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1. Introduction

Dennis Sullivan, in his IHÉS Seminar on Conformal and Hyperbolic Geometry [40] that
ran during the late 1970’s and early ’80s, indicated a possibility1 of developing the theory
of discrete groups acting by hyperbolic isometries on the open unit ball of a separable
infinite-dimensional real Hilbert space. Later in the early ’90s, Misha Gromov lamented
the paucity of results regarding such actions in his seminal lectures Asymptotic Invariants
of Infinite Groups [19, 6A.III] where he encouraged their investigation in memorable terms:
“The spaces like this [infinite-dimensional symmetric spaces] . . . look as cute and sexy to
me as their finite dimensional siblings but they have been for years shamefully neglected
by geometers and algebraists alike”.

Gromov’s lament had not fallen to deaf ears and the geometry and representation theory
of infinite-dimensional hyperbolic space H∞ and its isometry group have been studied in the
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last decade by a handful of mathematicians. See, for example, the work by Burger-Iozzi-
Monod [3], Delzant-Py [12], and Monod-Py [31]. However, infinite-dimensional hyperbolic
space has come into prominence most spectacularly through the recent resolution of a
longstanding conjecture in algebraic geometry due to Enriques from the late nineteenth
century. Cantat-Lamy [5] proved that the Cremona group (of birational transformations
of the complex projective plane) has uncountably many non-isomorphic normal subgroups,
i.e. it is not a simple group. Key to their enterprise is the fact, due to Manin [30], that
the Cremona group admits a faithful isometric action on an infinite-dimensional hyperbolic
space called the Picard-Manin space.

We will be interested in subgroups of Isom(H∞) whose natural actions are metrically
proper, i.e. the orbit of an arbitrary point meets every bounded set in a set of finite car-
dinality. We call such groups strongly discrete. Now by a result of Gromov [6, Theorem
7.4.3] abstract groups that admit such actions correspond to those with the Haagerup prop-
erty2. They include amenable groups, Coxeter groups and free groups, and are connected
to various lines of investigation within geometric group theory, ergodic theory, represen-
tation theory and operator algebras, see [6]. For instance, it is an outstanding problem
in geometric group theory to determine whether mapping class groups have the Haagerup
property.

To make the connection with subgroups of Isom(H∞) note that the boundary of infinite-
dimensional hyperbolic space is conformally equivalent to Hilbert space H := ∂H∞ ∪{∞}.
As in finite dimensions, any isometry of H with respect to the Euclidean metric extends
uniquely to an isometry of H∞ which fixes ∞. Therefore there exists a correspondence be-
tween parabolic subgroups of the stabilizer Stab(Isom(H∞);∞) and subgroups of Isom(H)
whose orbits are unbounded. However, unlike in finite dimensions, such groups are not
necessarily virtually nilpotent. Furthermore, even cyclic subgroups of Isom(H) are quite
different from cyclic subgroups of Isom(Rd) for d ∈ N. Indeed, there is a well-known exam-
ple of M. Edelstein [13] of a cyclic subgroup of Isom(H) whose orbits are unbounded but
which is not strongly discrete.

This short note describes some of the first investigations regarding the Hasudorff geome-
try of limit sets of metrically proper isometric actions on real infinite-dimensional hyperbolic
space. Our goal is to present a generalization of the Bishop-Jones formula, equating the
Poincaré exponent of the underlying group to the Hausdorff dimensions of the uniformly-
radial and radial limit sets. To give a dynamical picture of what the Bishop-Jones relation
is saying in terms of the geodesic flow on the underlying manifold, let us recall that radial
limit points3 correspond to geodesic excursions that return infinitely often to some bounded
subset of the manifold, whereas uniformly radial directions correspond to geodesics that
never leave a bounded region on the manifold. A priori, there seems to be no reason to
believe that the Hausdorff dimensions of these sets are equal and their elegant result signif-
icantly generalized a large collection of previously known special cases, see for instance the
work of Patterson [34], Sullivan [38] and Dani [8]. Our proof was inspired by Stratmann’s

2Such groups are also known as a-T-menable groups, since they are morally diametrically opposite to
groups with Kazhdan’s property (T).

3These were introduced in 1936 by Hedlund as points of approximation, where he proved that the
geodesic flow on compact surfaces of constant negative curvature was topological mixing in [20].
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presentation in [37]. Although the original proof and those of various generalizations there-
after (for instance [35, 7, 21]) crucially use the compactness of the sphere at infinity, our
proof avoids such a dependence. We hope that it will shed some light on what aspects of
this equality are “dimension-free” and follow from the presence of negative curvature. Fi-
nally, we indicate the robustness of strongly discrete convex-cobounded groups by showing
such groups are finitely generated and of divergence type with finite Poincaré exponent.
Further, these groups have compact limit sets, and the Hausdorff and packing measures on
the limit sets are finite and positive and coincide with the conformal Patterson measure,
up to a multiplicative constant.

The basic ideas behind these results were obtained by the authors during the summer of
2009 at the end of a productive conference, Dynamical Systems II, hosted at the University
of North Texas in Denton. These investigations have continued to develop and the reader
is encouraged to follow-up this note with the work being done in collaboration with Lior
Fishman and David S. Simmons in [17, 10, 11]. The more flexible concept of partition
structures in these papers generalize the basic mass-redistribution principle that is used
in this article. However, the ideas of the proof are more transparent in the setting of this
paper and the authors are grateful for the gentle insistence of various colleagues to write
such up.

2. Infinite-dimensional models of hyperbolic geometry

The infinite-dimensional hyperbolic space is an infinite-dimensional Riemannian mani-
fold, see [29]. Let

H = `2(N) :=

{
x = (xi)

∞
1 ∈ RN

∣∣∣∣∣
∞∑
i=1

xi
2 < +∞

}
and for x ∈ H let

‖x‖ :=

(
∞∑
i=1

x2
i

)1/2

.

Example 2.1. Hilbert space H can be considered by itself as an infinite-dimensional Rie-
mannian manifold, with at each point the standard inner product

〈u,v〉x :=
∞∑
i=1

uivi.

Example 2.2. The space Ĥ := H ∪ {∞} may be given the structure of a Hilbert manifold.

The topology on Ĥ is defined as follows: a subset U ⊆ Ĥ is open if and only if U ∩ H is
open and if

∞ ∈ U ⇒ H \ U is bounded.

Warning 2.3. The topology on Ĥ is not a one-point compactification. Indeed, Ĥ with the
topology defined above is not a compact space, since H is not locally compact.
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2.0.1. The ball model and the upper half-space model. There are several models of hyper-
bolic geometry, which are isometric as infinite-dimensional Riemannian manifolds but which
reflect different aspects of hyperbolic geometry. The models we will be interested in are the
ball model (B) and the upper half-space model (H) and when we do not wish to specify a
model we will write H (for “hyperbolic”). The ball model is the set

B := {x ∈ H : ‖x‖ < 1}

together with the Riemannian metric

〈u,v〉x,B :=
4〈u,v〉

(1− ‖x‖2)2
·

The upper half-space model is the set

H := {x ∈ H : x1 > 0}

together with the Riemannian metric

〈u,v〉x,H :=
〈u,v〉
x2

1

·

Remark 2.4. In most references, the (d+ 1)-dimensional upper half-space model is defined
to be the set {x ∈ Rd+1 : xd+1 > 0}. When d =∞, this does not make sense since there is
no ∞th coordinate. Thus we have decided to use the first coordinate instead.

Note that the topological boundaries of H and B are also Hilbert manifolds (although it
requires slightly more work to come up with coordinate charts):

∂B = {x ∈ H : ‖x‖ = 1},
∂H = {x ∈ H : x1 = 0} ∪ {∞}.

Further note that we have taken the boundary of H with respect to the Hilbert manifold

Ĥ defined in Example 2.2. Henceforth we shall always respect this convention. We note
that the closures B and H are not Hilbert manifolds, but they are Hilbert manifolds with
boundary (see [29]). We will be content with considering them as topological subspaces of

Ĥ.
Finally, let us say a word about the geometric significance of B and H. The ball model

is best if you want to figure out what the world looks like if you are “at a point in X”;
whereas the upper half-space model is best if you are “at a point on the boundary ∂X”.

