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Abstract

We consider invariant sets Λ of saddle type, for non-invertible smooth maps f , and equilib-

rium measures µφ associated to Hölder potentials φ on Λ. We define a notion of measure-theoretic

asymptotic degree of f |Λ : Λ→ Λ, with respect to the measure µφ on the fractal set Λ. In our

case, the equilibrium measure µφ is the unique linear functional in C(Λ)∗ tangent to the pressure

function P (·) : C(Λ)→ R at φ. In particular, for the measure of maximal entropy µ0 of f |Λ, we

obtain the asymptotic degree of f |Λ, which represents the average rate of growth of the number

of n-preimages of x that remain in Λ when n → ∞; notice that, in general, Λ is not totally

invariant for f . To this end, we will obtain first a formula for the Jacobians of the probability µφ,

with respect to arbitrary iterates fm,m ≥ 2. We then show that a formula for the topological

pressure P (φ) that holds in the expanding case, is no longer true on saddle sets. In the saddle

case we find a new formula for the pressure, involving weighted sums on preimage sets. We

also apply the asymptotic degrees, together with various pressure functionals, in order to obtain

estimates for the Hausdorff dimension of stable slices through certain sets of full µφ-measure in

the fractal Λ. In the end, we give also some concrete examples on saddle folded sets.
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1 Introduction and outline of main results.

We consider smooth maps f : M →M on a manifold M , which are hyperbolic and non-invertible on

saddle locally maximal sets Λ, and associated equilibrium (Gibbs) measures µφ, of Hölder potentials

φ on Λ. We investigate several notions related to them, like the Jacobian of such a measure, and

a new, measure-theoretic notion of ”degree” of f |Λ : Λ → Λ, in the case when the number of

f -preimages that remain in Λ of an arbitrary point x, is not constant, when x varies in Λ. We

will also look more closely at the pressure functional P (·), on the Banach space C(Λ) of continuous

real-valued functions on Λ, when Λ is such a saddle non-invertible fractal set.

The hyperbolic non-expanding and non-invertible case is very different from the expanding case,

and from the hyperbolic diffeomorphism case (for eg [5], [22], [8]). One difficulty is that branches

of inverse iterates do not contract small balls on Λ, which means that the machinery from the
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expanding case cannot be used here; in fact inverse branches dilate on stable directions. Another

difficulty is that, as the fractal set Λ is not necessarily totally invariant with respect to f , there

may be sudden variations in the number of f -preimages in Λ of a point x, when x ranges in Λ; also,

there exist in general many (possibly uncountably) local unstable manifolds through points in Λ.

We will obtain first a formula for the Jacobian of the equilibrium measure µφ with respect

to an arbitrary iterate fm,m ≥ 2, in this saddle case (the Jacobian is in fact a Radon-Nikodym

derivative). Using this, we obtain then a formula for the pressure P (φ) in terms of the preimage

sets of µφ-almost all points x, and of the folding entropy of µφ. This formula is different from the

one in the expanding case (for eg from [17]).

In general the map f is not constant-to-1 on the saddle fractal Λ. Thus, we want to determine

a good notion of ”degree” for the restriction f |Λ. We find one such notion of asymptotic degree

with respect to the measure µφ. If we consider in particular the measure of maximal entropy µ0 on

Λ, we obtain then the average logarithmic growth of the number of n-preimages that remain in Λ

(when n→∞), which can be considered as the ”degree” of f over Λ. By using the above notions

of asymptotic degree with respect to µφ, we will obtain next estimates for the dimension of stable

slices through certain explicitly constructed sets of full µφ-measure in Λ.

Hence, the asymptotic degrees, the formula for Jacobians of equilibrium states with respect to

arbitrary iterates and the associated methods, are useful in obtaining:

a) the rate of growth of the number of n-preimages remaining in Λ, when n→∞;

b) a formula for the pressure P (φ) in the saddle non-invertible case, in terms of the n-preimages

of x that remain in Λ, for µφ-a.e point x in Λ;

c) estimates on the Hausdorff dimension of certain slices through the fractal Λ.

The Jacobian of an invariant measure µ with respect to an endomorphism f of a Lebesgue space

X (see Parry, [14]) describes locally the ratio between µ(f(A)) and µ(A), given that an arbitrary

point in X may have several f -preimages and that µ(f(A)) = µ(f−1(f(A))). Thus the Jacobian

Jf (µ) is a Radon-Nikodym derivative between two absolutely continuous measures.

Here we are concerned with the case when f is a C2 endomorphism (i.e a non-invertible map)

on a manifold M , having a compact invariant set Λ ⊂M . We assume that the non-invertible map

f is hyperbolic on Λ (see [22]). The map f is not assumed expanding on Λ, thus we do not have the

machinery from the expanding case here. Hyperbolicity of f on Λ implies the existence of local

stable manifolds of size r (for some small r > 0), which depend only on their base point and are

denoted by W s
r (x), x ∈ Λ. Hyperbolicity implies the existence of local unstable manifolds W u

r (x̂)

which depend on whole past trajectories x̂ ∈ Λ̂, where Λ̂ is the inverse limit of the system (Λ, f |Λ).

Through points x ∈ Λ there may pass uncountably many local unstable manifolds of prehistories

of x in Λ̂, which is an important difference from the diffeomorphism case.

By basic set (or locally maximal set [6]), we mean a compact f -invariant set Λ ⊂M , such that

Λ = ∩
n∈Z

fn(U) for a neighbourhood U of Λ, and such that f is topologically transitive on Λ. Such

sets will also be referred to sometimes as folded fractals. The term basic set is not used in the sense
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of the Spectral Decomposition Theorem here. The fractal set Λ may not be totally f -invariant, so

it may happen that some of the f -preimages of x ∈ Λ do not remain in Λ. Examples of hyperbolic

basic sets for smooth endomorphisms appeared for instance in [1], [5], [16], [24], [25], [8].

In our case, the topological pressure is a convex and Lipschitz continuous function P : C(Λ)→ R,

on the Banach space C(Λ) of continuous real-valued functions on Λ (see for eg. [3], [6], [26], [27]). In

our hyperbolic case, there exists a unique equilibrium measure (Gibbs state) of a Hölder continuous

potential φ on Λ (see for eg [3], [6], [26]), and this measure will be denoted by µφ. The probability

measure µφ is maximizing in the Variational Principle for the topological pressure, i.e we have:

P (φ) = sup{hµ +

∫
Λ
φ dµ, µ is f − invariant probability on Λ} = hµφ +

∫
Λ
φ dµφ

Then the positive linear functional Fφ from the dual space C(Λ)∗, represented by the equilibrium

measure µφ by the Riesz Representation Theorem (for eg [18]), is in fact tangent to the convex

pressure function P at φ; hence, for every continuous function ψ ∈ C(Λ) we have (for eg. [26], [27]),

µφ(ψ) + P (φ) ≤ P (φ+ ψ)

In our case the entropy map µ → hµ associated to f |Λ, is upper semi-continuous (see [6], [26]).

Hence by using properties of Legendre-Fenchel transforms and a form of Hahn-Banach Theorem,

it follows that conversely, every linear functional F ∈ C(Λ)∗ tangent to P (·) at φ, is in fact given

by the equilibrium measure µφ (which is the only equilibrium measure of φ, in our hyperbolic

case). Also, Walters showed that the pressure function P (·) has a unique tangent functional at φ

if and only if P (·) is Gâteaux differentiable at φ (see [27]). It can be shown, moreover, that the

equilibrium measure µφ is mixing on the fractal set Λ.

