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1. Introduction

Dennis Sullivan, in his IHÉS Seminar on Conformal and Hyperbolic Geometry [40] that ran
during the late 1970’s and early ’80s, indicated a possibility1 of developing the theory of discrete
groups acting by hyperbolic isometries on the open unit ball of a separable infinite dimensional real
Hilbert space. Later in the early ’90s, Misha Gromov lamented the paucity of results regarding
such actions in his seminal lectures Asymptotic Invariants of Infinite Groups [19, 6A.III] where
he encouraged their investigation in memorable terms: “The spaces like this [infinite dimensional
symmetric spaces] . . . look as cute and sexy to me as their finite dimensional siblings but they
have been for years shamefully neglected by geometers and algebraists alike”.

Gromov’s lament had not fallen to deaf ears and the geometry and representation theory of
infinite dimensional hyperbolic space H∞ and its isometry group have been studied in the last
decade by a handful of mathematicians. See, for example, the work by Burger-Iozzi-Monod [3],
Delzant-Py [12], and Monod-Py [31]. However, infinite dimensional hyperbolic space has come
into prominence most spectacularly through the recent resolution of a longstanding conjecture in
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algebraic geometry due to Enriques from the late nineteenth century. Cantat-Lamy [5] proved
that the Cremona group (of birational transformations of the complex projective plane) has un-
countably many non-isomorphic normal subgroups, i.e. it is not a simple group. Key to their
enterprise is the fact, due to Manin [30], that the Cremona group admits a faithful isometric
action on an infinite dimensional hyperbolic space called the Picard-Manin space.

We will be interested in subgroups of Isom(H∞) whose natural actions are metrically proper,
i.e. the orbit of an arbitrary point meets every bounded set in a set of finite cardinality. We call
such groups strongly discrete. Now by a result of Gromov [6, Theorem 7.4.3] abstract groups that
admit such actions correspond to those with the Haagerup property2. They include amenable
groups, Coxeter groups and free groups, and are connected to various lines of investigation within
geometric group theory, ergodic theory, representation theory and operator algebras, see [6]. For
instance, it is an outstanding problem in geometric group theory to determine whether mapping
class groups have the Haagerup property.

To make the connection with subgroups of Isom(H∞) note that the boundary of infinite dimen-
sional hyperbolic space is conformally equivalent to Hilbert space H := ∂H∞ ∪ {∞}. As in finite
dimensions, any isometry of H with respect to the Euclidean metric extends uniquely to an isome-
try of H∞ which fixes∞. Therefore there exists a correspondence between parabolic subgroups of
the stabilizer Stab(Isom(H∞);∞) and subgroups of Isom(H) whose orbits are unbounded. How-
ever, unlike in finite dimensions, such groups are not necessarily virtually nilpotent. Furthermore,
even cyclic subgroups of Isom(H) are quite different from cyclic subgroups of Isom(Rd) for d ∈ N.
Indeed, there is a well-known example of M. Edelstein [13] of a cyclic subgroup of Isom(H) whose
orbits are unbounded but which is not strongly discrete.

This short note describes some of the first investigations regarding the Hasudorff geometry of
limit sets of metrically proper isometric actions on real infinite dimensional hyperbolic space. Our
goal is to present a generalization of the Bishop-Jones formula, equating the Poincaré exponent
of the underlying group to the Hausdorff dimensions of the uniformly-radial and radial limit sets.
To give a dynamical picture of what the Bishop-Jones relation is saying in terms of the geodesic
flow on the underlying manifold, let us recall that radial limit points3 correspond to geodesic
excursions that return infinitely often to some bounded subset of the manifold, whereas uniformly
radial directions correspond to geodesics that never leave a bounded region on the manifold.
A priori, there seems to be no reason to believe that the Hausdorff dimensions of these sets
are equal and their elegant result significantly generalized a large collection of previously known
special cases, see for instance the work of Patterson [34], Sullivan [38] and Dani [8]. Our proof
was inspired by Stratmann’s presentation in [37]. Although the original proof and those of various
generalizations thereafter (for instance [35, 7, 21]) crucially use the compactness of the sphere at
infinity, our proof avoids such a dependence. We hope that it will shed some light on what aspects
of this equality are “dimension-free” and follow from the presence of negative curvature. Finally,
we indicate the robustness of strongly discrete convex-cobounded groups by showing such groups
are finitely generated and of divergence type with finite Poincaré exponent. Further, these groups
have compact limit sets, and the Hausdorff and packing measures on the limit sets are finite and
positive and coincide with the conformal Patterson measure, up to a multiplicative constant.

The basic ideas behind these results were obtained by the authors during the summer of 2009
at the end of a productive conference, Dynamical Systems II, hosted at the University of North

2Such groups are also known as a-T-menable groups, since they are morally diametrically opposite to groups
with Kazhdan’s property (T).

3These were introduced in 1936 by Hedlund as points of approximation, where he proved that the geodesic flow
on compact surfaces of constant negative curvature was topological mixing in [20].
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Texas in Denton. These investigations have continued to develop and the reader is encouraged
to follow-up this note with the work being done in collaboration with Lior Fishman and David
S. Simmons in [17, 10, 11]. The more flexible concept of partition structures in these papers
generalize the basic mass-redistribution principle that is used in this article. However, the ideas
of the proof are more transparent in the setting of this paper and the authors are grateful for the
gentle insistence of various colleagues to write such up.

2. Infinite dimensional models of hyperbolic geometry

We begin by defining Hilbert space, so let

H = `2(N) :=

{
x = (xi)

∞
1 ∈ RN

∣∣∣∣∣
∞∑
i=1

xi
2 < +∞

}
and for x ∈ H, denote its norm by

‖x‖ :=

( ∞∑
i=1

x2
i

)1/2

.

A Hilbert manifold is a Banach manifold modelled on Hilbert space (H, ‖ · ‖) and an infinite
dimensional Riemannian manifold is a Hilbert manifold equipped with a Riemannian structure,
see [29]. Infinite dimensional real hyperbolic space is an infinite dimensional Riemannian manifold
whose triangles are isometric to triangles in H2, the real hyperbolic plane. It follows that infinite
dimensional hyperbolic space is a CAT(−1) space and therefore Gromov hyperbolic, see [2, 41].

