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Abstract. We consider the relation between geometrically finite groups and their limit
sets in both finite-dimensional and infinite-dimensional hyperbolic space. We prove three
main results. Our first main result is that if G1 and G2 are finite-dimensional geometrically
finite nonplanar groups of the second kind whose limit sets are equal, then G1 and G2 are
commensurable, and in fact the index of the subgroup G1 ∩G2 in 〈G1, G2〉 is finite. Our
second and third main results are as follows: our first main result does not generalize to
infinite dimensions, while a weaker rigidity theorem of Susskind and Swarup (’92) does
generalize to infinite dimensions. Susskind and Swarup’s theorem differs from ours in that
it assumes from the outset that G1 is a subgroup of G2.

1. Introduction

Fix 2 ≤ d ≤ ∞, let Hd denote d-dimensional hyperbolic space, and let Isom(Hd) denote
the isometry group of Hd. In this paper we consider the following rigidity question: If
G1, G2 ≤ Isom(Hd) are discrete groups whose limit sets Λ(G1),Λ(G2) are equal, are G1 and
G2 commensurable? In general the answer is no; additional hypotheses are needed. The
following result is due to P. Susskind and G. A. Swarup:

Theorem 1.1 ([6, Theorem 1]; cf. [4, Theorem 3] for the case d = 2). Fix 2 ≤ d <∞, and
let G1, G2 ≤ Isom(Hd) be discrete groups whose limit sets are equal. If G1 is nonelementary
and geometrically finite and is a subgroup of G2, then G1 and G2 are commensurable.

The requirement here that G1 ≤ G2 is quite a strong hypothesis, and the theorem is
certainly false without it. To see this, note that if G1, G2 ≤ Isom(Hd) are lattices, then
Λ(G1) = ∂Hd = Λ(G2), but it is quite possible that G1 ∩ G2 = {id}. In this paper we
will prove a rigidity theorem similar to Theorem 1.1, but avoiding the hypothesis that
G1 ≤ G2, and in fact avoiding any hypothesis relating G1 and G2 other than the equality
Λ(G1) = Λ(G2). Based on the example above, we will need to rule out the case Λ(G1) =
Λ(G2) = ∂Hd, so we will assume that G1 and G2 are of the second kind. We will also
assume that G1 and G2 are nonplanar, i.e. that their common limit set Λ is not contained
in the closure of any proper totally geodesic subspace of Hd. Our first main result, whose
hypotheses are all necessary (cf. Remark 3.2 below), is as follows:

Theorem 1.2. Fix 2 ≤ d < ∞, and let G1, G2 ≤ Isom(Hd) be two geometrically finite
nonplanar groups of the second kind whose limit sets are equal. Then G1 and G2 are
commensurable; in fact,

[〈G1, G2〉 : G1 ∩G2] <∞.
1
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In infinite dimensions, the situation is different: Theorem 1.1 generalizes to infinite
dimensions (with “discrete” becoming “strongly discrete”, see below), but Theorem 1.2 fails
in infinite dimensions. We prove these results as Theorems 4.1 and 4.3, and they constitute
our second and third main results. These results illustrates the fact that Theorem 1.2 is
significantly more powerful than Theorem 1.1.

In Section 2, we define the terms used in our theorems, keeping an eye on the infinite-
dimensional case. In Section 3, we prove Theorem 1.2, and in Section 4 we prove the
assertions made above regarding the infinite dimensional analogues of Theorems 1.1 and
1.2.

Acknowledgements. The first-named author was supported in part by the Simons
Foundation grant #245708. The third-named author was supported in part by the NSF
grant DMS-1361677.

2. Definitions of terms

Fix 2 ≤ d ≤ ∞, and let Hd denote d-dimensional real hyperbolic space; see [3, §2] for
background regarding the case d =∞. We will use [3] as our standard reference regarding
Kleinian groups, for the reason that it explicitly considers the infinite-dimensional case. A
group G ≤ Isom(Hd) is called (strongly) discrete if

#{g ∈ G : d(0, g(0)) ≤ R} <∞ ∀R > 0.

The adverb “strongly” is used in infinite dimensions since in that case there are other,
weaker, notions of discreteness; cf. [3, §5]. The group G is called nonplanar if it preserves
neither any proper closed totally geodesic subspace of Hd nor any point on ∂Hd. This
property was called acting irreducibly in [3, §7.6].

The limit set of G is the set

Λ(G) := {ξ ∈ ∂Hd : ∃(gn)∞1 in G gn(0) −→
n
ξ}.

