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Abstract

We employ thermodynamic formalism for the study of conformal iterated function systems

(IFS) S = {φi}i∈I with arbitrary overlaps, and of measures µ on limit sets Λ, which are pro-

jections of equilibrium measures µ̂ with respect to a certain lift map Φ on Σ+
I × Λ. No type of

Open Set Condition is assumed. We introduce a notion of overlap function and overlap number

for such a measure µ̂ with respect to S; and, in particular a notion of (topological) overlap

number o(S). These notions take in consideration the n-chains between points in the limit set.

We prove that o(S, µ̂) is related to a conditional entropy of µ̂ with respect to the lift Φ. Various

types of projections to Λ of invariant measures are studied. We obtain upper estimates for the

Hausdorff dimension HD(µ) of µ on Λ, by using pressure functions and o(S, µ̂). In particular,

this applies to projections of Bernoulli measures on Σ+
I . Next, we apply the results to Bernoulli

convolutions νλ for λ ∈ ( 1
2 , 1), which correspond to self-similar measures determined by com-

posing, with equal probabilities, the contractions of an IFS with overlaps Sλ. We prove that for

all λ ∈ ( 1
2 , 1), there exists a relation between HD(νλ) and the overlap number o(Sλ). We also

estimate o(Sλ) for certain values of λ.
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1 Introduction and outline.

Iterated function systems (IFS) have been studied by many authors, and a lot about their theory

is known. In many instances, systems which satisfy the Open Set Condition were studied. When

arbitrary overlaps of the images of the contractions are allowed, the theory is different and the

results from the case of Open Set Condition do not work anymore.

Let us consider a finite set I and an iterated function system S = {φi, i ∈ I} consisting of

injective conformal contractions φi defined on the closure of an open set V ⊂ Rq, q ≥ 1. Denote

by Σ+
I the one-sided space {ω = (ω1, ω2, . . .), ωj ∈ I, j ≥ 1}, with its shift endomorphism σ :

Σ+
I → Σ+

I , σ(ω) = (ω2, ω3, . . .). For an arbitrary sequence ω and for an integer n ≥ 1, let the

n-truncation ω|n be the finite sequence (ω1, . . . , ωn). Also by [i1 . . . in] we denote the n-cylinder

{ω ∈ Σ+
I , ω1 = i1, . . . , ωn = in}, n ≥ 1, i1, . . . , in ∈ I.
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Let denote now by Λ the fractal limit set of the iterated function system S, where:

Λ := ∪
ω∈Σ+

I

∩
n≥1

φω|n(V )

Since all the maps φi are contractions, we can define the canonical coding map π : Σ+
I → Λ, π(ω) =

lim
n→∞

φω1 ◦φω2 ◦ . . . ◦φωn(V ), for all ω = (ω1, ω2, . . .) ∈ Σ+
I . The singleton π(ω) will also be denoted

by φω1 ◦ φω2 ◦ . . ., as this infinite composition is in fact a point. We will denote the composition

φi1 ◦ . . . ◦ φim also by φi1...im , for m ≥ 1, ij ∈ I, 1 ≤ j ≤ m. The map π is called the canonical

projection onto the limit set Λ of the system S. Various properties of conformal IFS’s with overlaps

were studied by several authors, for eg in [4], [21], [15], [16], [12], etc. Let us fix now some more

terminology and notation.

Definition 1. By overlaps we mean intersections of type φi(Λ) ∩ φj(Λ) 6= ∅, i 6= j. If for a point

x ∈ Λ and an integer m ≥ 1, there exists a point ζ ∈ Λ and a finite sequence i1, . . . im ∈ I such that

φi1 ◦ . . . ◦ φim(ζ) = x, then ζ is called an m-root of x, and (i1, . . . , im) is called an m-chain from ζ

to x.

In general, the number of roots/overlaps depends on the point x ∈ Λ, so it is not constant.

Notice also that the m-chain from a certain root ζ to x is not uniquely defined, i.e there may exist

two different m-chains (i1, . . . , im) and (j1, . . . , jm) so that φi1...im(ζ) = φj1...jm(ζ) = x. Considering

the above, how can we define a good notion of average number of overlaps of the IFS S, and how

is such a notion dependent on a probability measure µ on Λ; also, how does such a number of

overlaps affect the Hausdorff dimension of µ? It is clear that we have to look at n-roots of points,

since the limit set Λ is invariant under the system S, i.e Λ = ∪
i∈I

φi(Λ), thus for k-iterations of S
we have Λ = ∪

i1,...,ik∈I
φi1...ik(Λ), for any k ≥ 2. In [12] we studied the effect, of the bounds for the

number of overlaps, on the Hausdorff dimension of the limit set Λ. This hints to the fact that the

overlap number should be given by an average rate of growth of the number of n-chains between

points in Λ. Another question is, what probabilities µ on Λ should be considered, and what roots

in Λ should we use. Some n-roots and n-chains which are non-generic with respect to µ and to a

lift map Φ : Σ+
I ×Λ→ Σ+

I ×Λ will thus be ignored when defining the overlap number relative to µ.

Besides the canonical coding projection π : Σ+
I → Λ, one can consider also the projection

π2 : Σ+
I ×Λ→ Λ, π2(ω, x) = x, and the projection π̃ : Σ+

I ×Σ+
I → Σ+

I ×Λ, π̃(ω, η) = (ω, πη); so we

obtain projections of σ-invariant measures on Σ+
I , Φ-invariant measures on Σ+

I × Λ or Φ̃-invariant

measures on Σ+
I ×Σ+

I (where Φ̃ is a lift of Φ to Σ+
I × Σ+

I ). In Theorem 1 we will prove that, for

Bernoulli measures, the corresponding projection measures on Λ are in fact the same.

We introduce a notion of overlap number o(S, µ̂ψ) associated to a Φ-invariant Gibbs state µ̂ψ

on Σ+
I ×Λ (and to its π2-projection µψ on Λ), and we use thermodynamic formalism to relate it to

the dimension of µψ. In Theorem 2 and Corollary 1 we show that the overlap number o(S, µ̂ψ)

is related to the folding entropy of µ̂ψ with respect to the lift map Φ. In particular, this applies

to Bernoulli measures on Σ+
I and their lifts on Σ+

I × Λ. When µ = µ0 is the projection of the

measure of maximal entropy µ̂0 from Σ+
I ×Λ, one obtains a topological overlap number o(S) of S,
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which quantifies the average level of overlapping in S, and indicates how far is S from satisfying

the Open Set Condition. By using Theorem 1, we compute in Corollary 2 the overlap number

o(S) as a limit of integrals over Σ+
I w.r.t the uniform Bernoulli measure ν( 1

|I| ,...,
1
|I| )

. And in general

for Bernoulli measures νp, Corollary 2 gives a simpler formula for o(S, µ̂p).

Next, in Theorem 3 we use the overlap number of µ̂ψ to obtain estimates for the Hausdorff

dimension of a set of full µψ-measure in Λ, which set is constructed explicitly. This gives up-

per bounds for HD(µψ), by using zeros of pressure functions associated to o(S, µ̂ψ), which are

computable in certain cases of interest.

In Section 3 we apply the results to the case of Bernoulli convolutions νλ for λ ∈ (1
2 , 1), where

νλ gives the distribution of the random series
∑
n≥0
±λn with the +,− signs taken independently and

with equal probabilities. In this case, one has an iterated function system with overlaps Sλ, whose

limit set is an interval Iλ, and νλ appears as the projection of the measure of maximal entropy

ν( 1
2
, 1
2

) from Σ+
2 to Iλ. Bernoulli convolutions have attracted a lot of attention (see [15]), starting

with Erdös [3] who showed that νλ is singular for λ−1 Pisot; then, continuing with the result of

Solomyak [21] about the absolute continuity of νλ for Lebesgue-a.e λ ∈ (1
2 , 1), and the result of

Przytycki and Urbański [17] that HD(νλ) < 1 for λ−1 Pisot, and other more recent results. In

Theorem 4 we find a relation between HD(νλ) and the overlap number o(Sλ), for all λ ∈ (1
2 , 1).

We show how to approximate o(Sλ) with integrals on Σ+
2 with respect to the uniform Bernoulli

measure ν( 1
2
, 1
2

). By using known results on HD(νλ), one obtains then upper estimates for o(Sλ); in

particular, one can estimate o(Sλ) more precisely for specific values of λ, like λ = 2−
1
m ,m ≥ 2 (i.e

1
λ non-Pisot), or λ =

√
5−1
2 (i.e 1

λ Pisot). In Corollary 3 we prove that o(Sλ) is strictly less than

2, for all λ ∈ (1
2 , 1). In the end, we obtain dimension estimates for biased Bernoulli convolutions

νλ,p, for λ ∈ (1
2 , 1) and p ∈ (0, 1). The results about overlap numbers can be applied also to other

conformal iterated function systems with overlaps.