Example 2.1. Hilbert space H can be considered by itself as an infinite dimensional Riemannian
manifold, with at each point the standard inner product

〈u,v〉x :=
∞∑
i=1

uivi.

Example 2.2. The space Ĥ := H ∪ {∞} may be given the structure of a Hilbert manifold. The

topology on Ĥ is defined as follows: a subset U ⊆ Ĥ is open if and only if U ∩H is open and if

∞ ∈ U ⇒ H \ U is bounded.

Warning 2.3. The topology on Ĥ is not a one-point compactification. Indeed, Ĥ with the topology
defined above is not a compact space, since H is not locally compact.

2.1. The ball model and the upper half-space model. There are several models of hy-
perbolic geometry, which are isometric as infinite dimensional Riemannian manifolds but which
reflect different aspects of hyperbolic geometry. The models we will be interested in are the ball
model (B) and the upper half-space model (H) and when we do not wish to specify a model we
will write H (for “hyperbolic”). The ball model is the set

B := {x ∈ H : ‖x‖ < 1}
together with the Riemannian metric

〈u,v〉x,B :=
4〈u,v〉

(1− ‖x‖2)2
·

The upper half-space model is the set

H := {x ∈ H : x1 > 0}
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together with the Riemannian metric

〈u,v〉x,H :=
〈u,v〉
x2

1

·

Remark 2.4. In most references, the (d+ 1)-dimensional upper half-space model is defined to be
the set {x ∈ Rd+1 : xd+1 > 0}. When d = ∞, this does not make sense since there is no ∞th
coordinate. Thus we have decided to use the first coordinate instead.

Note that the topological boundaries of H and B are also Hilbert manifolds (although it requires
slightly more work to come up with coordinate charts):

∂B = {x ∈ H : ‖x‖ = 1},
∂H = {x ∈ H : x1 = 0} ∪ {∞}.

Further note that we have taken the boundary of H with respect to the Hilbert manifold Ĥ defined
in Example 2.2. We shall always respect this convention. We note that the closures B and H
are not Hilbert manifolds per se, but are Hilbert manifolds with boundary, see [29]. We will be

content with considering them as topological subspaces of Ĥ.
Finally, let us say a word about the geometric significance of B and H. The ball model is best if

you want to figure out what the hyperbolic world looks like if you are “at a point inside”; whereas
the upper half-space model is best if you are “at a point on the boundary”.

2.2. Equivalence of models. A C∞ diffeomorphism Ψ : X → Y between infinite dimensional
Riemannian manifolds is an isomorphism if 〈Ψ′(x)[u],Ψ′(x)[v]〉Ψ(x),Y = 〈u, v〉x,X for all x ∈ X
and for all u, v ∈ TxX. Note that every isomorphism of Riemannian manifolds Ψ : X → Y is also
an isometry, i.e.

(2.1) dY (Ψ(x1),Ψ(x2)) = dX(x1, x2) ∀x1, x2 ∈ X.

The converse (known in finite dimensions as the Myers-Steenrod theorem) is also true, but much
less trivial:

Theorem 2.5 (Theorem 7 of [18]). Let X and Y be infinite dimensional Riemannian manifolds,
and let Ψ : X → Y be a bijection. If Ψ satisfies (2.1), then Ψ is an isomorphism (and in particular
is C∞).

It may be shown by direct calculation (see [4]) that the map

eB,H(x) = −e1 + 2
x + e1

‖x + e1‖2

is an isomorphism of Riemannian manifolds and in particular an isometry. Furthermore, the map
eB,H extends uniquely to a homeomorphism between B and H.

2.3. Comparison with the classical theory. In contrast with the infinite dimensional setting
of this article, we make a few brief remarks in this subsection about analogous considerations in
finite dimensions. In particular about conformal maps, Möbius transformations and the notion
of preserving orientation. To define conformal maps we first need the notion of a similarity.

Definition 2.6. Let T : H → H be a bounded linear operator. T is a similarity if it can be
written as the product of a positive real number (called the scaling constant of T ) and a linear
isometry. An affine map A : H → H is a similarity if its linear part x 7→ A(x) − A(0) is a
similarity. The group of similarities of H will be denoted Sim(H).
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Definition 2.7. Let X and Y be infinite dimensional Riemannian manifolds, and let f : X → Y
be a diffeomorphism. We say that f is conformal if for each x ∈ X, f ′(x) : TxX → Tf(x)Y is a
similarity.

As in finite dimensions, the quintessential (non-linear) conformal map is the inversion with
respect to a sphere4. The following theorem generalizes the classical result known as Liouville’s
theorem, which tells us that for d ≥ 3, any conformal diffeomorphism betwen two subsets of Rd
is the restriction of a Möbius transformation.

Theorem 2.8 (Liouville’s theorem in Hilbert space). Let U, V ⊆ H be nonempty open connected
sets and let φ : U → V be a conformal diffeomorphism. Then one of the following two cases holds:

(NL) φ is the composition of an inversion and an affine similarity, or
(L) φ is an affine similarity.

Note that in either case the map φ extends uniquely to a conformal map φ̂ : Ĥ → Ĥ. As in

the finite dimensional case, the map φ̂ is called a Möbius transformation and we denote the class

of such maps by Mob(Ĥ). The nonlinear (NL) case corresponds to the case when ∞ is not
preserved, and the linear (L) case corresponds to when ∞ is preserved. Theorem 2.8 follows from
the observation (see [23]) that R. Nevanlinna’s proof of the finite dimensional Liouville’s theorem
[32] extends to infinite dimensions.

Remark 2.9. Notice that if, motivated by the finite dimensional theory, we restricted to the

subclass of Mob(Ĥ) defined by

Mob∗(Ĥ) := { g ∈ Mob(Ĥ) | g is the composition of finitely many inversions},

then, unlike the finite dimensional case, we have

Mob∗(Ĥ) ( Mob(Ĥ).