If µ is an f -invariant probability measure on Λ, then one can define the folding entropy Ff (µ),

as the conditional entropy Hµ(ε|f−1ε), where ε is the single point partition and f−1ε is the fiber

partition associated to f on Λ, see [21] (also [7]); we may denote it also by F (µ) if no confusion

arises. Many ergodic properties of the measure-preserving transformation f on the probabilistic

space (Λ, µ), can also be expressed in terms of the spectral properties of the associated Koopman

operator Uf : L2(µ)→ L2(µ), Uf (χ) = χ ◦ f, χ ∈ L2(µ) (see for eg. [26], [18]).

The main results of the paper are the following:

In Theorem 1 we will prove a formula (and definition) for a measure-theoretic asymptotic

degree with respect to the probability µφ. This degree involves only those n-preimages of x (i.e

preimages with respect to fn) which behave well with respect to µφ; the number of these well-

behaved n-preimages of x is denoted by dn(x, µφ, τ) (see Definition 3). Notice that the dynamics

of f on Λ is basically the same as that of fn on Λ; the iterate fn invariates Λ and the measure µφ.

So in a sense, one may take any iterate of f and study the preimages of points with respect to that

iterate. The map f may not be constant-to-1 on Λ.
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Theorem 1 (Measure-theoretic asymptotic degree for equilibrium states). Let f : M → M be

a C2 non-invertible map and Λ a basic set for f so that f is hyperbolic on Λ and does not have

critical points in Λ. Let also φ be a Hölder continuous potential on Λ and µφ be the equilibrium

measure associated to φ. Then we have the following formula:

lim
τ→0

lim
n→∞

1

n

∫
Λ

log dn(x, µφ, τ) dµφ(x) = Ff (µφ)

In Corollary 1 we will use the formula proved in Theorem 1 in order to calculate the average

value with respect to µ0, of the logarithmic growth of the number of n-preimages of x in Λ.

As Λ is not necessarily totally invariant, the measurable (but possibly discontinuous) function

dn(x) := Card(f−n(fn(x)) ∩ Λ), x ∈ Λ,

may be non-constant on Λ; see the examples in [8]. It is natural to study the average value of

log dn(·).

Corollary 1 (Average rate of growth of the number of n-preimages dn(·), when n→∞). In the

setting of Theorem 1, denote by µ0 the unique measure of maximal entropy for f on Λ. If dn(x)

denotes the cardinality of f−n(fnx) ∩ Λ for n ≥ 1, then we have:

lim
n→∞

1

n
log dn(x) = Ff (µ0), µ0 − a.a x ∈ Λ, and lim

n→∞

1

n

∫
Λ

log dn(x) dµ0(x) = Ff (µ0)

Corollary 1 allows us to make the following:

Definition 1. In the setting of Theorem 1, define the asymptotic logarithmic degree of f |Λ
(with respect to the measure of maximal entropy µ0) by: al(f,Λ) := lim

n

1
n

∫
Λ log dn(x)dµ0(x). The

asymptotic degree of f |Λ is then defined as the number

d∞(f,Λ) := eal(f,Λ)

Similarly we define the asymptotic degree with respect to the measure µφ on Λ, as

d∞(f, µφ) := exp
(

lim
τ→0

lim
n→∞

1

n

∫
Λ

log dn(x, µφ, τ) dµφ(x)
)

In particular if f |Λ is d-to-1, then d∞(f,Λ) = d, and F (µ0) = log d.

To prove Theorem 1 we will need Proposition 1 which gives a formula for the Jacobian of an

equilibrium measure µφ, with respect to an arbitrary iterate fn; the estimates do not depend on n.

Proposition 1 (Jacobians of equilibrium measures with respect to iterates of endomorphisms).

Let f be a C2 hyperbolic endomorphism on a folded basic set Λ, which has no critical points in Λ;

let also φ be a Hölder continuous potential on Λ and let µφ the unique equilibrium measure of φ on

Λ. Then there exists a comparability constant C > 0 independent of m ≥ 2 and of x ∈ Λ, such that

for µφ − a.e x ∈ Λ, the Jacobian of µφ with respect to the iterate fm satisfies:

C−1 ·

∑
ζ∈f−m(fm(x))∩Λ

eSmφ(ζ)

eSmφ(x)
≤ Jfm(µφ)(x) ≤ C ·

∑
ζ∈f−m(fm(x))∩Λ

eSmφ(ζ)

eSmφ(x)
(1)
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Recall now (see [17]) that in the expanding case we have the following formula for pressure:

Theorem (Relation between preimage sets and pressure in the expanding case, [17]). Let f :

X → X a topologically transitive open distance expanding map, then for every Hölder continuous

potential φ : X → R and every x ∈ X we have the equality

P (φ) = lim
n→∞

1

n
log

∑
y∈f−n(x)

eSnφ(y)

In our saddle set setting we obtain however the following different formula for the pressure:

Theorem 2 (Relation between preimage sets and pressure in the saddle non-invertible case). In

the setting of Proposition 1 and for an arbitrary Hölder continuous potential φ on Λ, we have for

µφ-a.e x ∈ Λ,

P (φ) = lim
n→∞

1

n
log

∑
y∈f−n(fn(x))∩Λ

eSnφ(y) − log d∞(f, µφ) + hµφ

The difference in the formula above for the saddle case, is due to the negative Lyapunov ex-

ponents. The Remark after the proof of Theorem 2 shows that, in general Ff (µφ) 6= hµφ . Once

we have a formula for the pressure on a saddle set for a non-invertible map, we can obtain the

measure-theoretic entropy hµ for any f -invariant measure µ on Λ, by a reverse Variational Princi-

ple (see [26]), using the fact that: hµ = inf
{
P (ψ) −

∫
Λ ψ dµ, ψ Hölder continuous on Λ

}
, as the

entropy map is upper semi-continuous in our case.

Another application will be in the next Corollary, where we compute the µφ-measure of an

arbitrary ball centered on Λ; for a map f : X → X on a metric space X, we denote by Bn(x, ε) :=

{y ∈ X, d(f iy, f ix) < ε, i = 0, . . . , n− 1}, x ∈ X, ε > 0, an arbitrary dynamical (Bowen) ball.

Corollary 2. In the same setting as in Proposition 1, assuming f is conformal on both stable and

unstable local manifolds, there is C > 0 such that the µφ-measure of an arbitrary ball is given by:

1

C

∫
Bn(z,ε)

∑
ζ∈f−m(fm(x))∩Λ

eSmφ(ζ)

eSmφ(x)
dµφ(x) ≤ µφ(B(fmz, ρ) ≤ C

∫
Bn(z,ε)

∑
ζ∈f−m(fm(x))∩Λ

eSmφ(ζ)

eSmφ(x)
dµφ(x),

where ε is fixed and m,n are the largest integers s.t ε|Dfms (z)| ≥ ρ and ε|Dfn−mu (fmz)|−1 ≥ ρ, for

any z ∈ Λ, ρ > 0.

We also apply the asymptotic degrees in order to obtain estimates for the Hausdorff dimension

of various slices through Λ. We recall that from Definition 1, that log d∞(f, µφ) = F (µφ); in

particular log d∞(f,Λ) = F (µ0), where µ0 is the measure of maximal entropy of f |Λ. If Φs(x) :=

log |Dfs(x)|, x ∈ Λ, then for any fixed number γ ≤ htop(f |Λ), we have that the function

t 7→ P (tΦs − γ),

is strictly decreasing and convex, it has a value larger or equal than 0 when t = 0, and converges

to −∞ when t→∞. Hence this pressure function has a unique zero (called also a solution of the
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Bowen-type equation, [2]), which will prove important in dimension estimates. In the next result,

given the basic saddle set Λ for the map f , we denote by Esx the stable tangent space at x ∈ Λ;

hence Df |Esx is a linear contraction.