2 Overlap numbers of measures and dimension estimates.

First, let us define an overlap lift function which allows to associate the dynamics of a map to our

IFS S. With regard to this function, the contractions φi appear as restrictions to cylinders [i], i ∈ I.

Definition 2. In the above setting, for the finite IFS S = {φi}i∈I , define the overlap lift map

Φ : Σ+
I × Λ→ Σ+

I × Λ, Φ(ω, x) = (σω, φω1(x)), (ω, x) ∈ Σ+
I × Λ

Let us now consider a Hölder continuous function ψ : Σ+
I × Λ → R. Since the lift map Φ is

distance-expanding in the first coordinate and contracting in the second coordinate, it follows that

it is expansive and we can apply the theory of equilibrium states (for eg [7], [22]). As ψ is Hölder,

there exists a unique equilibrium measure for ψ with respect to Φ on Σ+
I × Λ, denoted by µ̂ψ.

In particular, if we take a Hölder continuous function g : Λ → R and the associated function

ψg : Σ+
I ×Λ→ R, ψg(ω, x) = g(x), then we have the equilibrium measure µ̂ψg on Σ+

I ×Λ (relative

to Φ) and its projection (π2)∗(µ̂ψg) on Λ, where π2 is the projection on the second coordinate. In
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general this measure is different from the projection π∗(µ̄g◦π), where π : Σ+
I → Λ, π(ω) = φω1 ◦ . . .,

and where in general µ̄χ denotes the equilibrium measure of a Hölder continuous χ on Σ+
I (relative

to the shift σ).

For any n ≥ 1 and any (ω, x) ∈ Σ+
I × Λ, we have Φn(ω, x) = (σnω, φωn ◦ φωn−1 ◦ . . . ◦ φω1(x)).

Notice that, if η1, . . . , ηn are given and if φωn ◦ . . . ◦ φω1(x) = φηn ◦ . . . ◦ φη1(y), then from the

injectivity of the contractions φi, i ∈ I, there exists exactly one point y with this property. By

Definition 1, this means that, given the n-chain (ηn, . . . , η1) as above, the corresponding n-root y

is uniquely defined such that (ηn, . . . , η1) is an n-chain from y to φωn...ω1(x).

Given now a measure µ̂ψ as above, an arbitrary point (ω, x) ∈ Σ+
I × Λ, and τ > 0, define the

set of n-chains from points in Λ to φωn...ω1(x), which are τ -generic relative to µ̂ψ:

∆n

(
(ω, x), τ, µ̂ψ

)
= {(η1, . . . , ηn) ∈ In, ∃y ∈ Λ, φηn...η1(y) = φωn...ω1(x) and |Snψ(η, y)

n
−
∫

Σ+
I ×Λ

ψdµ̂ψ| < τ},

(1)

where η = (η1, . . . , ηn, ωn+1, ωn+2, . . .) ∈ Σ+
I , and where Snψ(η, y) = ψ(η, y) + ψ(Φ(η, y)) + . . . +

ψ(Φn(η, y)). We denote the cardinality of the set ∆n by bn, so

bn((ω, x), τ, µ̂ψ) := Card ∆n

(
(ω, x), τ, µ̂ψ

)
, ∀(ω, x) ∈ Σ+

I × Λ

Remark that, if (i1, . . . , in) ∈ ∆n

(
(ω, x), τ, µ̂ψ

)
with corresponding n-root y of φωn...ω1(x), then

∆n

((
(i1, . . . , in, ωn+1, ωn+2, . . .), y

)
, τ, µ̂ψ

)
= ∆n

(
(ω, x), τ, µ̂ψ

)
.

Definition 3. Given a Hölder continuous potential ψ on Σ+
I × Λ and τ > 0, we call bn(·, τ, µ̂ψ) :

Σ+
I × Λ→ N the n-overlap function associated to the measure µ̂ψ and τ .

The function bn(·, τ, µ̂ψ) is measurable and bounded, but in general discontinuous on Σ+
I × Λ.

In the sequel, we will use the folding entropy of a Φ-invariant measure µ̂ on Σ+
I × Λ; the notion

of folding entropy of a measure was introduced by D. Ruelle [18]. The folding entropy of a Φ-

invariant probability µ with respect to Φ : Σ+
I ×Λ→ Σ+

I ×Λ, is defined as the conditional entropy

FΦ(µ) := Hµ(ε|Φ−1ε), where ε is the point partition of the Lebesgue space Σ+
I × Λ. For entropy

production see also [18], [19], [13]. In [14], Parry introduced a notion of Jacobian of an invariant

measure for an endomorphism, and studied its properties; in particular, the Jacobian satisfies the

Chain Rule. Given a map f : X → X on a Lebesgue space X and an f -invariant probability µ,

such that f is essentially countable-to-one, we denote the Jacobian of µ by Jf (µ). From [14] and

[18] it follows that, in general, the folding entropy of a measure µ is equal to the integral of the

logarithm of the Jacobian of µ. So in our case, the folding entropy of µ̂ψ with respect to Φ is given

by:

FΦ(µ̂ψ) =

∫
Σ+
I ×Λ

log JΦ(µ̂ψ) dµ̂ψ

We investigate now the structure of the Φ-invariant probabilities on the product space Σ+
I ×Λ.

Let define also the lift homeomorphism Φ̃ on Σ+
I × Σ+

I , namely:

Φ̃ : Σ+
I × Σ+

I → Σ+
I × Σ+

I , Φ̃(ω, η) = (σω, ω1η)
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If π̃(ω, η) := (ω, π(η)), for (ω, η) ∈ Σ+
I × Σ+

I , then we obtain the following diagram of maps on

Σ+
I ×Σ+

I , respectively Σ+
I ×Λ, where both vertical maps below are equal to π̃ : Σ+

I ×Σ+
I → Σ+

I ×Λ:

Σ+
I × Σ+

I
Φ̃−→ Σ+

I × Σ+
I

↓ ↓
Σ+
I × Λ

Φ−→ Σ+
I × Λ

(2)

This diagram is commutative. Indeed, π̃ ◦ Φ̃(ω, η) = (σω, π(ω1η) = (σω, φω1 ◦ φη1 ◦ φη2 ◦ . . .); on

the other hand, Φ ◦ π̃(ω, η) = Φ(ω, φη1 ◦ φη2 ◦ . . .) = (σω, φω1 ◦ φη1 ◦ . . .). Hence π̃ ◦ Φ̃ = Φ ◦ π̃.

Also Φ̃ is a homeomorphism. Then as in [20], by using Hahn-Banach Theorem and Markov-

Kakutani Theorem and by approximating integrals of functions from C(Σ+
I ×Σ+

I ,R) with integrals

of functions g ◦ π̃ ◦ Φ̃n, n ∈ Z, for g ∈ C(Σ+
I × Λ,R), it follows that for any Φ-invariant probability

ν on Σ+
I × Λ, there exists a unique Φ̃-invariant probability ν̃ on Σ+

I × Σ+
I such that π̃∗(ν̃) = ν. In

particular, the equilibrium measure µ̂ψ of the Hölder continuous ψ on Σ+
I × Λ, is the π̃-projection

of the equilibrium measure µ̃ψ̃ of ψ̃ := ψ ◦ π̃ on Σ+
I ×Σ+

I . Hence, the measure of maximal entropy

µ̂0 on Σ+
I × Λ is the π̃-projection of the measure of maximal entropy µ̃0 for Φ̃ on Σ+

I × Σ+
I , i.e

µ̂0 = π̃∗(µ̃0)

Moreover, the topological entropy of the map Φ is equal to the topological entropy of the shift

σ : Σ+
I → Σ+

I , i.e log |I|, because in the second coordinate we have contractions, so the separated

sets are determined only by the expansion σ in the first coordinate. With the canonical distance

on Σ+
I , d(ω, η) =

∑
i≥1

|ωi−ηi|
2i

, the ball of center ω and radius 1
2n is the cylinder [ω1, . . . , ωn], so

B((ω, x), 1
2n ) = [ω1, . . . , ωn] × B(x, 1

2n ). If we consider n-roots of x and the measure of maximal

entropy µ̂0 w.r.t Φ, then all these n-roots are generic. Since in this case the overlap function bn

does not depend on τ , we denote it simply by bn(ω, x), for (ω, x) ∈ Σ+
I × Λ.