2.0.2. Equivalence of models. A C∞ diffeomorphism Ψ : X → Y between infinite-dimensional
Riemannian manifolds is an isomorphism if 〈Ψ′(x)[u],Ψ′(x)[v]〉Ψ(x),Y = 〈u, v〉x,X for all
x ∈ X and for all u, v ∈ TxX. Note that every isomorphism of Riemannian manifolds
Ψ : X → Y is also an isometry, i.e.

(2.1) dY (Ψ(x1),Ψ(x2)) = dX(x1, x2) ∀x1, x2 ∈ X.

The converse (known in finite dimensions as the Myers-Steenrod theorem) is also true, but
much less trivial:
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Theorem 2.5 (Theorem 7 of [18]). Let X and Y be infinite-dimensional Riemannian
manifolds, and let Ψ : X → Y be a bijection. If Ψ satisfies (2.1), then Ψ is an isomorphism
(and in particular is C∞).

It may be shown by direct calculation (see [4]) that the map

eB,H(x) = −e1 + 2
x + e1

‖x + e1‖2

is an isomorphism of Riemannian manifolds and in particular an isometry. Furthermore,
the map eB,H extends uniquely to a homeomorphism between B and H.

2.0.3. Comparison with the classical theory. In contrast with the infinite-dimensional set-
ting of this article, we make a few brief remarks in this subsection about analogous consid-
erations in finite dimensions. In particular about conformal maps, Möbius transformations
and the notion of preserving orientation. To define conformal maps we first need the notion
of a similarity.

Definition 2.6. Let T : H → H be a bounded linear operator. T is a similarity if it can
be written as the product of a positive real number (called the scaling constant of T ) and a
linear isometry. An affine map A : H → H is a similarity if its linear part x 7→ A(x)−A(0)
is a similarity. The group of similarities of H will be denoted Sim(H).

Definition 2.7. Let X and Y be infinite-dimensional Riemannian manifolds, and let f :
X → Y be a diffeomorphism. We say that f is conformal if for each x ∈ X, f ′(x) : TxX →
Tf(x)Y is a similarity.

As in the finite-dimensional case, the quintessential (non-linear) conformal map is the
inversion with respect to a sphere.4 The following theorem generalizes the classical result
known as Liouville’s theorem, which tells us that for d ≥ 3, any conformal diffeomorphism
betwen two open connected subsets of Rd is the restriction of a Möbius transformation.

Theorem 2.8 (Liouville’s theorem in Hilbert space). Let U, V ⊆ H be nonempty open
connected sets and let φ : U → V be a conformal diffeomorphism. Then one of the following
two cases holds:

(NL) φ is the composition of an inversion and an affine similarity, or
(L) φ is an affine similarity.

Note that in either case the map φ extends uniquely to a conformal map φ̂ : Ĥ → Ĥ. As in

the finite-dimensional case, the map φ̂ is called a Möbius transformation and we denote the

class of such maps by Mob(Ĥ). The nonlinear (NL) case corresponds to the case when ∞
is not preserved, and the linear (L) case corresponds to when∞ is preserved. Theorem 2.8
follows from the observation (see [23]) that R. Nevanlinna’s proof of the finite-dimensional
Liouville’s theorem [32] extends to infinite dimensions.

4 Fix p ∈ H and α > 0, and let S(p, α) denote the sphere around p of radius α. The inversion with
respect to the sphere S(p, α) is the map

ip,α : x 7→ α2 x− p

‖x− p‖2
+ p.

We make the conventions that ip = ip,1 and i = i0.
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Remark 2.9. Notice that if, motivated by the finite-dimensional theory, we restricted to the

subclass of Mob(Ĥ) defined by

Mob∗(Ĥ) := { g ∈ Mob(Ĥ) | g is the composition of finitely many inversions},
then, unlike the finite-dimensional case, we have

Mob∗(Ĥ) ( Mob(Ĥ).

In fact, the map g an be written as a finite composition of inversions if and only if Fix(g)
has finite codimension. For example, the shift map on `2(Z) cannot be written as a finite
composition of inversions. We give an indication of why this is true. Say Fix(g) has finite
codimension, then one can find a finite-dimensional subspace V such that the entire map
is the Poincaré extension of its restriction to V . This reduces us to the finite-dimensional
statement [36] that every Möbius map is a composition of finitely many inversions which
may then be re-extended. On the other hand if one computes the composition of two
inversions it can be shown that Fix(g) has codimension 1 and so composing finitely many
inversions only adds one finitely many times to the codimension.

Remark 2.10. One cannot make sense of orientation-preserving transformations in infinite
dimensions as one cannot define a meaningful notion of orientation. If one wanted to define
orientation-preserving via the kernel of a continuous homomorphism O : O(H) → Z2 one
would easily fall into a trap. (Here Z2 is the group with two elements.) For example, any
reflection in a hyperplane on `2(Z) would be orientation-preserving. For a construction
of such a map, take the commutator of the shift map squared and the map that switches
consecutive pairs of nonnegative coordinates, i.e. 0 and 1, 2 and 3, etc.

3. Classification of isometries

In [3] one may find the following classification of isometries of H based on results in [25]
and [26]. Every isometry g ∈ Isom(H) is exactly one of the following three types: if it has
bounded orbits then it is called elliptic; if its orbits (one or equivalently all) areunbounded
and it has one fixed point on the boundary then it is called parabolic, and if its orbits
are unbounded and it fixes two points on the boundary it is called hyperbolic. We may
conjugate each g ∈ Isom(H) to a “normal form” whose geometrical significance is clearer.
The normal form will depend on the classification of g as elliptic, parabolic, or hyperbolic.
We will not prove the remaining propositions in this section, but proofs may be found in
[10]. We first must introduce some

Notation 3.1. If G is a group acting on a space X, then for each x ∈ X we will denote
its stabilizer by

Stab(G;x) := {g ∈ G : g(x) = x}.
For any Hilbert space H, by O(H) we denote the group of linear isometries of H. Let
us write ∂H = E ∪ {∞}, where E := {x ∈ H : x1 = 0}. As in finite dimensions, for any
g ∈ Sim(E) there exists a unique ĝ ∈ Sim(H) so that ĝ � E = g and so that ĝ(H) = H. The
map ĝ is called the Poincaré extension of g.

Proposition 3.2. Fix g ∈ Isom(H).
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(i) If g is elliptic, then g is conjugate to a map of the form T � B for some linear
isometry T ∈ O(H).

(ii) If g is parabolic, then g is conjugate to a map of the form x 7→ T̂ [x] + p : H→ H,
where T ∈ O(E) and p ∈ E.

(iii) If g is hyperbolic, then g is conjugate to a map of the form x 7→ λT̂ [x] : H → H,
where 0 < λ < 1 and T ∈ O(H).

In the first (elliptic) case the orbit (gn(0))∞1 remains fixed forever, and in the third
(hyperbolic) case it diverges to the boundary. In the latter, there is a pair of fixed points at
infinity: one is attracting and the other repelling. In this case, every orbit is unbounded and
the forward orbit approaches the attractive fixed point while the backward orbit approaches
the repelling fixed point. Further, there exists a unique fixed geodesic connecting the two
fixed points that is invariant under the action of g. On the other hand, things can get far
more interesting in the second case when g is parabolic: then the orbit can oscillate, both
accumulating at infinity and returning infinitely often to a bounded region. Note that this
is forbidden in finite dimensions. We record this phenomena in the following

Proposition 3.3. There exists a parabolic g ∈ Stab(Isom(H);∞) whose orbit (gn(0))∞1 is
unbounded but returns infinitely often to a bounded region and in fact accumulates at 0.

We remark that this propostion is equivalent to a construction of M. Edelstein5, who in
Theorem 2.1 of [13] showed that there exists a fixed-point-free isometry g ∈ Isom(`2(C))
and a sequence (nk)

∞
1 so that gnk(0) −→

k
0.

4. Discrete Groups of Isometries

Let X = H and let G be a subgroup of the isometry group Isom(X). In finite dimensions,
i.e. when X = Hn the following definitions are equivalent:

(1) For every bounded B ⊆ X, #[g ∈ G : gB ∩B 6= ∅] <∞.
(2) For every x ∈ X, there exists an open set U 3 x with

gU ∩ U 6= ∅ ⇒ gx = x.

(3) G is a discrete subset of Isom(X) w.r.t. compact-open topology.

Any one of them may be taken as a definition of a discrete group of isometries. However in
infinite dimensions one must proceed more carefully. Notice that although (1)⇒ (2) even
in infinite dimensions, there exist natural examples of groups that show us (2) ; (1).