Theorem 3 (Dimension estimates for certain stable slices). In the setting of Theorem 1, assume

that f is conformal on local stable manifolds over the saddle basic set Λ, and that µφ is the equi-

librium measure of a Hölder continuous potential φ on Λ; denote Φs(y) := log |Df |Es(y)|, y ∈ Λ.

Then there exists a Borel set K(µφ) ⊂ Λ such that µφ(K(µφ)) = 1, and for every x ∈ Λ we have:

HD
(
W s
r (x) ∩ K(µφ)

)
≤ tsd∞(f,µφ),

where tsd∞(f,µφ) is the unique zero of the pressure function t→ P (tΦs − log d∞(f, µφ)).

We remark that the set K(µφ) is constructed explicitly in the proof of Theorem 3 above; and

that it is not contained necessarily in the generic set of the stable potential Φs. In fact, we obtain

a whole class of sets of type K(µφ), according to various conditions.

In Section 3 we will give also several examples of hyperbolic basic fractal sets, and apply the

results above to the equilibrium measures on them. Such examples may be obtained for example

from parametrized families with transversality conditions; from solenoids with self-intersections; or

from perturbations of some known hyperbolic endomorphisms.

2 Main results and proofs.

In the sequel, let a smooth (say C2) non-invertible map f : M → M defined on a compact

Riemannian manifold, and let Λ be a fixed basic set of f , such that f is hyperbolic on the

compact Λ. In general, the fractal set Λ is not totally invariant, i.e we do not always have

f−1(Λ) = Λ. As said before, hyperbolicity is understood here in the sense of endomorphisms

(i.e non-invertible maps), i.e there exists a continuous splitting of the tangent bundle into stable

and unstable directions, over the inverse limit Λ̂ consisting of sequences of consecutive preimages,

Λ̂ = {x̂ = (x, x−1, x−2, . . . , ) with x−i ∈ Λ, f(x−i) = x−i+1, i ≥ 1}. For any x̂ ∈ Λ̂ we have a stable

space Esx and an unstable space Eux̂ . There is a small r > 0 and local stable/unstable manifolds,

W s
r (x) and W u

r (x̂), for any x̂ ∈ Λ̂. Denote also

Dfs(x) := Df |Esx , x ∈ Λ and Dfu(x̂) := Df |Eux̂ , x̂ ∈ Λ̂ (2)

The endomorphism f is assumed to have stable directions too, so it is non-expanding. More

about hyperbolicity for endomorphisms can be found for example in [22], [10], etc. When the map

is not invertible, there appear significantly different phenomena and different techniques than in

the case of diffeomorphisms (as for example in [1], [20], [25], [8]).
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We will use in the sequel the notion of Jacobian of an invariant measure introduced by Parry

in [14]. Let f : M → M be a continuous endomorphism on the manifold M and µ an f -invariant

probability onM . Assume also that f is essentially countable-to-one, i.e that the canonical measures

(mod 0) of µ with respect to the partition into fibers f−1(ε), are purely atomic (see [14]); in other

words, modulo µ the fibers f−1(x) are countable, f is measurable and positively non-singular with

respect to µ, i.e µ(A) = 0 implies µ(f(A)) = 0. Then, as shown by Rohlin ([19], [14]), there

exists a measurable partition ξ = (A0, A1, . . .) so that f is injective on each Ai, and the push-

forward measure ((f |Ai)−1)∗µ is absolutely continuous on Ai with respect to µ. The respective

Radon-Nykodim derivative, will be called the Jacobian of µ with respect to f :

Jf (µ)(x) =
dµ ◦ (f |Ai)

dµ
(x), µ− a.e on Ai, i ≥ 0

Notice that from the f -invariance of µ, we have Jf (µ)(x) ≥ 1, µ − a.e x ∈ M . Consider now in

general f : M → M a C1 endomorphism and µ an f -invariant probability on the manifold M ;

then the folding entropy Ff (µ) of µ is the conditional entropy: Ff (µ) := Hµ(ε|f−1ε), where ε is

the partition into single points. From [19], we can use the measurable single point partition ε

in order to desintegrate µ into a canonical family of conditional measures µx on the finite fiber

f−1(x) for µ-a.e x. Hence the entropy of the conditional measure of µ restricted to f−1(x) is

H(µx) = −Σy∈f−1(x)µx(y) logµx(y). From [14] we have also Jf (µ)(x) = 1
µf(x)(x) , µ− a.e x, hence

Ff (µ) =

∫
log Jf (µ)(x)dµ(x) (3)

Definition 2. Given two positive functions Q1(n, x), Q2(n, x), we will say that they are compa-

rable if there exists a positive constant C so that 1
C ≤

Q1(n,x)
Q2(n,x) ≤ C for all n, x.

Recall that, given a continuous function f : X → X on a compact metric space X, the topological

pressure P (φ) of a continuous real-valued function φ ∈ C(X), is defined by

P (φ) := lim
ε→0

lim sup
n→∞

1

n
log inf{

∑
z∈F

eSnφ(z), F ⊂ X such that ∪
z∈F

Bn(z, ε) = X},

with Bn(z, ε) = {y ∈ X, d(f iz, f iy) < ε, 0 ≤ i ≤ n−1} and Snφ(z) =
∑

0≤i≤n−1
φ(f iz), z ∈ X,n ≥ 1.

If f : X → X is a homeomorphism on X having the specification property, then the equilibrium

measure µφ of the Hölder potential φ ∈ C(X), is defined as the unique measure which maximizes

in the Variational Principle for topological pressure (see for eg [6], [26]), namely:

P (φ) = sup{hµ +

∫
φdµ, µ probability measure on X}

It was shown (see for eg [3], [6]), that the probability measure µφ is ergodic and satisfies the esti-

mates Aεe
Snφ(x)−nP (φ) ≤ µφ(Bn(x, ε)) ≤ Bεe

Snφ(x)−nP (φ), where Bn(x, ε) := {y ∈ X, d(f iy, f ix) <

ε, i = 0, . . . , n − 1}, P (φ) denotes the topological pressure of φ with respect to f , and where the

positive constants Aε, Bε are independent of x, n.
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The general homeomorphism framework above allows us to apply this result to equilibrium

measures on the inverse limit Λ̂. If π : Λ̂→ Λ, π(x̂) := x, x̂ ∈ Λ̂ is the canonical projection and if φ

is a Hölder potential on Λ, then µφ is the unique equilibrium measure for φ on Λ if and only if µφ =

π∗µφ◦π, where µφ◦π is the unique equilibrium measure of φ◦π on the compact metric space Λ̂; here

the homeomorphism f̂ : Λ̂→ Λ̂ is the shift map defined by f̂(x, x−1, x−2, . . .) = (f(x), x, x−1, . . .).

So for the non-invertible map f and the measure µφ on Λ, we obtain the same estimates as above:

Aεe
Snφ(x)−nP (φ) ≤ µφ(Bn(x, ε)) ≤ BεeSnφ(x)−nP (φ),

with positive constants Aε, Bε independent of n, x, where the consecutive sum Snφ is defined as

Snφ(x) := φ(x)+ . . .+φ(fn−1(x)), for x ∈ Λ, n ∈ N. In particular, if φ ≡ 0, we obtain the measure

of maximal entropy µ0.

