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Abstract. We present a new method of proving the Diophantine extremality of various
dynamically defined measures, vastly expanding the class of measures known to be ex-
tremal. This generalizes and improves the celebrated theorem of Kleinbock and Margulis
(’98) resolving Sprindžuk’s conjecture, as well as its extension by Kleinbock, Lindenstrauss,
and Weiss (’04), hereafter abbreviated KLW. As applications we prove the extremality of
all hyperbolic measures of smooth dynamical systems with sufficiently large Hausdorff
dimension, and of the Patterson–Sullivan measures of all nonplanar geometrically finite
groups. The key technical idea, which has led to a plethora of new applications, is a
significant weakening of KLW’s sufficient conditions for extremality.

In Part I, we introduce and develop a sytematic account of two classes of measures,
which we call quasi-decaying and weakly quasi-decaying. We prove that weak quasi-decay
implies strong extremality in the matrix approximation framework, as well as proving the
“inherited exponent of irrationality” version of this theorem.

In Part II, we establish sufficient conditions on various classes of conformal dynami-
cal systems for their measures to be quasi-decaying. In particular, we prove the above-
mentioned result about Patterson–Sullivan measures, and we show that Gibbs measures
(including conformal measures) of nonplanar infinite iterated function systems (includ-
ing those which do not satisfy the open set condition) and rational functions are quasi-
decaying.

In subsequent parts, we will continue to exhibit numerous examples of quasi-decaying
measures, in support of the thesis that “almost any measure from dynamics and/or fractal
geometry is quasi-decaying”.
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1. Introduction

In this series of papers we address a central problem in the flourishing area of metric
Diophantine approximation on manifolds and measures: an attempt to exhibit a possibly
widest natural class of sets and measures for which most points are not very well approx-
imable by ones with rational coordinates.

Fix d ∈ N. The quality of rational approximations to a vector x ∈ Rd can be measured
by its exponent of irrationality, which is defined by the formula

ω(x) = lim sup
p/q∈Qd

− log ‖x− p/q‖
log(q)

,

where the limsup is taken over any enumeration of Qd, and ‖·‖ is any norm on Rd. Another
interesting quantity is the exponent of multiplicative irrationality, which is the number

ω×(x) = lim sup
p/q∈Qd

− log
∏d

i=1 |xi − pi/q|
log(q)

·

It follows from a pigeonhole argument that ω(x) ≥ 1 + 1/d and ω×(x) ≥ d + 1. A vector
x is said to be very well approximable if ω(x) > 1 + 1/d, and very well multiplicatively
approximable if ω×(x) > d + 1. We will denote the set of very well (multiplicatively)
approximable vectors by VW(M)Ad. It is well-known that VWAd and VWMAd are both
Lebesgue nullsets of full Hausdorff dimension, and that VWAd ⊆ VWMAd.

A measure µ on Rd is extremal if µ(VWAd) = 0, and strongly extremal if µ(VWMAd) = 0.
Extremality was first defined by V. G. Sprindžuk, who conjectured that the Lebesgue mea-
sure of any nondegenerate manifold is extremal. This conjecture was proven by D. Y. Klein-
bock and G. A. Margulis [16], and later strengthened by D. Y. Kleinbock, E. Lindenstrauss,
and B. Weiss (hereafter abbreviated “KLW”) in [15], who considered a class of measures
which they called “friendly” and showed that these measures are strongly extremal. How-
ever, their definition is somewhat rigid and many interesting measures, in particular ones
coming from dynamics, do not satisfy their condition. In this paper, we study a much
larger class of measures, which we call weakly quasi-decaying, such that every weakly quasi-
decaying measure is strongly extremal [Part I, Corollary 1.8]. This class includes a subclass
of quasi-decaying measures, which are the analogue of KLW’s “absolutely friendly” mea-
sures.1

1The terminology “absolutely friendly” was not used by KLW and first appeared in [24]; however, several
theorems about absolute friendliness had already appeared in [15] without using the terminology.
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In the previous paper (Part I), we analyzed the basic properties of the quasi-decay and
weak quasi-decay conditions, as well as proving that every weakly quasi-decaying measure is
strongly extremal. In fact, we proved a more refined version of that theorem which we will
not state here. We proved that every exact dimensional measure on Rd whose dimension
δ satisfies δ > d − 1 is quasi-decaying. This elementary result already provides many
dynamical examples of quasi-decaying measures; for example, a theorem of F. Hofbauer
[13] states that any measure invariant under a piecewise smooth endomorphism of [0, 1]
which has positive entropy is exact dimensional of positive dimension; since d = 1 in this
setup, this implies that such measures are quasi-decaying. (See §1.4 for more details.)

In this paper we continue with this theme, examining several classes of conformal dy-
namical systems to see under what circumstances the inequality δ > d− 1 can be relaxed
to a “nonplanarity” assumption. The examples we will consider are intended to support
the thesis that “any sufficiently non-pathological measure coming from dynamics or fractal
geometry is quasi-decaying”. As a contrast, we will also provide examples of non-extremal
measures coming from dynamics, to gain a better insight as to which measures should be
considered “pathological”.

In subsequent papers, we will continue to find examples of quasi-decaying measures,
including random measures and measures invariant under diffeomorphisms.

Convention 1. The symbols ., &, and � will denote coarse asymptotics; a subscript
of + indicates that the asymptotic is additive, and a subscript of × indicates that it is
multiplicative. For example, A .×,K B means that there exists a constant C > 0 (the
implied constant), depending only on K, such that A ≤ CB. A .+,× B means that there
exist constants C1, C2 > 0 so that A ≤ C1B + C2. In general, dependence of the implied
constant(s) on universal objects will be omitted from the notation.

If µ and ν are measures, then ν .× µ means that there exists a constant C > 0 such
that ν ≤ Cµ.

Convention 2. In this paper, all measures and sets are assumed to be Borel, and measures
are assumed to be locally finite.

Convention 3. For S ⊆ Rd and ρ ≥ 0, N (S, ρ) = {x ∈ Rd : d(x, S) ≤ ρ} is the closed
ρ-thickening of S, and N ◦(S, ρ) = {x ∈ Rd : d(x, S) < ρ} is the open ρ-thickening of S.

Convention 4. A∧B and A∨B denote the minimum and maximum of A and B, respec-
tively.

Convention 5. We use the Iverson bracket notation [statement] =

{
1 statement true

0 statement false
.

Convention 6. The image of a measure µ under a map f is denoted f∗[µ] := µ ◦ f−1.
Convention 7. H denotes the collection of affine hyperplanes in Rd.

Convention 8. The symbol C will be used to indicate the end of a nested proof.
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1.1. Four conditions which imply strong extremality. In [Part I, §1.1], we introduced
the notions of quasi-decaying measures and weakly quasi-decaying measures, and compared
them with KLW’s notions of friendly and absolutely friendly measures. While we recall
the definitions of the four classes of measures here, we refer to Part I for a more detailed
discussion.

Definition 1.1. Let µ be a measure on an open set U ⊆ Rd, and let Supp(µ) denote the
topological support of µ.

• µ is called absolutely decaying (resp. decaying) if there exist C1, α > 0 such that for
all x ∈ Supp(µ), 0 < ρ ≤ 1, β > 0, and L ∈H , if B = B(x, ρ) ⊆ U then

µ
(
N ◦(L, βρ) ∩B

)
≤ C1β

αµ(B) (absolutely decaying)(1.1)

or

µ
(
N ◦(L, β‖dL‖µ,B) ∩B

)
≤ C1β

αµ(B) (decaying),(1.2)

respectively, where

‖dL‖µ,B := sup{d(y,L) : y ∈ B ∩ Supp(µ)}.
• µ is called nonplanar if µ(L) = 0 for all L ∈H . Note that every absolutely decaying

measure is nonplanar. Moreover, the decaying and nonplanarity conditions can be
combined notationally by using closed thickenings rather than open ones: a measure
µ is decaying and nonplanar if and only if there exist C1, α > 0 such that for all
x ∈ Supp(µ), 0 < ρ ≤ 1, β > 0, and L ∈H , if B = B(x, ρ) ⊆ U then

µ
(
N (L, β‖dL‖µ,B) ∩B

)
≤ C1β

αµ(B). (decaying and nonplanar)(1.3)

• µ is called Federer (or doubling) if for some (equiv. for all) K > 1, there exists
C2 > 0 such that for all x ∈ Supp(µ) and 0 < ρ ≤ 1, if B(x, Kρ) ⊆ U then

(1.4) µ
(
B(x, Kρ)

)
≤ C2µ

(
B(x, ρ)

)
.

If µ is Federer, decaying, and nonplanar, then µ is called friendly ; if µ is both absolutely
decaying and Federer, then µ is called absolutely friendly.2 When the open set U is not
explicitly mentioned, we assume that it is all of Rd; otherwise we say that µ is absolutely
decaying, friendly, etc. “relative to U”.

Definition 1.2. Let µ be a measure on Rd and consider x ∈ E ⊆ Rd. We will say that µ is
quasi-decaying (resp. weakly quasi-decaying) at x relative to E if for all γ > 0, there exist
C1, α > 0 such that for all 0 < ρ ≤ 1, 0 < β ≤ ργ, and L ∈H , if B = B(x, ρ) then

µ (N (L, βρ) ∩B ∩ E) ≤ C1β
αµ(B) (quasi-decaying)(1.5)

or

µ (N (L, β‖dL‖µ,B) ∩B ∩ E) ≤ C1β
αµ(B) (weakly quasi-decaying),(1.6)

2As KLW put it, the word “friendly” is “a somewhat fuzzy abbreviation of Federer, nonplanar, and
decaying”.



Absolutely friendly
Friendly but not

absolutely friendly
Not friendly

QD

• Patterson–Sullivan measures
of convex-cocompact groups

• Gibbs measures of
finite IFSes and

hyperbolic rational functions

• Patterson–Sullivan measures
of geometrically finite groups

which satisfy kmin < d− 1

• Gibbs measures
of nonplanar infinite IFSes

and rational functions

WQD\QD Impossible
• Lebesgue measures of

nondegenerate manifolds

• Conformal measures of
infinite IFSes which

have invariant spheres

E\WQD Impossible Impossible

• Measures with finite
Lyapunov exponent and

zero entropy under
the Gauss map

Not E Impossible Impossible

• Generic invariant measures of
hyperbolic toral endomorphisms

• Certain measures with
infinite Lyapunov exponent

under the Gauss map
[11, Theorem 4.5]

Figure 1. Some representative examples of dynamically defined measures
compared on two axes: quasi-decay and friendliness. In the leftmost col-
umn we use the abbreviations QD = quasi-decaying, WQD = weakly quasi-
decaying, and E = extremal.

respectively. We will say that µ is (weakly) quasi-decaying relative to E if for µ-a.e. x ∈ E,
µ is (weakly) quasi-decaying at x relative to E. Finally, we will say that µ is (weakly)
quasi-decaying if there exists a sequence (En)n such that µ

(
Rd \

⋃
nEn

)
= 0 and for each

n, µ is (weakly) quasi-decaying relative to En.

We also recall that the following implications hold:

Absolutely friendly ⇒ Friendly
⇓ ⇓

Quasi-decaying ⇒ Weakly quasi-decaying

Moreover, all four classes of measures are contained in the class of extremal measures.
Now we are able to go farther, using examples from later in this paper as well as from the
literature to show that these implications are all strict. See Figure 1 for more details.

1.2. Ahlfors regularity vs. exact dimensionality. One way of thinking about the
difference between KLW’s conditions and our conditions is by comparing this difference
with the difference between the classes of Ahlfors regular and exact dimensional measures,
both of which are well-studied in dynamics. We recall their definitions:

Definition. A measure µ on Rd is called Ahlfors δ-regular if there exists C > 0 such that
for every ball B(x, ρ) with x ∈ Supp(µ) and 0 < ρ ≤ 1.