Example 4.1. Consider H∞ and let

V :=
⋃
m≥2

{(0, n2, n3, . . . , nm, 0, 0, . . .) : ni ∈ Z ∀i = 2, . . . ,m} ⊆ E

Then v is a Z-vector space and the group

G := 〈x 7→ x+ v : v ∈ V 〉
is an example of one that satisfies (2) but not (1).

5See [42] for a recent presentation.
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It may be somewhat harder to imagine the right infinite-dimensional analogue of (3). Let
us start with the following definitions:

Definition 4.2. The group G is strongly discrete if (1) holds, i.e. for every bounded
B ⊆ X,

#[g ∈ G : gB ∩B 6= ∅] <∞.
The group G is weakly discrete if (2) holds, i.e. for every x ∈ X, there exists an open set
U 3 x with

gU ∩ U 6= ∅ ⇒ gx = x.

Definition 4.3. An group G acts properly discontinuously if for every x ∈ X, there exists
an open set U 3 x with

gU ∩ U 6= ∅ ⇒ g = id.

Equivalently, if there exists r > 0 such that

B(0, r) ∩
⋃

g∈G\{id}

g (B(0, r)) = ∅.

A group is torsion-free if every element of finite order is the identity. A group action is free
if Fix(g) 6= ∅ ⇒ g = id.

We remark that unlike strong discreteness which turns out to be a rather robust notion in
infinite dimensions, the notion of being properly discontinuous is far more fragile. Now we
summarize the connections between our various notions in the following

Observation 4.4. Let (X, d) be a metric space and let G < Isom(X). Then:

1. Strongly discrete actions are weakly discrete.
2. Torsion-free strongly discrete actions are free.
3. Properly discontinuous actions are weakly discrete and free.
4. Torsion-free strongly discrete actions are properly discontinuous.
5. If X is a CAT(0) space, then free actions are torsion-free.

We make a couple of remarks before proving the observation.

Remark 4.5. Strongly discrete torsion-free groups are always properly discontinuous. In
the reverse direction

• In finite dimensions, or whenX is proper, properly discontinuous groups are strongly
discrete via 3., since WD ⇒ SD in such a situation.
• On the other hand 5. tells that that in CAT(0) setting properly discontinuous groups

are torsion-free.

We also remark that in a CAT(0) setting, if your group has torsion elements then it has no
chance of being properly discontinuous. However for properly discontinuous groups:

(1) The fixed points of elements g ∈ G do not occur in the interiors of our models of
hyperbolic Hilbert space.

(2) If g ∈ G has three fixed points, then g = id.

Proof. [Of Observation 4.4]
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• Part 1. [SD ⇒ WD]
Fix x ∈ X. Then ε := min{d(x, gx) : gx 6= x} > 0 by strong discreteness. So set
U := B(x, ε/2). Then we have that for every g with gx 6= x we have d(x, gx) ≥ ε
which implies gU ∩ U = ∅.
• Part 2. [SD + TF ⇒ F]

By way of contradiction if G were not free then gx = x for some g 6= id. Then for
every n we have d(gnx, x) = 0. Now strong discreteness implies that #[gn : n ∈
Z] < ∞ which in turn produces an N for which gN = id. This contradicts the
assumption that G was torsion-free.
• Part 3. [Properly discontinuous ⇔ WD + F]

This follows straight from the definitions.
• Part 4. [SD + TF ⇒ PD]

Follows from Parts 1., 2. and 3.
• Part 5. [If X is a CAT(0) space, then F ⇒ TF.]

Suppose not, then gn = id for some g 6= id. Then #[H] < ∞ where H := 〈g〉.
Therefore the orbit H(0) is bounded and by the Cartan’s lemma there exists an
x ∈ Fix(H) = Fix(g). But we had assumed that G was free.

�

We make the simplifying assumption that our groups are without torsion-elements.

Remark 4.6. A discrete group G is strongly discrete if and only if for every sequence (gn)∞1
of distinct elements of G,

lim sup
n→∞

dH(gn(0), ∂B) = 0.

This may be observed from the following equivalences

lim sup
n→∞

dH(gn(0), ∂B) = 0⇔ lim inf
n→∞

dH(gn(0), 0) = 1⇔ lim inf
n→∞

dB(gn(0), 0) = +∞.

5. Poincaré Series and Its Exponent of Convergence

Definition 5.1. Fix x ∈ K∞ and s > 0. The Poincaré series of the group G is defined by

(5.1) Σx,y(s) =
∑
g∈G

e−sdK(x,g(y)).

With this notation, the Poincaré exponent of G is given by

(5.2) δG = inf{s > 0 : Σx,y(s) < +∞}.

It may be shown by using the triangle inequality that the definition is independent of our
choice in x and y.

Observation 5.2. In the finite-dimensional case the Poincaré exponent of a discrete group
is always finite. However in the Hilbertian case one may construct a strongly discrete
(Schottky) group G such that δG = +∞. Construct a sequence of positive reals (an) with
an → 0 and

∑
n≥1 a

s
n = ∞ for every s. Then with some care one may choose infinitely

many generators (gn)n such that for every n we have that e−d(gn(0),0) � an and so that each
generator has a distinct coordinate axis as its hyperbolic axis.
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However the following fact remains true even in infinite dimensions.

Observation 5.3. If G is a subgroup of Isom(K) and δG < +∞, then the group G is
strongly discrete.

Proof. Suppose that G is not strongly discrete. Then there exists some bounded set W
such that #W ∩ G(0) = ∞. Now the fact that W is bounded implies there exists some
BK(0, K) ⊇ W and therefore for every g(0) ∈ W , we have that∑

g(0)∈W

e−td(0,g(0)) ≥
∑

g(0)∈W

e−tK = +∞.

Since t was arbitrary we are done. �

6. Limit sets

We now will define the limit sets of our group actions and then move on to describe
basic properties of such sets. When not specified we may assume that G is a subgroup of
Isom(H) that acts properly discontinuously on H. In most cases though this is more than
we need and it suffices to assume that G is weakly discrete.

Definition 6.1. The limit set of a group G < Isom(H) is defined to be

L(G) := {α ∈ ∂H | ∃(gn)n lim
n→∞

gn(x) = α}.

This definition is independent of the choice of x ∈ H and it is also clear from the definition
that L(G) is closed and G-invariant.

Definition 6.2. A group G is called elementary whenever #L(G) ∈ {0, 1, 2}.

Theorem 6.3 (No Global Fixed Points). Any non-elementary weakly discrete group G has
no global fixed points.

Proof. Assume by way of contradiction that we have a global fixed point and then conjugate
to send it to ∞. Then by Liouville’s theorem g must be of the form

g(x) = λgT [x] + b.

The proof now splits into two cases, viz.

Case 1: [λg = 1 for every g ∈ G.]
Then each hyperplane {x : x0 = α} is fixed by G for every α > 0 and therefore
L(G) = {∞}. This leads to a contradiction since we assumed that G was non-
elementary.

Case 2: [There exists a g ∈ G with λg < 1.]
Without loss of generality we assume that g(0) = 0 since g is hyperbolic and so l0,∞
is the invariant axis. Then g is of the form

g(x) = g1(x) = λ1T1[x]

with λ1 < 1. We claim that there exists a g2(x) := λ2T2[x] + b with λ2 < 1 and
b 6= 0. Indeed, since G is non-elementary, there exists a third limit point say ξ that
is neither 0 nor ∞. Now fix a point on the invariant axis at distance greater than
one from the boundary ∂H∞. Then there exists an element of the group that brings
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it arbitrarily close to ξ and this element is the one we were after. Note that since
ξ /∈ {0,∞} its translation vector is non-zero as claimed.
Now let us calculate the commutator of g1 and g2 and call it g3 := [g2, g1]. Let

y = g3(x) = g−1
2 ◦ g−1

1 ◦ g2 ◦ g1(x).