In general, there are several ways to define projections of invariant measures on the fractal

limit set Λ, depending whether we project σ-invariant measures on Σ+
I , or Φ-invariant measures on

Σ+
I ×Λ, or Φ̃-invariant measures on Σ+

I ×Σ+
I . In many cases, for example for Bernoulli measures,

these projections will be shown to coincide. Let us first consider a Hölder continuous potential ψ

on Σ+
I × Λ, and as above let µ̂ψ its (unique) equilibrium state on Σ+

I × Λ; if π2 : Σ+
I × Λ → Λ is

the projection on the second coordinate π2(ω, x) = x, denote the projection measure on Λ by:

µψ := (π2)∗(µ̂ψ) (3)

Consider next g a Hölder continuous potential on Σ+
I , and let µ̄g be its unique equilibrium measure

on Σ+
I . Then we can define two kinds of projection measures on Λ. The first type is µψ defined

above in (3), where ψ = g ◦ π1; so µψ = (π2)∗(µ̂ψ). The second type is the self-conformal measure:

π∗(µ̄g), (4)

where π : Σ+
I → Λ, π(ω1ω2 . . .) = φω1 ◦ φω2 ◦ . . . is the canonical coding map for Λ.
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We now prove that, for Bernoulli measures on Σ+
I , the two types of projection measures

defined above, are in fact equal. This will make our results about overlap numbers apply to

π-projections of Bernoulli measures onto Λ. Consider then a Bernoulli measure νp on Σ+
I deter-

mined by an arbitrary probabilistic vector p = (p1, . . . , p|I|). Thus the νp-measure of the cylinder

[ω1, . . . , ωn] = {η ∈ Σ+
I , η1 = ω1, . . . , ηn = ωn}, is equal to pω1 . . . pωn for any n ≥ 1 and ωi ∈ I, 1 ≤

i ≤ n. Consider the potential φ : Σ+
I → R, φ(ω1ω2 . . .) = log pω1 , for ω = (ω1, ω2, . . .) ∈ Σ+

I . Then

Snφ(ω) = φ(ω) + φ(σ(ω)) + . . .+ φ(σn−1(ω)) = log pω1 . . . pωn . By taking Bowen balls for the shift

σ (which are cylinders in our case), we see immediately that

Pσ(φ) = 0

Clearly, φ is Hölder continuous on Σ+
I and its unique equilibrium measure µ̄φ is equal to the

Bernoulli measure νp; this is due to the expression of µ̄φ on cylinders [ω1 . . . ωn] (see [2], [7]), i.e

1

C
eSnφ(ω)−nPσ(φ) ≤ µ̄φ(Bn(ω, ε)) ≤ CeSnφ(ω)−nPσ(φ),

so we conclude that

µ̄φ = νp

In case of Bernoulli measures, we can now prove that the various projection measures are equal

on Λ:

Theorem 1. In the above setting, let p = (p1, . . . , p|I|) an arbitrary probabilistic vector, and ψ :

Σ+
I × Λ→ R, ψ((ω1 . . .), x) := log pω1, with µ̂ψ denoting the unique equilibrium measure of ψ with

respect to Φ : Σ+
I × Λ→ Σ+

I × Λ. Then the following measures are equal on Λ:

π∗νp = π2∗µ̂ψ = (π2 ◦ π̃)∗(νp × νp),

where π2 : Σ+
I × Λ → Λ, π2(ω, x) = x, and π : Σ+

I → Λ is the canonical coding map, and where

π̃ : Σ+
I × Σ+

I → Σ+
I × Λ, π̃(ω, η) = (ω, π(η)).

Proof. In order to prove the first equality, let us define ψ̃ = ψ ◦ π̃, where π̃(ω, η) = (ω, πη). So ψ̃ is

a Hölder continuous potential on Σ+
I ×Σ+

I . Then recalling that Φ̃(ω, η) = (σω, ω1η) is an expansive

homeomorphism with specification property, it follows ([7]) that there exists a unique equilibrium

measure µ̃ψ̃ on Σ+
I ×Σ+

I . Also we have the projection π̃(ω, η) = (ω, πη) from Σ+
I ×Σ+

I to Σ+
I ×Λ.

Moreover, from definitions it can be seen that

π̃Φ̃(ω, η) = (σω, φω1(πη)) = Φ ◦ π̃(ω, η),

so π̃ ◦ Φ̃ = Φ ◦ π̃. This implies that π̃∗(µ̃ψ̃) = µ̂ψ, i.e the projection to Σ+
I × Λ of the equilibrium

measure of ψ̃ on Σ+
I × Σ+

I , is equal to the equilibrium measure of ψ. Hence from above,

π2∗(µ̂ψ)(A) = µ̂ψ(π−1
2 (A)) = µ̃ψ̃(Σ+

I × π
−1(A)) (5)
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On the other hand, notice that the Bowen ball for Φ̃ is given by Bn((ω, η), ε) = [ω1 . . . ωn] × Σ+
I ,

and for any 1 ≤ i ≤ n, we have Φ̃i(Bn((ω, η), ε)) = [ωi+1 . . . ωn]× [ωi . . . ω1]. From the Φ̃-invariance

of the equilibrium measure µ̃ψ̃, it follows that for any 1 ≤ i ≤ n,

µ̃ψ̃(Φ̃i(Bn((ω, η), ε))) = µ̃ψ̃([ω1 . . . ωn]× Σ+
I ) = µ̃ψ̃([ωi+1 . . . ωn]× [ωi . . . ω1]) (6)

However recall that π1∗µ̂ψ = µ̄φ = νp, and thus (π1 ◦ π̃)∗µ̃ψ̃ = νp. Therefore using also (6) we

obtain that, for any j ≥ 1 and any ω, η ∈ Σ+
I ,

µ̃ψ̃([ω1]× [η1 . . . ηj ]) = νp([ηj . . . η1ω1]) = pηj · . . . · pη1pω1 (7)

By adding over ω1 ∈ Σ+
I we obtain that, for any j ≥ 1 and for any η = (η1η2 . . .) ∈ Σ+

I ,

µ̃ψ̃(Σ+
I × [η1 . . . ηj ]) = pη1 . . . pηj = νp([η1 . . . ηj ]

But this works for any cylinder in Σ+
I . Also, for any Borel set A ⊂ Λ, we have π∗νp(A) =

νp(π−1(A)). Hence from the above, and by using also (5), we can infer that π2∗µ̂ψ is in fact a

self-conformal measure on Λ, namely,

π2∗µ̂ψ = π∗νp

We now prove the second equality. From before, Φ̃ : Σ+
I × Σ+

I → Σ+
I × Σ+

I is a homeomor-

phism which preserves µ̃ψ̃. Also notice that for any ω1, ω2, η1, . . . , ηm ∈ I, one has Φ̃([ω1ω2] ×
[η1 . . . ηm]) = [ω2]× [ω1η1η2 . . . ηm]. But, from (7), µ̃ψ̃([ω2]× [ω1η1 . . . ηm]) = pω2pω1pη1 . . . pηm , and

from the Φ̃-invariance of µ̃ψ̃, it follows that µ̃ψ̃([ω1ω2]× [η1 . . . ηm]) = µ̃ψ̃(Φ̃([ω1ω2]× [η1 . . . ηm])) =

pω1pω2pη1 . . . pηm . Hence by induction it follows similarly that, for any k,m ≥ 1,

µ̃ψ̃([ω1 . . . ωk]× [η1 . . . ηm]) = pω1 . . . pωk · pη1 . . . pηm

This means that µ̃ψ̃ = νp × νp, and that π∗νp = (π2 ◦ π̃)∗(νp × νp).

The equality of the projection measures for Bernoulli probabilities has useful consequences when

computing the associated overlap numbers, see Corollary 2.

For any conformal iterated function system S, we want to prove now that the exponential rate

of growth in n, of the number of generic n-chains/roots from ∆n, is approaching the folding entropy

of the measure µ̂ψ. In particular it follows that, on average, the number of n-chains associated to

the n-overlaps of Λ grows exponentially like enFΦ(µ̂0).