C−1ρδ ≤ µ
(
B(x, ρ)

)
≤ Cρδ.

5
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The measure µ is called exact dimensional of dimension δ if for µ-a.e. x ∈ Rd,

(1.7) lim
ρ↘0

log µ
(
B(x, ρ)

)
log ρ

= δ.

The philosophical relations between Ahlfors regularity and exact dimensionality with
absolute friendliness and quasi-decay, respectively, are:

Ahlfors regular and “nonplanar” ⇒ Absolutely friendly

Exact dimensional and “nonplanar” ⇒ Quasi-decaying
(1.8)

Here “nonplanar” does not refer to nonplanarity as defined in Definition 1.1, but is rather
something less precise (and stronger). This less precise definition should rule out examples
like the Lebesgue measures of nondegenerate manifolds, since these are not quasi-decaying.
One example of a “sufficient condition” for this imprecise notion of “nonplanarity” is simply
the inequality δ > d−1, where δ is the dimension of the measure in question. In particular,
in this context the relations (1.8) are made precise by the following theorems:

Theorem 1.3 ([17, Proposition 6.3]; cf. [24, 36]). If δ > d−1, then every Ahlfors δ-regular
measure on Rd is absolutely friendly.

Theorem 1.4 ([Part I, Theorem 1.5]). If δ > d− 1, then every exact dimensional measure
on Rd of dimension δ is quasi-decaying.

1.3. Examples of friendly and absolutely friendly measures. The two most canoni-
cal examples of friendly measures are the Lebesgue measure of a nondegenerate submanifold
of Rd and the image of an absolutely friendly measure under a nondegenerate embedding
[15, Theorem 2.1]. Neither of these measures are absolutely friendly; other than Lebesgue
measure, the most canonical example of an absolutely friendly measure is the Hausdorff
measure of the limit set of a finite irreducible iterated function system satisfying the open
set condition. The following is a slight refinement3 of KLW’s original theorem regarding
such measures:

Theorem 1.5 ([7, Proposition 3.1], cf. [15, Theorem 2.3]). Let {u1, . . . , um} be a family
of contracting similarities of Rd satisfying the open set condition (see Definition 4.6), and
let K be the limit set of this family (see Definition 4.7). If K is not contained in an affine
hyperplane, then µ = H δ � K is absolutely friendly, where δ = dimH(K).

Here and hereafter, dimH(S) denotes the Hausdorff dimension of a set S, and H s(S)
denotes the s-dimensional Hausdorff measure of S.

Theorem 1.5 was generalized by the fourth-named author as follows:

Theorem 1.6 ([35, Corollary 1.6]4). Let {u1, . . . , um} be a finite irreducible conformal
iterated function system (CIFS) (see Definition 4.6) on Rd satisfying the open set condition,

3The refinement is to weaken the irreducibility hypothesis; in [15, Theorem 2.3] the assumption that K
is not contained in any finite union of affine hyperplanes is requred, but it turns out that this assumption
is in fact equivalent to the more natural and formally weaker assumption that K is not contained in any
affine hyperplane.

4Although the cited theorem includes the assumption d ≥ 2, the case d = 1 is true as a consequence of
Theorem 1.3 and [19, Theorem 3.14].
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and let K be the limit set of this family. Then µ = H δ � K is absolutely friendly, where
δ = dimH(K).5

Note that the hypotheses of Theorems 1.5 and 1.6 imply (without the use of the irre-
ducibility/nonplanarity hypothesis) that µ is Ahlfors δ-regular [19, Theorem 3.14], so the
proposition provides an example of the philosophical interpretation (1.8) described above.

Actually, the main theorem of [35] concerned a class of measures more general than those
of the form H δ � K: the Gibbs measures of Hölder continuous potential functions. Such
measures are not in general Federer unless a separation condition which is stronger than
the open set condition is assumed.6 This technicality caused a minor error in the statement
of [35, Theorem 1.5];7 the correct statement of that theorem should read as follows:

Theorem 1.7 ([35, Theorem 1.5]). Let {u1, . . . , um} be a finite irreducible CIFS on Rd.
Let φ : {1, . . . ,m} → R be a Hölder continuous potential function, and let µφ be a Gibbs
measure of φ8 (see Definition 4.8). If µφ is Federer (e.g. if µφ satisfies the strong separation
condition, see Definition 4.6), then µφ is absolutely friendly.

All three of these theorems concern measures related to conformal iterated function
systems. There is a close relationship between CIFSes and two other classes of conformal
dynamical systems: Kleinian groups and rational functions. The relationship between these
last two classes is sometimes known as “Sullivan’s dictionary” and in [9, p.4], three of the
authors proposed that the class of CIFSes should be added as a “third column” to Sullivan’s
dictionary. Thus, we should expect to find analogues of Theorems 1.5-1.7 in the settings
of Kleinian groups and rational functions. Indeed, the appropriate analogue in the setting
of Kleinian groups was proven by B. O. Stratmann and the fourth-named author:

Theorem 1.8 ([30]). Let G be a convex-cocompact group of Möbius transformations of Rd

which does not preserve any generalized sphere (i.e. sphere or plane). Then the Patterson–
Sullivan measure of G (see §3.3) is absolutely friendly.

If this theorem is the analogue of Theorem 1.6, then the analogue of Theorem 1.7 should
concern the Patterson densities of Hölder continuous Gibbs cocycles as defined in [22, p.3].

5Remark. Although KLW write that Theorem 1.6 provides a partial answer to a conjecture of theirs [15,
Conjecture 10.6 and “Added in proof” below], it actually provides a complete answer. Indeed, suppose that
a CIFS satisfies the irreducibility assumption of KLW but not that of [35]. Then the limit set K of this CIFS
is contained in a proper nondegenerate real-analytic submanifold M ⊆ Rd, which if d ≥ 3 is a sphere. Let
φ : U → M be a coordinate chart, where U ⊆ Rd−1. If d ≥ 3, assume that φ is stereographic projection.
Then φ−1(K) is the limit set of a CIFS which satisfies the irreducibility assumption of [35]. Thus by
Theorem 1.6, Hδ � φ−1(K) is absolutely friendly, and by [15, Theorem 2.1(b)], Hδ � K �× φ∗[Hδ � φ−1(K)]
is friendly and thus strongly extremal.

6For example, if ua(x) = (x + a)/2 and φa(x) = log(2a/3) (a = 0, 1, x ∈ [0, 1]), then µφ is the image
under binary expansion of the Bernoulli measure on {0, 1}N corresponding to digit frequencies freq(0) = 1/3,
freq(1) = 2/3; it follows that for large values of n the intervals [1/2− 1/2n, 1/2] and [1/2, 1/2 + 1/2n] have
µφ-measures which are not comparable.

7Due to this error, Theorem 1.6 cannot be deduced as a corollary of Theorem 1.7, but since the measure
in Theorem 1.6 is Federer by [19, Theorem 3.14], the proof of Theorem 1.7 actually proves Theorem 1.6 as
well.

8Or more precisely, the image of a Gibbs measure of φ under the coding map π : {1, . . . ,m}N → Rd.
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In fact, it is not hard to see that the proof of [30] generalizes to this setting; we omit the
details, as this theorem is not relevant to the overall goal of this paper.

A more difficult variation of Theorem 1.8 involves moving to a different row of Sullivan’s
dictionary (at least according to the table in [9, p.4]): the setting of geometrically finite
groups with parabolic points. The reason for this difficulty is that such measures are in
general not absolutely friendly, because if p is a parabolic point of a geometrically finite
group G with limit set Λ, and L is an affine hyperplane containing the tangent plane of Λ at
p, then small neighborhoods of L contain all the mass of small balls centered around p. This
makes the Patterson–Sullivan measures of geometrically finite groups a good candidate for
friendliness, since the quantity ‖dL‖µ,B appearing in (1.2) is often much smaller than the
radius of B. And indeed, we prove below:

Theorem 1.9 (Proven in Section 3). Let G be a geometrically finite group of Möbius
transformations of Rd (see §3.2) which does not preserve any generalized sphere. Then the
Patterson–Sullivan measure µ of G is friendly. Moreover, µ is absolutely friendly if and
only if every cusp of G has maximal rank (see §3.2).

Moving to the third column of the dictionary, rational functions, it seems that the ana-
logue of Theorems 1.5-1.8 has not been explicitly stated in the literature before, but can
be proven using the techniques of [35] together with a rigidity result of W. Bergweiler,
A. E. Eremenko, and S. J. van Strien [4, 10]:

Theorem 1.10. Let T : Ĉ → Ĉ be a hyperbolic (i.e. expansive on its Julia set) rational

function, let φ : Ĉ → R be a Hölder continuous potential function, and let µφ be the
corresponding Gibbs measure. If Supp(µφ) is not contained in any generalized sphere, then
µφ is absolutely friendly.

Proof sketch. Since T is hyperbolic, there is some metric on the Julia set J with respect
to which T is distance expanding. Thus by [25, Theorem 4.5.2], the map T : J → J has
Markov partitions of arbitrarily small diameter. The inverse branches of T restricted to
the elements of such a partition forms a graph directed system in the sense of [20], except
that the cone condition is not necessarily satisfied. Now the Gibbs measure µφ is also a
Gibbs measure of this graph directed system with respect to the potential function φ. The
proof of [35, Theorem 1.5] shows that if µφ is Federer and Supp(µφ) is not contained in any

proper real-analytic submanifold of Ĉ, then µφ is absolutely friendly. (The cone condition
is not used in the proof of [35, Theorem 1.5], and the argument is easily extended from
the realm of IFSes to that of graph directed systems.) But the fact that µφ is a Gibbs
measure for T implies that µφ is Federer (e.g. by modifying the proof of [26, Theorem A]).
And if Supp(µφ) is not contained in any generalized sphere, then by [10, Corollary 1 and
Theorem 2] (see also [4, Theorem 2]), Supp(µφ) is not contained in any proper real-analytic

submanifold of Ĉ. This completes the proof. �

It seems that this is a more or less complete list of those fractal measures which, before
the invention of the quasi-decay condition, were known to be extremal. The results are
restricted to one or possibly two rows of Sullivan’s dictionary, corresponding to extremely
rigid hypotheses (finiteness of alphabet, convex-cocompactness, hyperbolicity) on the class
of dynamical systems considered. In the authors’ view, these examples represent more or
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less the full scope of the friendliness and absolute friendliness conditions: rigid hypotheses
were required because the friendliness and absolute friendliness hypotheses are themselves
very rigid. By contrast, the quasi-decaying condition is quite flexible and exhibits a much
broader range of examples; let us now get a feel for what these examples are.

1.4. Quasi-decay: examples and counterexamples. The simplest examples of mea-
sures which are quasi-decaying but not necessarily Federer come from applying Theorem
1.4 to measures invariant under one-dimensional dynamical systems. For these measures,
exact dimensionality is known under fairly broad assumptions, and the dimension of exact
dimensional measures can be computed directly:

Theorem 1.11 ([13, Theorem 1]). Let T : [0, 1] → [0, 1] be a piecewise monotonic trans-
formation whose derivative has bounded p-variation for some p > 0. Let µ be a measure
on [0, 1] which is ergodic and invariant with respect to T . Let h(µ) and χ(µ) denote the
entropy and Lyapunov exponent of µ, respectively. If χ(µ) > 0, then µ is exact dimensional
of dimension

δ(µ) =
h(µ)

χ(µ)
·

Note that if h(µ) > 0, then Ruelle’s inequality9 implies that χ(µ) > 0, so the above result
applies and gives δµ > 0 = d − 1, so µ is quasi-decaying.10 On the other hand, in general
there is no reason to believe that measures satisfying the hypotheses of Theorem 1.11 will
be either Federer or decaying.