Let us give now the proof of the formula for the asymptotic logarithmic degree with respect to

µφ, on the set Λ; this degree takes into consideration those n-preimages which behave well with

respect to µφ. We assume for the moment that Proposition 1 is known; its proof is independent of

Theorem 1 and will be given later in the paper. First, for an f -invariant probability µ on Λ, τ > 0

small, n ∈ N and x ∈ Λ let us define the finite set:

Gn(x, µ, τ) := {y ∈ f−n(fnx) ∩ Λ, s.t |Snφ(y)

n
−
∫
φdµ| < τ}, (4)

Definition 3. In the above setting, denote by dn(x, µ, τ) := Card Gn(x, µ, τ), x ∈ Λ, n > 0, τ > 0.

The function dn(·, µ, τ) is measurable, nonnegative and finite on Λ.

Proof of Theorem 1. First let us recall formula (3) for an arbitrary f -invariant measure

µ, Ff (µ) =
∫

Λ log Jf (µ)(x)dµ(x). From the Chain Rule for Jacobians, we have Jfn(µ)(x) =

Jf (µ)(x) . . . Jf (µ)(fn−1(x)), for µ-a.e x ∈ Λ, for any n ≥ 1. On the other hand, since µ is f -

invariant, we know that
∫

log Jf (µ)(x)dµ(x) =
∫

log Jf (µ)(f(x))dµ(x) =
∫

log Jf (µ)(fkx)dµ(x),

for all k ≥ 1. These facts imply that for any n ≥ 1,

Ff (µ) =
1

n

∫
log Jfn(µ)(x)dµ(x) (5)

As we saw above, since f is hyperbolic on Λ, then any Hölder continuous potential φ on Λ

has a unique equilibrium measure µφ on Λ. Therefore from Proposition 1, since the constant C is

independent of n we obtain that:

Ff (µφ) = lim
n→∞

1

n

∫
Λ

log

∑
y∈f−n(fn(x))∩Λ

eSnφ(y)

eSnφ(x)
dµφ(x) (6)

Now since Λ is compact, each point x ∈ Λ has only finitely many f -preimages in Λ, i.e there

exists a positive integer d s.t Card(f−1x) ≤ d, x ∈ Λ. Since µφ is an ergodic measure (as it is an

equilibrium state) and from Birkhoff Ergodic Theorem we obtain that

µφ

(
x ∈ Λ, |Snφ(x)

n
−
∫
φdµ| > τ/2

)
→

n→∞
0,
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for any small τ > 0. Thus for any η > 0 there exists a large integer n(η) such that for n ≥ n(η),

µφ(x ∈ Λ, |Snφ(x)

n
−
∫
φdµ| > τ/2) < η (7)

Let us now take a point x ∈ Λ with |Snφ(x)
n −

∫
φdµ| < τ . From Definition 3 we have

en(
∫
φdµφ−τ)dn(x, µφ, τ) + rn(x, µφ, τ)

en(
∫
φdµ+τ)

≤

∑
y∈f−n(fnx)∩Λ

eSnφ(y)

eSnφ(x)
≤
en(

∫
φdµφ+τ)dn(x, µφ, τ) + rn(x, µφ, τ)

en(
∫
φdµφ−τ)

,

(8)

where rn(x, µφ, τ) is the remainder
∑

y∈f−nfn(x)\Gn(x,µφ,τ)

eSnφ(y). In order to simplify notation, we

will also denote rn(x, µφ, τ) by rn when no confusion can arise.

Given n large, let us consider now a partition (Ani )1≤i≤K of Λ (modulo µφ) so that for each

0 ≤ i ≤ K, there exists a point zi ∈ Ani so that for any n-preimage ξij ∈ f−n(zi) ∩ Λ, 1 ≤ j ≤ dn,i,

we have Ani ⊂ fn(Bn(ξij , ε)), 1 ≤ j ≤ dn,i, 1 ≤ i ≤ K. For the above partition, let us denote by Anij
the part of the n-preimage of Ani which belongs to the Bowen ball Bn(ξij , ε), i.e

Anij := f−n(Ani ) ∩Bn(ξij , ε), 1 ≤ j ≤ dn,i, 1 ≤ i ≤ K

Since Ani were chosen disjoint, also the pieces of their preimages, Anij , i, j, are mutually disjoint.

We will decompose the integral in (6) over the sets Anij . Notice that if y, z ∈ Anij , then since φ

is Hölder continuous and Anij ⊂ Bn(ξij , ε), it follows that we have

|Snφ(y)− Snφ(z)| ≤ C(ε), (9)

where C(ε) is a positive function with C(ε) →
ε→0

0. So we will obtain:

∫
Λ

log

∑
y∈f−nfnx∩Λ

eSnφ(y)

eSnφ(x)
dµφ(x) =

∑
0≤j≤di,0≤i≤K

∫
Anij

log

∑
y∈f−nfnx∩Λ

eSnφ(y)

eSnφ(x)
dµφ(x) (10)

Let us now denote by Rn(i, µφ, τ) the set of preimages ξij with ξij /∈ Gn(ξik0 , µφ, τ), for some

n-preimage ξik0 ; in fact, as can be seen from (4), it does not matter which preimage ξik0 we choose

in the set f−n(fnξik0). Then, denote simply by Rn,i the set of indices j, 1 ≤ j ≤ dn,i with ξij ∈
Rn(i, µφ, τ) for every 1 ≤ i ≤ K. Now in the decomposition from (10) we notice that the integral

over those sets Anij with j ∈ Rn,i will not matter significantly. Indeed as Card(f−1x∩Λ) ≤ d, x ∈ Λ

and as −M ≤ φ(x) ≤M,x ∈ Λ we have,

1 ≤

∑
y∈f−nfnx∩Λ

eSnφ(y)

eSnφ(x)
≤ dne2nM

Now recall that Anij ⊂ Bn(ξij , ε) and the sets Anij , i, j are mutually disjoint (w. r. t µφ). Hence

by using inequalities (7) and (9) and the fact that ξij /∈ Gn(ξik0 , µφ, τ) when j ∈ Rn,i, we obtain:

9



∑
0≤i≤K,j∈Rn,i

1

n

∫
Anij

log

∑
y∈f−nfnx∩Λ

eSnφ(y)

eSnφ(x)
dµφ(x) ≤ 1

n
log(dne2nM ) · η = η(log d+ 2M) (11)

But by using the comparison between different parts of the n-preimage of a small set from the

proof of Proposition 1 (see (18)), we deduce that the last term of formula (10) is comparable to

∑
i,j

µφ(Anij) log
dn(zi, µφ, τ)µφ(Anij) + r̃n(zi, µφ, τ)

µφ(Anij)
, (12)

where r̃n(zi, µ, τ) :=
∑

ξij∈f−n(zi)∩Λ, ξij /∈Gn(ξik0
,µφ,τ)

µφ(Anij). Hence from (18), (11) and (12) we obtain:

1

n

∑
i,j /∈Rn,i

µφ(Anij) log dn(zi, µφ, τ) +
1

n

∑
i,j /∈Rn,i

µφ(Anij) log(1 +
r̃n(zi, µφ, τ)

dn(zi, µφ, τ)µφ(Anij)
)− δ(τ)− ηC ′ ≤

≤
∫

Λ

1

n
log

∑
y∈f−nfnx∩Λ

eSnφ(y)

eSnφ(x)
dµφ(x) ≤

≤ 1

n

∑
i,j /∈Rn,i

µφ(Anij) log dn(zi, µφ, τ) +
1

n

∑
i,j /∈Rn,i

µφ(Anij) log(1 +
r̃n(zi, µφ, τ)

dn(zi, µφ, τ)µφ(Anij)
) + δ(τ) + ηC ′,

(13)

with C ′ = log d+ 2M being the constant found in (11), and where the positive constant δ(τ) comes

from the uniformly bounded variation of 1
nSnφ(x) when x is in Anij and when 1 ≤ i ≤ K, j /∈ Rn,i

vary; clearly we have δ(τ) →
τ→0

0.