Theorem 2. Let a finite conformal IFS S = {φi, i ∈ I} with limit set Λ, and a Hölder continuous

potential ψ on the lift space Σ+
I ×Λ; denote the equilibrium measure of ψ on Σ+

I ×Λ by µ̂ψ. Then,

lim
τ→0

lim
n→∞

1

n

∫
Σ+
I ×Λ

log bn((ω, x), τ, µ̂ψ) dµ̂ψ(ω, x) = FΦ(µ̂ψ)

7



Proof. In our case the map Φ : Σ+
I × Λ → Σ+

I × Λ is distance-expanding in the first coordinate,

and distance contracting in the second coordinate. Let Bm(z, ε) denote the (m, ε)-Bowen ball

around z in the canonical product metric on the compact metric space Σ+
I × Λ with respect to

the endomorphism Φ; hence in particular it is expansive. Since µ̂ψ is the equilibrium measure of

a Hölder continuous potential on Σ+
I × Λ, we can apply the properties of equilibrium measures

with respect to expansive maps on compact metric spaces (see [7]). We will use first the ideas of

Theorem 1 from [10], giving the comparison between the (equilibrium) measure of various parts of

the preimage set. So, from [10] there exists a constant C > 0 such that, for any positive integer m

and for any sets A1, A2 satisfying A1 ⊂ Bm(z1, ε), A2 ⊂ Bm(z2, ε) and Φm(A1) = Φm(A2), we have:

1

C

µ̂ψ(A2)

eSmψ(z2)
≤

µ̂ψ(A1)

eSmψ(z1)
≤ C

µ̂ψ(A2)

eSmψ(z2)
(8)

Now the Jacobian of the measure µ̂ψ with respect to Φn gives the change in the measure of a

set by applying the map Φn (see [14]); hence for any integer n ≥ 1, µ̂ψ(Φn(A)) =
∫
A JΦn(µ̂ψ)dµ̂ψ,

for any measurable set A ⊂ Σ+
I × Λ, on which Φn is injective. But in fact, JΦn(µ̂ψ)(ω, x) =

lim
r→0

µ̂ψ(Φn(B((ω,x),r)
µ̂ψ(B((ω,x),r) , for µ̂ψ-a.e (ω, x) ∈ Σ+

I × Λ. However from the Φ-invariance of the measure µ̂ψ

it follows that µ̂ψ(Φn(A)) = µ̂ψ(Φ−n(Φn(A))), for any Borel set A. Hence we can apply the above

comparison between the various parts of the preimage set Φ−n(Φn(A)) for n arbitrary (i.e in fact

the comparison between various sets taken by different compositions φj1 ◦ . . . ◦ φjn to the same

image), in order to obtain that there exists a constant C > 0 independent of n such that:

∑
(η,y),Φn(η,y)=Φn(ω,x)

exp(Snψ(η, y))

C · exp(Snψ(ω, x))
≤ JΦn(µ̂ψ)(ω, x) ≤ C ·

∑
(η,y),Φn(η,y)=Φm(ω,x)

exp(Snψ(η, y))

exp(Snψ(ω, x))
, (9)

for µ̂ψ-a.e pair (ω, x) ∈ Σ+
I × Λ. Now, as the probability µ̂ψ is Φ-invariant on the product space

Σ+
I × Λ, it follows from (9) and from the properties of the folding entropy that

FΦ(µ̂ψ) =
1

n

∫
Σ+
I ×Λ

log JΦn(µ̂ψ)(ω, x)dµ̂ψ(ω, x) =

= lim
n→∞

1

n

∫
Σ+
I ×Λ

log

∑
Φn(η,y)=Φn(ω,x)

exp(Snψ(η, y))

exp(Snψ(ω, x))
dµ̂ψ(ω, x)

(10)

From Birkhoff Ergodic Theorem we know that, µ̂ψ((ω, x) ∈ Σ+
I ×Λ, |Snψ(ω,x)

n −
∫

Σ+
I ×Λ ψdµ̂ψ| >

τ/2) →
n→∞

0. Then, for any positive small number ξ, there exists an integer n = n(ξ) ≥ 1 so that

for all integers n ≥ n(ξ), we have

µψ((ω, x) ∈ Σ+
I × Λ, |Snψ(ω, x)

n
−
∫

Σ+
I ×Λ

ψdµ̂ψ| > τ/2) < ξ (11)

Recall that, if (η1, . . . , ηn) ∈ ∆n((ω, x), τ, µ̂ψ), then the n-chain (ηn, . . . , η1) uniquely determines an

n-root y of φωn...ω1(x). Hence with ηn+i = ωn+i, i ≥ 1, we can consider also the finite set

∆′n((ω, x), τ, µ̂ψ) = {(η, y) ∈ Σ+
I × Λ, Φn(η, y) = Φn(ω, x), |Snψ(η, y)

n
−
∫
ψ dµ̂ψ| < τ},
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and there exists a bijection between ∆n((ω, x), τ, µ̂ψ) and ∆′n((ω, x), τ, µ̂ψ), taking (η1, . . . , ηn) to

((η1, . . . , ηn, ωn+1, ωn+2, . . .), y). Thus bn((ω, x), τ, µ̂ψ) = Card∆′n((ω, x), τ, µ̂ψ). We now define the

following set of n-roots,

Γn((ω, x), τ, µ̂ψ) := {(η, y) ∈ Σ+
I × Λ,Φn(η, y) = Φn(ω, x), (η1, . . . , ηn) /∈ ∆n((ω, x), τ, µ̂ψ)}

Denote the sum corresponding to the roots from Γn((ω, x), τ, µ̂ψ) by

ϑn((ω, x), τ, µ̂ψ) :=
∑

(η,y)∈Γn((ω,x),τ,µ̂ψ)

exp(Snψ(η, y))

Let us now see what a typical Bowen ball for the map Φ : Σ+
I × Λ → Σ+

I × Λ looks like. If

d(·, ·) denotes the product metric, and if d(Φi(ω, x),Φi(η, y)) < ε, 0 ≤ i ≤ n − 1, then there exists

an integer N(ε) so that ωi = ηi, i = 1, . . . , n + N(ε), and d(x, y) < ε, since the maps φj are all

contractions. For an arbitrary n ≥ 2, we now consider a measurable partition of Σ+
I ×Λ modulo µ̂ψ,

into sets Lni , 1 ≤ i ≤ pn, such that for any 1 ≤ i ≤ pn there exists a point ζi ∈ Lni so that for any

point ζij ∈ Φ−n(ζi), 1 ≤ j ≤ pi,n, we have Lni ⊂ Φn(Bn(ζij , ε)). The integer pi,n ≥ 1 depends on i

for 1 ≤ i ≤ pn, and it is given by the number of n-roots of ζi in Λ, with respect to S. This is possible

to do if we take the sets Lni small enough. Then, let us denote by Lnij := Φ−n(Lni ) ∩Bn(ζij , ε), for

1 ≤ i ≤ pn, 1 ≤ j ≤ pi,n. Notice that if Φ(η, y) = Φ(η′, y′) = (ω, x) ∈ Σ+
I × Λ, then ση = ση′ = ω,

i.e η2 = ω2, . . ., and φη1(y) = φη′1(y′) = x. If η1 6= η′1, then d((η, y), (η′, y′)) ≥ d(η1, η
′
1) > ε0 > ε,

for some ε0 > 0. If η1 = η′1, then φη1(y) = φη′1(y′); but φη, η ∈ I are injective and thus y = y′.

This implies that the sets Lnij are mutually disjoint in i, j. We now decompose the integral of the

logarithm of the Jacobian of µ̂ψ with respect to Φn, along this partition with the sets Lnij , 1 ≤ i ≤
pn, 1 ≤ j ≤ pi,n. Therefore, for an arbitrary n ≥ 2, we have:

∫
Σ+
I ×Λ

log

∑
Φn(η,y)=Φn(ω,x)

exp(Snψ(η, y))

exp(Snψ(ω, x))
dµ̂ψ(ω, x) =

∑
1≤i≤pn

1≤j≤pi,n

∫
Lnij

log

∑
Φn(η,y)=Φn(ω,x)

exp(Snψ(η, y))

exp(Snψ(ω, x))
dµ̂ψ(ω, x)

(12)

Now, in regards to formula (9), we can write in general∑
(η,y)∈Φ−nΦn(ω,x)

eSnψ(η,y) =
∑

(η1,...,ηn)∈∆n((ω,x),τ,µ̂ψ)

eSnψ(η,y) + ϑn((ω, x), τ, µ̂ψ)

Denote also ρn(i, τ, µ̂ψ) :=
∑

j,ζij /∈∆′n(ζi1,τ,µ̂ψ)

µ̂ψ(Lnij). Thus by using (8), the definition of ∆′n((ω, x), τ, µ̂ψ)

and the fact that bn((ω, x), τ, µ̂ψ) = Card(∆′n((ω, x), τ, µ̂ψ)), we obtain that the above sum in (12)

is comparable to the sum:∑
i,j

µ̂ψ(Lnij) log
bn(ζij , τ, µ̂ψ)µ̂ψ(Lnij) + ρn(i, τ, µ̂ψ)

µ̂ψ(Lnij)
,

where we recall that the comparability constant C > 0 does not depend on n, nor on Lnij . Now

in general, if (η, y) ∈ ∆′n((ω, x), τ, µ̂ψ), and if 0 < ε < τ and (η, y) ∈ Bn(ζij , ε), then since the

9



potential ψ is Hölder continuous, it follows that∣∣∣Snψ(η, y)

n
− Snψ(ζij)

n

∣∣∣ ≤ v(τ),

for some small v(τ) > 0 where lim
τ→0

v(τ) = 0. Also, if K := supΣ+
I ×Λ |ψ|, then eSnψ(η,y) ≤ enK .