G is called nonelementary if its limit set contains at least three points, in which case its
limit set must contain uncountably many points [3, Proposition 10.5.4]. Recall that a set
A ⊆ Hd is said to be convex if the geodesic segment connecting any two points of A is
contained in A, and that when G is nonelementary, the convex hull of the limit set is the
smallest convex subset of Hd whose closure contains Λ. We denote the convex hull of the
limit set by C(G).

A strongly discrete group G ≤ Isom(Hd) is called geometrically finite if there exists a
disjoint G-invariant collection of horoballs H and a radius σ > 0 such that

C(G) ⊆ G(B(0, σ)) ∪
⋃
H∈H

H.

This definition appears in the form presented here in [3, Definition 12.4.1], and in a similar
form in [1, Definition (GF1)]. G is called convex-cobounded if the collection H is empty,
i.e. if

C(G) ⊆ G(B(0, σ)).

Finally, G is of compact type if its limit set is compact. It was shown in [3] that every
geometrically finite group is of compact type.
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If a sequence (xn)∞1 in Hd converges to a point ξ ∈ ∂Hd, then as usual we call the
convergence radial if there is a cone with vertex ξ which contains the sequence (xn)∞1 .
By [3, Proposition 7.1.1], the convergence is radial if and only if the numerical sequence
(〈o|ξ〉xn)∞1 is bounded. Here 〈·|·〉 denotes the Gromov product:

〈y|ξ〉z = lim
x→ξ

1

2
[d(z, y) + d(z, x)− d(y, x)].

Given ξ ∈ Λ(G), we denote by Bξ the Busemann function based at ξ, i.e.

Bξ(y, z) = lim
x→ξ

[d(x, y)− d(x, z)].

In the sequel we will find the following results useful:

Proposition 2.1 (Minimality of limit sets, [3, Proposition 7.4.1]). Fix G ≤ Isom(Hd). Any
closed G-invariant subset of ∂X which contains at least two points contains Λ(G).

Proposition 2.2 ([3, Proposition 7.6.3]). Let G be a nonelementary subgroup of Isom(Hd).
Then the following are equivalent:

(A) G is nonplanar.
(B) There does not exist a nonempty closed totally geodesic subspace V $ H whose

closure contains Λ(G).

3. Proof of Theorem 1.2

In this section we prove Theorem 1.2, and then show that none of its hypotheses can be
dropped. To do so we will need the following theorem:

Theorem 3.1 ([5, Theorem 2]). Fix 2 ≤ d < ∞, and suppose that G ≤ Isom(Hd) is
nonplanar and is not dense in Isom(Hd). Then G is discrete.

Proof of Theorem 1.2. Fix 2 ≤ d < ∞, and let G1, G2 ≤ Isom(Hd) be two geometrically
finite nonplanar groups of the second kind whose limit sets are equal. Let Λ denote the
common limit set of G1 and G2, let G+ = 〈G1, G2〉, and let G− = G1 ∩ G2. Since Λ is
a G+-invariant closed subset of ∂Hd which contains at least two points, it follows from
Proposition 2.1 that Λ = Λ(G+). In particular Λ(G+) 6= ∂Hd, which implies that G+ is
not dense in Isom(Hd). On the other hand G+ is nonplanar since it contains a nonplanar
subgroup. Thus by Theorem 3.1, G+ is discrete. Applying Theorem 1.1, we see that both
G1 and G2 are commensurable with G+. Thus G1 and G2 are commensurable, and in
particular

[G+ : G−] ≤ [G+ : G1] · [G+ : G2] <∞,
which completes the proof. �

Remark 3.2. All three hypotheses of Theorem 1.2 are necessary.

1. The necessity of G1 (and by symmetry G2) being geometrically finite can be seen
by letting G2 be a Schottky group generated by two loxodromic isometries g, h ∈
Isom(H2) and then letting

G1 := 〈g−nhgn : n ∈ N〉.
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Clearly G1 and G2 are not commensurable. On the other hand, G1 is a normal
subgroup of G2 and so its limit set is preserved by G2; thus by the minimality of
limit sets we have Λ(G1) = Λ(G2). Another example based on Jørgensen fibrations
is given at the end of [6].