We should also note that Theorem 1.11 provides examples of dynamical measures which
are not quasi-decaying as well. Namely, if µ satisfies the hypotheses of Theorem 1.11 and
h(µ) = 0, then µ is exact dimensional of dimension 0,11 and so the following theorem shows
that µ is not quasi-decaying:

Theorem 1.12 (Proven in Section 2). Any exact dimensional measure of dimension 0 is
not quasi-decaying.

Actually, it is not surprising that such measures are not quasi-decaying, because the
class of such measures includes some measures which are not extremal. Specifically, if T
is the map x 7→ nx for some n ≥ 2, then the following theorem proves the existence and
genericity of T -invariant measures which are not extremal:

Theorem 1.13 (Proven in Section 2). Let T : X → X be a hyperbolic toral endomorphism
(cf. Definition 2.1), where X = Rd/Zd. Let MT (X) be the space of T -invariant probability
measures on X. Then the set of measures which give full measure to the Liouville points is
comeager in MT (X).

In the one-dimensional case (i.e. T (x) = nx mod 1 for some n ≥ 2), combining with
Theorems 1.11 and 1.4 implies that the measures in Theorem 1.13 all have entropy zero with

9A proof valid in this context can be found in [3, Theorem 7.1].
10The inequality χ(µ) < ∞ follows from the hypothesis that T ′ has bounded p-variation, which in

particular implies that T ′ is bounded.
11In fact, the implication (h(µ) = 0)⇒ (µ exact dimensional of dimension 0) holds for higher-dimensional

dynamical systems as well; see [2, comment following Proposition 2].
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respect to T . Actually, this result, namely that generic invariant measures have entropy
zero, holds more generally for all piecewise monotonic transformations of the interval [12,
Theorem 2(vi)], as well as for all Axiom A diffeomorphisms [27, 6th theorem on p.101].

There are numerous other classes of measures coming from dynamics which are known to
be exact dimensional. A notable example is the theorem of Barreira, Pesin, and Schmeling
[2] to the effect that any measure ergodic, invariant, and hyperbolic with respect to a
diffeomorphism is exact dimensional. Theorem 1.4 applies directly to those measures whose
dimension is sufficiently large, but the question still remains about those measures whose
dimension is not large enough. In Part III we will return to this question, answering it
at least for the class of expanding toral endomorphisms with distinct eigenvalues, and
possibly for a much larger class. But for now, we turn our attention to measures coming
from conformal dynamical systems.

1.5. Main results: conformal examples of quasi-decaying measures. We now come
to the main results of this paper, namely extensions of the results of §1.3 to much broader
classes of conformal dynamical systems, replacing friendliness and absolute friendliness by
the quasi-decay condition. Our first theorem and its corollary generalize Theorems 1.5-1.7.
It will be proven via a more general theorem which will allow us to more easily deduce that
certain measures are quasi-decaying in later papers in this series.

Theorem 1.14 (Proven in Section 4). Fix d ∈ N, and let (ua)a∈A be an irreducible CIFS
on Rd. Let φ be a summable locally Hölder continuous potential function, let µφ be a Gibbs
measure of φ, and let π : AN → Rd be the coding map. Suppose that the Lyapunov exponent

(1.9) χµ :=

∫
log(1/|u′ω1

(π ◦ σ(ω))|) dµφ(ω)

is finite. Then π∗[µφ] is quasi-decaying.

Letting φ(ω) = δ log(|u′ω1
(π ◦σ(ω))|), where δ = dimH(K), yields the following corollary:

Corollary 1.15. Fix d ∈ N, and let (ua)a∈A be a regular irreducible CIFS on Rd. Let µ be
the conformal measure of (ua)a∈A, and let π : AN → Rd be the coding map. If the Lyapunov
exponent of µ is finite, then π∗[µ] is quasi-decaying.

The improvements on Theorems 1.6 and 1.7 are twofold:

• The CIFS can be infinite, as long as the Lyapunov exponent is finite.
• The open set condition is no longer needed.

Both of these improvements are quite significant. Without the open set condition it is hard
to even calculate the dimension of the limit set of a CIFS; see e.g. [1, 23, 29]. Also, the
geometry of infinite alphabet CIFSes can be much wilder than the geometry of finite CIFSes,
whose limit sets are always Ahlfors regular (cf. [19, Theorem 3.14] versus [19, Lemma 4.12
- Theorem 4.16]). By contrast, the finite Lyapunov exponent assumption which replaces
it is quite weak; for example, in the case of conformal measures it is implied by strong
regularity (cf. [20, Definition 4.3.1]). It is also a necessary assumption, as demonstrated
by certain IFSes related to continued fractions [11, Theorem 4.5].

A connection between the finite Lyapunov exponent condition and extremality also ap-
peared in an earlier paper of three of the authors:



EXTREMALITY AND DYNAMICALLY DEFINED MEASURES, II 11

Theorem 1.16 ([11, Theorem 2.1]). If µ is a probability measure on [0, 1] \ Q invariant
with finite Lyapunov exponent under the Gauss map, then µ is extremal.

This theorem is neither more nor less general than Theorem 1.14. It is obviously not
more general, since it only applies to the Gauss map, and the conclusion that µ is extremal
is weaker than the conclusion of Theorem 1.14 which states that the relevant measure is
quasi-decaying. But it is also not less general, since it applies to all invariant measures
with finite Lyapunov exponent, and not only those which are Gibbs measures of summable
Hölder families of potential functions. The existence of invariant measures with finite
Lyapunov exponent which are not quasi-decaying can be seen from Theorem 1.12, since the
image of an entropy zero shift-invariant measure on {1, 2}N under the continued fractions
/ Gauss IFS coding map is such a measure. So Theorem 1.16 would become false if
“extremal” were replaced by “quasi-decaying”. It would also become false if “Gauss map”
were replaced by “shift map of a CIFS”, due to Theorem 1.13, which produces non-extremal
measures invariant under the map x 7→ 2x, which is the shift map of the binary IFS. This
indicates that the phenomenon captured in Theorem 1.16 is really a “number-theoretic”
phenomenon arising directly from the connection between the Gauss map and Diophantine
approximation, rather than from some geometric intermediary.

Moving on to our next conformal setting, we consider the Patterson–Sullivan measures
of geometrically finite Kleinian groups:

Theorem 1.17 (Proven in Section 3). Let G be a geometrically finite group of Möbius
transformations of Rd which does not preserve any generalized sphere. Then the Patterson–
Sullivan measure µ of G is quasi-decaying.

At first, this theorem may not seem to give any new information beyond that provided in
Theorem 1.9: that Patterson–Sullivan measures of irreducible geometrically finite groups
are extremal. But actually, the quasi-decay condition implies more Diophantine proper-
ties than friendliness does, via [Part I, Theorem 1.3], which shows that the image of a
quasi-decaying measure under a nondegenerate embedding is still extremal. Such a the-
orem cannot apply to friendly measures, since the Lebesgue measure of a nondegenerate
manifold is friendly, but its image under a nondegenerate embedding may be contained in a
rational hyperplane and therefore non-extremal. But Theorem 1.17 shows that such a fate
cannot befall a Patterson–Sullivan measure. Two examples give this observation special
significance: first of all, we may wish to consider the Patterson–Sullivan measure of a group
of Möbius transformations of Rd which preserves the unit sphere but not any smaller gen-
eralized sphere; this measure is absolutely continuous to the image under a nondegenerate
embedding of a geometrically finite group acting irreducibly on Rd−1, so Theorem 1.17 and
[Part I, Theorem 1.3] imply that the measure is extremal. Second of all, if we consider Rd as
isomorphic with the space of M ×N matrices for some M,N ≥ 2 such that MN = d, then
Theorem 1.17 and [Part I, Corollary 1.8] imply that the Patterson–Sullivan measure gives
zero measure to the set of very well approximable M ×N matrices, but such a conclusion
cannot be deduced from Theorem 1.9.

Also, treating Theorem 1.9 as though it “came first” is a bit silly in the sense that both
theorems use the same main lemma (Lemma 3.8), and the argument from that lemma
to Theorem 1.17 is significantly easier than the argument from that lemma to Theorem
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1.9. In any case, it is interesting to have a natural example of a measure which is both
quasi-decaying and friendly but not absolutely friendly.

Our last theorem relating quasi-decay to conformal dynamics is in the setting of rational
functions. Its proof uses a recent theorem of M. Szostakiewicz, A. Zdunik, and the fourth-
named author regarding “fine inducing”, as well as the rigidity result of W. Bergweiler,
A. E. Eremenko, and S. J. van Strien mentioned earlier. We recall (cf. [14]) that if
T : X → X is a dynamical system, then a potential function φ : X → R is called hyperbolic
if there exists n ∈ N such that sup(Snφ) < P (T n, Snφ), where P (T, φ) is the pressure of φ
with respect to T .

Theorem 1.18. Let T : Ĉ→ Ĉ be a rational function, let φ : Ĉ→ R be a Hölder continuous
hyperbolic potential function, and let µφ be the Gibbs measure of (T, φ). If the Julia set of
T is not contained in a generalized sphere, then µ is quasi-decaying.

Proof. Let (ua)a∈A be the CIFS described on [34, p.20]. By [34, Lemma 20], there exists a
locally Hölder continuous potential function φ such that µφ is (the image under the coding

map of) the Gibbs measure of φ with respect to (ua)a∈A. By [34, (22)], the function φ
is summable, and by [34, Proposition 23], the measure µφ has finite Lyapunov exponent
with respect to (ua)a∈A. So by Theorem 1.14, if (ua)a∈A acts irreducibly then µφ is quasi-
decaying. But if (ua)a∈A acts reducibly, then µφ is supported on a proper real-analytic

submanifold of Ĉ, so the Julia set J = Supp(µφ) is contained in a proper real-analytic

submanifold of Ĉ. So by [10, Corollary 1 and Theorem 2] (see also [4, Theorem 2]), J is
contained in a generalized sphere. �

Comparing this theorem to Theorem 1.10, we see that we have replaced the hypothesis
that the rational function T is hyperbolic with the hypothesis that the potential function φ
is hyperbolic. Although these conditions sound superficially similar due to the prolific use
of the word “hyperbolic” in mathematical definitions, the latter is actually much weaker
than the former, which essentially means that both critical points and parabolic points
are irrelevant to the dynamics. By contrast, the hypothesis that φ is hyperbolic does
not actually place any restriction on the function T (given any rational function T , the
function φ ≡ 0, or more generally any function φ satisfying sup(φ) − inf(φ) < log deg(T ),
is hyperbolic), and in fact only fails when there is an equilibrium state whose entropy and
Lyapunov exponent are both zero [14]. In particular, if T is a topological Collet–Eckmann
map then every Hölder continuous potential function φ is hyperbolic [14, Corollary 1.1].

Outline of the paper. In Section 2 we prove Theorems 1.12 and 1.13, thus providing
some examples of measures which are not quasi-decaying. In Section 3 we prove Theorems
1.9 and 1.17, thus showing that Patterson–Sullivan measures of geometrically finite groups
are both friendly and quasi-decaying. In Section 4 we prove Theorem 1.14, thus showing
that the Gibbs measures of conformal iterated function systems are quasi-decaying.