Notice in addition, that the set Φ−nΦn(ω, x) has at most |I|n elements in Σ+
I × Λ. Denote the

set of indices j corresponding to nongeneric roots by Q(n, i, τ, µ̂ψ) := {j, 1 ≤ j ≤ pi,n, ζij ∈
Γn(ζi1, τ, µ̂ψ)}. Then if j ∈ Q(n, i, τ, µ̂ψ), then 1

n |Snψ(ζij) −
∫

Σ+
I ×Λ ψdµ̂ψ| > τ . Hence we can use

the measure estimate in (11) to obtain that:

∑
1≤i≤pn, j∈Q(n,i,τ,µ̂ψ)

1

n

∫
Lnij

log

∑
(η,y)∈Φ−nΦn(ω,x)

exp(Snψ(η, y))

exp(Snψ(ω, x))
dµ̂ψ(ω, x) ≤ 1

n
ξ log(2K|I|n)

Therefore, from the comparison in (8) and from the above discussion, it follows that there exists a

positive constant C, independent of n, of the partition {Lni }1≤i≤pn and of the points ζi ∈ Lni , such

that:

1

n

∑
1≤i≤pn

j /∈Q(n,i,τ,µ̂ψ)

µ̂ψ(Lnij) log bn(ζi1, τ, µ̂ψ) +
1

n

∑
i,j /∈Q(n,i,τ,µ̂ψ)

µ̂ψ(Lnij) log(1 +
ρn(i, τ, µ̂ψ)

bn(ζi1, τ, µ̂ψ)µ̂ψ(Lnij)
)− v(τ)− Cξ

≤
∫

Σ+
I ×Λ

1

n
log

∑
(η,y)∈Φ−nΦn(ω,x)

exp(Snψ(η, y))

exp(Snψ(ω, x))
dµ̂ψ(ω, x) ≤

≤ 1

n

∑
1≤i≤pn

j /∈Q(n,i,τ,µ̂ψ)

µ̂ψ(Lnij) log bn(ζi1, τ, µ̂ψ) +
1

n

∑
i,j /∈Q(n,i,τ,µ̂ψ)

µ̂ψ(Lnij) log(1 +
ρn(i, τ, µ̂ψ)

bn(ζi1, τ, µ̂ψ)µ̂ψ(Lnij)
) + v(τ) + Cξ,

(13)

where we recall that ξ is the bound on the measure of non-generic points in (11). But in general,

log(1 + x) ≤ x for any x > 0, hence log(1 +
ρn(i,τ,µ̂ψ)

bn(ζi1,τ,µ̂ψ)µ̂ψ(Lnij)
) ≤ ρn(i,τ,µ̂ψ)

bn(ζi1,τ,µ̂ψ)µ̂ψ(Lnij)
. Therefore from

(11), the second sum in the right-hand term of (13) is less than ξ, which implies that:

∣∣∣ 1
n

∫
Σ+
I ×Λ

1

n
log

∑
(η,y)∈Φ−nΦn(ω,x)

exp(Snψ(η, y))

exp(Snψ(ω, x)
dµ̂ψ(ω, x)− 1

n

∫
Σ+
I ×Λ

log bn((ω, x), τ, µ̂ψ)dµ̂ψ(ω, x)
∣∣∣

≤ v(τ) + Cξ

Therefore, using the expression for the folding entropy FΦ(µ̂ψ) from (10), and the fact that ξ

converges to 0 when τ converge to 0 (and also that v(τ) converges to 0 at the same time), we

obtain the conclusion of the Theorem.

We now want to define a notion of overlap number of S associated to an equilibrium state

µ̂ψ. This notion will take into consideration the µ̂ψ-generic n-roots in Λ and all the corresponding

n-chains starting from them, for n large. In particular, we obtain a (topological) overlap number
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of the system S, which gives the average rate of growth of the number of n-chains from n-roots to

points in Λ.

Corollary 1. If S = {φi, i ∈ I} is an arbitrary finite conformal iterated function system with

overlaps and Λ is its limit set, and if ψ is a Hölder continuous potential on Σ+
I ×Λ with equilibrium

measure µ̂ψ, we call the overlap number of S with respect to µ̂ψ,

o(S, µ̂ψ) := exp
(

lim
τ→0

lim
n→∞

1

n

∫
Σ+
I ×Λ

log bn((ω, x), τ, µ̂ψ) dµ̂ψ(ω, x)
)

(14)

If µ̂0 is the measure of maximal entropy for Φ on Σ+
I ×Λ, then the (topological) overlap number

of S is given by:

o(S) := o(S, µ̂0) = exp
(

lim
n→∞

1

n

∫
Σ+
I ×Λ

log bn(ω, x) dµ̂0(ω, x)
)

= exp
(
FΦ(µ̂0)

)
=

= exp
( ∫

Σ+
I ×Λ

log lim
n→∞

µ̂0([ω2, . . . , ωn]× φω1(B(x, 1
2n ))

µ̂0([ω1, . . . , ωn])×B(x, 1
2n ))

dµ̂0(ω, x)
)

In the case of projections of Bernoulli measures, we can use now Theorem 1 to compute

more easily the overlap numbers. Let us take an arbitrary probability vector p = (p1, . . . , p|I|),

which gives a Bernoulli measure νp on Σ+
I . According to the discussion before Theorem 1, there

exists an equilibrium measure denoted µ̂p of the potential ψ((ω1, . . .), x) = log pω1 , (ω, x) ∈ Σ+
I ×Λ,

with respect to Φ on Σ+
I × Λ, so that π∗νp = π2∗µ̂p. The measure µ̂p is called the equilibrium

measure (with respect to Φ) associated to p. Denote also by h(p) :=
∑

1≤j≤|I|
pj log pj , and notice

that h(p) =
∫
ψ dµ̂p. Let us denote now by

βn(x) := Card{(η1, . . . , ηn) ∈ In, x ∈ φη1 ◦ . . . ◦ φηn(Λ)}, ∀x ∈ Λ

More generally, we define for τ > 0,

βn(x, τ,p) := Card{(η1, . . . , ηn) ∈ In, x ∈ φη1 ◦ . . . ◦ φηn(Λ), | log(pη1 . . . pηn)

n
− h(p)| < τ} (15)

As before if x ∈ φη1 ◦ . . .◦φηn(Λ), then there exists a unique point y ∈ Λ with x = φη1 ◦ . . .◦φηn(y).

When the system S satisfies Open Set Condition, then the overlap number o(S, µ̂p) is equal to 1.

We prove now the following simpler expression for the overlap number in the case of Bernoulli

projections for conformal IFS’s with overlaps S, by employing the function βn(·), that counts the

number of n-chains from n-roots in the limit set Λ:

Corollary 2. Let a conformal iterated function system with overlaps S = {φi, i ∈ I} with limit

set Λ, and consider p an arbitrary probabilistic vector, with µ̂p being the equilibrium measure on

Σ+
I × Λ associated to p. Then, the overlap number o(S, µ̂p) can be computed as:

o(S, µ̂p) = exp
(

lim
τ→0

lim
n

1

n

∫
Σ+
I

log βn(πω, τ,p) dνp(ω)
)

11



In particular, we obtain the (topological) overlap number of S, by integrating with respect to the

uniform Bernoulli measure ν( 1
|I| ,...,

1
|I| )

,

o(S) = exp
(

lim
n

1

n

∫
Σ+
I

log βn(πω) dν( 1
|I| ,...,

1
|I| )

(ω)
)

Proof. We prove here the second part of the statement, about the topological overlap number;

the first part follows similarly. Let us denote by p = ( 1
|I| , . . . ,

1
|I|), and consider µp = π∗νp. As in

Theorem 1 there exists a corresponding Φ-invariant measure µ̂p on Σ+
I ×Λ. We have from Theorem

1 that π∗νp = π2∗µ̂p, hence∫
Λ

log βn(x) dµp(x) =

∫
Σ+
I ×Λ

log βn ◦ π2(ω, x) dµ̂p(ω, x) =

∫
Σ+
I ×Λ

log βn ◦ π2 ◦ Φn(ω, x) dµ̂p(ω, x)

But notice that βn◦π2◦Φn(ω, x) = βn(φωn◦. . .◦φω1(x)) = Card{(η1, . . . , ηn) ∈ In, φωn◦. . .◦φω1(x) ∈
φη1 ◦ . . . ◦ φηn(Λ)} = bn(ω, x), for any (ω, x). Therefore, from the last displayed equality, it follows

that: ∫
Σ+
I

log βn(πω) dν( 1
|I| ,...,

1
|I| )

(ω) =

∫
Λ

log βn(x) dµp(x) =

∫
Σ+
I ×Λ

log bn(ω, x) dµ̂p(ω, x)

We now show that overlap numbers of conformal IFS and of equilibrium measures on Σ+
I × Λ,

can be used to estimate the dimensions of the associated projection measures on Λ. Denote the

Hausdorff dimension (for sets or measures) by HD. Recall that, in general for a measure µ on a

metric space X, its Hausdorff dimension is defined by:

HD(µ) := inf{HD(Z), Z ⊂ X with µ(X \ Z) = 0}

In the following Theorem, we give an upper estimate for HD(µψ), by estimating HD(Λ\Z(ψ)) for

some set Z(ψ) ⊂ Λ of µψ-measure zero with the help of the overlap number o(S, µ̂ψ). Moreover,

we will construct explicitly this set of µψ-measure zero Z(ψ) below.