In fact, the map g an be written as a finite composition of inversions if and only if Fix(g) has finite
codimension. For example, the shift map on `2(Z) cannot be written as a finite composition of
inversions. We give an indication of why this is true. Say Fix(g) has finite codimension, then one
can find a finite dimensional subspace V such that the entire map is the Poincaré extension of its
restriction to V . This reduces us to the finite dimensional statement [36] that every Möbius map
is a composition of finitely many inversions which may then be re-extended. On the other hand
if one computes the composition of two inversions it can be shown that Fix(g) has codimension 1
and so composing finitely many inversions only adds one finitely many times to the codimension.

Remark 2.10. One cannot make sense of orientation-preserving transformations in infinite dimen-
sions as one cannot define a meaningful notion of orientation. If one wanted to define orientation-
preserving via the kernel of a continuous homomorphism O : O(H) → Z2 one would easily fall
into a trap. (Here Z2 is the group with two elements.) For example, any reflection in a hyperplane
on `2(Z) would be orientation-preserving. For a construction of such a map, take the commutator
of the shift map squared and the map that switches consecutive pairs of nonnegative coordinates,
i.e. 0 and 1, 2 and 3, etc.

4Fix p ∈ H and α > 0, and let S(p, α) denote the sphere around p of radius α. The inversion with respect to
the sphere S(p, α) is the map

ip,α : x 7→ α2 x− p

‖x− p‖2 + p.

We make the conventions that ip = ip,1 and i = i0.
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3. Classification of isometries

In [3] one may find the following classification of isometries of H based on results in [25] and
[26]. Every isometry g ∈ Isom(H) is exactly one of the following three types: if it has bounded
orbits then it is called elliptic; if its orbit is unbounded and it has one fixed point on the boundary
then it is called parabolic, and if its orbit is unbounded and it fixes two points on the boundary it
is called hyperbolic. We may conjugate each g ∈ Isom(H) to a “normal form” whose geometrical
significance is clearer. The normal form will depend on the classification of g as elliptic, parabolic,
or hyperbolic. We will not prove the remaining propositions in this section, but proofs may be
found in [10]. Let us start with some

Notation 3.1. If G is a group acting on a space X, then for each x ∈ X we will denote its
stabilizer by

Stab(G;x) := {g ∈ G : g(x) = x}.
For any Hilbert space H, by O(H) we denote the group of linear isometries of H. Let us write
∂H = E ∪ {∞}, where E := {x ∈ H : x1 = 0}. As in finite dimensions, for any g ∈ Sim(E) there
exists a unique ĝ ∈ Sim(H) so that ĝ � E = g and so that ĝ(H) = H. The map ĝ is called the
Poincaré extension of g.

Proposition 3.2. Fix g ∈ Isom(H).

(i) If g is elliptic, then g is conjugate to a map of the form T � B for some linear isometry
T ∈ O(H).

(ii) If g is parabolic, then g is conjugate to a map of the form x 7→ T̂ [x] + p : H→ H, where
T ∈ O(E) and p ∈ E.

(iii) If g is hyperbolic, then g is conjugate to a map of the form x 7→ λT̂ [x] : H → H, where
0 < λ < 1 and T ∈ O(H).

In the first (elliptic) case the orbit5 (gn(0))∞1 remains fixed forever, and in the third (hyperbolic)
case it diverges to the boundary. In the latter, there is a pair of fixed points at infinity: one
is attracting and the other repelling. In this case, every orbit is unbounded and the forward
orbit approaches the attractive fixed point while the backward orbit approaches the repelling
fixed point. Further, there exists a unique fixed geodesic connecting the two fixed points that is
invariant under the action of g. On the other hand, things can get far more interesting in the
second case when g is parabolic: then the orbit can oscillate, both accumulating at infinity and
returning infinitely often to a bounded region. Note that this is forbidden in finite dimensions.
We record this phenomena in the following

Proposition 3.3. There exists a parabolic g ∈ Stab(Isom(H);∞) whose orbit (gn(0))∞1 is un-
bounded but returns infinitely often to a bounded region and in fact accumulates at 0.

We remark that this propostion is equivalent to a construction of M. Edelstein6, who in Theorem
2.1 of [13] constructed a fixed-point-free isometry g ∈ Isom(`2(C)) and a sequence (nk)

∞
1 so that

gnk(0) −→
k

0.

4. Discrete groups of isometries

Let X = H and let G be a subgroup of the isometry group Isom(X). In finite dimensions, i.e.
when X = Hn the following definitions are equivalent:

5We will write 0 instead of 0 and expect the reader to not interpret such as the numerical quantity zero.
6See [42] for a recent presentation.
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(1) For every bounded B ⊆ X, #[g ∈ G : gB ∩B 6= ∅] <∞.
(2) For every x ∈ X, there exists an open set U 3 x with

gU ∩ U 6= ∅ ⇒ gx = x.

(3) G is a discrete subset of Isom(X) w.r.t. compact-open topology.

Any one of them may be taken as a definition of a discrete group of isometries. However in
infinite dimensions one must proceed more carefully. Notice that although (1) ⇒ (2) even in
infinite dimensions, there exist natural examples of groups that show us (2) ; (1).

Example 4.1. Consider H and let

V :=
⋃
m≥2

{(0, n2, n3, . . . , nm, 0, 0, . . .) : ni ∈ Z ∀i = 2, . . . ,m} ⊆ E

Then v is a Z-vector space and the group

G := 〈x 7→ x+ v : v ∈ V 〉

is an example of one that satisfies (2) but not (1).

It may be somewhat harder to imagine the right infinite dimensional analogue(s) of (3), however
[10] contains a detailed study. Let us start with the following definitions:

Definition 4.2. The group G is strongly discrete if (1) holds, i.e. for every bounded B ⊆ X,

#[g ∈ G : gB ∩B 6= ∅] <∞.

The group G is weakly discrete if (2) holds, i.e. for every x ∈ X, there exists an open set U 3 x
with

gU ∩ U 6= ∅ ⇒ gx = x.

Definition 4.3. An group G acts properly discontinuously if for every x ∈ X, there exists an
open set U 3 x with

gU ∩ U 6= ∅ ⇒ g = id.