2. The necessity of G1 (or equivalently, G2) being nonplanar can be seen as follows:
Let G1 be a Schottky group generated by two loxodromic isometries g, h ∈ Isom(H4)
such that
(i) the axes of g and h are coplanar,
(ii) the plane P generated by their axes is preserved by G1, and

(iii) h commutes with every rotation of H4 that fixes every point of P .
Let j be an irrational rotation that fixes every point of P , and let

G2 = 〈g, hj〉.
Then for all n 6= 0, we have jn /∈ G2 and (hj)n = hnjn ∈ G2 and thus hn /∈ G2. It
follows that G1 and G2 are not commensurable. On the other hand, G1|P = G2|P ,
which implies that Λ(G1) = Λ(G2).

3. The necessity of G1 (or equivalently, G2) being of the second kind can be seen quite
easily, as it suffices to consider any two lattices in Isom(Hd) which have no common
element.

4. Infinite dimensions

In this section we demonstrate our second and third main results, namely that while
Theorem 1.1 can be generalized to infinite dimensions, Theorem 1.2 cannot. We remark
that our counterexample to an infinite-dimensional version of Theorem 1.2 is also a coun-
terexample to an infinite-dimensional version of Theorem 3.1, since the proof of Theorem
1.2 does not use finite-dimensionality in any way except for the use of Theorem 3.1.

Theorem 4.1. Fix 2 ≤ d ≤ ∞, and let G1, G2 ≤ Isom(Hd) be strongly discrete groups
whose limit sets are equal. If G1 is nonelementary and geometrically finite and is a subgroup
of G2, then G1 and G2 are commensurable.

Note that the finite-dimensional case of this theorem also provides another proof of
Theorem 1.1.

Proof of Theorem 4.1. Let Λ denote the common limit set of G1 and G2, and let C denote
the convex hull of Λ. Fix o ∈ C and let T ⊆ G2 be a transversal1 of G2/G1 with the
following minimality property: for all g ∈ T and for all h ∈ G1,

(4.1) d(o, g(o)) ≤ d(o, h−1g(o)) = d(h(o), g(o)).

Here d denotes the hyperbolic metric on Hd. Equivalently, (4.1) says that g(o) is in the
closed Dirichlet domain D centered at o for the group G1 (cf. [3, Definition 12.1.4]).

By contradiction we suppose that [G2 : G1] = #(T ) = ∞. Since G1 is geometrically
finite, it is of compact type [3, Theorem 12.4.4], and thus G2 is also of compact type. On
the other hand, G2 is strongly discrete, so by [3, Proposition 7.7.2], there exists a sequence

1I.e. a set for which each left coset gG1 of G1 intersects T exactly once.
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(gn)∞1 in T so that gn(o)→ ξ ∈ Λ. But G1 is geometrically finite, so by [3, Theorem 12.4.4]
we have that ξ is either a radial limit point or a bounded parabolic point of G1.

If ξ is a radial limit point of G1, then ξ is also a horospherical limit point of G1, so there
exists h ∈ G1 such that Bξ(o, h(o)) > 0. But (4.1) gives

Bξ(o, h(o)) = lim
n→∞

[d(o, gn(o))− d(h(o), gn(o))] ≤ 0,

a contradiction.
If ξ is a bounded parabolic point of G1, then ξ is a parabolic point of G2, so by [3, Remark

12.3.8], ξ is not a radial limit point of G2. We will show that the sequence (gn(o))∞1 tends
radially to ξ, a contradiction.

Given distinct points p, q ∈ Hd ∪ ∂Hd, let [p, q] denote the geodesic segment or ray
connecting p and q. Now, C is cobounded in the quasiconvex core Co =

⋃
g1,g2∈G1

[g1(o), g2(o)]

[3, Proposition 7.5.3], which is in turn cobounded in the set A =
⋃
g∈G1

[g(o), ξ] by the thin

triangles condition [3, Proposition 4.3.1(ii)]. Thus, there exists σ > 0 such that C ⊆ A(σ),
where A(σ) denotes the σ-thickening of A. On the other hand, since ξ is a bounded parabolic
point of G1, there exists a ξ-bounded set S ⊆ Hd such that G1(o) ⊆ H1(S), where H1 is
the stabilizer of ξ in G1. Thus, if we let

R =
⋃
x∈S

[x, ξ],

then C ⊆
⋃
h∈H1

h(R(σ)).

Claim 4.2. The function
f(y) = min(〈o|ξ〉y, 〈y|ξ〉o)

is bounded on R(σ).