Now we know that in general log(1 + x) ≤ x, for x > 0. Thus log(1 +
r̃n(zi,µφ,τ)

dn(zi,µφ,τ)µφ(Anij)
) ≤

r̃n(zi,µφ,τ)
dn(zi,µφ,τ)µφ(Anij)

, i, j and hence in (13) we have, for n large enough that:

∑
i,j /∈Rn,i

µφ(Anij) log(1 +
r̃n(zi, µφ, τ)

dn(zi, µφ, τ)µφ(Anij)
) ≤

∑
i,j /∈Rn,i

µφ(Anij)
r̃n(zi, µφ, τ)

dn(zi, µφ, τ)µφ(Anij)
=

=
∑

1≤i≤K
r̃n(zi, µφ, τ) ≤ η,

(14)

where we used that by definition, there are dn(zi, µφ, τ) indices j in {1, . . . , dn,i} \ Rn,i for any

1 ≤ i ≤ K. Therefore from the last displayed inequality and (13) we obtain that, for n ≥ n(η),∣∣∣∣∣∣∣
1

n

∫
Λ

log

∑
y∈f−nfnx∩Λ

eSnφ(y)

eSnφ(x)
dµφ(x)− 1

n

∫
Λ

log dn(z, µφ, τ)dµφ(z)

∣∣∣∣∣∣∣ ≤ δ(τ) + η, (15)

where δ(τ) →
τ→0

0. Then by taking n→∞ and τ → 0, we will obtain the conclusion of the Theorem

from (6) and (15), namely that Ff (µφ) = lim
τ→0

lim
n→∞

1
n

∫
Λ log dn(x, µφ, τ)dµφ(x).

�
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We give now the proof of the auxilliary Proposition 1, which is independent of Theorem 1.

Proof of Proposition 1.

We know from definition that the Jacobian Jfm(µφ) is the Radon-Nikodym derivative of µφ◦fm

with respect to µφ on sets of injectivity for fm. In order to estimate the Jacobian of µφ with respect

to fm, we have to compare the measure µφ on different components of the preimage set f−m(B),

for a small Borel set B, where m ≥ 1 is fixed.

Let us consider two subsets E1, E2 of Λ so that fm(E1) = fm(E2) ⊂ B and E1, E2 belong to

two disjoint balls Bm(y1, ε), respectively Bm(y2, ε). This happens if diam(B) is small enough, since

f has no critical points in Λ and thus there exists a positive distance ε0 between any two different

preimages from f−1(y) for y ∈ Λ. As in [6] since the Borelian sets with boundaries of measure

zero form a sufficient collection, we can assume that each of the sets E1, E2 have boundaries of

µφ-measure zero. Recall that fm(E1) = fm(E2). As in [6], µφ is the weak limit of the sequence of

measures: µ̃n := 1
P (f,φ,n) ·

∑
x∈Fix(fn)∩Λ

eSnφ(x)δx, where P (f, φ, n) :=
∑

x∈Fix(fn)∩Λ

eSnφ(x), n ≥ 1 (see

for eg [18] for weak convergence of measures). Thus we have

µ̃n(E1) =
1

P (f, φ, n)
·

∑
x∈Fix(fn)∩E1

eSnφ(x), n ≥ 1 (16)

Consider a periodic point x ∈ Fix(fn)∩E1; it follows that fm(x) ∈ fm(E1), so there exists a point

y ∈ E2 such that fm(y) = fm(x). However the point y is not necessarily periodic. We will use

now the Specification Property ([6], [3]) on hyperbolic locally maximal sets. If ε > 0 is fixed, there

exists a constant Mε > 0 such that for all n > Mε, there is a point z ∈ Fix(fn)∩Λ which ε-shadows

the (n−Mε)-orbit of y. In particular z ∈ Bm(y2, 2ε), since E2 ⊂ Bm(y2, ε).

Let now V ⊂ Bm(y2, ε) be an arbitrary neighbourhood of the set E2. Take two points x, x′ ∈
Fix(fn) ∩ E1 and assume the same periodic point z ∈ V ∩ Fix(fn) corresponds to both of them

through the previous shadowing procedure. Thus the (n−Mε −m)-orbit of fm(z) ε-shadows the

(n−Mε−m)-orbit of fm(x) and also the (n−Mε−m)-orbit of fm(x′). So the (n−Mε−m)-orbit

of fm(x) 2ε-shadows the (n −Mε −m)-orbit of fm(x′). But we took x, x′ ∈ E1 ⊂ Bm(y1, ε), so

x′ ∈ Bm(x, 2ε) and hence from above, x′ ∈ Bn−Mε(x, 2ε).

We partition now the set Bn−Mε(x, 2ε) into smaller Bowen balls of type Bn(ζ, 2ε), and let us

denote their number by Nε. In each of these (n, 2ε)-Bowen balls we may have at most one fixed

point for fn. Then if d(f iξ, f iζ) < 2ε, i = 0, . . . , n − 1 and if ε is small enough, we can apply

the Inverse Function Theorem at each step, and thus there exists only one fixed point for fn in

Bn(ζ, 2ε).

So there exist at most Nε periodic points in Λ from Fix(fn) ∩ E1 having the same point

z ∈ V ∩Fix(fn) associated to them by the above procedure. Notice also that if x, x′ ∈ Fix(fn)∩E1

have the same point z ∈ V attached to them, then x′ ∈ Bn−Mε(x, 2ε) and then, from the Hölder

continuity of φ it follows |Snφ(x) − Snφ(x′)| ≤ Ĉε, for some positive constant Ĉε depending on φ

(but independent of n,m, x). This can be used then in the estimate for µ̃n(E1) from (16). Notice

also that if z ∈ Bn−Mε(y, ε), then fm(z) ∈ Bn−Mε−m(fm(x), ε). Thus from the Hölder continuity
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of φ and since x ∈ E1 ⊂ Bm(y1, ε), it follows that there exists a positive constant Ĉ ′ε satisfying:

|Snφ(z) − Snφ(x)| ≤ |Smφ(y1) − Smφ(y2)| + Ĉ ′ε, for n > n(ε,m). Then using also (16), and since

there are at most Nε points x ∈ Fix(fn) ∩ E1 having the same z ∈ V ∩ Fix(fn) ∩ Λ corresponding

to them, we obtain that there exists a constant Cε > 0 s.t:

µ̃n(E1) ≤ Cεµ̃n(V ) · e
Smφ(y1)

eSmφ(y2)
, (17)

where we recall that E1 ⊂ Bm(y1, ε), E2 ⊂ Bm(y2, ε) and fm(E1) = fm(E2). But ∂E1, ∂E2 were

assumed of µφ-measure zero, hence: µφ(E1) ≤ Cεµφ(V ) · eSmφ(y1)

eSmφ(y2) . But V was chosen arbitrarily as

a neighbourhood of E2, and by applying the same procedure for E1 we obtain:

1

C
µφ(E2)

eSmφ(y1)

eSmφ(y2)
≤ µφ(E1) ≤ Cµφ(E2)

eSmφ(y1)

eSmφ(y2)
, (18)

where C > 0 does not depend on m,E1, E2.