Theorem 3. Consider a finite conformal iterated function system S = {φi}i∈I with limit set Λ,

π : Σ+
I → Λ be the canonical projection, and let a Hölder continuous potential ψ : Σ+

I × Λ → R,

with its (unique) equilibrium measure µ̂ψ; and let µψ := π2∗µ̂ψ be the projection as in (3). Then,

HD(µψ) ≤ t(S, ψ),

where t(S, ψ) is the unique zero of the pressure function with respect to the shift σ : Σ+
I → Σ+

I ,

t→ Pσ(t log |φ′ω1
(π(σω))| − log o(S, µ̂ψ))

Proof. Let denote by Rn(µ̂ψ, δ) the set of points (ω, x) ∈ Σ+
I × Λ for which the number of generic

roots satisfies bn((ω, x), τ, µ̂ψ) < 1
2 · e

n(FΦ(µ̂ψ)−δ). We want to show that the µ̂ψ-measure of these

sets converges to 0, when n → ∞. If this does not happen, then there exist an infinite sequence
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{kn}n and a number β > 0, such that µ̂ψ(Rkn(µ̂ψ, δ)) > β > 0,∀n ≥ 1. Then, for all pairs

(ω, x) ∈ Rkn(µ̂ψ, δ),
log bkn((ω, x), τ, µ̂ψ)

kn
<
− log 2

kn
+ FΦ(µ̂ψ)− δ

Therefore, after integrating with respect to µ̂ψ,∫
Rkn (µ̂ψ ,δ)

log bkn((ω, x), τ, µ̂ψ)

kn
dµ̂ψ(ω, x) < µ̂ψ(Rkn(µ̂ψ, δ)) · (FΦ(µ̂ψ)− δ − log 2

kn
)

We now use the last displayed inequality, and the properties of JΦn(µ̂ψ) from the proof of Theorem

2 (namely relation (9)); thus by adding the integral of
log bkn ((ω,x),τ,µ̂ψ)

kn
over Rkn and the integral of

log bkn ((ω,x),τ,µ̂ψ)
kn

over the complement of Rkn , we obtain that:∫
Σ+
I ×Λ

log bkn((ω, x), τ, µ̂ψ)

kn
dµ̂ψ(ω, x) < µ̂ψ(Rkn(µ̂ψ, δ)) · (FΦ(µ̂ψ)− δ − log 2

kn
) +

+

∫
Σ+
I ×Λ\Rkn (µ̂ψ ,δ)

log JΦkn (µ̂ψ)

kn
dµ̂ψ(ω, x)

(16)

On the other hand, from the Chain Rule we know that log JΦn(µ̂ψ)(ω, x) = log JΦ(ω, x) + . . . +

log JΦ(µ̂ψ)(Φn−1(ω, x)), for all n ≥ 1. Therefore from the Birkhoff Ergodic Theorem,

log JΦn(µ̂ψ)(ω, x)

n
→

n→∞
FΦ(µ̂ψ),

for µ̂ψ-almost all (ω, x) ∈ Σ+
I × Λ. Moreover, from (9) we have that

JΦn(µ̂ψ)(ω, x) ≤ C ·

∑
Φn(η,y)=Φn(ω,x)

eSnψ(η,y)

eSnψ(ω,x)
≤ C|I|n · en(C1−C2), (17)

for all n ≥ 1, where C2 ≤ ψ ≤ C1 on Σ+
I × Λ (as the potential ψ is continuous). This implies

that the sequence { 1
n log JΦn(µ̂ψ)(ω, x)}n is bounded by logC + log |I| + C1 − C1, independently

of (ω, x). Since log JΦ(µ̂ψ) is integrable, we obtain then from the Birkhoff Ergodic Theorem, that∫
Σ+
I ×Λ

log JΦn (µ̂ψ)(ω,x)
n dµ̂ψ(ω, x) →

n→∞
FΦ(µ̂ψ), and similarly,

γn(µ̂ψ, δ) :=

∫
Σ+
I ×Λ\Rn(µ̂ψ ,δ)

( log JΦn(µ̂ψ)

n
− FΦ(µ̂ψ)

)
dµ̂ψ(ω, x) =

=

∫
Σ+
I ×Λ

( log JΦn(µ̂ψ)

n
− FΦ(µ̂ψ)

)
· χΣ+

I ×Λ\Rn(µ̂ψ ,δ)
dµ̂ψ(ω, x) →

n→∞
0

Hence for any integer n ≥ 1,∫
Σ+
I ×Λ

log JΦn(µ̂ψ)

n
dµ̂ψ = γn(µ̂ψ, δ) + FΦ(µ̂ψ) · µ̂ψ(Σ+

I × Λ \Rn(µ̂ψ, δ))

Therefore, we obtain from (16) that:∫
Σ+
I ×Λ

log bkn((ω, x), τ, µ̂ψ)

kn
dµ̂ψ(ω, x) < µ̂ψ(Rkn(µ̂ψ, δ))(FΦ(µ̂ψ)− δ − log 2

kn
) + γkn(µ̂ψ, δ)+

+ FΦ(µ̂ψ) · µ̂ψ(Σ+
I × Λ \Rkn(µ̂ψ, δ)) = γkn(µ̂ψ, δ) + FΦ(µ̂ψ)− µ̂ψ(Rkn(µ̂ψ, δ)(δ +

log 2

kn
)
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However if µ̂ψ(Rkn(µ̂ψ, δ)) > β for n > n(δ) (for some integer n(δ) ≥ 1), then it follows from the

above and from the fact that: γn(µ̂ψ, δ)→ 0, that∫
Σ+
I ×Λ

log bkn((ω, x), τ, µ̂ψ)

kn
dµ̂ψ(ω, x) < FΦ(µ̂ψ)− β(δ +

log 2

kn
) + γkn(µ̂ψ, δ) < FΦ(µ̂ψ)

But then, this would give contradiction with Theorem 2. Hence, for δ > 0 fixed there exists a

sequence of positive numbers αn →
n→∞

0, such that the set Rn(µ̂ψ, δ) of points (ω, x) ∈ Σ+
I × Λ for

which bn((ω, x), τ, µ̂ψ) < 1
2e
n(FΦ(µ̂ψ)−δ), has µ̂ψ-measure that satisfies:

µ̂ψ(Rn(µ̂ψ, δ)) < αn, for n > n(δ)

Let denote now the complement of the set Rn(µ̂ψ, δ) in Σ+
I × Λ by:

Qn(µ̂ψ, δ) := Σ+
I × Λ \Rn(µ̂ψ, δ)

From the Φ-invariance of µ̂ψ on Σ+
I × Λ, and from the definition of Qn(µ̂ψ, δ), we obtain that

µ̂ψ(Φn(Qn(µ̂ψ, δ)) > 1− αn, n ≥ n(δ)

And from the definition of the set Φn(Qn(µ̂ψ, δ)), it follows that for any for point (η′, y′) ∈
Φn(Qn(µ̂ψ, δ)), there exist at least 1

2e
n(FΦ(µ̂ψ)−δ) indices i = (i1, . . . , in) ∈ In, such that y′ ∈

φi(Λ) = φi1 ◦ . . . ◦ φin(Λ). From above, the sequence µ̂ψ(Rn(µ̂ψ, δ)) converges to 0, so there exists

an increasing sequence of integers mn → ∞ such that: µ̂ψ(Rm1(µ̂ψ, δ)) <
1
2 , µ̂ψ(Rm2(µ̂ψ)) <