Proof. Fix y ∈ R, say y ∈ [x, ξ] for some x ∈ S. Since S is ξ-bounded, [3, Proposiiton
4.3.1(i)] implies that d(o, [x, ξ]) is bounded independent of x. Let z ∈ [x, ξ] be the point
closest to o. Then either 〈y|ξ〉z = 0 or 〈z|ξ〉y = 0, depending on whether z or y is closer
to ξ. It follows that f(y) ≤ d(o, z) is bounded independent of y. This shows that f is
bounded on R; since f is uniformly continuous, it is also bounded on R(σ). C

Fix n ∈ N. Since xn := gn(o) ∈ T ⊆ C∩D, there exists hn ∈ H1 such that xn ∈ hn(R(σ)).
Since xn ∈ D, we have d(o, xn) ≤ d(o, h−1n (xn)) and thus f(xn) ≤ f(h−1n (xn)). Thus, the
function f is bounded on the sequence (xn)∞1 . Since xn → ξ, we must have 〈xn|ξ〉o → ∞
(cf. [3, Observation 3.4.20]); thus the sequence (〈o|ξ〉xn)∞1 is bounded. As remarked earlier,
this is equivalent to the fact that xn → ξ radially, which is a contradiction as observed
earlier. �

Theorem 4.3. There exist G1, G2 ≤ Isom(H∞) convex-cobounded nonplanar groups of the
second kind whose limit sets are equal satisfying G1 ∩G2 = {id}. In particular, G1 and G2

are not commensurable.

In the proof of Theorem 4.3, we will make use of the following:

Theorem 4.4 ([2, Theorem 1.1]). Let T be a tree and let V ⊆ T denote its set of vertices,
and suppose that #(V ) = #(N). Then for every λ > 1, there is an embedding Ψλ : V → H∞

and a representation πλ : Isom(T )→ Isom(H∞) such that
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(i) Ψλ is πλ-equivariant and extends equivariantly to a map Ψλ : ∂T → ∂H∞,
(ii) for all x, y ∈ V ,

λd(x,y) = cosh d(Ψλ(x),Ψλ(y)), and

(iii) the set Ψλ(V ) is cobounded in the convex hull of the set Λ := Ψλ(∂T ).

Proof of Theorem 4.3. Let F2 be the free group on two elements, and let T be the right
Cayley graph of F2. Fix any λ > 1, and apply the previous theorem to get Ψλ, πλ, and Λ.
Without loss of generality, we can suppose that there is no closed totally geodesic subspace
of H∞ containing Λ; otherwise, replace H∞ by the smallest such subspace.

Lemma 4.5. If Γ ≤ Isom(T ) acts sharply transitively on V , then G := πλ(Γ) is strongly
discrete and convex-cobounded; moreover, Λ(G) = Λ.

Proof. The equation Λ(G) = Λ follows from the πλ-equivariance of Ψλ together with the
fact that Λ(Γ) = ∂T . Strong discreteness follows from (ii) of Theorem 4.4, and convex-
coboundedness follows from (iii). C

Let Φ : F2 → Isom(T ) be the natural left action of F2 on its right Cayley graph, and let
Γ1 = Φ(F2) ≤ Isom(T ).

Lemma 4.6. There exists γ ∈ Isom(T ) such that Γ1 ∩ γ−1Γ1γ = {id}.

Proof. Write F2 = 〈a, b〉, and define γ : F2 → F2 by the formula

γ(an1bn2 · · · ank−1bnk) =

{
an1bn2 · · · ank−1bnk if n1 6= 0

b−n2 · · · a−nk−1b−nk if n1 = 0
.

(The convention here is that ni 6= 0 for i = 2, . . . , k − 1.) It can be verified directly
that γ preserves edges in the Cayley graph, so γ extends uniquely to γ ∈ Isom(T ). By
contradiction, suppose there exist x1, x2 ∈ F2\{e} with Φx1 = γ−1Φx2γ. Then γΦx1 = Φx2γ;
evaluating at e gives x2 = γ(x1). Write x = x1; we have

(4.2) γ(xy) = γ(x)γ(y) ∀y ∈ F2.

Write x = an1bn2 · · · ank−1bnk . If n1 6= 0, then

γ(xb) = γ(x)b 6= γ(x)b−1 = γ(x)γ(b),

and if n1 = 0, then

γ(xa) = γ(x)a−1 6= γ(x)a = γ(x)γ(a).

Either equation contradicts (4.2). C

Let Γ2 = γ−1Γ1γ. By Lemma 4.5, G1 = πλ(Γ1) and G2 = πλ(Γ2) are strongly discrete
and convex-cobounded, and Λ(G1) = Λ = Λ(G2). On the other hand, G1 ∩G2 = {id}. �
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