Now, the Jacobian Jfm(µφ) is the Radon-Nikodym derivative of µφ ◦ fm with respect to µφ on

sets of injectivity for fm, hence

µφ(fm(D)) =

∫
D
Jfm(µφ)(x)dµφ(x),

for any Borelian set D on which fm is injective. Hence from the Lebesgue Density Theorem, we

have that, by putting D = B(x, r) for small r > 0, we obtain:

Jfm(µφ)(x) = lim
r→0

µφ(fm(B(x, r)))

µφ(B(x, r))
, (19)

for µφ-a.e x ∈ Λ. On the other hand from the invariance of µφ, we have for any Borel set D that:

µφ(fm(D)) = µφ(f−m(fmD)) (20)

Thus if D is a small ball around x, one has to consider the m-preimages y of x, belonging to

Λ. If ζ ∈ Bm(y, ε) then, from the Hölder continuity of φ we have that |Smφ(ζ) − Smφ(y)| ≤ Ĉε,

where the constant Ĉε does not depend on m > 0, y ∈ Λ. So in the comparison inequlities of (18),

we can take instead of y1, y2, the respective m-preimages of x belonging to Λ.

Therefore from (19), the invariance in (20), and the comparison between different pieces of the

m-preimage from (18), it follows that the Jacobian of µφ with respect to fm satisfies:

Jfm(µφ)(x) ≈

∑
ζ∈f−m(fm(x))∩Λ

eSmφ(ζ)

eSmφ(x)
, µφ − a.e x ∈ Λ,

where the comparability constant C > 0 is independent of m > 1, x ∈ Λ.

�

Let us recall now that in the expanding case we have a formula relating P (φ) to the preimage

sets of fn, n ≥ 1 (given in Section 1, see [17]); however the proof for that result does not work in

the saddle case.
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We give then, in our saddle case, the proof of the formula for P (φ) in terms of the folding

entropy and the preimage sets, announced in Theorem 2 in Section 1:

Proof of Theorem 2.

First recall that φ is a Hölder continuous function on the hyperbolic basic set Λ, so its unique

equilibrium measure µφ is ergodic. From the properties of the Jacobian, we know that it satisfies

the Chain Rule, i.e Jf◦g(µφ)(x) = Jf (µφ)(g(x)) ·Jg(µφ)(x) for µφ-a.e x ∈ Λ. Hence µφ-a.e we have,

log Jfm(µφ)(x) = log Jf (µφ)(x)+ . . .+log Jf (µφ)(fm−1(x)). This means that we can apply Birkhoff

Ergodic Theorem and obtain that

log Jfm(µφ)

m
→

m→∞

∫
Λ

log Jf (µφ)dµφ = Ff (µφ)

We apply now Proposition 1 to get µφ-a.e the convergence

log
∑

y∈f−m(fmx)∩Λ

eSmφ(y) − log eSmφ(x)

m
→

m→∞
Ff (µφ) (21)

But again from Birkhoff Ergodic Theorem, Smφ(x)
m →

∫
φdµφ for µφ-a.e x ∈ Λ. Thus from (21) and

the definition of equilibrium measure P (φ) =
∫
φ dµφ + hµφ , we obtain the required formula:

log
∑

y∈f−m(fmx)∩Λ

eSmφ(y)

m
→

m→∞
Ff (µφ) + P (φ)− hµφ

�

Remark 1. In general Ff (µφ) 6= hµφ . Indeed consider the inverse SRB measure µ− introduced on

a d-to-1 hyperbolic repeller Λ in [9]. Then this measure µ− satisfies

hµ−(f) = log d−
∫

Λ

∑
i,λi(µ−,x)<0

λi(µ
−, x)mi(µ

−, x)dµ−(x),

where λi(µ
−, x) are the Lyapunov exponents of µ− at x and mi(µ

−, x) their respective multiplicities.

So if there are negative Lyapunov exponents on Λ, as for the hyperbolic repellers introduced in [9]

and explained below in Example 3), then Ff (µ−) = log d, whereas hµ− > log d.

�

In the case of the measure of maximal entropy µ0 of f |Λ, we have that φ ≡ 0, so

log
∑

y∈f−m(fmx)∩Λ

eSmφ(y)

m =
log dm(x)

m and P (0) = hµ0 . We obtain then, from Theorem 1 and the proof of Theorem 2, also the

proof for Corollary 1, thus giving the asymptotic degree of f |Λ in terms of the folding entropy of

the measure of maximal entropy µ0 on Λ.

Corollary 1 expresses the average value of the logarithmic growth of the preimage count-

ing function of fn|Λ; as Λ is not necessarily totally invariant, dn(·) may be non-constant and
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it is difficult to obtain the number of preimages of x in Λ; see the examples from [8] which are

not constant-to-one on their respective basic sets, and the effect of preimages on the hyperbolic

dynamics and on stable dimension (for eg [11], [12]).

A useful consequence of Proposition 1 is Corollary 2, which gives the measure µφ of an ar-

bitrary ball in Λ. It can be proved by writing an arbitrary ball B(y, ρ) as a certain iterate

fm(Bn(z, ε)) of some Bowen ball, in such a way that the iterate fm(Bn(z, ε) has roughly the same

sides in the stable and unstable directions; here y = fm(z) and ρ > 0 is arbitrary.

Asymptotic degrees are useful also in order to obtain estimates for the Hausdorff dimension of

various slices through the fractal Λ. In [12] we obtained that, if the number of f -preimages of any

point x ∈ Λ is at least d, then the stable dimension δs(x) := HD(W s
r (x) ∩ Λ) is less or equal than

the unique zero tsd of the pressure t→ P (tΦs− log d). However in general, the number of preimages

of points varies discontinuously in Λ. Since the Hausdorff dimension of stable slices is not changed

by taking iterates fm, we will use the asymptotic degrees to obtain estimates for the dimension of

certain stable slices.

Proof of Theorem 3.

We want to prove an upper estimate for the dimension of a certain slice through Λ, by using

the asymptotic degree with respect to the equilibrium measure µφ of a Hölder continuous function

φ on Λ. Let us denote by G(µφ) := {y ∈ Λ, 1
n log Jfn(µφ)(y) →

n→∞
F (µφ)}. As we showed above,

µφ(G(µφ)) = 1. Let us recall also from Proposition 1 that there exists a positive constant C

independent of n, such that for µφ-almost all y ∈ Λ we have:

Jfn(µφ)(y) ≥ C ·

∑
z∈f−n(fny)∩Λ

eSnφ(z)

eSnφ(y)
≥ C ′ · dn(y, µφ, τ), (22)

with C ′ ∈ (0, 1) also a constant independent of n. For y ∈ G(µφ), we have lim
n→∞

1
n log Jfn(µφ)(y) =

F (µφ). On the other hand, from Theorem 1 and from (22), it follows that:

lim
τ→0

lim
n→∞

∫
Λ

log dn(y, µφ, τ)

n
dµφ(y) = F (µφ), and also,

∫
Λ

log dn(y, µφ, τ)

n
dµφ(y) ≤

∫
Λ

log
Jfn (µφ)(y)

C′

n
dµφ(y)

From the fact that
log Jfn (µφ)(y)

n →
n→∞

F (µφ) for µφ-a.e y ∈ Λ, it follows that, for any positive

integer N and δ > 0, there exists a Borel set

ΘN (µφ, δ) := {y ∈ Λ, en(F (µφ)−δ) ≤ Jfn(µφ)(y) ≤ en(F (µφ)+δ), n ≥ N},

and that µφ(ΘN (µφ, δ)) ≥ 1− ρ(δ,N), where ρ(δ,N) →
N→∞

0 for any fixed δ > 0. Moreover, notice

that we have in general dn(y) ≥ dn(y, µφ, τ), y ∈ Λ, τ > 0, and that dn(y, µφ, τ) ≥ dn(y, µφ, τ
′)
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if τ > τ ′ > 0. Now for fixed small δ > 0, τ > 0, and n integer, let Kn(µφ, δ) be the set of points

y ∈ Θn(µφ, δ) ⊂ Λ so that

dn(y, µφ, τ) ≥ 1

2
· en(F (µφ)−δ)