One may compute the following form

y = T−1
2 ◦ T−1

1 ◦ T2 ◦ T1[x] + T−1
2 ◦ T−1

1

I − λ1T1

λ1λ2

[b]

which we rewrite as g3(x) = T̂ [x] + b̂. Note that b̂ 6= 0 [suppose not, then T−1
2 ◦

T−1
1 (I − λ1T1)[b] = 0⇔ λ1T1[b] = b which leads to a contradiction since λ1 < 1 and
b 6= 0]. Recall that ↑ = e1. Now consider

gn1 g3g
−n
1 (↑) = gn1 g3(λ−n1 T−n1 ↑)

= gn1
(
λ−n1 T̂ [T−n1 ↑] + b̂

)
= T n1 T̂ [T−n1 ↑] + λn1T

n
1 [b̂]

= ↑ +λn1T
n
1 [b̂].

Note that the last term goes to zero in norm as n → ∞ since λ1 < 1. But this
contradicts the fact that G is weakly discrete.

�

Definition 6.4. A properly discontinuous group G is said to be of compact type when
L(G) is compact.

Theorem 6.5. For a properly discontinuous group G acting on B∞, the following are
equivalent:

(1) G is of compact type.
(2) Every infinite subset of G(0) contains an accumulation point.
(3) Each sequence (gn(0))n∈N with limn→∞ ‖gn(0)‖ = 1 has a converging subsequence,

which necessarily accumulates at an element in L(G).

Proof. Notice that (2)⇒ (3) is immediate. Let’s start by proving (3)⇒ (1). Suppose that
(ξn)n ⊆ L(G). Then for every n, there exists a mn such that ‖gmn(0)−ξn‖ ≤ 1/n. Since we
have a discontinuous action, orbits must accumulate on the boundary, i.e. ‖gmn(0)‖ → 1
and n → ∞. By hypothesis, there exists a subsequence (nk)k and ξ ∈ L(G) such that
gmnk (0)→ ξ as k →∞. We now have that

‖ξnk − ξ‖ ≤ ‖gmnk (0)− ξn‖+ ‖gmnk (0)− ξ‖,
where the first term is bounded by 1/nk and therefore it and the second term both vanish
as k →∞.
Next we we show that (1) ⇒ (2). Let (gn(0))n be our infinite subset of G(0). Then for
every n, gn ∈ G. Now pick two points α, β ∈ L(G) and let lα,β be the geodesic between
them. Now fix some z ∈ lα,β and pick some common subsequence such that gn(α) → γ
and gn(β) → δ as n → ∞. Now one may verify via calculation (or geometric intuition)
that for every ε > 0 there exists Nε such that for every n ≥ Nε, gn(lα,β) ⊆ BH(lγ,δ, ε). One



12 TUSHAR DAS, BERND O. STRATMANN, AND MARIUSZ URBAŃSKI

may check that the Hausdorff distance between the gn(lα,β) is dependent on the distances
‖γ − gn(α)‖ and ‖δ − gn(β)‖ and vanishes as they decrease to zero. Therefore there exists
a subsequence such that gn(lα,β) ⊆ BH(lα,β, 1/n) for every n. It now follows that for every
n there exists wn ∈ lγ,δ such that dH(gn(z), wn) ≤ 1/n. Now there exists a subsequence
(wn)n (by compactness of lγ,δ) such that wn → w ∈ lγ,δ as n → ∞. Finally one can see
that gn(z)→ w as n→∞ since

‖gn(z)− w‖ ≤ ‖gn(z)− wn‖+ ‖wn − w‖.
�

Remark 6.6. This theorem may be extended to non-proper CAT(-1) spaces modulo the
construction of geodesics between two boundary points, see [10].

7. Convex-cobounded groups of compact type

Fix α ∈ ∂K∞ and let Sα refer to the hyperbolic ray from 0, the origin, to α. As in finite
dimensions the Busemann function may be extended to ∂K∞ ×K∞ ×K∞ via

lim
z→α
Bz(x, y) =: Bα(x, y),

where Bz(x, y) := d(x, z)− d(y, z).

Definition 7.1. Let us define the following distinguished subsets of L(G):

• α ∈ L(G) is a horospherical limit point of G if there exists a sequence of orbit points
g(0) with

Bα(0, g(0))→ −∞.
The set of such points is called the horospherical limit set and is denoted by Lh(G)
or by Lh.
• α ∈ L(G) is a radial limit point of G if there exists a constant c = c(α) > 0 such

that

Sα ∩B(g(0), c) 6= ∅
for infinitely many g(0) for every g ∈ G. The set of such points is called the radial
limit set and is denoted by Lr(G) or by Lr.
• α ∈ L(G) is a uniformly radial limit point of G if there exists a positive constant
c = c(α) > 0 such that

Sα ⊆ ∪g∈GB(g(0), c).

The set of such points is called the uniformly radial limit set and is denoted by
Lur(G) or by Lur.

In other words, we may write

Lur(G) = ∪σ>0Lur,σ(G)

and

Lr(G) = ∪σ>0Lr,σ(G)

where α ∈ Lur,σ(G) when the geodesic from 0 to α, Sα, is covered by hyperbolic balls
B(g(0), σ) over the G-orbit of the origin and similarly where α ∈ Lr,σ(G) when Sα intersects
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infinitely many hyperbolic balls B(gn(0), σ) for some subsequence of the G-orbit of the
origin.
Notice that we have the following inclusions:

Lur ⊆ Lr ⊆ Lh ⊆ L.

Definition 7.2. We define the projection map Π : X \ {0} → ∂X to be the unique map
so that for all x ∈ X \ {0}, x is on the geodesic joining 0 and Π(x). For x ∈ X and σ > 0,
it is useful to consider the set Π(B(x, σ)), which is called the “shadow” of the ball B(x, σ),
which we may also denote by Shad(x, σ). One may imagine shining a light from the point
0 onto the boundary.

Remark 7.3. In general there is nothing distinguished about the origin 0 and in fact we
can similarly define Πz and Shadz when we are shining a light from z ∈ H. Without the
subscript we assume that the light is based at the origin. The reader is invited to verify that
we would get the same sets Lur(G), Lr(G), and Lh(G) if in our constructions we replaced
0 by an arbitrary but frozen point z ∈ H.

0

g(0)x
B(g(0), σ)

σ

Shad(g(0), σ))

Figure 1. A useful estimate regarding the Euclidean diameter of shadows
that will be used in the sequel is diam

(
Shad(g(0), σ)

)
� σe−d(0,g(0)), see [37,

Lemma 2.1].

Definition 7.4. Given α, β ∈ B∞, define [α, β] and (α, β) respectively to be the unique
geodesics joining α and β, the former with the endpoints α and β while the latter without
them. Let

C := C
(
L(G)

)
=

⋃
α,β∈L(G)

[α, β]

A strongly discrete G is convex-cobounded if there exists R > 0 such that

C ⊆ G(B(0, R)).

Theorem 7.5. Suppose G is a strongly discrete group of compact type. Then the following
are equivalent:

(A) G is convex-cobounded.
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(B) L(G) = Lur(G)
(C) L(G = Lr(G)
(D) L(G = Lh(G)

Proof. Since (B)⇒ (C)⇒ (D), it is enough to prove (A)⇒ (B) and (D)⇒ (A).

[Proof of (A) ⇒ (B)] Fix some ξ ∈ L(G). In view of Remark 7.3, we may assume
without loss of generality that [0ξ] ⊆ C. Therefore, for every x ∈ [0ξ] there exists some
g ∈ G with d(g(0), x) ≤ R, with R coming from the definition of convex-coboundedness.
Choose xn ∈ [0ξ] with d(0, xn) = n and let gn ∈ G denote the corresponding elements that
move the origin R-close to xn.

0

ξ

x1

x2 x3

g1(0)

g2(0)

g3(0)

Then notice that d(gn(0), gn+1(0)) ≤ 2R + 1 and so it is clear that ξ ∈ Lur(G).

[Proof of (D)⇒ (A)] By way of contradiction suppose that G is not convex-cobounded.
Let D be a Dirchlet domain centered at 0, i.e.

D := {x : d(0, x) < d(0, g(x)) ∀g ∈ G such that g(0) 6= 0}

and let ∆ := D ∩ C. Fix a point x ∈ C \ G(B(0, R)) and note that the set of points in
the orbit of 0 whose distance to x is less than the distance from x to 0 is finite, since
G is strongly discrete. Pick the element g(0) ∈ G(0) which is closest to x and then
g−1(x) ∈ ∆ \ B(0, R). Therefore ∆ ( B(0, R) for every R > 0. Hence, we may construct
a sequence yn ∈ G(x) ∩ (∆ \ B(0, n)), n ∈ N. Let ξn and ηn be points in L(G) such
that yn ∈ [ξn, ηn]. Since limn→∞(1 − ‖yn‖euc) = 0, and the group G has a compact limit
set, there exists a convergent subsequence (ynk)

∞
k=1 to some point ξ ∈ L(G), and also

limn→∞min{‖yn−ξn‖euc, ‖yn−ηn‖euc} = 0. Because of the symmetry of ξn and ηn, passing
to yet another subsequence, we may assume without loss of generality that

lim
k→∞
‖ynk − ξnk‖euc = 0

and consequently that

lim
k→∞

ξnk = lim
k→∞

ynk = ξ.