Equivalently, if there exists r > 0 such that

B(0, r) ∩
⋃

g∈G\{id}

g (B(0, r)) = ∅.

A group is torsion-free if every element of finite order is the identity. A group action is free if
Fix(g) 6= ∅ ⇒ g = id.

Unlike strong discreteness which turns out to be a rather robust notion in infinite dimensions,
the notion of being properly discontinuous is far more fragile. We summarize the connections
between our various notions in the following

Observation 4.4. Let (X, d) be a metric space and let G < Isom(X). Then:

1. Strongly discrete actions are weakly discrete.
2. Torsion-free strongly discrete actions are free.
3. Properly discontinuous actions are weakly discrete and free.
4. Torsion-free strongly discrete actions are properly discontinuous.
5. If X is a CAT(0) space, then free actions are torsion-free.
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Remark 4.5. Strongly discrete torsion-free groups are always properly discontinuous. In the
reverse direction if in finite dimensions, or when X is proper, properly discontinuous groups are
strongly discrete via 3., since weakly discrete actions are strongly discrete in such a situation. On
the other hand 5. tells that in a CAT(0) setting properly discontinuous groups are torsion-free.

We also remark that in a CAT(0) setting, the existence of torsion elements kills proper dis-
continuity. However for properly discontinuous groups the fixed points of elements g ∈ G do not
occur in the interiors of our models of hyperbolic Hilbert space. Furthermore, if g ∈ G has three
fixed points, then g = id.

Proof. [Of Observation 4.4] Part 1: Fix x ∈ X. Then #[g : d(x, gx)] <∞ by strong discreteness.
Therefore ε := min{d(x, gx) : gx 6= x} > 0. So set U := B(x, ε/2). Then we have that for
every g with gx 6= x we have d(x, gx) ≥ ε which implies gU ∩ U = ∅. Therefore strongly discrete
actions are weakly discrete. Part 2: By way of contradiction if G were not free then gx = x
for some g 6= id. Then for every n we have d(gnx, x) = 0. Now strong discreteness implies
that #[gn : n ∈ Z] < ∞ which in turn produces an N for which gN = id. This contradicts
the assumption that G was torsion-free. Part 3 follows straight from the definitions and Part
4 follows from Parts 1., 2. and 3. Part 5: Suppose not, then gn = id for some g 6= id. Then
#[H] < ∞ where H := 〈g〉. Therefore the orbit H(0) is bounded and since we are in a CAT(0)
space Cartan’s lemma produces an x ∈ Fix(H) = Fix(g). But this provides a contradiction since
we had assumed that G was free. �

We make the simplifying assumption that our groups are without torsion-elements.

Observation 4.6. A group G < Isom(B) is strongly discrete if and only if for every sequence
(gn)∞1 of distinct elements of G,

lim sup
n→∞

dH(gn(0), ∂B) = 0.

This may be observed from the following equivalences

lim sup
n→∞

dH(gn(0), ∂B) = 0⇔ lim inf
n→∞

dH(gn(0), 0) = 1⇔ lim inf
n→∞

dB(gn(0), 0) = +∞.

5. Poincaré series and the critical exponent

Definition 5.1. Fix x ∈ H and s > 0. The Poincaré series of the group G is defined by

(5.1) Σx,y(s) =
∑
g∈G

e−sdH(x,g(y)).

With this notation, the Poincaré exponent7 of G is given by

(5.2) δG = inf{s > 0 : Σx,y(s) < +∞}.

We reserve Σs(G) := Σ0,0(s) =
∑

g∈G e
−sdH(0,g(0)).

It follows using the triangle inequality that the definition is independent of our choice in x and y.

Observation 5.2. In the finite-dimensional case the Poincaré exponent of a discrete group is
always finite. However in infinite dimensions one may construct a strongly discrete Schottky
group G such that δG = +∞. Construct a sequence of positive reals (an) with an → 0 and∑

n≥1 a
s
n =∞ for every s. Then with some care one may choose infinitely many generators (gn)n

such that for every n we have that e−d(gn(0),0) � an and so that each generator has a distinct
coordinate axis as its hyperbolic axis.

7Also known as the critical exponent.
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However, the following fact remains true even in infinite dimensions.

Observation 5.3. If G is a subgroup of Isom(H) and δG < +∞, then the group G is strongly
discrete.

Proof. Suppose that G is not strongly discrete. Therefore that there exists some bounded set
W such that #W ∩ G(0) = ∞. Now the fact that W is bounded implies there exists some
BH(0,K) ⊇W and therefore for every g(0) ∈W , we have that∑

g(0)∈W

e−td(0,g(0)) ≥
∑

g(0)∈W

e−tK = +∞.

Since t was arbitrary we are done. �

6. Limit sets

Let us define the limit sets of our group actions and move on to describe basic properties of
such sets. When not specified, we assume that G < Isom(H) acts properly discontinuously8 on H.

Definition 6.1. The limit set of a group G < Isom(H) is defined to be

L(G) := {α ∈ ∂H | ∃(gn)n lim
n→∞

gn(x) = α}.

This definition is independent of the choice of x ∈ H and it is also clear from the definition
that L(G) is closed and G-invariant.

Definition 6.2. A group G is called elementary whenever #L(G) ∈ {0, 1, 2}.

Theorem 6.3 (No Global Fixed Points). Any non-elementary weakly discrete group G has no
global fixed points.

Proof. Assume by way of contradiction that we have a global fixed point and then conjugate to
send it to ∞. Then by Liouville’s theorem g must be of the form

g(x) = λgT [x] + b.

The proof now splits into two cases, viz.

Case 1: [λg = 1 for every g ∈ G.]
Then each hyperplane {x : x0 = α} is fixed by G for every α > 0 and therefore L(G) =
{∞}. This leads to a contradiction since we assumed that G was non-elementary.