Remark. We refer to [Part I, §3] for some preliminary results which will be used in the
proofs, in particular the “quasi-Federer lemma” [Part I, Lemma 3.2] and the “Lebesgue
differentiation theorem” [Part I, Theorem 3.6].
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2. Proofs of Theorems 1.12 and 1.13

Proof of Theorem 1.12. Let µ be exact dimensional of dimension 0, and let E ⊆ Rd be a
set such that µ(E) > 0. Then for a µ-typical point x ∈ E, by the exact dimensionality of
µ we have

lim
ρ↘0

log µ
(
B(x, ρ)

)
log(ρ)

= 0

while by the Lebesgue differentiation theorem [Part I, Theorem 3.6], [28, Theorem 9.1], we
have

lim
ρ↘0

µ
(
B(x, ρ) ∩ E

)
µ
(
B(x, ρ)

) = 1.

It follows that

lim
ρ↘0

log
µ
(
B(x, ρ2) ∩ E

)
ραµ

(
B(x, ρ)

) =∞ for all α > 0,

which implies that µ is not quasi-decaying at x relative to E. Since x was a µ-typical point,
µ is not quasi-decaying relative to E; since E was arbitrary subject to µ(E) > 0, µ is not
quasi-decaying. �

Before proving Theorem 1.13, we recall the definitions of some terms used in its state-
ment.

Definition 2.1. Let X = Rd/Zd. A toral endomorphism of X is a map T : X → X of the
form T ([x]) = [Mx], where M is a d× d matrix with integer entries. Here [x] denotes the
image of a point x ∈ Rd under the quotient map Rd → Rd/Zd. The endomorphism T is
called hyperbolic if the eigenvalues of M all have modulus 6= 1.

Proof of Theorem 1.13. For each n ∈ N, let

Un =
⋃

p/q∈Q
q≥n

B

(
p

q
,

1

qn

)
,

and let Un be the set of all measures µ ∈ MT (X) such that µ(Un) > 1 − 2−n. The sets
Un and Un are both open. The set G :=

⋂
n Un is the set of Liouville points, i.e. points

with infinite exponent of irrationality. Thus since every measure in G :=
⋂
n Un gives full

measure to G, it follows that no measure in G is extremal.
To complete the proof, we need to show that G is dense in MT (X). Since G is convex,

it suffices to show that the closure of G contains all ergodic measures in MT (X). Indeed,
let µ ∈ MT (X) be an ergodic measure, and let x ∈ X be a µ-random point. Then by the
ergodic theorem,

µN :=
1

N

N−1∑
i=0

δT i(x) → µ,

where δ denotes the Dirac delta. Fix ε > 0. Since T is hyperbolic, it has the specification
property [5, (2.10) Theorem],12 so there exists m = mε ∈ N such that for all N ≥ m, there

12Although the result of [5] as stated only covers the case of invertible transformations, it is not too
hard to prove the specification property for hyperbolic toral endomorphisms by direct calculation.
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exists y = yN,ε ∈ X such that TN(y) = y and

d(T i(x), T i(y)) ≤ ε ∀i = 0, . . . , N −m− 1.

Next fix N ≥ m and let

νN,ε =
1

N

N−1∑
i=0

δT i(y) ∈ MT (X).

If M is the integer matrix representing T , then (MN − I) is a nonsingular integer matrix
and (MN − I)y ∈ Zd, so y ∈ Qd. Thus Supp(νN,ε) ⊆ Qd ⊆ G, so νN,ε ∈ G .

Let d be the co-Lipschitz distance on MT (X), i.e.

d(µ, ν) = sup
f

∣∣∣∣∫ f dµ−
∫
f dν

∣∣∣∣ ,
where the supremum is taken over all 1-Lipschitz functions f : X → [−1, 1]. Then

d(νN,ε, µ) ≤ d(νN,ε, µN) + d(µN , µ)

≤ d(µN , µ) +
1

N

N−1∑
i=0

d
(
T i(x), T i(yN,ε)

)
≤ d(µN , µ) +

1

N

[
N−m−1∑
i=0

ε+
N−1∑

i=N−m

1

]
≤ d(µN , µ) + ε+

mε

N
−−−→
N→∞

ε −−→
ε→0

0.

Thus µ is in the closure of the set {νN,ε : N ≥ m, ε > 0} ⊆ G . �

3. Patterson-Sullivan measures

In this section we will prove Theorems 1.17 and 1.9, namely that the Patterson–Sullivan
measure of any irreducible geometrically finite Kleinian group is both quasi-decaying and
friendly, but is absolutely friendly if and only if all cusps have full rank.

3.1. Conformal and hyperbolic geometry. We recall some preliminaries from con-
formal and hyperbolic geometry. Throughout this section, H = Hd+1 = {(x0, . . . , xd) ∈
Rd+1 : x0 > 0} and B = Bd+1 = {x ∈ Rd+1 : ‖x‖ < 1} will denote the upper half-
space and Poincaré ball models of hyperbolic geometry, respectively. Their boundaries are
∂H = Rd ∪ {∞} and ∂B = Sd ⊆ Rd+1, respectively. Isometries of H and B correspond to
conformal isomorphisms of their boundaries. In particular, H and B are isometric via the
Cayley transform ι : H→ B defined by

ι(x) = 2
x + e0

‖x + e0‖2
− e0

and this induces (via the same formula) a conformal isomorphism between ∂H and ∂B,
known as stereographic projection. The spherical metric on ∂H is the pullback of the
Euclidean metric on ∂B under stereographic projection. We will denote it by Ds, while



EXTREMALITY AND DYNAMICALLY DEFINED MEASURES, II 15

denoting the Euclidean metric on ∂H by De. By contrast, we will denote the hyperbolic
metric on H by dh, defined by the formula

cosh dh(x,y) = 1 +
‖y − x‖2

2x0y0

(cf. [8, (2.5.3)]). We will also use the subscripts s, e, and h in referring to constructions in
which these metrics are used, e.g. Bh(x, ρ), Ne(L, βσ), |g′(x)|s, etc.

A generalized sphere in ∂H is the pullback under stereographic projection of a set of
the form ∂B ∩ A, where A is an affine subspace of Rd+1. Equivalently, a generalized
sphere is either an affine subspace of ∂H (including ∞ by convention) or the intersection
of such a subspace with a sphere in ∂H. The collection of all generalized spheres of ∂H of
codimension 1 (i.e. dimension d−1) will be denoted S (to contrast with H , the collection
of all hyperplanes). The collection S is preserved under conformal transformations of ∂H.

We denote the set of isometries of H by Isom(H). The following well-known results will
be used frequently in the sequel:

Theorem 3.1 (Geometric mean value theorem). Fix g ∈ Isom(H). Then for all ξ, η ∈ ∂H,
the formula

(3.1)
D(g(ξ), g(η))

D(ξ, η)
=
(
|g′(ξ)| · |g′(η)|

)1/2
holds both for the Euclidean metric and for the spherical metric.

Theorem 3.2 (Bounded distortion principle). Fix g ∈ Isom(H) and let

‖g‖ = dh(o, g(o)),

where o = e0 ∈ H. For all ξ ∈ ∂H we have

|g′(ξ)|s ≤ e‖g‖.

Moreover, if we fix η ∈ ∂H and let

d = dh(g−1(o), [o, η])

ρ = Ds(ξ, η),

then
|g′(ξ)| &× e‖g‖−d/(1 ∨ (e‖g‖ρ)).

Here [o, ξ] denotes the geodesic ray connecting o and ξ.

3.2. Geometrically finite groups. Fix G ≤ Isom(H). The limit set of G, denoted Λ
is the collection of accumulation points in ∂H of the set G(o). The convex hull of the Λ,
denoted CG, is the smallest convex subset of H whose closure contains Λ, and is empty if Λ
is a singleton. A horoball is a set of the form

H(ξ, t) = {x ∈ H : Bξ(o, x) > t},
where Bξ denotes the Busemann function

Bξ(x, y) = lim
z→ξ

[dh(z, x)− dh(z, y)].

The point ξ ∈ ∂H is said to be the center of the horoball H(ξ, t).
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Next, G is said to be geometrically finite if there exist σ > 0 and a disjoint G-invariant
collection of horoballs H such that

(3.2) CG ⊆ G
(
Bh(o, σ)

)
∪
⋃

(H ).

In this scenario, the collection H can be written in the form

H = {Hη : η ∈ P}
where P is the set of parabolic fixed points of G and for each η ∈ P , Hη is a horoball
centered at η. We will also need the following well-known results, in which G denotes a
geometrically finite group:

Theorem 3.3 (Cusp finiteness theorem). There exists a finite set P0 such that P = G(P0).

Theorem 3.4 (Top representation theorem). For all H ∈ H , there exist η ∈ P0 and
g ∈ G such that H = g(Hη) and

d(g(o), [o, x]) �+ 0 ∀x ∈ H.

Theorem 3.5 (Boundedness of parabolic points). For all η ∈ P , there exists a compact
set Dη ⊆ Λ not containing η such that

Λ \ {η} = Gη(Dη),
where Gη is the stabilizer of η in G.

Theorem 3.6 (Translation planes). For all η ∈ P , there exists a generalized sphere Pη ⊆
∂H containing η such that Gη preserves Pη and acts cocompactly on it.

The dimension of Pη is called the rank of η, and is denoted kη.

Theorem 3.7 (Inequality between rank and Poincaré exponent). For all η ∈ P , we have
δ > kη/2, where δ is the Poincaré exponent

(3.3) δ = inf

{
s ≥ 0 :

∑
g∈G

e−s‖g‖ <∞

}
.

3.3. Patterson–Sullivan measures. The Patterson–Sullivan measure of G, denoted µ,
is the measure on Λ, unique up to a multiplicative factor, such that for all g ∈ G and
E ⊆ ∂H,

(3.4) µ
(
g(E)

)
=

∫
E

|g′(ξ)|δ dµ(ξ),

where δ is as in (3.3). The existence of such a measure is due to S. J. Patterson and
D. P. Sullivan [21, 32], and its uniqueness in the case of geometrically finite groups is due
to Sullivan [33]. The support of the Patterson–Sullivan measure is the entire limit set, i.e.
Supp(µ) = Λ. Note that the Patterson–Sullivan measure is dependent on the choice of
metric (Ds or De), so there are really two Patterson–Sullivan measures µs and µe, related
by the formula

dµs

dµe

(ξ) =

(
lim
η→ξ

Ds(ξ, η)

De(ξ, η)

)δ
.
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Other than the transformation equation (3.4), the main facts we will need about the
Patterson–Sullivan measure µ are:

• µ is Federer; this follows from the global measure formula [33, §7], [31, Theorem 2].
• The following corollary of the logarithm law [31, Theorem 4]: for µ-a.e. ξ ∈ Λ, we

have

(3.5) lim
t→∞

1

t
dh(ξt, G(o)) = 0,

where for each t ≥ 0, ξt denotes the unique point on the geodesic ray connecting o
and ξ such that dh(o, ξt) = t.

3.4. From global decay to quasi-decay. A group G ≤ Isom(H) is said to be irreducible
if G does not preserve any generalized sphere strictly contained in ∂H. In the remainder
of this section, G will denote an irreducible geometrically finite group, µ its Patterson–
Sullivan measure, etc. We will use the spherical metric as the default metric; in particular
µ denotes the Patterson–Sullivan measure with respect to the spherical metric. The key
lemma which we will use to prove both quasi-decay and friendliness is the following:

Lemma 3.8 (“Global decay”). There exists α > 0 such that for all β > 0 and L ∈ S , we
have

(3.6) µ
(
N (L, β)

)
.× β

α.

Before proving this lemma, we use it to prove that µ is quasi-decaying:

Proof of Theorem 1.17 assuming Lemma 3.8. Fix ξ ∈ Λ\{∞} satisfying (3.5), and we will
show that µ is quasi-decaying at ξ relative to Rd. Since De �× Ds in a small neighborhood
of ξ, it is enough to show that, quantified appropriately, the equation (1.5) is satisfied when
the metric is taken to be the spherical metric. Fix γ > 0, 0 < ρ ≤ 1, 0 < β ≤ ργ, and
L ∈H . Replace L by L ∪ {∞}, so that L ∈ S .