We now show that such a ξ must belong to L(G) \ Lh(G), which will give a contradiction.
Indeed, for all g ∈ G and for every yn ∈ ∆ we have that d(0, yn) ≤ d(g(0), yn), which in
turn implies that Bξ(g(0),0) ≥ 0 and therefore ξ /∈ Lh(G).

�

8. The theorem of Bishop and Jones

Throughout this section let (X, ρ) be a complete metric space. We start with a version
of mass-redistribution principle without any reference to hyperbolic geometry or groups.
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Definition 8.1. Given two sets C,D ⊆ X and some κ > 0 we say that

C ⊆κ D ⇔ B(C, κdiam(C)) ⊆ D,

and read it as the κ-thickening of C is contained in D. We denote B(C, κdiam(C)) := Cκ
to be the κ-thickening of C.

We prove the following mass-redistribution result.

Proposition 8.2 (Mass-Redistribution). Let (X, ρ) be a complete metric space and fix
t ≥ 0 and κ ∈ (0, 1). For every n ≥ 1 let En be a finite set. Set Ej

i := Ei × . . . × Ej for
0 ≤ i ≤ j and to avoid clutter we write En for En

1 . Suppose that Σ ⊆ E∗ :=
⋃
n≥1E

n, has
the property that

Σ̂ := {ω||ω|−1 ∈ E|ω|−1 : ω ∈ Σ} ⊆ Σ ∪ {∅}.
We denote Σn := Σ∩En. Suppose further that for every ω ∈ Σ, there exists a closed subset
A(ω) ⊆ X with the following properties:

(a) For every ω ∈ Σ, A(ω) ⊆κ A(ω||ω|−1);

(b) For every ω ∈ Σ, diam
(
A(ω||ω|−1)

)
≤ κ−1diam(A(ω));

(c) For ω, τ ∈ En ∩ Σ, ω 6= τ , A(ω) ∩ A(τ) = ∅;
(d) For every ω ∈ Σ ∑

e∈E|ω|+1

ωe∈Σ

diamt
(
A(ωe)

)
≥ diamt

(
A(ω)

)
;

and
(e) limn→∞max{diam(A(ω)) : ω ∈ Σn} = 0.

Then it follows that

HD

(
∞⋂
n=1

⋃
ω∈Σn

A(ω)

)
≥ t.

Remark 8.3. We make a few small remarks, before starting the proof of the Proposition.

• The sets Ei may be thought of as index sets or as alphabets if we think in terms
of symbolic dynamics, or IFSs. Note that if we take all of them to be equal to the
same set E then En is simply the n-fold product of the set E.
• It may help to explain what each of the conditions are saying

(1) Condition (a) says that the κ-thickenings are decreasing, while
(2) Condition (b) tells us that they do not decrease too fast.
(3) Condition (d) is the appropriate redistribution of mass that leads to the ap-

propriate measure in the limit
(4) Condition (c) is a natural disjointness condition which is necessary when build-

ing a measure.
We note that we may prove the same proposition by specifying rates, i.e. different
κ’s for (a) and (b).
• In general metric spaces diam(Aκ) ≤ (1 + 2κ)diam(A). Whereas for Banach spaces,

it turns out that we have equality. Therefore when in Hilbert spaces for instance,
we have that (a) implies condition (e).
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Proof. Decreasing Σ if necessary we may assume without loss of generality that A(ω) 6= ∅
for every ω ∈ Σ. For every n ≥ 1, let

Jn :=
⋃

ω∈En∩Σ

A(ω) and J :=
∞⋂
n=1

Jn.

Note that for every ω ∈ Σ, we have that J ∩A(ω) 6= ∅ and so we fix a point xω ∈ J ∩A(ω).
Now define inductively the following sequence of Borel probability measures (µn)n≥0 on J
as follows. Let µ0 be an arbitrary Borel probability measure on J . For the inductive step,
suppose that n ≥ 0 and µ0, µ1, . . . , µn (each a Borel probability measure on J) have already
been defined. Then set

(8.1) µn+1 :=
∑

ω∈En+1∩Σ

diamt(A(ω))∑
e∈E:ω|ne∈Σ diamt(A(ω|ne))

µn(A(ω|n))δxω ·

Now since µn is a probability measure and by (c) all the sets A(τ), τ ∈ En ∩ Σ are pair-
wise disjoint, a straightforward direct computation shows that µn+1 is a Borel probability
measure. Now since xω ∈ J for every ω ∈ Σ, we immediately get from (8.1) that

(8.2) µn(J) = 1 for every n ≥ 0.

Now suppose that τ ∈ En ∩ Σ. In view of (8.1) and (c) we then get

(8.3)

µn+1(A(τ)) =
∑

ω∈En+1∩Σ

diamt(A(ω))∑
e∈E:ω|ne∈Σ diamt(A(ω|ne))

µn(A(ω|n))δxω(A(τ))

=
∑

a∈E:τa∈Σ

diamt(A(τa))∑
e∈E:τe∈Σ diamt(A(τe))

µn(A(τ))

= µn(A(τ))
∑

a∈E:τa∈Σ

diamt(A(τa))∑
e∈E:τe∈Σ diamt(A(τe))

= µn(A(τ))

∑
a∈E:τa∈Σ diamt(A(τa))∑
e∈E:τe∈Σ diamt(A(τe))

= µn(A(τ)).

Because of c) and since xω ∈ J ∩ A(ω) for every ω ∈ Σ, we get that for every n ≥ 0 and
for all 0 ≤ i ≤ j that

(8.4) µn+j(A(τ)) = µn+j

( ⋃
ω∈En+in+1:τω∈Σ

A(τω)

)
=

∑
ω∈En+in+1:τω∈Σ

µn+j(A(τω)).

Having this formula, we now prove the following.

Observation 8.4. µn+k(A(τ)) = µn(A(τ)) for every n, k ≥ 0 and all τ ∈ En ∩ Σ.

Proof. Fix n ≥ 0. The proof now follows by induction on k ≥ 0. For k = 0 it is a tautlogy.
So suppose the claim is true for some k ≥ 0 and all τ ∈ En ∩ Σ. Using (8.4) and (8.3) we
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then get

µn+(k+1)(A(τ)) =
∑

ω∈Ek:τω∈Σ

µn+(k+1)(A(τω)) =
∑

ω∈Ek:τω∈Σ

µ(n+k)+1(A(τω))

=
∑

ω∈Ek:τω∈Σ

µn+k(A(τω))

= µn+k(A(τ))

= µn(A(τ)).

The inductive proof is complete. �

Now let c :=
[∑

e∈E1
diamt(A(e))

]−1
<∞. Next we prove the following.

Observation 8.5. For every n ≥ 1 and for every ω ∈ En ∩ Σ, we have that µn(A(ω)) ≤
cdiamt(A(ω)) .

Proof. We prove this by induction on n ≥ 1. If e ∈ E ∩ Σ, then it follows from (8.1) that

µ1(A(e)) =

[∑
a∈E1

diamt(A(a))

]−1

diamt(A(e)) · µ0(X)

= c · diamt(A(e)).

So suppose that the claim holds for some n ≥ 1. For every ω ∈ En+1 ∩ Σ, we then have
from (8.3) and (d) that

µn+1(A(ω)) =

[ ∑
e∈En+1:ω|ne∈Σ

diamt(A(ω|ne))
]−1

diamt(A(ω)) · µn(A(ω|n))

≤
[
diamt(A(ω|n))

]−1
diamt(A(ω)) · µn(A(ω|n))

≤ c · diamt(A(ω)).