1
22 , . . . , µ̂ψ(Rmn(µ̂ψ, δ)) <

1
2n , . . .. Employing the sequence {mn}n, define now the following mea-

surable subsets of Λ,

Λn(µ̂ψ, δ) := π2

(
∩
s≥n

Φms(Qms(µ̂ψ, δ))
)
,

where π2 : Σ+
I ×Λ→ Λ is the canonical projection to the second coordinate. Moreover, denote the

union of the Borel subsets in Λ introduced above by,

Λ(µ̂ψ, δ) := ∪
n≥1

Λn(µ̂ψ, δ) = π2

(
∪
n≥1

∩
s≥n

Φms(Qms(µ̂ψ, δ))
)

Firstly, notice that from the definition of the sequence of integers {mn}n≥1, we have

µ̂ψ
(
∩
s≥n

Φms(Qms(µ̂ψ, δ))
)
≥ 1−

∑
s≥n

µ̂ψ
(
Σ+
I × Λ \ Φms(Qms(µ̂ψ, δ))

)
≥ 1−

∑
s≥n

1

2s
= 1− 1

2n−1

Therefore by taking the union of these sets over all n ≥ 1, recalling that µψ = π2∗(µ̂ψ), and

observing that µψ(Λ(µ̂ψ, δ)) = µ̂ψ
(
π−1

2 (Λ(µ̂ψ, δ))
)
≥ µ̂ψ

(
∪
n≥1

∩
s≥n

Φms(Qms(µ̂ψ, δ))
)
, we obtain that

µ̂ψ
(
∪
n≥1

∩
s≥n

Φms(Qms(µ̂ψ, δ))
)

= 1, hence µψ(Λ(µ̂ψ, δ)) = 1 (18)

We now investigate the influence of the number of roots on the Hausdorff dimension of the set

Λ(µ̂ψ, δ). Recall from above that, for any (η′, y′) ∈ Φn(Qn(µ̂ψ, δ)), there exist at least 1
2e
n(FΦ(µ̂ψ)−δ)

indices i = (i1, . . . , in) ∈ In, such that y′ ∈ φi(Λ) = φi1 ◦ . . . ◦ φin(Λ). Hence the points in the
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projection π2(Φn(Qn(µ̂ψ, δ))) are covered at least 1
2e
n(FΦ(µ̂ψ)−δ) times by images of Λ, through

compositions of n maps of type φi. Now, S satisfies the condition that there exists κ ∈ (0, 1) such

that |φ′i| < κ on Λ. It follows that, for any indices i1, . . . , in ∈ I, diam(φi1 ◦ . . . ◦ φin(Λ)) ≤ κn.

Thus, every point in π2(Φn(Qn(µ̂ψ, δ))) can be covered at least 1
2e
n(FΦ(µ̂ψ)−δ) times with sets of

diameter less than κn. For α ≥ 0, let us denote now by t(α) the unique zero of the following

pressure function with respect to the shift map σ : Σ+
I → Σ+

I ,

t→ Pσ(t|φ′ω1
(σω)| − α) (19)

Take an arbitrary number t > t(FΦ(µ̂ψ)− δ); we assume without loss of generality that FΦ(µ̂ψ) > 0

and that δ is small enough, so that δ < FΦ(µ̂ψ). Let define the pressure function

pδ(s) := P (s|φ′ω1
(σω)| − FΦ(µ̂ψ) + δ), s ∈ R

From assumption above, pδ(t) < 0. So from the conformality of the contractions φi, and by denoting

in general φη := φη1 ◦ . . . ◦ φηm for η = (η1, . . . , ηm) ∈ Im,m ≥ 1, it follows that for n large:∑
|ω|=n

|φ′ω|te−n(FΦ(µ̂ψ)−δ) ≤ e
n·pδ(t)

4 (20)

Now for any s ≥ n, from the above definition of Qms(µ̂ψ, δ), it follows that any point in Λn(µ̂ψ, δ)

can be covered with at least Ms := 1
2e
ms(FΦ(µ̂ψ)−δ) sets φη(V ) for |η| = ms, and every one of these

sets φη(V ) has diameter less than κms . Denote the collection of the above sets φη(V ) by Us, so Us
is a cover of Λn(µ̂ψ, δ). We want now to perform extractions from this cover Us of Λn(µ̂ψ, δ) (by

using its large multiplicity), in such a way that in the end we obtain a subcover which is minimal,

from the point of view of the sum of diameters raised to power t. This will be the subcover which

we shall use to estimate the Hausdorff dimension of the set Λn(µ̂ψ, δ). We have that the maps

φη are conformal, so we can apply the 5r-Covering Theorem (see [9]), where we consider 5U to

denote the ball with the same center as U and 5 times the radius of U . One can then extract a

subfamily Us(1) ⊂ Us, such that the sets 5U,U ∈ Us(1), cover Λn(µ̂ψ, δ), and so that the sets in

Us(1) are mutually disjoint. From conformality we have that there exists x, r and a fixed constant

C independent of U , such that B(x, r) ⊂ U ⊂ B(x,Cr). We then eliminate this subfamily Us(1).

Since it was disjointed, the multiplicity of the cover Us of Λn(µ̂ψ, δ) is still at least Ms − 1.

Therefore we can repeat this procedure and will extract a second subfamily Us(2) in Us \ Us(1),

which is disjointed and such that 5U,U ∈ Us(2) cover the set Λn(µ̂ψ, δ). After eliminating both

Us(1) and Us(2) from Us, the multiplicity of the cover is at least Ms − 2. By induction, we obtain

thus Ms subfamilies Us(j), which are disjointed and such that 5U,U ∈ Us(j), cover Λn(µ̂ψ, δ). We

then take, out of these subfamilies constructed above, the subfamily Us(j0) for which the expression∑
U∈Us(j0)

(diamU)t is minimal. Then from (20), we obtain:

∑
U∈Us(j0)

(diamU)t ≤ 1

Ms

∑
U∈Us

(diamU)t ≤ Cemspδ(t)/4 < 1, (21)

15



for some constant C > 0, independent of s, n large. Since for any s ≥ n, we can obtain such minimal

covers Us(j0) for the set Λn(µ̂ψ, δ) , and since t was chosen arbitrarily larger than t(FΦ(µ̂ψ)− δ), it

follows from (21) that:

HD(Λn(µ̂ψ, δ)) ≤ t(FΦ(µ̂ψ)− δ)

Now recall the definition of Λ(µ̂ψ, δ) = ∪
n≥1

Λn(µ̂ψ, δ). From the last estimate, we infer that

HD(Λ(µ̂ψ, δ)) ≤ t(FΦ(µ̂ψ)− δ)

Also from (18), µψ(Λ(µ̂ψ, δ)) = 1. Define now the set Λ(ψ) := ∩
δ>0

Λ(µ̂ψ, δ) = ∩
n≥1

Λ(µ̂ψ,
1
n). We have

then that µψ(Λ(ψ)) = 1. Let us now remark that from definition (19) of the zero t(α), and from the

continuity of the pressure function, we obtain that t(FΦ(µ̂ψ) − δ) → t(FΦ(µ̂ψ)) when δ → 0. But

from Theorem 2, we know that log o(S, ψ) = FΦ(µ̂ψ). Hence, by taking the set Z(ψ) := Λ \ Λ(ψ),

we have µψ(Z(ψ)) = 0; thus from the definition of HD(µψ), HD(µψ) ≤ HD(Λ \ Z(ψ)) ≤ t(S, ψ).

3 Applications to Bernoulli convolutions.

Consider the random series
∑
n≥0
±λn for λ ∈ (0, 1) where the +,− signs are taken independently

and with equal probability, and let us denote its distribution by νλ. This is called a Bernoulli

convolution, since it is in fact the infinite convolution of the atomic measures 1
2(δ−λn + δλn), for

n ≥ 0 (for eg [3], [21]). The probability measure νλ can be written also as the self-similar measure

associated to the probability vector (1
2 ,

1
2) and to the iterated function system

Sλ = {S1, S2},

where S1(x) = λx− 1, S2(x) = λx+ 1, x ∈ R. Hence, νλ satisfies the self-similarity relation:

νλ =
1

2
νλ ◦ S−1

1 +
1

2
νλ ◦ S−1

2

The case λ ∈ (0, 1
2) corresponds to Sλ having no overlaps, while the case when λ ∈ [1

2 , 1) corresponds

to the more difficult situation of the iterated function system Sλ having overlaps. We assume in the

sequel that λ ∈ (1
2 , 1), thus we are in the case when Sλ has overlaps. The limit set Λλ is in this case

the whole interval Iλ = [− 1
1−λ ,

1
1−λ ]. The measure νλ can be viewed as the projection πλ∗ν( 1

2
, 1
2

),

where ν( 1
2
, 1
2

) is the Bernoulli measure on Σ+
2 generated by the vector (1

2 ,
1
2), and πλ : Σ+

2 → Iλ is

the canonical coding map. It is well-known that νλ can be either singular or absolutely continuous.