Case 2: [There exists a g ∈ G with λg < 1.]
Without loss of generality we assume that g(0) = 0 since g is hyperbolic and so l0,∞ is
the invariant axis. Then g is of the form

g(x) = g1(x) = λ1T1[x]

with λ1 < 1. We claim that there exists a g2(x) := λ2T2[x] + b with λ2 < 1 and b 6= 0.
Indeed, since G is non-elementary, there exists a third limit point say ξ that is neither
0 nor ∞. Now fix a point on the invariant axis at distance greater than one from the
boundary ∂H. Then there exists an element of the group that brings it arbitrarily close
to ξ and this element is the one we were after. Note that since ξ /∈ {0,∞} its translation
vector is non-zero as claimed.
Now let us calculate the commutator of g1 and g2 and call it g3 := [g2, g1]. Let

y = g3(x) = g−1
2 ◦ g

−1
1 ◦ g2 ◦ g1(x).

8However in most cases this is more than we need and it suffices to assume that G is weakly discrete.
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One may compute the following form

y = T−1
2 ◦ T−1

1 ◦ T2 ◦ T1[x] + T−1
2 ◦ T−1

1

I − λ1T1

λ1λ2
[b]

which we rewrite as g3(x) = T̂ [x] + b̂. Note that b̂ 6= 0 [suppose not, then T−1
2 ◦ T−1

1 (I −
λ1T1)[b] = 0⇔ λ1T1[b] = b which leads to a contradiction since λ1 < 1 and b 6= 0]. Recall
that ↑ = e1. Now consider

gn1 g3g
−n
1 (↑) = gn1 g3(λ−n1 T−n1 ↑)

= gn1
(
λ−n1 T̂ [T−n1 ↑] + b̂

)
= Tn1 T̂ [T−n1 ↑] + λn1T

n
1 [b̂]

= ↑ +λn1T
n
1 [b̂].

Note that the last term goes to zero in norm as n→∞ since λ1 < 1. But this contradicts
the fact that G is weakly discrete.

�

Corollary 6.4. Any non-elementary weakly discrete group contains a rank two free subgroup
generated by two hyperbolic isometries.

Proof. Suppose not, then by Gromov’s theorem [22, Theorem 1.2] there exists a finite subset of
the boundary that is invariant under the group. Let H be a stabilizer of some point in that set.
Then by the previous Theorem 6.3 the subgroup H is elementary. Now G =

⋃n
i=1 giH, where

g1, . . . , gn is a sequence of coset representatives of H in G. It follows that L(G) =
⋃n
i=1 giL(H) is

finite and therefore that G is elementary which is absurd. �

Definition 6.5. A properly discontinuous group G is of compact type when L(G) is compact.

Theorem 6.6. For a properly discontinuous group G acting on B, the following are equivalent:

(1) G is of compact type.
(2) Every infinite subset of G(0) contains an accumulation point.
(3) Each sequence (gn(0))n∈N with limn→∞ ‖gn(0)‖ = 1 has a converging subsequence, which

necessarily accumulates at an element in L(G).

Proof. Notice that (2) ⇒ (3) is immediate. Let’s start by proving (3) ⇒ (1). Suppose that
(ξn)n ⊆ L(G). Then for every n, there exists a mn such that ‖gmn(0)− ξn‖ ≤ 1/n. Since we have
a discontinuous action, orbits must accumulate on the boundary, i.e. ‖gmn(0)‖ → 1 and n→∞.
By hypothesis, there exists a subsequence (nk)k and ξ ∈ L(G) such that gmnk (0)→ ξ as k →∞.
We now have that

‖ξnk − ξ‖ ≤ ‖gmnk (0)− ξn‖+ ‖gmnk (0)− ξ‖,
where the first term is bounded by 1/nk and therefore it and the second term both vanish as
k →∞.
Next we we show that (1) ⇒ (2). Let (gn(0))n be our infinite subset of G(0). Then for every
n, gn ∈ G. Now pick two points α, β ∈ L(G) and let [α, β] denote the geodesic between them.
Now fix some z ∈ [α, β] and pick some common subsequence such that gn(α)→ γ and gn(β)→ δ
as n → ∞. Now one may verify via calculation (or geometric intuition) that for every ε > 0
there exists Nε such that for every n ≥ Nε, gn([α, β]) ⊆ BH([γ, δ], ε). One may check that
the Hausdorff distance between the gn([α, β]) is dependent on the distances ‖γ − gn(α)‖ and
‖δ− gn(β)‖ and vanishes as they decrease to zero. Therefore there exists a subsequence such that
gn([α, β]) ⊆ BH([α, β], 1/n) for every n. It now follows that for every n there exists wn ∈ [γ, δ]



11

such that dH(gn(z), wn) ≤ 1/n. Now there exists a subsequence (wn)n (by compactness of [γ, δ])
such that wn → w ∈ [γ, δ] as n→∞. Finally one can see that gn(z)→ w as n→∞ since

‖gn(z)− w‖ ≤ ‖gn(z)− wn‖+ ‖wn − w‖.
�

Remark 6.7. This theorem may be extended to non-proper CAT(-1) spaces modulo the construc-
tion of geodesics between two boundary points, see [10].

7. Convex-cobounded groups of compact type

Fix α ∈ ∂K and let Sα refer to the hyperbolic ray from 0, the origin, to α. As in finite dimensions
the Busemann function may be extended to ∂K×K×K via

lim
z→α
Bz(x, y) =: Bα(x, y),

where Bz(x, y) := d(x, z)− d(y, z).

Definition 7.1. Let us define the following distinguished subsets of L(G):

• α ∈ L(G) is a horospherical limit point of G if there exists a sequence of orbit points g(0)
with

Bα(g(0), 0)→ −∞.
The set of such points is called the horospherical limit set and is denoted by Lh or by
Lh(G).
• α ∈ L(G) is a radial limit point of G if there exists a constant c = c(α) > 0 such that

Sα ∩B(g(0), c) 6= ∅
for infinitely many g(0) for every g ∈ G. The set of such points is called the radial limit
set and is denoted by Lr or by Lr(G).
• α ∈ L(G) is a uniformly radial limit point of G if there exists a positive constant c =
c(α) > 0 such that

Sα ⊆ ∪g∈GB(g(0), c).