We are done. �

Now the set J =
⋂
n≥1

⋃
ω∈En∩ΣA(ω) =:

⋂
n≥1 Jn is closed as it is the intersection of

closed sets Jn. Recall that (e) gives us that

lim
n→∞

max{diam(A(ω)) : ω ∈ En ∩ Σ} = 0,

and now because of the finiteness of the index sets En, the set J is totally bounded. Thus
J is compact since X is complete. Therefore by the Banach-Alaoglu theorem, the sequence
(µn)∞1 of Borel probability measures on J contains a weakly convergent subsequence. De-
note its weak limit by µ. Since A(ω)∩J is a clopen subset of J (with respect to the topology
relative to J) for every ω ∈ Σ, it follows from Observation 8.5 that for every ω ∈ Σ,

(8.5) µ(A(ω)) ≤ c · diamt(A(ω)).

Note that we have not yet used conditions (a) and (b) and we now do so in estimating from
above the measures of balls centered at the points of J .
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Let z ∈ J = ∩n≥1Jn. Since for every n ≥ 1, the sets En ∩ Σ are finite, it follows
from König’s Lemma that there exists ω ∈ EN such that ω|n ∈ Σ for every n ≥ 1 and
{z} =

⋂∞
n=1A(ω|n). Because of (c) this ω ∈ EN is unique.

Now fix a radius r ∈ (0, κmin{diam(A(ω)) : ω ∈ E2 ∩ Σ}). Then there exists a largest
n = n(ω, r) ≥ 2 such that

(8.6) r ≤ κdiam(A(ω|n)).

Since z ∈ A(ω|n) it follows from (a) that

B(z, r) ⊆ B
(
z, κdiam(A(ω|n))

)
⊆ B

(
A(ω|n), κdiam(A(ω|n)))

)
⊆ A(ω|n−1).

Now (8.5) implies that

(8.7) µ(B(z, r)) ≤ c · diamt(A(ω|n−1)).

By the definition of n, we have that κdiam(A(ω|n+1)) < r and then applying (b) twice we
get that

diam(A(ω|n−1)) ≤ κ−1diam(A(ω|n)) ≤ κ−2diam(A(ω|n+1)) ≤ κ−3r.

Inserting this into (8.7) we finally get

(8.8) µ(B(z, r)) ≤ cκ−3trt.

Note that µ(J) = 1 (since its a probability measure on J) and thus by a direct application
of Frostmann’s Lemma, we have that HD(J) ≥ t. We are done. �

Remark 8.6. In the case when (X, ρ) is a finite-dimensional Euclidean space, condition
(a) can be replaced by the requirement that all the sets A(ω) for ω ∈ Σ are uniformly
undistorted balls and then a standard volume argument would work to get (8.8). Our
Proposition 8.2 requires no extra structure on X and condition (a) will be proved to be
satisfied in the course of our proof of the Bishop-Jones theorem for Hilbert spaces. We
should note however that condition (a) is somewhat strong and for example it fails in the
standard construction of C, the middle-third Cantor set if X = [0, 1]. Note however if
X = C, then (a) is satisfied. Therefore one must take some care in the choice of X.

Notation 8.7. For ξ ∈ ∂B∞, we denote B̂(ξ, r) to be the union of all geodesics (in B) with
both endpoints in the ball in ∂B∞ centered at ξ and with spherical radius equal to r. In

particular Π[B̂(ξ, r)] is equal to this ball.

Next we shall prove the following

Lemma 8.8. If G is a non-elementary strongly discrete group acting on B, then for every
t < δG there exist two distinct points ξ1, ξ2 ∈ L(G) such that for all r > 0,∑

γ(0)∈B̂(ξi,r)

e−td(γ(0),0) = +∞ for i = 1, 2.

We call such points ξi, t-divergent points of L(G).
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Proof. We assume that our group is non-elementary and so there exist at least two distinct
hyperbolic elements. We prove the existence of one such point (as claimed in the Lemma)
and the same argument will provide another point distinct from the first; as we have that
these hyperbolic elements have distinct pairs of fixed points.

Suppose by way of contradiction, that there exist no t-divergent points in the limit set.
Now pick a hyperbolic element g with axis lg whose attracting and repelling endpoints
respectively are ξ+

g and ξ−g on L(G). Let’s look at ξ−g and refer to it as simply ξ. Then

there exists an rξ such that the sum over the G-orbit of 0 within A := B̂(ξ, rξ) is finite, i.e.∑
γ(0)∈A

e−td(γ(0),0) < +∞ .

Then we have that ∑
γ(0)∈B\A

e−td(γ(0),0) = +∞ .

Now for an arbitrary ε > 0, there exists n ≥ 0 large enough such that gn(B\A) ⊆ B̂(ξ+
g , ε).

It is enough to show that for such n, we have that∑
γ(0)∈B\A

e−td(gnγ(0),0) = +∞ ,

since then we would have shown ξ+
g to be t-divergent and thus derived a contradiction.

Notice that ∑
γ(0)∈B\A

e−td(gnγ(0),0) ≥
∑

γ(0)∈B\A

e−td(0,gn(0))e−td(gn(0),gnγ(0))

(by the triangle inequality)

= e−td(0,gn(0))
∑

γ(0)∈B\A

e−td(gn(0),gnγ(0))

= e−td(0,gn(0))
∑

γ(0)∈B\A

e−td(0,γ(0))

[
since g is an isometry

]
= +∞ .

We are done. �

Definition 8.9. Fix τ > 0. For every integer n ≥ 0 let

An(τ) := {z ∈ G(0) : τn ≤ d(z, 0) ≤ τ(n+ 1)}.

The set An(τ) is called the hyperbolic (n,G)-annulus centered at 0 and of width τ .

We now prove the following lemma

Lemma 8.10. Let G be a strongly discrete group. Fix τ > 0 and 0 ≤ s < t < δG. Let
ξ ∈ L(G) be a t-divergent point. Then for every M > 0 and for every r > 0 there exists
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(nj(ξ))
∞
j=1 an increasing sequence of positive integers such that∑

g(0)∈B̂(ξ,r)∩Anj(ξ)(τ)

e−sd(g(0),0) ≥M for every j ≥ 1.

Proof. Suppose by way of contradiction that there exist M, r > 0 and an integer q ≥ 0 such
that ∑

z∈B̂(ξ,r)∩An(τ)

e−sd(z,0) < M for every n ≥ q + 1.

Take r∗ ∈ (0, r] so small that Aq(τ) ∩ B̂(ξ, r∗) = ∅. Then An(τ) ∩ B̂(ξ, r∗) = ∅ for all
n = 0, 1, 2, . . . , q and thus we get that∑

z∈B̂(ξ,r∗)∩An(τ)

e−sd(z,0) = 0 ≤M if n ≤ q

and that ∑
z∈B̂(ξ,r∗)∩An(τ)

e−sd(z,0) ≤
∑

z∈B̂(ξ,r)∩An(τ)

e−sd(z,0) ≤M if n ≥ q + 1.

Therefore we have that
∑

z∈B̂(ξ,r∗)∩An(τ) e
−sd(z,0) ≤M for all n ≥ 0. Hence∑

z∈G(0)∩B̂(ξ,r∗)

e−td(z,0) =
∞∑
n=0

∑
z∈B̂(ξ,r∗)∩An(τ)

e−(t−s)d(z,0)e−sd(z,0)

≤
∞∑
n=0

∑
z∈B̂(ξ,r∗)∩An(τ)

e−(t−s)τne−sd(z,0)

=
∞∑
n=0

e−(t−s)τn
∑

z∈B̂(ξ,r∗)∩An(τ)

e−sd(z,0)

≤M

∞∑
n=0

e−(t−s)τn

< +∞.
The last inequality follows since s was chosen strictly smaller that t and so we have a
geometric series that converges. But then this contradicts the hypothesis that ξ is a t-
divergent point and finishes the proof. �

We sometimes, for emphasis, will use the shorthand Be, de and similarly Bh, dh to dis-
tinguish between the Euclidean/Hilbertian and hyperbolic settings respectively. In general
the absence of subscripts refers to the hyperbolic setting, though diam without a subscript
will refer to Euclidean diameter.

Lemma 8.11. There exists α > 0 such that for all σ > log 2 we have

Π[Bh(z, ασ)] ⊆ Be

(
Π[z],

1

8
diameΠ[Bh(z, σ)]

)
,
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for every z with d(z, 0) > σ.

Proof. The proof immediately follows from the estimate

diame

(
Π[B(z, σ)]

)
= diame

(
Shad(z, σ)

)
� σe−d(z,g(z))

described in Figure 7.2 above and [37, Lemma 2.1]. �

For every σ > 0, let rσ > 0 be chosen so small that

(8.9) rσ < πe−ασσ.

