,0 with the weakly Hölder function h
identically equal to 0) is (WBT) at ξ and the parameter hr is powering at ξ with respect to
the conformal IFS Sf . Then the following limit exists and is finite and positive:

lim
r→0

HD(Jr(f))− HD(Kz(r))

µhr(B(z, r))
.

Theorem 24.7. Let f : C→ Ĉ be a dynamically regular meromorphic function whose Julia
set is geometrically irreducible. Then the following limit exists and is finite and positive for
µhr–a.e. z ∈ J(f):

lim
r→0

HD(Jr(f))− HD(Kz(r))

µhr(B(z, r))
.

Note that the conclusion of Remark 24.5 holds in the case of Theorem 24.6 too.

Appendix: The Keller–Liverani Perturbation Theorem

In this appendix we formulate the Keller–Liverani Perturbation Theorem from [25] in its
full generality and, formally speaking, in a slightly more general form than in [25]. We also
formulate all its consequences derived in [25] that we need in our manuscript, particularly
in Section 5 to prove Proposition 5.2 which is crucial for us. We follow pretty closely the
notation, formulations, and enumeration of [25] for the reader to easily compare our text
with the original article [25]. We first describe the setting.

Let (B, ‖ · ‖) be a Banach space. The vector space B is also equipped with a second
norm | · | ≤ ‖ · ‖ with respect to which B need not be complete. For any bounded linear
operator Q : B → B, B understood here with the norm ‖ · ‖, let

(KL1) |||Q||| := sup
{
|Qf | : f ∈ B, ‖f‖ ≤ 1

}
.

Let Λ be a directed set having a largest element which we denote by 0. In [25] Λ = [0,+∞)
with the reverse order. For our applications in Section 5 Λ = N∪{+∞}, although actually
it suffices to consider {n, n+ 1, . . .}∪ {+∞} where n ≥ 0 is large enough, with the natural
order. Assume that a family (Pε)ε∈Λ of bounded linear opertors on (B, ‖ · ‖) is given which
enjoys the following properties.

(KL2) There are constants C1,M > 0 such that for all ε ∈ Λ

|P n
ε | ≤ C1M

n

for all n ≥ 0,
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(KL3) There are constants C2, C3 > 0 and α ∈ (0,min{1,M}) such that for all ε > 0,

‖P n
ε f‖ ≤ C2α

n‖f‖+ C3M
n|f |

for all n ≥ 0 and all f ∈ B,

(KL4) If z ∈ σ(Pε) ∩B
c
(0, α), then z is not in the residual spectrum of Pε,

(KL5) There exists a net τ : Λ→ [0,+∞) such that τ(0) = 0, τ(Λ \ {0}) ⊆ (0,+∞)

lim
ε∈Λ

τ(ε) = 0

and
|||Pε − P0|| ≤ τ(ε)

for all ε ∈ Λ.

These are all hypotheses for the Keller–Liverani Perturbation Theorem. In order to formu-
late this theorem we need one more piece of notation.

For all δ > 0 and all r > α let

Vδ,r :=
{
z ∈ C : |z| ≤ r or dist(z, σ(P0) ≤ δ

}
.

The actual Keller–Liverani Perturbation Theorem from [25] is about upper bounds on the
norms of resolvents (z − Pε)−1 and continuity at 0 of the latter.

Theorem 24.8 (Keller–Liverani Perturbation Theorem). Suppose that (Pε)ε∈Λ is a family
of bounded linear operators on (B, ‖ · ‖) satisfying conditions (KL2)–(KL5). Fix δ > 0 and
r ∈ (α,M) and let

η :=
log(r/α)

log(M/α)
> 0.

Then there are constants ε0 = ε0(δ, r) > 0, a = a(r) > 0, b = b(δ, r) > 0, c = c(δ, r) > 0,
and d = d(δ, r) > 0 such that for every ε ≥ ε0 and all z ∈ C \ Vδ,r, we have that

(KL8) ‖(z − Pε)−1f‖ ≤ a‖f‖+ b|f |
and

(KL9) |||(z − Pε)−1 − (z − P0)−1||| ≤ τ η(ε)
(
c‖(z − P0)−1‖+ d‖(z − P0)−1‖2

)
.

Remark 24.9. This remark is essential for us and corresponds to Remark 3 (and partly
Remark 1) in [25]. As Keller and Liverani write in Remark 1 “In nearly all cases the two
norms involved have the additional property that

(KL7) the closed unit ball of (B, ‖ · ‖) is | · |–compact.”

and this yields condition (KL4) to hold. However in the case of the present paper, with
B = Bθ, ‖ · ‖ = ‖ · ‖θ and | · | = ‖ · ‖∗, (KL7) does fail. The remedy comes from Remark 3
in [25] which we explain now.