The set of such points is called the uniformly radial limit set and is denoted by Lur or by
Lur(G).

In other words, we may write

Lur(G) =
⋃
σ>0

Lur,σ(G)

and
Lr(G) =

⋃
σ>0

Lr,σ(G)

where α ∈ Lur,σ(G) when the geodesic from 0 to α, Sα, is covered by hyperbolic balls B(g(0), σ)
over the G-orbit of the origin and, similarly where α ∈ Lr,σ(G) when Sα intersects infinitely many
hyperbolic balls B(gn(0), σ) for some subsequence of the G-orbit of the origin.
Notice that we have the following inclusions:

Lur ⊆ Lr ⊆ Lh ⊆ L.

Definition 7.2. We define the projection map Π : X \ {0} → ∂X to be the unique map so that
for all x ∈ X \ {0}, x is on the geodesic joining 0 and Π(x). For x ∈ X and σ > 0, it is useful to
consider the set Π(B(x, σ)), which is called the “shadow” of the ball B(x, σ), which we may also
denote by Shad(x, σ). One may imagine shining a light from the point 0 onto the boundary.
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0

g(0)x
B(g(0), σ)

σ

Shad(g(0), σ))

Figure 1. A useful estimate regarding the Euclidean diameter of shadows that
will be used in the sequel is diam

(
Shad(g(0), σ)

)
� σe−d(0,g(0)), see [37, Lemma

2.1].

Remark 7.3. In general there is nothing distinguished about the origin 0 and in fact we can
similarly define Πz and Shadz when we are shining a light from z ∈ H. Without the subscript we
assume that the light is based at the origin. The reader is invited to verify that we would get the
same sets Lur(G), Lr(G), and Lh(G) if in our constructions we replaced 0 by an arbitrary but
frozen point z ∈ H.

Definition 7.4. Given α, β ∈ B, define [α, β] to be the unique geodesic joining α and β. Let

C := C
(
L(G)

)
=

⋃
α,β∈L(G)

[α, β]

A strongly discrete G is convex-cobounded if there exists R > 0 such that

C ⊆ G(B(0, R)).

Theorem 7.5. Suppose G is a strongly discrete group of compact type. Then the following are
equivalent:

(A) G is convex-cobounded.
(B) L(G) = Lur(G)
(C) L(G = Lr(G)
(D) L(G = Lh(G)

Proof. Since (B)⇒ (C)⇒ (D), it is enough to prove (A)⇒ (B) and (D)⇒ (A).

[Proof of (A) ⇒ (B)] Fix some ξ ∈ L(G). In view of Remark 7.3, we may assume without
loss of generality that [0, ξ] ⊆ C. Therefore, for every x ∈ [0, ξ] there exists some g ∈ G with
d(g(0), x) ≤ R, with R coming from the definition of convex-coboundedness. Choose xn ∈ [0, ξ]
with d(0, xn) = n and let gn ∈ G denote the corresponding elements that move the origin R-close
to xn.

0

ξ

x1

x2
x3

g1(0)

g2(0)

g3(0)
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Then notice that d(gn(0), gn+1(0)) ≤ 2R+ 1 and so it is clear that ξ ∈ Lur(G).

[Proof of (D)⇒ (A)] By way of contradiction suppose that G is not convex-cobounded. Define
D to be the set

D := {x : d(0, x) < d(0, g(x)) ∀g ∈ G such that g(0) 6= 0}

and let ∆ := D ∩ C. Fix a point x ∈ C \G(B(0, R)) and note that the set of points in the orbit of
0 whose distance to x is less than the distance from x to 0 is finite, since G is strongly discrete.
Pick the element g(0) ∈ G(0) which is closest to x and then g−1(x) ∈ ∆ \ B(0, R)9. Therefore
∆ ( B(0, R) for every R > 0. Hence, we may construct a sequence yn ∈ G(x) ∩ (∆ \ B(0, n)),
n ∈ N. Let ξn and ηn be points in L(G) such that yn ∈ [ξn, ηn]. Now since limn→∞(1−‖yn‖) = 0,
and the group G has a compact limit set, there exists a convergent subsequence (ynk)∞k=1 to some
point ξ ∈ L(G). Since limn→∞min{‖yn− ξn‖, ‖yn− ηn‖} = 0, because of the symmetry of ξn and
ηn, passing to yet another subsequence, we may assume without loss of generality that

lim
k→∞

‖ynk − ξnk‖ = 0

and consequently that

lim
k→∞

ξnk = lim
k→∞

ynk = ξ.

We show that such a ξ must belong to L(G) \ Lh(G), which will give a contradiction. For all
g ∈ G and for every yn ∈ ∆ we have that d(0, yn) ≤ d(g(0), yn), which in turn implies that
Bξ(g(0), 0) ≥ 0 and therefore ξ /∈ Lh(G). We are done with the proof. �

8. The theorem of Bishop and Jones

Throughout this section let (X, ρ) be a complete metric space. We start with a version of
mass-redistribution principle without any reference to hyperbolic geometry or groups.

Definition 8.1. Given two sets C,D ⊆ X and some κ > 0 we say that

C ⊆κ D ⇔ B(C, κdiam(C)) ⊆ D,

and read it as the κ-thickening of C is contained in D. We denote B(C, κdiam(C)) := Cκ to be
the κ-thickening of C.

We prove the following mass-redistribution result.

Proposition 8.2 (Mass-Redistribution). Let (X, ρ) be a complete metric space and fix t ≥ 0 and

κ ∈ (0, 1). For every n ≥ 1 let En be a finite set. Set Eji := Ei × . . . × Ej for 0 ≤ i ≤ j and to
avoid clutter we write En for En1 . Suppose that Σ ⊆ E∗ :=

⋃
n≥1E

n, has the property that

Σ̂ := {ω||ω|−1 ∈ E|ω|−1 : ω ∈ Σ} ⊆ Σ ∪ {∅}.