Let t = − log(ρ), and fix g ∈ G such that d = d(ξt, g(o)) = d(ξt, G(o)). Then by Theorem
3.2,

(3.7) et−2d .× |(g−1)′| ≤ et+d on B(ξ, ρ),

so

µ
(
N (L, βρ) ∩B(ξ, ρ)

)
.× e

−δ(t−2d)µ
(
g−1(N (L, βρ))

)
(by (3.4))

≤ e−δ(t−2d)µ
(
N (g−1(L), et+dβρ)

)
(by Theorem 3.1)

.× e
−δ(t−2d)(e(t+d)βρ)α (by Lemma 3.8)

= βαρδe−(α+2δ)d

.× β
αρδ−αγ/4 (by (3.5))

≤ βα/2ρδ+αγ/4. (since β ≤ ργ)

A similar argument can be used to show that

(3.8) lim
ρ↘0

log µ
(
B(ξ, ρ)

)
log(ρ)

= δ.
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(Alternatively, (3.8) follows from (3.5) together with the global measure formula [31, The-
orem 2], although this is overkill.) Thus

ρδ+αγ/4 .× µ
(
B(ξ, ρ)

)
,

which completes the proof. �

Remark 3.9. The above proof is valid for any group G ≤ Isom(H) (not necessarily geomet-
rically finite) whose Patterson–Sullivan measure satisfies (3.5) and Lemma 3.8. It would
be interesting to see whether there are geometrically infinite examples of groups with these
properties.

3.5. Proof of global decay. We proceed to prove Lemma 3.8 via a series of reductions,
finally reducing the question to one purely about Lebesgue measure.

Lemma 3.10. There exist 0 < ε, λ < 1 such that for all 0 < β ≤ 1 and L ∈ S , we have

(3.9) µ(N (L, εβ)) ≤ λµ(N (L, β)).

Proof of Lemma 3.8 from Lemma 3.10. Fix n ∈ N. By applying (3.9) with β = 1, ε, . . . , εn−1,
we have

µ
(
N (L, εn)

)
≤ λnµ(∂H) = λn.

Thus (3.6) holds with α = logε(λ). �

Lemma 3.11. For all ρ0 > 0, there exists ε > 0 with the following property: for all
0 < β ≤ 1, L ∈ S , and ξ ∈ Λ ∩N (L, εβ), there exists 0 < ρ ≤ ρ0 such that

(3.10) µ
(
B(ξ, ρ) ∩N (L, β) \ N (L, εβ)

)
�× µ(B(ξ, ρ)).

Proof of Lemma 3.10 from Lemma 3.11. Let ρ0 = 1 and let ε be as in Lemma 3.11. Fix
0 < β ≤ 1 and L ∈ S . For each ξ ∈ E := Supp(µ)∩N (L, εβ), let 0 < ρξ ≤ 1 be chosen to
satisfy (3.10). By the 4r-covering lemma [18, Theorem 8.1], the collection {B(ξ, ρξ) : ξ ∈ E}
has a disjoint subcollection {B(ξi, ρi)}Ni=1 such that the collection {B(ξi, 4ρi)}Ni=1 covers E.
Then

µ
(
N (L, β) \ N (L, εβ)

)
≥

N∑
i=1

µ
(
B(ξi, ρi) ∩N (L, β) \ N (L, εβ)

)
&×

N∑
i=1

µ(B(ξi, ρi)) (Lemma 3.11)

�×
N∑
i=1

µ(B(ξi, 4ρi)) (since µ is Federer)

≥ µ(E) = µ(N (L, εβ)).

After denoting the implied constant by C and letting λ = 1/(1 + 1/C) < 1, rearranging
gives (3.9). �

Reduction 3.12. In the proof of Lemma 3.11, we can without loss of generality assume
that there exists η ∈ P0 (cf. Theorem 3.3) such that

(3.11) εβ ≥ D2(ξ, η)/C,
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where C ≥ 1 is a constant possibly depending on ρ0.

The basic idea is to “pull back” the entire picture via an isometry g ∈ G: to choose
this isometry, we let x = ξt for an appropriate value of t, use (3.2) to find H ∈ H such
that x ∈ H, and then let g come from a top representation of H (cf. Theorem 3.4). After
pulling back the picture, the new β is “on the large scale”, which translates quantitatively
into the equation (3.11).

Proof. Suppose that for all C ≥ 1, Lemma 3.11 holds in the special case (3.11). We
let ρ0, ε, β,L, ξ, ρ denote the variables occurring in the version of Lemma 3.11 that we are

trying to prove, while ρ̂0, ε̂, β̂, L̂, ξ̂, ρ̂ denote the variables occurring in the version of Lemma
3.11 that we know. So fix ρ0 > 0, and let ρ̂0 = (1 ∧ ρ0)/C1, where C1 ≥ 1 is large to be
determined. Let 0 < ε̂ ≤ 1/2 be given, and let ε = ε̂/C1, where C2 ≥ C1 is large to be
determined, possibly depending on ρ̂0. Fix 0 < β ≤ 1, L ∈ S , and ξ ∈ Λ ∩N (L, εβ).

Let t = − log(C2εβ) and x = ξt. Since x ∈ CG,13 by (3.2) we have either x ∈ g(Bh(0, σ))
for some g ∈ G, or else x ∈ H for some H ∈ H . In the former case the reduction to the

case ε̂β̂ ≥ 1/C follows from the comparison of the sets involved in (3.11) with their images
under g−1; we omit the details as they are similar to what follows. (Alternatively, when G
has at least one cusp, the former case can be reduced to the latter one by expanding the
horoballs of H so that they cover CG rather than being disjoint.)

So suppose that x ∈ H for some H ∈H . Let η ∈ P0 and g ∈ G be a top representation
as in Theorem 3.4. Let

β̂ = e‖g‖β/C1, L̂ = g−1(L), and ξ̂ = g−1(ξ).

Since ξ ∈ Λ ∩ N (L, εβ), by Theorems 3.1 and 3.2, ξ̂ ∈ Λ ∩ N (L̂, ε̂β̂). On the other hand,
since x ∈ H and g is a top representation, we have Bg(η)(o, x) &+ ‖g‖ and thus

D2(ξ, g(η)) .× e
−te−‖g‖.

Thus we get

D2(ξ̂, η) .× e
−te‖g‖ = C2εβe

‖g‖ = C2ε̂β̂,

so by letting C = C2 · (implied constant), we get ε̂β̂ ≥ D2(ξ̂, η)/C.

Suppose first that β̂ ≤ 1. Then the known special case of Lemma 3.11 applies; let
0 < ρ̂ ≤ ρ̂0 be given as in that special case. Now since d(g(o), [o, ξ]) ≤ d(g(o), [o, x]) �+ 0,

we have D(g−1(o), ξ̂) &× 1. Let C1 be chosen so that 1/C1 ≤ (1/2)D(g−1(o, ξ̂); then

we have D(g−1(o), η) ≥ 1/C1 for all η ∈ B(ξ̂, 1/C1). So by Theorem 3.2, after possibly
increasing C1 we have

(3.12) e−‖g‖ ≤ |g′| ≤ C1e
−‖g‖ on B(ξ̂, 1/C1).

Since ρ̂ ≤ ρ̂0 ≤ 1/C1, the same holds on B(ξ̂, ρ̂). Thus, applying g to the known case of
(3.10) and using Theorem 3.1, (3.4), and (3.12) gives

µ
(
B(ξ, C1e

−‖g‖ρ̂) ∩N (L, C1e
−‖g‖β̂) \ N (L, e−‖g‖ε̂β̂)

)
&× µ(B(ξ, e−‖g‖ρ̂)).

Letting ρ = C1e
−‖g‖ρ̂ and using the Federer condition gives the desired case of (3.10).

13At the beginning of the proof, we can without loss of generality assume o ∈ CG, which then implies
x ∈ CG at the current point of the proof.
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If β̂ > 1, then the above argument is still valid as long as there exists 0 < ρ̂ ≤ ρ̂0 such
that (3.10) holds. We claim that in fact, in this case (3.10) holds with ρ̂ = ρ̂0. Indeed,

since β̂ > 1, we have ρ̂ ≤ (1− ε̂)β̂ assuming C1 ≥ 2, and thus since ξ̂ ∈ N (L̂, ε̂β̂), we have

B(ξ̂, ρ̂) ⊆ N (L̂, β̂)

and thus to complete the proof, it suffices to show that

(3.13) µ
(
N (L̂, ε̂β̂)

)
≤ (1/2)µ

(
B(ξ̂, ρ̂0)

)
.

Now by a compactness argument, the right-hand side of (3.13) is bounded below by a con-
stant depending only on ρ̂0. On the other hand, since x ∈ H and g is a top representation,

we have t &+ ‖g‖ i.e. C2εβ .× e−‖g‖ i.e. ε̂β̂ .× 1/C2 and thus the left-hand side of (3.13)
is less than

f(C2) = sup
L̂∈S

µ
(
N (L̂, K/C2)

)
.

for some constant K. Now by a compactness argument and since G acts irreducibly, we
have f(C2) → 0 as C2 → ∞. So by choosing C2 sufficiently large, we can guarantee that
the left-hand side of (3.13) is smaller than the right-hand side. �

The next reduction requires some motivation. Let η ∈ P0 be as in (3.11). Since P0 is
finite, we can treat η as fixed. Let D = Dη and P = Pη be given by Theorems 3.5 and 3.6,
respectively, let k = kη = dim(P), and let H = Gη be the stabilizer of η in G. Without
loss of generality we can assume that P \ {η} ⊆ H(D).

We proceed to approximate µ by a smooth measure λη on P . To motivate the choice
of this measure, note that for each h ∈ H, the measure of the set h(D) can be computed
using the transformation equation (3.4). Thus it will be useful if the new measure λ also
satisfies (3.4), at least for h ∈ H. It is easy to come up with a formula for a measure on
P which satisfies (3.4) for an even larger class of Möbius transformations: namely, those
h ∈ Isom(H) such that h(η) = η and h(P) = P . Precisely:

(3.14) dλη(ξ) = D(η, ξ)2δ−2kdλP(ξ).

Here λP denotes the Hausdorff k-dimensional measure on P with respect to the spherical
metric D = Ds. Note that by Theorem 3.7, the singularity of λη at η is integrable, i.e. λη
is a finite measure.

It turns out that when approximating µ by λη, it is appropriate to replace every set of
the form N (L, β) by a set of the form

Ñ (L, β) := N (L, β) ∩B(η,
√
β).

We can now state the next lemma in the reduction:

Lemma 3.13. For all ρ0 > 0, there exists ε > 0 such that for all 0 < β ≤ ρ20/4, L ∈ S ,

and ξ ∈ P ∩ Ñ (L, εβ), there exists β/2 ≤ ρ ≤ ρ0 such that

(3.15) λη
(
B(ξ, ρ) ∩ Ñ (L, β) \ Ñ (L, εβ)

)
�× λη

(
B(ξ, ρ)

)
.
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η

Figure 2. A schematic drawing of a hyperplane-neighborhood near a rank
one cusp η. The balls represent sets h(D), h ∈ Gη. The measure of the
hyperplane-neighborhood is estimated by considering its intersection with
each of the sets h(D).

In the proof of Lemma 3.11 from Lemma 3.13, we will frequently use the asymptotic

(3.16) |h′| �× e−‖h‖ �× D2(η, h(D)) on D (h ∈ H),

which can be proven by conjugating η to∞ and then comparing the Euclidean and spherical
metrics (noting that in the Euclidean metric, elements of H act as isometries). Note that
by applying Theorem 3.1 to (3.16), we get

(3.17) Diam(h(D)) �× D2(η, h(D)).