Assume there exists a sequence of linear operators πk : B → B, k ≥ 1, such that

(24.3) sup
k
{‖πk‖} < +∞,
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(24.4) sup
{
|f − πkf | : f ∈ B, ‖f‖ ≤ 1

}
� (α/M)k

and

(24.5) Pεπk is a compact operator for all k ≥ 1.

Then all the operators Pε : B → B are quasicompact with essential spectral radius ≤ α
and in particular (KL4) holds.

We now list the selected corollaries from Theorem 24.8 derived in [25], the ones needed
to have the full proof of Proposition 5.2. The first one is a slightly simplified version of
Remark 4 from [25].

Corollary 24.10. If λ is a simple eigenvalue of P0 with |λ| > α (so isolated), then for
every ε ∈ Λ sufficiently close to 0, there exists a unique simple eigenvalue λε of Pε such
that

(24.6) lim
ε→0

λε = λ.

Let λ be as in this corollary. Take η > 0 so small that

(24.7) B(λ, η) ∩ σ(P0) = {λ}.
Define for every ε ∈ Λ sufficiently close to 0:

(24.8) Qε :=
1

2πi

∫
∂B(λ,η)

(z − Pε)−1 dz.

Note that Qε does not depend on η as long as (24.7) is satisfied.
As an immediate consequence of the definition of Qε and of item 1) of Corollary 1 from

[25], we get the following.

Corollary 24.11. If λ is a simple eigenvalue of P0 with |λ| > α (so isolated), then

(1) For every ε ∈ Λ sufficiently close to 0 the operator Qε : B → B is a projector
(meaning that Q2

ε = Qε) onto the one–dimensional eigenspace of the eigenvalue λε
of Pε.

(2)

lim
ε→0
|||Qε −Q0||| = 0.

Now, given r > α define:

(24.9) ∆ε :=
1

2πi

∫
∂B(0,r)

(z − Pε)−1 dz.

Before we deal with the next corollary we record the following, technical but crucial, con-
sequence of formula (KL8) of Theorem 24.8.

(KL10) Sδ,r := sup
{
‖(z − Pε)−1‖ : 0 ≤ ε ≤ ε0(δ, r), z ∈ C \ Vδ,r

}
< +∞

for all δ > 0 and all r ∈ (α,M). We shall prove the following.
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Corollary 24.12. Let λ be a simple eigenvalue of P0 with |λ| > α (so isolated). If γ ∈
(α,min{M, |λ|}) and

(24.10) σ(P0) \ {λ} ⊆ B(0, γ)

then for every ε ∈ Λ close enough to 0, we have that

(1)
Pε = λεQe + ∆e,

(2)
Qε∆ε = ∆εQε = 0,

(3) There exists a constant C ∈ (0,+∞) such that

‖Qε‖ ≤ C,

and for every k ≥ 0:
(4)

‖∆k
ε‖ ≤ Cγk

Proof. Items (1) and (2) are immediate consequences of (24.8) and (24.9) and elementary
basic properties of Riesz Functional Calculus.

For the convenience of the reader we shall now provide the standard proof of item (4).
Since γ ∈ (α,min{M, |λ|}), it follows from (24.10) there exists γ̂ ∈ (α,min{M, |λ|, γ})
such that σ(P0) \ {λ} ⊆ B(0, γ̂). Therefore there exists δ > 0 so small that ∂B(0, γ̂) ∩
B(σ(P0), 2δ) = ∅. Hence, formula (KL10) applies to give

(24.11) Sδ,γ̂ < +∞.
It follows from (24.9) and the already mentioned basic properties of Riesz Functional Cal-
culus that

∆k
ε :=

1

2πi

∫
∂B(0,γ̂)

zk(z − Pε)−1 dz

for every integer k ≥ 0. Therefore, invoking (24.11), we estimate as follows:

‖∆k
ε‖ ≤

1

2π

∫
∂B(0,γ̂)

|z|k‖(z − Pε)−1‖ |dz| = γk

2π

∫
∂B(0,γ̂)

‖(z − Pε)−1‖ |dz| ≤ γ̂Sδ,γ̂γ
k,

and formula (4) is proved.
Now, we shall prove item (3). It follows from (24.10) that B(λ, |λ| − γ) ∩ σ(P0) = {λ}.

Hence, invoking also (24.8) and (KL10), we get

‖Qε‖ ≤
1

2π

∫
∂B(λ,(|λ|−γ)/2)

‖(z − Pε)−1‖ |dz| ≤ (1− γ)S(|λ|−γ)/2,γ < +∞.

The proof of item (3) and, simultaneously, of entire Corollary 24.12 is complete. �
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