Let us assume that µφ(Kn(µφ, δ)) does not converge to 1 when n → ∞. Then, there exists α > 0

and a subsequence (mn)n of integers, such that for every n, we have µφ(Kmn(µφ, δ)) < 1 − α. So

µφ(Λ \Kmn(µφ, δ)) > α, n > 0. But for every point z ∈ Λ \Kmn(µφ, δ), we have

dmn(z, µφ, τ) <
1

2
emn(F (µφ)−δ), hence

log dmn(z, µφ, τ)

mn
< F (µφ)− δ − log 2

mn

Therefore, using also (22) we would obtain the following estimate:∫
Λ

log dmn(z, µφ, τ)

mn
dµφ(z) ≤

(
F (µφ)−δ

)
µφ(Λ\Kmn(µφ, δ))−

logC ′ + log 2

mn
+

∫
Kmn (µφ,δ)

log Jfmn (µφ)

mn
dµφ

(23)

But we know that lim
n→∞

1
n log Jfn(µφ)(y) = F (µφ), for µφ-a.e y ∈ Λ. From Proposition 1 and the fact

that the number of f -preimages of x ∈ Λ is bounded, it also follows that the functions
log Jfn (µφ)

n

are bounded above by some constant C > 0 independent of n. Thus from Lebesgue dominated

convergence theorem, one obtains the convergence towards 0 of the sequence (ρn)n, defined by:

ρn :=

∫
Kmn (µφ,δ)

( log Jfmn (µφ)(x)

mn
− F (µφ)

)
dµφ(x) =

=

∫
Λ

( log Jfmn (µφ)(x)

mn
− F (µφ)

)
· χKmn (µ(φ),δ)(x) dµφ(x) →

n→∞
0

(24)

But then in (23), we can replace the term
∫
Kmn (µφ,δ)

log Jfmn (µφ)
mn

dµφ by
∫
Kmn (µφ,δ)

( log Jfmn (µφ)(x)
mn

−
F (µφ)

)
dµφ(x) + F (µφ)µφ(Kmn(µφ, δ)) = ρn + F (µφ) · µφ(Kmn(µφ, δ)). Hence in the right-hand

side of (23), we have the following sum:(
F (µφ)− δ

)
µφ(Λ \Kmn(µφ, δ))−

logC ′ + log 2

mn
+ ρn+F (µφ)µφ(Kmn(µφ, δ)) =

= F (µφ) + ρn −
logC ′ + log 2

mn
− δ · µφ(Λ \Kmn(µφ, δ))

In the last displayed equality, we know that ρn →
n→∞

0, that logC′+log 2
mn

→
n→∞

0 and that µφ(Λ \
Kmn(µφ, δ)) > α > 0 for all n. Thus, from (23) we obtain

lim
n→∞

∫
Λ

log dmn(z, µφ, τ)

mn
dµφ(z) ≤ F (µφ)− αδ

Then, since dn(y, µφ, τ
′) ≤ dn(y, µφ, τ) for 0 < τ ′ < τ , we obtain also lim

τ ′→0
lim
n→∞

∫
Λ

log dmn (z,µφ,τ
′)

mn
dµφ(z) ≤

F (µφ) − αδ; but this gives a contradiction with Theorem 1, since the last limit must be equal to

F (µφ). Hence there exists an integer N0 such that for any n > N0, the Borel set Kn(µφ, δ) ⊂ Λ

has the property that if y ∈ Kn(µφ, δ), then:

dn(y) ≥ dn(y, µφ, τ) ≥ 1

2
· en(F (µφ)−δ), (25)
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and for every n ≥ N0 there exists some χn(δ) > 0, with χn(δ) ↘
n→∞

0, such that:

µφ(Kn(µφ, δ)) > 1− χn(δ).

Next, let us notice that from the f -invariance of the probability µφ, we have that:

µφ(fnKn(µφ, δ)) ≥ µφ(Kn(µφ, δ)) ≥ 1− χn(δ), ∀n ≥ N0 (26)

Now, for any integer n ≥ N0, consider a strictly increasing sequence of integers
(
pi(n)

)
i≥1

, such

that p1(n) = n, and such that the following condition is satisfied:∑
i≥1

χpi(n)(δ) < 3χn(δ) (27)

For a sequence (pi(n))i of integers as above, let us define the following Borel subsets of Λ:

Kn(µφ, δ) := ∩
i≥1

fpi(n)Kpi(n)(µφ, δ), and K(µφ, δ) := ∪
n≥1
Kn(µφ, δ)

We will cover now the set Kn(µφ, δ) with open sets, in order to estimate its Hausdorff dimension.

First of all, notice that if z ∈ Kn(µφ, δ), then any other point z′ from f−n(fnz) belongs also to

Kn(µφ, δ). Notice also that if ε < ε0, then the set f−n(y) is (n, ε)-separated for any point y ∈ Λ,

due to Cf ∩ Λ = ∅. In addition, for any y ∈ Kn(µφ, δ) and for any integer i ≥ 1, we know that:

d∗pi(n)(y) ≥ 1

C ′
· epi(n)·(F (µφ)−δ), (28)

where in general d∗n(y) := Card{f−n(y) ∩ Λ} is the number of n-preimages in Λ of y, n ≥ 1. Take

next an arbitrary number t > t̃sF (µφ)−δ, where t̃sF (µφ)−δ is the unique zero of the pressure function:

t 7→ P (tΦs − F (µφ) + δ)

It is clear that such a zero exists and is unique, since F (µφ) ≤ htop(f |Λ); from notations, we

have t̃sγ = tseγ , ∀γ, (where we recall that, for χ > 0, tsχ denotes the unique zero of the function

t→ P (tΦs − logχ)). Therefore, P (tΦs − F (µφ) + δ) < 0.

Since for all i ≥ 1, fpi(n)(Kpi(n)(µφ, δ)) covers Kn(µφ, δ), it follows that we can find a cover

V(n,i) of W ∩Kn(µφ, δ), with sets of type fpi(n)(Bpi(n)(ξ, ε)), where ξ ranges in a (pi(n), ε)-spanning

set Fpi(n) of Λ, and n, i ≥ 1. Clearly from the conformality of f on local stable manifolds, it follows

that the diameter of any ball in W of type W ∩ fpi(n)(Bpi(n)(ξ, ε)), converges to 0 when i → ∞
(and n is fixed).

Now, we will use (28) and the procedure of succesive elimination of covers from the proof of

Theorem 1.2 of [12], plus the fact that t > t̃sF (µφ)−δ. Hence it follows that for any n, i ≥ 1, we

can extract from the above very rich cover V(n,i), some finite ”optimal” open subcover U (n,i) =(
U

(n,i)
j

)
j∈I(n,i) of the set W ∩ Kn(µφ, δ), such that we have:

∑
j∈I(n,i)

diam(U
(n,i)
j )t <

1

2
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Hence, as the diameters of the sets in U (n,i) decrease to 0 when i → ∞, we conclude that

HD(W ∩Kn(µφ, δ)) ≤ t, and since t was chosen arbitrary larger than t̃sF (µφ)−δ, we obtain HD(W ∩
Kn(µφ, δ)) ≤ t̃sF (µφ)−δ. Therefore using the fact that K(µφ, δ) = ∪

n
Kn(µφ, δ), and also the properties

of the Hausdorff dimension of a countable union, it follows that

HD(W ∩ K(µφ, δ)) ≤ t̃sF (µφ)−δ (29)

Moreover, from (26) and (27), we obtain that

µφ(Kn(µφ, δ)) ≥ 1−
∑
i≥1

(1− µφ(Kpi(n)(µφ, δ))) ≥ 1−
∑
i≥1

χpi(n)(δ) ≥ 1− 3χn(δ)