Proof of Lemma 3.11 using Lemma 3.13. We let ρ0, ε, β,L, ξ, ρ denote the variables ap-

pearing in the desired Lemma 3.11, and we let ρ̂0, ε̂, β̂, L̂, ξ̂, ρ̂ denote the variables appearing
in the known Lemma 3.13. Fix ρ0 > 0, choose ρ̂0 ≤ ρ0/3 to be determined, let ε̂ > 0 be
given, and let ε = ε̂/C2 > 0, where C ≥ 1 is large to be determined. Fix 0 < β ≤ 1,

L ∈ S , and ξ ∈ Λ ∩N (L, εβ), let β̂ = β/C and L̂ = L, and note that

εβ < ε̂β̂ < β̂ < β.

By (3.17), we may choose ξ̂ ∈ P so that D(ξ, ξ̂) .× D2(η, ξ). Combining with (3.11) gives

D(η, ξ̂) .×
√
εβ, D(ξ̂, L̂) .× εβ.

So by choosing C sufficiently large, we can guarantee that ξ̂ ∈ Ñ (L̂, ε̂β̂). Then we can let

β̂/2 ≤ ρ̂ ≤ ρ̂0 be given as in Lemma 3.13. Let ρ = 3ρ̂ ≤ 3ρ̂0 = ρ0. To complete the proof
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we need to show:

µ
(
B(ξ, ρ) ∩N (L, β) \ N (L, εβ)

)
&× λη

(
B(ξ̂, ρ̂) ∩ Ñ (L̂, β̂) \ Ñ (L̂, ε̂β̂)

)
(3.18)

µ
(
B(ξ, ρ)

)
.× λη

(
B(ξ̂, 5ρ̂)

)
.(3.19)

((3.19) suffices since λη is Federer.) Fix h ∈ H, and we will demonstrate (3.18)-(3.19) via
their intersections with h(D), i.e. we will show that

µ
(
h(D) ∩B(ξ, ρ) ∩N (L, β) \ N (L, εβ)

)
&× λη

(
h(D) ∩B(ξ̂, ρ̂) ∩ Ñ (L̂, β̂) \ Ñ (L̂, ε̂β̂)

)(3.20)

µ
(
h(D) ∩B(ξ, ρ)

)
.× λη

(
h(D) ∩B(ξ̂, 5ρ̂)

)
.(3.21)

The following consequence of (3.4) and (3.16) will be useful in proving both (3.20) and
(3.21):

(3.22) µ(h(D)) �× e−δ‖h‖ �× D2δ(η, h(D)) �× λη(h(D)).

Also, by (3.11), if we choose C sufficiently large then

(3.23) D(ξ, ξ̂) ≤ ρ̂.

Proof of (3.21). To avoid trivialities, suppose that h(D) ∩B(ξ, ρ) 6= �. Then by (3.11),

D(η, h(D)) ≤ D(η, ξ) + ρ .×
√
εβ + ρ.

Applying (3.17) gives

Diam(h(D)) .× εβ + ρ2 = ε̂β̂/C + 4ρ̂2

≤ (2ε̂/C + 4ρ̂0)ρ̂ (since β̂/2 ≤ ρ̂ ≤ ρ̂0)

and thus by choosing ρ̂0 small enough and C large enough, we get Diam(h(D)) ≤ ρ̂.

Combining with (3.23) gives h(D) ⊆ B(ξ̂, 5ρ̂), and (3.22) completes the proof. C

Proof of (3.20). To avoid trivialities, suppose that

(3.24) h(D) ∩B(ξ̂, ρ̂) ∩ Ñ (L̂, β̂) \ Ñ (L̂, ε̂β̂) 6= �.

By (3.23) we have B(ξ̂, ρ̂) ⊆ B(ξ, ρ) and thus h(D) ∩ B(ξ, ρ) 6= �, so the above argument
shows that Diam(h(D)) ≤ ρ̂ and combining with (3.23) gives h(D) ⊆ B(ξ, ρ). On the

other hand, since h(D) ∩ B(η, β̂1/2) 6= �, we have D(η, h(D)) ≤ β̂1/2 and thus by (3.17),

Diam(h(D)) .× β̂. If C is sufficiently large, then this implies Diam(h(D)) ≤ β/2 and thus
h(D) ⊆ N (L, β). So by (3.22), to complete the proof it is enough to show that

µ
(
h(D) \ N (L, εβ)

)
�× µ

(
h(D)

)
.

Again to avoid trivialities, let us assume that

(3.25) h(D) ∩N (L̂, εβ) 6= �.

From (3.24), we have h(D) \ Ñ (L̂, ε̂β̂) 6= �, so either

(3.26) h(D) \ N (L̂, ε̂β̂) 6= �
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or

(3.27) h(D) \B
(
η, (ε̂β̂)1/2

)
6= �.

Combining (3.25), (3.26), and (3.17) gives e−‖h‖ �× Diam(h(D)) ≥ ε̂β̂− εβ, while combin-

ing (3.27) and (3.17) gives e−‖h‖ �× D2(η, h(D)) &× ε̂β̂. Either way we get e−‖h‖ &× ε̂β̂,
and thus it suffices to show

µ
(
h(D) \ N (L, Ke−‖h‖/C)

)
�× µ

(
h(D)

)
where K > 1 is a constant. By (3.16) and (3.4), it is enough to show that

(3.28) µ
(
D \ N (h−1(L), K/C)

)
�× µ(D).

We proceed by contradiction; if no C exists satisfying (3.28) (for all L ∈ S and h ∈ H),
then a compactness argument proves the existence of L0 ∈ S such that µ(D \ L0) = 0. A
zooming argument shows that we may take L0 so that µ(Λ \L0) = 0, i.e. Λ ⊆ L0. But this
contradicts the assumption that G is irreducible. C

This completes the proof of Lemma 3.11 modulo Lemma 3.13. �

Reduction 3.14. In the proof of Lemma 3.13, we can without loss of generality assume
that P is a plane (rather than a sphere) and that η = 0, and we can work in the Euclidean
metric rather than the spherical metric.

Proof. The first reduction follows by applying a fixed conjugation in which we move η to
0 and some other point of P to ∞. The second reduction follows from choosing ρ0 small
enough so that De �× Ds on Bs(η, ρ0), and modifying the constants ε, β, ρ appropriately.

�

We are now ready to finish the proof of Theorem 1.17 by proving the Euclidean version
of Lemma 3.13:

y

N (L, β)
N (L, εβ)

L

y1 ξ ζ

B(ξ, ρ)

B(ζ, ρ/4)

Figure 3. Various entities appearing in the proof of Lemma 3.13, illustrat-
ing the inclusion (3.29) in the case ρ = D(ξ,P \ N (L, β)).
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Proof of Lemma 3.13. Let ρ = D(ξ,P \ Ñ (L, β)). Then

ρ ≥ D(Ñ (L, εβ),P \ Ñ (L, β)) ≥ (β − εβ) ∧ (
√
β −

√
εβ) ≥ β/2

and on the other hand, ρ ≤ Diam(Ñ (L, β)) ≤ 2
√
β ≤ ρ0. By construction, B(ξ, ρ) ∩ P ⊆

Ñ (L, β). Since the measure λη is Federer, to prove (3.15) it suffices to show that there
exists a ball B(ζ, ρ/4) such that ζ ∈ P and

(3.29) B(ζ, ρ/4) ∩ P ⊆ B(ξ, ρ) \ Ñ (L, εβ).

We consider two cases:

• Suppose ρ = D(ξ,P \ B(0,
√
β)) =

√
β − ‖ξ‖. Let v ∈ P be a unit vector in the

direction of ξ (in an arbitrary direction if ξ = 0) and let ζ = ξ + 3ρv/4. Then for
all z ∈ B(ζ, ρ/4),

‖z‖ ≥ ‖ζ‖ − ρ/4 ≥ ‖ξ‖+ ρ/2 ≥
√
β/2 ≥

√
εβ

assuming ε ≤ 1/4. Thus B(ζ, ρ/4) ∩B(0,
√
εβ) = �, demonstrating (3.29).

• Suppose ρ = D(ξ,P \ N (L, β)). Then P * L, since otherwise ρ = ∞ which
contradicts the definition of ρ. Suppose that L is a sphere (the case where L is a
hyperplane is easier and will be omitted), and write L = {x : ‖y − x‖ = k} for
some y ∈ Rd and k > 0. Write y = y1 + y2 with y1 ∈ P and y2 ∈ P⊥. Let v ∈ P
be a unit vector in the direction of ξ − y1 (in an arbitrary direction if ξ = y1), and
let ζ = ξ + 3ρv/4. Then for all z ∈ B(ζ, ρ/4) ∩ P ,

D(z,L) = ‖z− y‖ − k ≥
√

(‖ξ − y1‖+ ρ/2)2 + ‖y2‖2 − k.

We aim to show that the right hand side exceeds εβ. Indeed, since ξ ∈ Ñ (L, εβ)
we have

εβ ≥ D(ξ,L) ≥ k − ‖ξ − y‖ = k −
√
‖ξ − y1‖2 + ‖y2‖

and since ξ + ρv ∈ B(ξ, ρ) ⊆ ∂Ñ (L, β), we have

β = D(ξ + ρv,L) = ‖ξ + ρv‖ − k =
√

(‖ξ − y1‖+ ρ)2 + ‖y2‖2 − k,
i.e. √

‖ξ − y1‖2 + ‖y2‖2 − k ≥ −εβ√
(‖ξ − y1‖+ ρ)2 + ‖y2‖2 − k ≥ β

which implies√
(‖ξ − y1‖+ ρ/2)2 + ‖y2‖2 − k ≥ (1/4)β + (3/4)(−εβ).14

Assuming ε ≤ 1/7, this gives D(z,L) ≥ εβ and thus (3.29) holds. �

14The general inequality√
(a+ δx)2 + b2 ≥ δ2

√
(a+ x)2 + b2 + (1− δ2)

√
a2 + b2

(a, b, x ≥ 0, 0 ≤ δ ≤ 1) can be verified by first checking the inequality

(a+ δx)2 + b2 ≥ δ2[(a+ x)2 + b2] + (1− δ2)[a2 + b2]

and then using the downward convexity of the square root function.
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3.6. Proof of friendliness. Like the proof of Lemma 3.8, the proof of Theorem 1.9 pro-
ceeds via a series of reductions, in which the final question is about Lebesgue measure and
does not depend on the measure. Since many of the arguments are similar to those in the
proof of Lemma 3.8, we will not provide the full details of the reductions.

We will actually prove a result which is slightly stronger than friendliness, namely “friend-
liness to spheres”:

Theorem 3.15 (Friendliness to spheres). There exists α > 0 such that for all ξ ∈ Λ,
0 < ρ ≤ 1, β > 0, and L ∈ S , if B = B(ξ, ρ) then

µ
(
N (L, β‖dL‖µ,B) ∩B

)
.× β

αµ(B),

and if kmin = d then
µ
(
N (L, βρ) ∩B

)
.× β

αµ(B).

Note that Theorem 3.15 implies the hard direction of Theorem 1.9. The easy direction is
proven as follows: Suppose that kη < d for some η, and we will show that µ is not absolutely
decaying. By Theorems 3.5 and 3.6, there exist two generalized spheres L1,L2 ∈ S which
are tangent at η such that Λ is contained in the region between L1 and L2. Let L be the
hyperplane tangent to both L1 and L2 at η. Then for all ρ > 0,

Λ ∩B(η, ρ) ⊆ N (L, Cρ2),
where C > 0 is a large constant. This implies that µ is not absolutely decaying (even
stronger, Λ is not hyperplane diffuse in the sense of [6, Definition 4.2]).