From this point on, for the remainder of the section, fix an arbitrary τ > 0. The main
ingredient, forming the inductive step in our proof of the Bishop-Jones Theorem, is the
following lemma, whose proof is illustrated on the Figure 2 below and is provided after
formulation of the lemma.

0

g(0)

g−1

0

g−1(0)

Figure 2. The strategy for the proof of Lemma 8.12 is to construct a col-
lection of “children” of the point g(0). We “pull back” the entire picture
via g−1. In the pulled-back picture, with the help of the Light Cone Lemma
(cf. [37, Lemma 2.3]) we obtain the existence of many points x ∈ G(0) such
that Shadg−1(0)(x, σ) ⊆ Shadg−1(0)(0, σ). These children can then be pushed
forward via g to get children of g(0).

Lemma 8.12. Fix 0 < s < t < δG. Let ξ1, ξ2 ∈ L(G) be two t-divergent points (see Lemma
8.8 for their existence). Then there exist σ > 0 and positive integers l1, l2 ≥ 1 such that
the following holds:
For every g ∈ G with d(g(0), 0) > σ, there exists a set Γ(g) contained in one of the sets

Γi := {h ∈ G : h(0) ∈ B̂(ξi, rσ) ∩ Ali(τ)} for i = 1, 2;

such that the following hold:-

(a) The family {Π[Bh(gh(0), σ)] : h ∈ Γ(g)} consists of mutually disjoint balls.
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(b) For every h ∈ Γ(g),

Π[gh(0)] ∈ Be

(
Π[g(0)],

1

8
diameΠ[Bh(g(0), σ)]

)
.

(c) There exists a constant βσ ∈ (0, 1) depending only on l1, l2 and σ (in particular
independent of g) such that for every h ∈ Γ(g),

βσ
4

diam

(
Π[Bh(g(0), σ)]

)
≤ diam

(
Π[Bh(gh(0), σ)]

)
≤ 1

4
diam

(
Π[Bh(g(0), σ)]

)
.

(d) The following inequality holds∑
h∈Γ(g)

diams

(
Π[Bh(gh(0), σ)]

)
≥ diams

(
Π[Bh(g(0), σ)]

)
.

Proof. Take σ > log 2 and so large as needed for Lemma 8.11 and so that

de(ξ1, ξ2) > 6πe−ασσ.

Now by the choice of rσ, see (8.9), we have that

inf{de(x, y) : x ∈ B̂(ξ1, rσ), y ∈ B̂(ξ2, rσ)} > 4πe−ασσ.

Since ασσ > log 2, it then follows from the Light Cone Lemma (Lemma 2.3 in [37]) that at

least one of the balls B̂(ξ1, rσ) or B̂(ξ2, rσ) is contained in g−1
(
Π[B(g(0), ασσ)]

)
. Assume

without loss of generality that B̂(ξ1, rσ) ⊆ g−1
(
Π[B(g(0), ασσ)]

)
. Consequently, if we fix

two integers l1, l2 ≥ 1 that we will specify later in the course of the proof, then

Π[h(0)] ∈ g−1
(
Π[Bh(g(0), ασσ)]

)
for every h ∈ Γ1. Therefore g(Π[h(0)]) ∈ Π[B(g(0), ασσ)] and g maps the geodesic from 0
to Π[h(0)] with h(0) on it to the geodesic from g(0) to gΠ[h(0)] with gh(0) on it. Therefore
gh(0) lies inside of the light cone generated by 0 and Bh(g(0), ασσ) and we thus have that

Π[gh(0)] ∈ Π[Bh(g(0), ασσ)] ⊆ Be

(
Π[g(0)],

1

8
diamΠ[Bh(g(0), σ)]

)
where the inclusion follows from Lemma 8.11. Note that condition (b) of our Lemma has
thus been established.
Assume now that l1 > σ/τ . Then d(h(0), 0) > σ for all h ∈ Γ1 and we can apply the
Geometric Distortion Lemma (Lemma 2.2 in [37]) to get

(8.10) d(g(0), 0) + d(h(0), 0)− 2σ ≤ d(gh(0), 0) ≤ d(g(0), 0) + d(h(0), 0)

for every h ∈ Γ1. Note that we also needed g(Π[h(0)]) ∈ Π[B(g(0), σ)] to apply the
Geometric Distortion Lemma, but we already have that g(Π[h(0)]) ∈ Π[Bh(g(0), ασσ)] ⊆
Π[Bh(g(0), σ)]. Now since h(0) ∈ Al1(τ), for every h ∈ Γ1, we have that l1τ ≤ d(h(0), 0) <
l1τ + τ . Hence, we get

(8.11) d(g(0), 0) + l1τ − 2σ ≤ d(gh(0), 0) ≤ d(g(0), 0) + l1τ + τ
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for every h ∈ Γ1. Now define Γ(g) to be a maximal (in the sense of inclusion) subset of Γ1

such that

(8.12) d(h1(0), h2(0)) > τ + 6σ

for all h1, h2 ∈ Γ1 with h1 6= h2. Let us now prove item (a). Suppose by way of contradiction
that, Π[Bh(gh1(0), σ)]∩Π[Bh(gh2(0), σ)] 6= ∅ for some h1, h2 ∈ Γ1 with h1 6= h2. This means
that B(gh1(0), σ) intersects the light-cone viewed from 0 generated by Bh(gh2(0), σ). Let
z1 belong to this intersection and let z2 ∈ Bh(gh2(0), σ) be chosen on the ray from 0 to z1

whose endpoint we denote by ξ.

0

ξ

h2(0)

h1(0)

z2

z1

Then the following estimates are true using (8.11):

d(g(0), 0) + l1τ − 3σ < d(z1, 0) < d(g(0), 0) + l1τ + τ + σ

and

d(g(0), 0) + l1τ − 3σ < d(z2, 0) < d(g(0), 0) + l1τ + τ + σ.

Therefore
d(z1, z2) = |d(0, z1)− d(0, z2)|

< [d(g(0), 0) + l1τ + τ + σ]− [d(g(0), 0) + l1τ − 3σ]

= τ + 4σ.

Therefore we have that

d(h1(0), h2(0)) = d(gh1(0), gh2(0))

≤ d(gh1(0), z1) + d(z1, z2) + d(z2, gh2(0))

< σ + [τ + 4σ] + σ

= τ + 6σ

which contradicts (8.12) and finishes the proof of item (a). It follows directly from the
left-hand side of (8.11) and Lemma 2.1 in [37] that with l1 ≥ 1 chosen large enough the
right-hand side of (c) holds. Similarly the left-hand side of (c) follows from the right-hand
side of (8.11) and Lemma 2.1 in [37].
We have only left to show item (d) and this where the final specification of l1 will be made.
First for every h ∈ Γ(g), define

Qg(h) := {f ∈ Γ(g) : d(f(0), h(0)) ≤ τ + 6σ}.
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By maximality of Γ(g), see (8.12), we have that⋃
h∈Γ(g)

Qg(h) = Γ1.

Now since our group is strongly discrete, the number of elements in Qg(h) is bounded above
by some constant, C1 = C1(τ, σ), depending only on (τ + 6σ) and of course on G. Also
because of (8.11) and Lemma 2.1 in [37], there exists another constant, C2 = C2(τ, σ), such
that for every g ∈ G with d(g(0), 0) > σ and all h1, h2 ∈ Γ1,

C−1
2 ≤

diam
(
Π[Bh(gh2(0), σ)]

)
diam

(
Π[Bh(gh1(0), σ)]

) ≤ C2.

Hence,

(8.13)

∑
h∈Γ1

diams(Π[Bh(gh(0), σ)]) ≤
∑
h∈Γ(g)

∑
f∈Qg(h)

diams(Π[Bh(gf(0), σ)])

≤
∑
h∈Γ(g)

C2(τ, σ)s
∑

f∈Qg(h)

diams(Π[B(gh(0), σ)])

= C2(τ, σ)s
∑
h∈Γ(g)

[#Qg(h)]diams(Π[B(gh(0), σ)])

≤ C2(τ, σ)sC1(τ, σ)
∑
h∈Γ(g)

diams(Π[Bh(gh(0), σ)]).