Hence as χn(δ) →
n→∞

0, it implies that µφ(K(µφ, δ)) = µφ(∪
n
Kn(µφ, δ)) = 1. Let us define now the

following Borel subset of Λ,

K(µφ) := ∩
δ>0
K(µφ, δ)

Then, we obtain from above that µφ(K(µφ)) = 1. Now we let δ → 0, and employ (29), the continuity

of the pressure function, and the definition of d∞(f, µφ), in order to obtain the required bound:

HD(W ∩ K(µφ)) ≤ t̃sF (µφ) = tsd∞(f,µφ)

�

3 Some examples of folded saddle-type systems.

1) Let us consider an iterated function system in the unit interval I, g : I1 ∪ . . . ∪ Ip → I for

some p ≥ 2, such that g is C2-smooth, and injective and expanding each Ij to I, i.e g(Ij) = I =

[0, 1], 1 ≤ j ≤ p. We define the compact space

X = {x ∈ I1 ∪ . . . ∪ Ip, gn(x) ∈ I1 ∪ . . . ∪ Ip, n ≥ 0}

Consider now parameters λ = (λ1, . . . , λp) ∈ Rp, with ||λ|| < η for some small η > 0, i.e λ ∈
Bp(0, η) ⊂ Rp. Consider also the Lipschitz continuous functions φ1, . . . , φp defined on X∗ :=

X × [0, 1] × Bp(0, η), and assume that φ1(x, ·, ·), . . . , φp(x, ·, ·) are C2 differentiable functions of

(y, λ), with derivatives in (y, λ) depending Lipschitz continuously on (x, y, λ), and that there exist

constants α, α′ > 0 with 0 < α′ < | ∂∂yφi| <
1
4 on X∗, for all i = 1, . . . , p and | ∂∂λj φi| < α on X∗, for

all i, j = 1, . . . , p. If φi ≤ β on X∗, for i = 1, . . . , p, then we assume also that η + β < 1.

We define now the parametrized maps Fλ : X × [0, 1]→ X × (0, 1) by the formula

Fλ(x, y) = (g(x), λi + φi(x, y, λ)),

if x ∈ Xi, i = 1, . . . , p. From the conditions on φ1, . . . , φp, we see that Fλ is well defined and it is a

hyperbolic fiberwise conformal skew product endomorphism. We see that 0 < α′ < |(φλx)′| < 1
4 , x ∈

X,λ ∈ Bd(0, η), so the conditions from the definition of a uniformly transversal family in [13] are
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satisfied for the parametrized family (Fλ)λ, as shown in Theorem 3.3 of [13]. For x ∈ X ∩ Ii, let us

denote by:

Ψi(x, y, λ) := λi + Φi(x, y, λ), 1 ≤ i ≤ p

If z ∈ X, then define the contraction Ψn
z,λ := Ψx,λ ◦Ψgn−1(z),λ . . . ◦Ψz,λ, where Ψz,λ(·) = Ψi(z, ·, λ),

for z ∈ X ∩ Ii, 1 ≤ i ≤ p and λ ∈ Bp(0, η). We define then the following fibered invariant fractal,

Λλ := ∪
x∈X

∩
n≥1

∪
z∈g−n(x)

Ψn
z,λ(I)

From [13], it follows that the stable dimension over the saddle set Λλ of Fλ, is given by a Bowen

type equation on the natural extension Λ̂λ, for Lebesgue-almost all parameters λ. However, Fλ is

not a homeomorphism on Λλ in general.

We can also estimate the asymptotic degree of the measure of maximal entropy µ0,λ for Fλ on

Λλ. The topological entropy htop(Fλ|Λλ) = log p, since Bowen balls in Λλ are determined only by

the dilation of g in the base. Also from our assumptions above, we see that the negative Lyapunov

exponent λ̃1(µ0,λ) is larger than logα′. We now use an inequality due to Ruelle (see [21] and [7]):

hµ0,λ
≤ F (µ0,λ)−

∑
λ̃i<0

miλ̃i(µ0,λ),

where mi is the multiplicity of the Lyapunov exponent λ̃i(µ0,λ). Consequently, since in our case we

have only one negative Lyapunov exponent λ̃1(µ0,λ), and since htop(Fλ|Λλ) = log p, we obtain thus

an estimate on the average rate of growth of the number of n-preimages remaining in the basic set

Λλ. Namely, from Definition 1 and Theorem 1,

d∞(Fλ,Λλ) = exp(F (µ0,λ)) ≥ p · α′

Hence d∞(Fλ,Λλ) > 1, if pα′ > 1. However, Fλ may not be constant-to-1 on the fractal Λλ. Using

Proposition 1 and Theorem 2, we can infer also the Jacobian of µφ with respect to an arbitrary

iterate of Fλ, and the pressure P (φ) for any Hölder continuous potential φ on Λλ.

2) Examples of hyperbolic attractors for endomorphisms can be obtained from solenoids with

self-intersections, by the method of Bothe ([1]). We consider f : D2 × S1 → D2 × S1 given by:

f(x, y, t) := (λ1(t) · x+ z1(t), λ2(t) · y + z2(t), ψ(t)),

where ψ(·), 0 < λi(t) < 1 and zi(·), i = 1, 2 are C1 functions, and where ψ′(t) > 1. We obtain then

the hyperbolic saddle-type fractal attractor,

Λ = ∩
j≥0

f j(D2 × S1)

For certain choices of φ, λi, zi, the map f is non-invertible and not constant-to-1 on Λ. Then, for

an arbitrary Hölder potential φ on Λ, one obtains the measure µφ associated to φ. The negative

Lyapunov exponents are given by the average values with respect to µφ, of log λi, i = 1, 2 and the

positive exponent is given by the average value of log |ψ′|.
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We can then estimate as before the asymptotic degree of f |Λ as d∞(f,Λ), using Corollary 1;

and more generally, we obtain the asymptotic degree d∞(f, µφ), with respect to the equilibrium

measure µφ of φ. From Proposition 1, we obtain also the Jacobian Jfn(µφ) of µφ, with respect to

an arbitrary iterate fn, n ≥ 1. In the case when λ1 = λ2, we can also estimate the µφ-measure of

an arbitrary ball in Λ, by applying Corollary 2.

3) Another class of examples are given by hyperbolic toral (linear) endomorphisms fA : Tm →
Tm and their perturbations; they are Anosov endomorphisms. Notice that a small C2 perturbation

g of fA, is not necessarily conjugated to fA if fA is not invertible ([16]). Also notice that fA is

|det(A)|-to-1 on Tm, and that the same is true also for g.

However, given an equilibrium measure µφ of a Hölder continuous potential φ for g, not nec-

essarily all the g-preimages are well behaved with respect to µφ. Then by using Theorem 1 and

Proposition 1, we obtain the Jacobians Jfn(µφ) of µφ with respect to iterates fn, and the asymp-

totic logarithmic degree with respect to µφ. Moreover, by applying Corollary 2 to the smooth

perturbation g of a hyperbolic toral endomorphism fA : T2 → T2, we can obtain the µφ-measure

of any ball in T2.

In particular, since htop(g) = htop(fA) = log λ2, it follows that the measure of maximal entropy

µ0,g of g, is given on any ball by:

µ0,g(B(y′, ρ)) ≈ |det(A)|me−nhtop(g) ≈ |det(A)|mλ−n2 ,

where λ2 is the eigenvalue of A bigger than 1, and where y′ = gm(y) ∈ T2, ρ > 0, with the integers

m,n being given by Corollary 2.
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