We now proceed with the proof of Theorem 3.15.

Reduction 3.16. In the proof of Theorem 3.15, we can without loss of generality assume
that

(3.30) ρ &× D
2(ξ, η)

for some η ∈ P0, where P0 is as in Theorem 3.3.

Proof. Similar to the proof of Reduction 3.12. �

As in the proof of Lemma 3.8, fix η ∈ P0, and let D = Dη, P = Pη, k = kη = dim(P),
H = Gη, and λη be as before. We will prove the reduction of Theorem 3.15 to the following
lemma in a manner analogous to the reduction of Lemma 3.11 to Lemma 3.13:

Lemma 3.17. There exists α0 > 0 such that for all 0 < α ≤ α0, ξ ∈ P, 0 < ρ ≤ 1, β > 0,
and L ∈ S , if B = B(ξ, ρ) and

σ1 = max
B

D2(η, ·), σ2 = ‖dL‖B∩P ,

then either

(3.31)

∫
B∩P

(
β(σ1 ∨ σ2)
D2(η,y)

)α
dλη(y) .× β

α/2λη
(
B
)

or

(3.32) λη
(
N (L, Kσ1 ∨ βσ2) ∩B

)
.× β

α/2λη
(
B
)
,

where K > 0 is the implied constant of (3.17).
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Proof of Theorem 3.15 using Lemma 3.17. We let α, ξ, ρ, β,L denote the variables appear-

ing in the desired Theorem 3.15, and we let α̂0, α̂, ξ̂, ρ̂, β̂, L̂ denote the variables appearing
in the known Lemma 3.17. Let α̂0 > 0 be given, let α̃ > 0 be as in Lemma 3.8, and let
α = α̂ = α̂0∧α̃ > 0. Fix ξ ∈ Λ, D2(ξ, η) .× ρ ≤ 1, β > 0, and L ∈ S , and let B = B(ξ, ρ).

By (3.17), we may choose ξ̂ ∈ P so that D(ξ, ξ̂) .× D2(η, ξ) .× ρ. Fix C ≥ 1 large to

be determined, and let ρ̂ = Cρ > 0, so that B(ξ, ρ) ⊆ B̂ := B(ξ̂, ρ̂) assuming C is large

enough. Let β̂ = Cβ and L̂ = L. Finally, let

σ =

{
‖dL‖µ,B kmin < d

ρ kmin = d
, σ̂1 = max

B̂
D2(η, ·), σ̂2 = ‖dL‖B̂∩P .

Note that by (3.17), we have

(3.33) σ .× σ̂1 ∨ σ̂2.

(When kmin = d, (3.33) follows from the asymptotic σ̂2 �× ρ̂ ≥ ρ.) Since µ is Federer, to
complete the proof it suffices to show that

µ
(
N (L, βσ) ∩B

)
.×

∫
B̂∩P

(
β̂(σ̂1 ∨ σ̂2)
D2(η,y)

)2α

dλη(y)(3.34)

µ
(
N (L, βσ) ∩B

)
.× λη

(
N (L̂, Kσ̂1 ∨ β̂σ̂2) ∩ B̂

)
(3.35)

µ
(
B(ξ, 2ρ̂)

)
&× λη

(
B̂
)

(3.36)

Fix h ∈ H, and we will prove (3.34)-(3.36) via their intersections with h(D). The proof
of (3.36) is similar to the proof of (3.19). Suppose h(D) ∩ N (L, βσ) ∩ B 6= �, so that by

(3.17) and (3.30), we have h(D) ⊆ N (L̂, Kσ̂1 ∨ β̂σ̂2) ∩ B̂. Then (3.35) follows from (3.22),
and (3.34) is reduced to

(3.37) µ
(
N (L, βσ) ∩ h(D)

)
.× (e‖h‖β̂(σ̂1 ∨ σ̂2))2αλη

(
h(D)

)
.

Applying (3.16), (3.1), and (3.4) reduces us to proving

(3.38) µ
(
N (h−1(L), K2e

‖h‖βσ) ∩ D
)
.× (e‖h‖β̂(σ̂1 ∨ σ̂2))2αλη

(
D
)
,

where K2 > 1 is the implied constant of (3.16). But this follows from (3.6) and (3.33). �

Reduction 3.18. In the proof of Lemma 3.17, we can without loss of generality assume
that P is a plane (rather than a sphere) and that η = 0, and we can work in the Euclidean
metric rather than the spherical metric.

Proof. Similar to the proof of Reduction 3.14. �

Proof of Lemma 3.17. It suffices to prove∫
B∩P

(
σ1

D2(0,y)

)α
dλ0(y) .× λ0(B)(3.39)

λ0
(
N (L, 2Kβ1/2σ2) ∩B

)
.× (2Kβ1/2)αλ0(B)(3.40)
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since the former implies (3.31) if σ1 ≥ β1/2σ2, and the latter implies (3.32) if σ1 ≤ β1/2σ2.
Using the asymptotic

λ0 � B(0, 1) �×
∑
n∈N

2n(2k−2δ)λ
(e)
P � B(0, 2−n) \B(0, 2−(n+1)),

one can show that it suffices to consider the case where D(0, B) ≥ ρ. Here λ
(e)
P is the

Euclidean Lebesgue measure on P . Now if D(0, B) ≥ ρ, then D(0,y) �× D(0, B) �× σ1/2
1

for all y ∈ B, which implies (3.39). �

Lemma 3.19. If λ is Lebesgue measure on a k-dimensional subspace P ⊆ Rd, L ∈ S , and
B(ξ, ρ) ⊆ P, then

(3.41) λ
(
N (L, βσ) ∩B(ξ, ρ)

)
.× β

αλ
(
B(ξ, ρ)

)
,

where σ = ‖dL‖B(ξ,ρ)∩P , and α > 0 is a uniform constant.

Proof. Without loss of generality suppose that ‖ξ‖, ρ ≤ 1. Then we can use the spherical
metric instead of the Euclidean metric. Using the spherical metric, (3.41) is just the
assertion that the image of Lebesgue measure under stereographic projection onto the
sphere is friendly. But this follows from [15, Theorem 2.1]. �

4. Gibbs measures of CIFSes

We will prove Theorem 1.14 by first proving a general theorem about measures which
come from “coding maps” (Theorem 4.3). This general theorem will be useful in later
papers in this series, where we will use it to deduce that certain random measures are
quasi-decaying.

4.1. A general theorem. Before stating the general theorem, we state a lemma which
essentially says that when a measure is defined as the image of another measure, then the
quasi-decaying condition can be checked on the level of the original measure rather than
on the level of the image measure:

Lemma 4.1. Let (X,µ) be a measure space, and let π : X → Rd be a measurable map.
Suppose that there exists a sequence of sets (En)∞1 in X such that µ(X \

⋃
nEn) = 0 and

for all n ∈ N, for µ-a.e. x ∈ En, for all γ > 0, there exist C1, α > 0 such that for all
0 < ρ ≤ 1, 0 < β ≤ ργ, and L ∈H , if B = B(π(x), ρ) then

(4.1) µ
(
π−1(N (L, βρ) ∩B) ∩ En

)
≤ C1β

αµ
(
π−1(B)

)
.

Then µ := π∗[µ] is quasi-decaying.

Proof. Without loss of generality assume that the sequence (En)∞1 is increasing. For each
n, define the measure νn on Rd via the formula

νn(S) = µ
(
π−1(S) ∩ En

)
,

i.e. νn = π∗[µ � En]. Then νn ↗ µ. Let fn denote the Radon–Nikodym derivative dνn
dµ

,

so that fn ↗ 1 µ-a.e. We may choose fn so that fn = 0 on Rd \ π(En). Finally, let
Fn = {y ∈ Rd : fn(y) ≥ 1/2}, so that µ(Rd \

⋃
n Fn) = 0. For each n, we can see that µ is

quasi-decaying relative to Fn as follows: given y ∈ Fn and γ > 0, choose x ∈ En so that
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π(x) = y, and let C1, α > 0 be as in the hypothesis of the lemma. Then for all 0 < ρ ≤ 1,
0 < β ≤ ργ, and L ∈H , if B = B(y, ρ) then

µ
(
N (L, βρ) ∩B ∩ Fn

)
≤ 2νn

(
N (L, βρ) ∩B

)
= 2µ

(
π−1(N (L, βρ) ∩B) ∩ En

)
≤ 2C1β

αµ
(
π−1(B)

)
= 2C1β

αµ(B). �

Notation 4.2. In the sequel we will not distinguish between the sets S and π−1(S), so for
example formula (4.1) would be written

µ
(
N (L, βρ) ∩B ∩ En

)
≤ C1β

αµ(B).

We now state our general theorem about measures coming from “geometrically nice”
coding maps.

Theorem 4.3. Let A be a measurable space, let π : AN → Rd be a measurable map, and let µ
be a probability measure on AN. For each ω ∈ A∗, we let µω denote the conditional measure
of µ on the cylinder [ω] = {τ ∈ AN : τ � |ω| = ω} (normalized to be a probability measure),
and we fix a real number Dω ≥ Diam(Supp(µω)). Assume that Dτ ≤ Dω whenever τ
extends ω. Fix κ > 0, r ∈ N, and a set

(4.2) G ⊆ {ω ∈ A∗ : µω({τ ∈ AN : Supp(µτ�|ω|+r) ∩N (L, κDω) = �}) ≥ κ ∀L ∈H }.

Assume that for µ-a.e. ω ∈ AN, the limits

lim
n→∞

1

n
#{i = 1, . . . , n : ω � i ∈ G}(4.3)

lim
n→∞

1

n
log(1/Dω�n)(4.4)

exist and are positive. Then π∗[µ] is quasi-decaying.

We will prove the theorem for the case r = 1; the general case follows by replacing A by
Ar.

The basic idea of the proof is as follows: Suppose that we are given a µ-random word
τ ∈ AN, of which we know an initial segment ω = τ � n. We want to give an upper bound
on the probability that π(τ) ∈ N (L, κρ), where L ∈H and ρ > 0. Now reveal the letters
of τ in order. Each time a letter is revealed, there is a chance that the letter proves that
τ /∈ N (L, κρ). More precisely, if we are revealing the (i + 1)st letter, and if τ � i ∈ G
and Dτ�i ≥ ρ, then the probability that Supp(µτ�i+1) (which contains τ) is disjoint from
N (L, κρ) is at least κ. So the probability that τ ∈ N (L, κρ) is bounded above by an
expression like (1− κ)k, where k is the number of i ≥ n such that τ � i ∈ G and Dτ�i ≥ ρ.
The hypotheses (4.3)-(4.4) can be used to give a lower bound on k, which in turn gives an
upper bound on probability which depends only on ω and ρ.

We now proceed to make this idea rigorous:

Proof of Theorem 4.3. For each n ∈ N, ρ > 0, and k ∈ N let

E(n, ρ, k) = {τ ∈ AN : #{i ≥ n : Dτ�i ≥ ρ, τ � i ∈ G} ≥ k}.
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Claim 4.4. For all ω ∈ A∗, L ∈H , ρ > 0, and k ∈ N,

(4.5) µω
(
N (L, κρ) ∩ E(|ω|, ρ, k)

)
≤ (1− κ)k.