Now take M = C2s
σ C2(τ, σ)sC1(τ, σ), where Cσ > 0 comes from Lemma 2.1 in [37], and

choose l1 ≥ 1 to be one of the numbers (nj(ξ1))∞j=1 appearing in Lemma 8.10 that is so
large as required above, viz. that l1 > σ/τ . Now by Lemma 8.10, Lemma 2.1 in [37] and
the right-hand-side of (8.10), we get that∑

h∈Γ1

diams(Π[Bh(gh(0), σ)]) ≥ C−sσ
∑
h∈Γ1

e−sd(gh(0),0)

≥ C−sσ
∑
h∈Γ1

e−sd(g(0),0)e−sd(h(0),0)

= C−sσ e−sd(g(0),0)
∑
h∈Γ1

e−sd(h(0),0)

≥MC−sσ e−sd(g(0),0)

≥MC−2s
σ diams(Π[B(g(0), σ)])

≥ C2(τ, σ)sC1(τ, σ)diams(Π[B(g(0), σ)]).

Now inserting this into (8.13), we finally get∑
h∈Γ(g)

diams(Π[B(gh(0), σ)]) ≥ diams(Π[B(g(0), σ)])

which establishes (d) and finished the proof of our Lemma. �
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We are now in a position to prove the main result of this section, which is the extension
of the Bishop-Jones result to the infinite-dimensional non-proper case.

Theorem 8.13. If G is a strongly discrete group acting on B, then

HD(Lr(G)) = HD(Lur(G)) = δG.

Proof. As Lur(G) ⊆ Lr(G), we have that

(8.14) HD(Lur(G)) ≤ HD(Lr(G)).

We shall first show that
HD(Lr(G)) ≤ δG.

If δG = +∞, then we are done and so let’s assume that δG < +∞. Fix an arbitrary s > δG.
Write G as (gn)∞n=1. Fix σ > log 2 and let

Lr,σ(G) :=
⋂
n≥1

⋃
k≥n

Π
[
Bh(gk(0), σ)

]
.

Since
∑

n≥1 e
−sd(gn(0),0) < +∞, we get that

lim
n→∞

∑
k≥n

diams(Π
[
Bh(gk(0), σ)

]
) �σ lim

n→∞

∑
k≥n

e−sd(gk(0),0) = 0.

Thus HD(Lr,σ(G)) ≤ s and consequently that HD(Lr,σ(G)) ≤ δG. sincealso Lr(G) =⋃
n≥3 Lr,n(G), using the σ-stability of Hausdorff dimension, we therefore get

HD(Lr(G)) = sup
n≥3
{HD(Lr,n(G))} ≤ δG.

Along with (8.14) this gives HD(Lur(G)) ≤ HD(Lr(G)) ≤ δG, and we are left to show that

(8.15) HD(Lur(G)) ≥ δG.

By means of Lemma 8.12 we will perform a construction to which Proposition 8.2 will
apply. In the setting of Lemma 8.12, for every n ≥ 1 let

En := E := Γ1 ∪ Γ2.

We define the set Σ ⊆ E∗ and the sets A(ω) for ω ∈ Σ by induction with respect to
word length in Σ. For the base of your recursion, we take E ∩ Σ := E := Γ1 ∪ Γ2

and A(h) := Π[B(h(0), σ)] for all h ∈ E. For the inductive step, suppose that the set
En ∩Σ has been defined and that all the sets A(f), f ∈ En ∩Σ have been defined as well.
To define En+1 ∩ Σ consider all the elements g = f1, . . . , fn ∈ En ∩ Σ and declare that
f = f1, . . . , fn+1 ∈ En+1 ∩ Σ if fn+1 ∈ E and fn+1 ∈ Γ(f1 ◦ . . . ◦ fn) = Γ(g). Then put
A(f) = Π[B(f1 ◦ . . . ◦ fn+1(0), σ)]. Verifying now the hypotheses of Proposition 8.2, we

see that Σ̂ ⊆ Σ directly by construction. Properties (c), (d), (b) and (a) of Proposition
8.2 follow respectively from property (a) of Lemma 8.12; property (d) of Lemma 8.12; the
left-hand side of property (c) of Lemma 8.12 and finally from both property (b) and the
right-hand-side of Property (c) of Lemma 8.12 with κ = 1/4. Therefore all the properties
of Proposition 8.2 have been verified and as a result of applying it we get that

HD

( ⋂
n≥1

⋃
ω∈En∩Σ

A(ω)

)
≥ s.
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It now follows from (c) of Lemma 8.12, or more directly from (8.11), that⋂
n≥1

⋃
ω∈En∩Σ

A(ω) ⊆ Lur(G),

and so we have that HD(Lur(G)) ≥ s. Since was s arbitrarily smaller than δG, we therefore
get that HD(Lur(G)) ≥ δG. This means that (8.15) has been established and we are
done. �

9. Convex-Cobounded Groups

With the proof of the main theorem behind us, if only to whet the reader’s appetite, we
conclude with a proof sketch of the following theorem and encourage her to look up the
papers [17, 10, 11].

Theorem 9.1. Let G < Isom(H) be strongly discrete and convex-cobounded. Then G is
finitely generated, has finite Poincaré exponent δ < ∞, is of divergence type, and has a
compact limit set. The δ-dimensional Hausdorff and packing measures on L(G) are finite
and positive and coincide up to a multiplicative constant with the δ-conformal Patterson
measure which is Ahlfors δ-regular.

Proof (sketch). The proof that the group G is finitely generated and then showing that
the orbit map is a quasi-isometry follows from the Milnor-Schwarz Lemma [2, Proposition
I.8.19], once we notice that L(G) being compact implies that C is also compact, since we
are in a Hilbert space. Say G has d generators, and let |g| denote the word-length of g ∈ G,
i.e. the length of the shortest word that g may be expressed in terms of the d generators.
Then

Σs(G) =
∑
g∈G

e−sd(0,g(0)) ≤
∑
g∈G

e−s(ε|g|−K) = esK
∑
g∈G

e−sε|g| ≤ esK
∑
g∈Fd

e−sε|g| ,

where ε,K are the quasi-isometry constants and Fd denotes the free group on d generators
which surjects onto G. By taking sε to be sufficiently large we can force convergence of
the final sum above. Thus δ <∞. Next let us prove that G is of compact type. Consider
a sequence xn ∈ G(0) with d(0, xn) → ∞. Choose yn ∈ ∂B(0, N) ∩ [0, xn] as in the figure
below.

0

xn

yn

zn

≤ R

B(0, N)

Since our group is convex-cobounded there exists a sequence zn ∈ G(0) with d(0, zn) ≤
N + R. Since the action is strongly discrete there are only finitely many such zns for
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every n and therefore we may extract a constant subsequence (nk)k with znk = z. Thus
d(ynk , ynl) ≤ 2R and so

〈xnk |xnl〉0 ≥ 〈ynk |ynl〉0 ≥
1

2
[N +N − 2R] = N −R .

Here 〈x|y〉z := 1
2
[d(x, z) +d(y, z)−d(x, y)] denotes the Gromov product, see [41, Definition

2.7]. Now since N are arbitrary, we may extract a diagonal sequence such that for every
k, l ∈ N

〈xnk |xnl〉0 ≥ min{k, l} −R −→
k,l
∞ .

Thus (xnk)k is a Gromov sequence [41, Section 5] whose distances from the origin become
arbitrarily large and thus we have convergence to a limit point on the boundary. Thus
L(G) is compact by Theorem 6.5.

Note that the compactness of the limit set allows the usual Patterson-Sullivan machinery
via weak limits to go through, see [38, Theorem 1]. The Ahlfors regularity of the Patterson–
Sullivan measure (and thus its equivalence with Hausdorff and packing measures) follows
from a well-known argument using Sullivan’s shadow lemma; see [38, Proposition 3] and
[27, Section 8]. Finally, since Theorem ?? shows that the Patterson–Sullivan measure is
supported on Lr(G), the easy direction of the well-known Ahlfors-Thurston-Tukia argument
(viz. µ is s-conformal implies that Σs(G) = ∞, see [33, Theorem 8.2.2 and 8.2.3]) shows
that the G is of divergence type. This completes the proof. �
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(1979) 171-202.

[39] D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian
groups, Acta Math. 153 (1984) 259-277.

[40] D. Sullivan, Seminar on conformal and hyperbolic geometry, IHÉS, 1982.
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