We denote Σn := Σ ∩ En. Suppose further that for every ω ∈ Σ, there exists a closed subset
A(ω) ⊆ X with the following properties:

(a) For every ω ∈ Σ, A(ω) ⊆κ A(ω||ω|−1);

(b) For every ω ∈ Σ, diam
(
A(ω||ω|−1)

)
≤ κ−1diam(A(ω));

(c) For ω, τ ∈ En ∩ Σ, ω 6= τ , A(ω) ∩A(τ) = ∅;

9The existence of such a g for every x proves that D is a fundamental domain based at 0, see [36, Chapter 6].
Since we do not require this notion in the sequel, we refrain from defining it and listing its properties.
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(d) For every ω ∈ Σ ∑
e∈E|ω|+1

ωe∈Σ

diamt
(
A(ωe)

)
≥ diamt

(
A(ω)

)
;

and
(e) limn→∞max{diam(A(ω)) : ω ∈ Σn} = 0.

Then it follows that

HD

( ∞⋂
n=1

⋃
ω∈Σn

A(ω)

)
≥ t.

Remark 8.3. We make a few small remarks, before starting the proof of the Proposition.

• The sets Ei may be thought of as index sets or as alphabets if we think in terms of symbolic
dynamics, or IFSs. Note that if we take all of them to be equal to the same set E then
En is simply the n-fold product of the set E.
• It may help to explain what each of the conditions are saying

(1) Condition (a) says that the κ-thickenings are decreasing, while
(2) Condition (b) tells us that they do not decrease too fast.
(3) Condition (d) is the appropriate redistribution of mass that leads to the appropriate

measure in the limit
(4) Condition (c) is a natural disjointness condition which is necessary when building a

measure.
We note that we may prove the same proposition by specifying rates, i.e. different κ’s for
(a) and (b).
• In general metric spaces diam(Aκ) ≤ (1 + 2κ)diam(A). Whereas for Banach spaces, it

turns out that we have equality. Therefore when in Hilbert spaces for instance, we have
that (a) implies condition (e).

Proof. Decreasing Σ if necessary we may assume without loss of generality that A(ω) 6= ∅ for
every ω ∈ Σ. For every n ≥ 1, let

Jn :=
⋃

ω∈En∩Σ

A(ω) and J :=

∞⋂
n=1

Jn.

Note that for every ω ∈ Σ, we have that J ∩A(ω) 6= ∅ and so we fix a point xω ∈ J ∩A(ω). Now
define inductively the following sequence of Borel probability measures (µn)n≥0 on J as follows.
Let µ0 be an arbitrary Borel probability measure on J . For the inductive step, suppose that n ≥ 0
and µ0, µ1, . . . , µn (each a Borel probability measure on J) have already been defined. Then set

(8.1) µn+1 :=
∑

ω∈En+1∩Σ

diamt(A(ω))∑
e∈E:ω|ne∈Σ diamt(A(ω|ne))

µn(A(ω|n))δxω ·

Now since µn is a probability measure and by (c) all the sets A(τ), τ ∈ En ∩ Σ are pairwise
disjoint, a straightforward direct computation shows that µn+1 is a Borel probability measure.
Now since xω ∈ J for every ω ∈ Σ, we immediately get from (8.1) that

(8.2) µn(J) = 1 for every n ≥ 0.
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Now suppose that τ ∈ En ∩ Σ. In view of (8.1) and (c) we then get

(8.3)

µn+1(A(τ)) =
∑

ω∈En+1∩Σ

diamt(A(ω))∑
e∈E:ω|ne∈Σ diamt(A(ω|ne))

µn(A(ω|n))δxω(A(τ))

=
∑

a∈E:τa∈Σ

diamt(A(τa))∑
e∈E:τe∈Σ diamt(A(τe))

µn(A(τ))

= µn(A(τ))
∑

a∈E:τa∈Σ

diamt(A(τa))∑
e∈E:τe∈Σ diamt(A(τe))

= µn(A(τ))

∑
a∈E:τa∈Σ diamt(A(τa))∑
e∈E:τe∈Σ diamt(A(τe))

= µn(A(τ)).

Because of (c) and since xω ∈ J ∩ A(ω) for every ω ∈ Σ, we get that for every n ≥ 0 and for all
0 ≤ i ≤ j that

(8.4) µn+j(A(τ)) = µn+j

( ⋃
ω∈En+in+1:τω∈Σ

A(τω)

)
=

∑
ω∈En+in+1:τω∈Σ

µn+j(A(τω)).

Having this formula and treating (8.3) as the inductive step, we make the following

Observation 8.4. µn+k(A(τ)) = µn(A(τ)) for every n, k ≥ 0 and all τ ∈ En ∩ Σ.

Now let c :=
[∑

e∈E1
diamt(A(e))

]−1
<∞. Next we prove the following.

Observation 8.5. For every n ≥ 1 and for every ω ∈ En ∩ Σ, we have that µn(A(ω)) ≤
c · diamt(A(ω)) .

Proof. We prove this by induction on n ≥ 1. If e ∈ E ∩ Σ, then it follows from (8.1) that

µ1(A(e)) =

[∑
a∈E1

diamt(A(a))

]−1

diamt(A(e)) · µ0(X)

= c · diamt(A(e)).

So suppose that the claim holds for some n ≥ 1. For every ω ∈ En+1 ∩ Σ, we then have from
(8.3) and (d) that

µn+1(A(ω)) =

[ ∑
e∈En+1:ω|ne∈Σ

diamt(A(ω|ne))
]−1

diamt(A(ω)) · µn(A(ω|n))

≤
[
diamt(A(ω|n))

]−1
diamt(A(ω)) · µn(A(ω|n))

≤ c · diamt(A(ω)).

We are done. �

Now the set J =
⋂
n≥1

⋃
ω∈En∩ΣA(ω) =:

⋂
n≥1 Jn is closed as it is the intersection of closed

sets Jn. Recall that (e) gives us that

lim
n→∞

max{diam(A(ω)) : ω ∈ En ∩ Σ} = 0,

and now because of the finiteness of the index sets En, the set J is totally bounded. Thus J is
compact since X is complete. Therefore by the Banach-Alaoglu theorem, the sequence (µn)∞1 of
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Borel probability measures on J contains a weakly convergent subsequence. Denote its weak limit
by µ. Since A(ω)∩J is a clopen subset of J (with respect to the topology relative to J) for every
ω ∈ Σ, it follows from Observation 8.5 that for every ω ∈ Σ,

(8.5) µ(A(ω)) ≤ c · diamt(A(ω)).