Proof. For ease of exposition we assume that c = infω log(Dω�|ω|−1/Dω) > 0, and we proceed
by induction on b(1/c) log(Dω/ρ)c. If ρ > Dω, then either E(|ω|, ρ, k) = � or k = 0, and
in either case (4.5) holds trivially. So assume that ρ ≤ Dω. Write ` = [ω ∈ G] (recall
Convention 5). We have

µω
(
N (L, κρ) ∩ E(|ω|, ρ, k)

)
= µω

(
N (L, κρ) ∩ E(|ω|+ 1, ρ, k − `)

)
(since ρ ≤ Dω)

=

∫
µτ�|ω|+1

(
N (L, κρ) ∩ E(|ω|+ 1, ρ, k − `)

)
dµω(τ) (conditional measures)

≤
∫

(1− κ)k−`
[

Supp(µτ�|ω|+1) ∩N (L, κρ) 6= �
]

dµω(τ) (induction hypothesis)

≤ (1− κ)k−`µω
({
τ ∈ AN : Supp(µτ�|ω|+1) ∩N (L, κDω) 6= �

})
(since ρ ≤ Dω)

≤ (1− κ)k−`(1− κ)` ((4.2) and definition of `)

= (1− κ)k

which completes the induction step.
The lemma can be proven without using the assumption infω log(Dω�|ω|−1/Dω) > 0 by

using the martingale theorem instead of induction; the essential calculations are the same
and we omit the details. C

Now let E ⊆ AN be a set on which the limits (4.3)-(4.4) converge uniformly. Fix γ > 0,
x ∈ Rd, 0 < ρ ≤ 1, 0 < β ≤ ργ, and L ∈H , and we will show that

(4.6) µ
(
N (L, βρ) ∩B(x, ρ) ∩ E

)
.× β

αµ
(
B(x, 2ρ)

)
for some α > 0 depending only on γ.

Consider the partition A of AN consisting of all cylinders [ω] (ω ∈ A∗) satisfying

(4.7) Dω < ρ ≤ Dω�|ω|−1.

Fix such an ω, let n = |ω|, and let k = dlogλ(β)e, where λ ∈ (0, 1) is small to be determined.

Claim 4.5. If β is sufficiently small then

[ω] ∩ E ⊆ E(|ω|, κ−1βρ, k).

Proof. Fix τ ∈ [ω] ∩ E. Let δ = (1/2) logρ(β) ≥ γ/2, let ε = (γ/12) ∧ (1/5), and let

` = bδnc. By (4.7) and the definition of E, we have15

#{i = n+ 1, . . . ,n+ ` : τ � i ∈ G} &+ g(δ − ε)n(4.8)

ρ < Dτ�n−1 .× exp
(
− χ(1− ε)n

)
,(4.9)

Dτ�n+` &× exp
(
− χ(1 + δ + ε)n

)
(4.10)

ρ ≥ Dτ�n &× exp
(
− χ(1 + ε)n

)
,(4.11)

15In the following asymptotics, the implied constant may depend on κ and γ (and thus also on ε), but
not on other variables such as δ.



30 TUSHAR DAS, LIOR FISHMAN, DAVID SIMMONS, AND MARIUSZ URBAŃSKI

where g, χ > 0 are the limits of (4.3) and (4.4), respectively. To show that τ ∈ E(|ω|, κ−1βρ, k),
it suffices to demonstrate the separate claims

Dτ�n+` ≥ κ−1βρ(4.12)

#{i = n+ 1, . . . , n+ ` : τ � i ∈ G} ≥ dlogλ(β)e(4.13)

under the assumption that β is sufficiently small. To prove (4.12), we observe that

κρ−1Dτ�n+` &× exp
(
− χ(δ + 2ε)n

)
(by (4.9) and (4.10))

&× ρ
(δ+2ε)/(1−ε) (by (4.9))

≥ ρ(δ+γ/6)/(1−1/5) ≥ ρ(4/3)δ/(4/5) = β5/6.

This implies that (4.12) holds for all sufficiently small β. To prove (4.13), we observe that

#{i = n+ 1, . . . , n+ ` : τ � i ∈ G}
&+ g(δ − ε)n (by (4.8))

&+
g(δ − ε)
χ(1 + ε)

log(1/ρ) (by (4.11))

≥ g(δ − γ/12)

χ(1 + 1/5)
log(1/ρ) ≥ (5/6)g

(6/5)χ
δ log(1/ρ) >

g

3χ
log(1/β).

Choosing λ < exp(−g/3χ) gives (4.13) for all sufficiently small β. C

Combining Claims 4.4 and 4.5 yields (for β sufficiently small)

µω
(
N (L, βρ) ∩ E

)
≤ (1− κ)k ≤ βα,

where α = logλ(1−κ) > 0. On the other hand, by (4.7) we have Diam(Supp(µω)) ≤ Dω < ρ,
so either Supp(µω) ∩B(x, ρ) = � or Supp(µω) ⊆ B(x, 2ρ). Either way we have

µω
(
N (L, βρ) ∩B(x, ρ) ∩ E

)
≤ βαµω

(
B(x, 2ρ)

)
and integrating over all ω yields (4.6). Since (4.6) is an asymptotic, it holds for all β rather
than just for all sufficiently small β. Now [Part I, Lemma 3.2] shows that for π∗[µ]-a.e.
x ∈ Rd, we have

µ
(
N (L, βρ) ∩B(x, ρ) ∩ E

)
≤ βα/2µ

(
B(x, ρ)

)
.

Since E was arbitrary subject to the condition that (4.3)-(4.4) converge uniformly, Egoroff’s
theorem and Lemma 4.1 show that π∗[µ] is quasi-decaying. �

4.2. Definitions. Before proving Theorem 1.14, we recall the definition of a conformal
iterated function system (CIFS), its coding map, and the Gibbs measures of summable
locally Hölder continuous functions.

Definition 4.6 (Cf. [19, p.6-7]). Fix d ∈ N. A collection of maps (ua)a∈A is called a
conformal iterated function system on Rd if:

1. A is a countable (finite or infinite) index set;
2. X ⊆ Rd is a nonempty compact set which is equal to the closure of its interior;
3. For all a ∈ A, ua(X) ⊆ X;
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4. (Cone condition)

inf
x∈X,r∈(0,1)

λ(X ∩B(x, r))

rd
> 0,

where λ denotes Lebesgue measure on Rd;
5. V ⊆ Rd is an open connected bounded set such that d(X,Rd \ V ) > 0;
6. For each a ∈ A, ua is a conformal homeomorphism from V to an open subset of V ;
7. (Uniform contraction) supa∈A sup |u′a| < 1, and if A is infinite, lima∈A sup |u′a| = 0;
8. (Bounded distortion property) For all n ∈ N, ω ∈ An, and x,y ∈ V ,

(4.14) |u′ω(x)| �× |u′ω(y)|,

where

uω = uω1 ◦ · · · ◦ uωn .

The CIFS is said to satisfy the open set condition if the collection (ua(Int(X)))a∈A is
disjoint. It is said to satisfy the strong separation condition if the collection (ua(X))a∈A is
disjoint.

Finally, the CIFS is said to be irreducible if there is no proper real-analytic submanifold
M ⊆ X such that ua(M) ⊆ M for all a ∈ A. (Equivalently, the limit set of the CIFS
(defined below) is not contained in any proper real-analytic submanifold of Rd.)

In the remainder of this section, we fix a CIFS (ua)a∈A and corresponding sets X, V ⊆ Rd.

Definition 4.7. The coding map of the CIFS (ua)a∈A is the map π : AN → Rd defined by
the formula

π(ω) = lim
n→∞

uω�n(x0),

where x0 ∈ X is an arbitrary point. By the Uniform Contraction hypothesis, π(ω) exists
and is independent of the choice of x0. The limit set of the CIFS is the image of AN under
the coding map, i.e. K = π(AN).

Note that by the Uniform Contraction hypothesis, the coding map is always Hölder
continuous, assuming that the metric on AN is given by the formula

d(ω, τ) = λ|ω∧τ |,

where λ ∈ (0, 1) and ω ∧ τ is the longest word which is an initial segment of both ω and τ .

Definition 4.8 ([20, §2]). A function φ : AN → R is called locally Hölder continuous16 if
there exist C, α > 0 such that for all ω, τ ∈ AN such that ω1 = τ1,

|φ(ω)− φ(τ)| ≤ Cdα(ω, τ).

A locally Hölder continuous function φ : AN → R is called summable if∑
a∈A

sup
[a]

eφ <∞.

16In [20], this was just called “Hölder continuous”, but the terminology “locally Hölder continuous” is
now standard, to distinguish it from the same definition with the requirement that ω1 = τ1 removed.
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A measure µ on AN is said to be a Gibbs state for φ if there exists P ∈ R such that for all
ω ∈ A∗ and τ ∈ [ω],

(4.15) µ([ω]) �× exp

|ω−1|∑
j=0

φ(σjτ)− P |ω|

 .

The number P is called the pressure of the family Φ.

Theorem 4.9 (Special case of [20, Corollary 2.7.5(c)]). If φ : AN → R is a summable locally
Hölder continuous function, then there exists a unique Gibbs measure µ for φ which is
invariant and ergodic under the shift map. Any other Gibbs measure is coarsely asymptotic
to µ.

4.3. Proof of Theorem 1.14. We may assume without loss of generality that µ is the
Gibbs measure which is invariant and ergodic under the shift map. For each ω ∈ A∗ let
Dω = Diam(π([ω])). By the Bounded Distortion Property, for all ω ∈ AN and n ∈ N we
have

Dω�n �×
n∏
j=1

|u′ωj
(π ◦ σj(ω))|

and so combining (1.9) with the ergodic theorem gives (4.4) for µ-a.e. ω ∈ AN. Moreover,
if G = A∗, then clearly (4.3) holds. So to complete the proof, we need to show that there
exist κ > 0 and r ∈ N such that (4.2) holds with G = A∗.

Suppose not; then for all r, n ∈ N there exist ω(r,n) ∈ A∗ and Lr,n ∈H such that

(4.16) µω(r,n)

({
τ ∈ AN : π([τ � |ω(r,n)|+ r]) ∩N (Lr,n, (1/n)Dω(r,n))

})
< 1/n.

Fix L0 ∈H , and for each r, n, let fr,n : Rd → Rd be a similarity such that fr,n(Lr,n) = L0,
|f ′r,n| = 1/Dω(r,n) , and fr,n ◦ uω(r,n)(x0) is bounded for x0 ∈ X fixed. Then by the Bounded
Distortion Property, (fr,n ◦ uω(r,n))r,n is a normal family, and so we can find convergent
subsequences

fr,n ◦ uω(r,n) −→
n
vr −→

r
v.

Let K be the limit set of (ua)a∈E. By hypothesis, K is not contained in any proper real-
analytic submanifold of Rd; in particular, K is not contained in v−1(L0). So choose τ ∈ AN

such that v ◦ π(τ) /∈ L0. There exists r0 such that d(v ◦ π([τ � r0]),L0) > 0. Since

d
(
vr ◦ π([τ � r]),L0

)
≥︸︷︷︸
r≥r0

d
(
vr ◦ π([τ � r0]),L0

)
−→
r
d
(
v ◦ π([τ � r0]),L0

)
> 0,

there exists r ≥ r0 such that d(vr ◦ π([τ � r]),L0) > 0. Since

1

Dω(r,n)

d
(
π([ω(r,n) ∗ τ � n]),Lr,n

)
= d
(
fr,n ◦ uω(r,n) ◦ π([τ � n]),L0

)
−→
n
d
(
vr ◦ π([τ � r]),L0

)
> 0,

for all sufficiently large n we have

d
(
π([ω(r,n) ∗ τ � r]),Lr,n

)
≥ (1/n)Dω(r,n) .
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Combining with (4.16) shows that

µω(r,n)([ω(r,n) ∗ τ � r]) < 1/n.

But by (4.15),

µω(r,n)([ω(r,n) ∗ τ � r]) �τ exp

(
r−1∑
j=0

φ ◦ σj(τ)− Pr

)
�×,τ,r 1.

Since n can depend on τ and r, this is a contradiction.
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