Several results on Bernoulli convolutions are in the paper by Peres, Schlag and Solomyak [15]. The

case λ > 1
2 attracted a lot of interest, starting with Erdös who proved in [3] that, when 1

λ is a

Pisot number, then νλ is singular. Later Solomyak showed in [21] that the measure νλ is absolutely

continuous for Lebesgue-a.e λ ∈ [1
2 , 1). If νλ is absolutely continuous, then HD(νλ) = 1. From the

point of view of actual values of λ, Garsia proved in [5] that νλ is absolutely continuous when λ−1

is an algebraic integer in (1, 2), whose monic polynomial has other roots outside the unit circle and
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constant coefficient ±2; for example if λ−1 = 2
1
m , m ≥ 2, νλ is absolutely continuous. Przytycki

and Urbański proved in [17] that, if λ−1 is the inverse of a Pisot number in (1, 2), then HD(νλ) < 1.

In the special case when λ =
√

5−1
2 (the reciprocal of the Pisot number

√
5+1
2 ), Alexander and Zagier

[1] found precise estimates for HD(νλ), showing that 0.99557 < HD(νλ) < 0.99574. Hochman [6]

showed that HD(νλ) = 1 for λ outside a set of dimension zero.

For arbitrary λ ∈ (1
2 , 1), Theorem 4 below gives an upper estimate for HD(νλ), by using an

expression involving o(Sλ); this allows to obtain bounds also for the overlap numbers o(Sλ). In

particular, if HD(νλ) = 1 for some value λ ∈ (1
2 , 1), then o(Sλ) ≤ 2λ. In general, 1 ≤ o(Sλ) ≤ 2,

for any λ ∈ (1
2 , 1); we show that in fact, the overlap number o(Sλ) is never equal to 2 (even

if, for λ → 1 the overlaps become larger). For specific values of λ (for eg λ = 2−
1
m ,m ≥ 2, or

λ =
√

5−1
2 ), we obtain then more precise bounds for o(Sλ). First, for arbitrary λ ∈ (1

2 , 1), the

measure νλ is supported on the limit set of Sλ, which is the interval Iλ = [− 1
1−λ ,

1
1−λ ]; the coding

map is πλ : Σ+
2 → Iλ. Recall that for x ∈ Iλ and n ≥ 2, βn(x) denotes the number of n-chains

(ζ1, . . . , ζn) ∈ {1, 2}n from points in Iλ to x, i.e. x ∈ φζ1...ζn
(
[− 1

1−λ ,
1

1−λ ]
)
. From Corollary 2, in

the formula for o(Sλ) we integrate log βn with respect to the uniform Bernoulli measure ν( 1
2
, 1
2

).

Theorem 4. For all λ ∈ (1
2 , 1), the following relation is satisfied for the Bernoulli convolution νλ:

HD(νλ) ≤
log 2

o(Sλ)

| log λ|
,

where o(Sλ) denotes the overlap number of Sλ, which can be computed as:

o(Sλ) = exp
(

lim
n→∞

1

n

∫
Σ+

2

log βn(πλω) dν( 1
2
, 1
2

)(ω)
)

And from the above, o(Sλ) ≤ 2λHD(νλ).

Proof. From Theorem 1, in our case the measure νλ can be written as πλ∗ν( 1
2
, 1
2

) and it is equal to

the π2-projection of an equilibrium state µ̂ψ on Σ+
2 × Iλ. Therefore, from Corollary 2,

o(Sλ) = exp
(

lim
n→∞

1

n

∫
Σ+

2

log βn(πλω) dν( 1
2
, 1
2

)(ω)
)

Sλ is a system of similarities, thus from Theorem 3, HD(νλ) is bounded above by the unique zero

of the pressure function with respect to σ : Σ+
2 → Σ+

2 :

t→ Pσ(t log λ− o(Sλ)) = t log λ+ log 2− log o(Sλ)

Hence it follows that HD(νλ) ≤
log 2

o(Sλ)

| log λ| , and the corresponding bound for o(Sλ).

For any λ ∈ (1
2 , 1), the number of overlaps between images Si1...in(Iλ) is less than 2n, so

1 ≤ o(Sλ) ≤ 2. In fact, it turns out that the overlap number of Sλ is always strictly less than 2:
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Corollary 3. In the above setting, it follows that for all parameters λ ∈ (1
2 , 1),

o(Sλ) < 2

Proof. If o(Sλ) = 2, then from Theorem 4, it would follow that λ = 1. Hence contradiction.

For a large set of values of λ, by using Theorem 4 and the above mentioned results of [1], [5],

[21], we can obtain more precise estimates for the overlap number:

Corollary 4. a) For Lebesgue-almost all parameters λ in (1
2 , 1), we have

o(Sλ) ≤ 2λ

This happens for example when λ−1 is an algebraic number whose monic polynomial has other roots

outside the unit circle and constant coefficient ±2. In particular, if λ = 2−
1
m for m ≥ 2, then

o(Sλ) ≤ 2
m−1
m

b) In case λ =
√

5−1
2 , then o(Sλ) ≤ 2λ0.99557 < 1.25.

Let now p arbitrary in (0, 1) and denote by ν(p,1−p) the Bernoulli measure on Σ+
2 determined

by the vector (p, 1 − p). For λ ∈ (1
2 , 1), one defines the biased Bernoulli convolution νλ,p (see for

eg [16]), where νλ,p is the πλ-projection of ν(p,1−p) onto the limit set Iλ = [− 1
1−λ ,

1
1−λ ]. We have

as above the associated lift map Φλ : Σ+
2 × Iλ → Σ+

2 × Iλ. From the discussion before Theorem

1, there exists a Φλ-invariant equilibrium measure ν̂λ,p on Σ+
2 × Iλ, such that π2∗ν̂λ,p = νλ,p. For

integers 0 < k < n, denote by W (x, n, k) the set of n-chains (i1, . . . , in) ∈ {1, 2}n from points in Iλ

to x, having exactly k indices ij equal to 1. From (15), for any x ∈ Iλ, τ > 0 and n ≥ 2, we have

βn
(
x, τ | log

p

1− p
|, (p, 1− p)

)
=

∑
k, | k

n
−p|<τ

Card W (x, n, k)

Thus, for any parameter λ ∈ (1
2 , 1), it follows from Theorem 3 and Corollary 2 that:

Corollary 5. For all λ ∈ (1
2 , 1) and p ∈ (0, 1), the biased Bernoulli convolution νλ,p satisfies:

HD(νλ,p) ≤
log 2

o(Sλ,ν̂λ,p)

| log λ|
,

where o(Sλ, ν̂λ,p) denotes the overlap number of Sλ with respect to ν̂λ,p, which can be computed by:

o(Sλ, ν̂λ,p) = exp
(

lim
τ→0

lim
n→∞

1

n

∫
Σ+

2

log
∑

| k
n
−p|<τ

Card W (πλω, n, k) dν(p,1−p)(ω)
)
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supported in part by NSF Grant DMS 1361677.

18



References

[1] J. C. Alexander and D. Zagier, The entropy of a certain infinitely convolved Bernoulli measure,

J. Lond. Math. Soc. (2) 44 (1991) 121-134.

[2] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture

Notes in Mathematics, 470, Springer 1975.

[3] P. Erdös, On a family of symmetric Bernoulli convolutions, American J. Math., 61, 1939,

974-976.

[4] K. Falconer, The Hausdorff dimension of some fractals and attractors of overlapping construc-

tion, J. Stat. Physics, 47, 1-2, 1987.

[5] A. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc., 102

(1962), 409-432.

[6] M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of

Math. (2), 180 (2014), no. 2, 773-822.

[7] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,

Cambridge Univ. Press, London-New York, 1995.

[8] R. Mane, Ergodic theory and differentiable dynamics, Springer Verlag, Berlin, New York, 1987.

[9] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability.

Cambridge Studies in Adv. Math., 44, Cambridge Univ. Press, 1995.

[10] E. Mihailescu, On a class of stable conditional measures, Ergod. Th. Dynam. Sys. (2011), 31,

1499–1515.

[11] E. Mihailescu and B. Stratmann, Upper estimates for stable dimensions on fractal sets with

variable numbers of foldings, International Math. Res. Notices, no. 23, (2014), 6474-6496.
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