Note that we have not yet used conditions (a) and (b) and we now do so in estimating from above
the measures of balls centered at the points of J .

Let z ∈ J = ∩n≥1Jn. Since for every n ≥ 1, the sets En ∩ Σ are finite, it follows from König’s
Lemma that there exists ω ∈ EN such that ω|n ∈ Σ for every n ≥ 1 and {z} =

⋂∞
n=1A(ω|n).

Because of (c) this ω ∈ EN is unique.
Now fix a radius r ∈ (0, κmin{diam(A(ω)) : ω ∈ E2 ∩ Σ}). Then there exists a largest

n = n(ω, r) ≥ 2 such that

(8.6) r ≤ κdiam(A(ω|n)).

Since z ∈ A(ω|n) it follows from (a) that

B(z, r) ⊆ B
(
z, κdiam(A(ω|n))

)
⊆ B

(
A(ω|n), κdiam(A(ω|n)))

)
⊆ A(ω|n−1).

Now (8.5) implies that

(8.7) µ(B(z, r)) ≤ c · diamt(A(ω|n−1)).

By the definition of n, we have that κdiam(A(ω|n+1)) < r and then applying (b) twice we get
that

diam(A(ω|n−1)) ≤ κ−1diam(A(ω|n)) ≤ κ−2diam(A(ω|n+1)) ≤ κ−3r.

Inserting this into (8.7) we finally get

(8.8) µ(B(z, r)) ≤ cκ−3trt.

Note that µ(J) = 1 (since its a probability measure on J) and thus by a direct application of the
[14, Proposition 2.1 (Mass distribution principle)], we have that HD(J) ≥ t. �

Remark 8.6. When (X, ρ) is a finite dimensional Euclidean space, condition (a) can be replaced
by the requirement that all the sets A(ω) for ω ∈ Σ are uniformly undistorted balls and then
a standard volume argument [28, Lemma 4.2.6] would work to get (8.8). Our Proposition 8.2
requires no extra structure on X and condition (a) will be proved to be satisfied in the course of
our proof of the Bishop-Jones theorem for Hilbert spaces. We should note however that condition
(a) is somewhat strong and for example it fails in the standard construction of C, the middle-third
Cantor set if X = [0, 1]. Note however if X = C, then (a) is satisfied. Therefore one must take
some care in the choice of X.

Notation 8.7. For ξ ∈ ∂B, we denote B̂(ξ, r) to be the union of all geodesics (in B) with both
endpoints in the ball in ∂B centered at ξ and with spherical radius equal to r. In particular

Π[B̂(ξ, r)] is equal to this ball.

Next we shall prove the following

Lemma 8.8. If G is a non-elementary strongly discrete group acting on B, then for every t < δG
there exist two distinct points ξ1, ξ2 ∈ L(G) such that for all r > 0,∑

γ(0)∈B̂(ξi,r)

e−td(γ(0),0) = +∞ for i = 1, 2.

We call such points ξi, t-divergent points of L(G).
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Proof. We assume that our group is non-elementary and so there exist at least two distinct
hyperbolic elements, by Corollary 6.4. We prove the existence of one such point (as claimed in
the Lemma) and the same argument will provide another point distinct from the first; as we have
that these hyperbolic elements have distinct pairs of fixed points.

Suppose by way of contradiction, that there exist no t-divergent points in the limit set. Now
pick a hyperbolic element g with axis lg whose attracting and repelling endpoints respectively are
ξ+
g and ξ−g on L(G). Let’s look at ξ−g and refer to it as simply ξ. Then there exists an rξ such

that the sum over the G-orbit of 0 within A := B̂(ξ, rξ) is finite, i.e.∑
γ(0)∈A

e−td(γ(0),0) < +∞ .

Then we have that ∑
γ(0)∈B\A

e−td(γ(0),0) = +∞ .

Now for an arbitrary ε > 0, there exists n ≥ 0 large enough such that gn(B \A) ⊆ B̂(ξ+
g , ε). It is

enough to show that for such n, we have that∑
γ(0)∈B\A

e−td(gnγ(0),0) = +∞ ,

since then we would have shown ξ+
g to be t-divergent and thus derived a contradiction. Notice

that ∑
γ(0)∈B\A

e−td(gnγ(0),0) ≥
∑

γ(0)∈B\A

e−td(0,gn(0))e−td(gn(0),gnγ(0))

[by the triangle inequality]

= e−td(0,gn(0))
∑

γ(0)∈B\A

e−td(gn(0),gnγ(0))

= e−td(0,gn(0))
∑

γ(0)∈B\A

e−td(0,γ(0))

[
since g is an isometry

]
= +∞ .

We are done. �

Definition 8.9. Fix τ > 0. For every integer n ≥ 0 let

An(τ) := {z ∈ G(0) : τn ≤ d(z, 0) ≤ τ(n+ 1)}.

The set An(τ) is called the hyperbolic (n,G)-annulus centered at 0 and of width τ .

Lemma 8.10. Let G be a strongly discrete group. Fix τ > 0 and 0 ≤ s < t < δG. Let ξ ∈ L(G)
be a t-divergent point. Then for every M > 0 and for every r > 0 there exists (nj(ξ))

∞
j=1 an

increasing sequence of positive integers such that∑
g(0)∈B̂(ξ,r)∩Anj(ξ)(τ)

e−sd(g(0),0) ≥M for every j ≥ 1.
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Proof. Suppose by way of contradiction that there exist M, r > 0 and an integer q ≥ 0 such that∑
z∈B̂(ξ,r)∩An(τ)

e−sd(z,0) < M for every n ≥ q + 1.

Take r∗ ∈ (0, r] so small that Aq(τ) ∩ B̂(ξ, r∗) = ∅. Then An(τ) ∩ B̂(ξ, r∗) = ∅ for all n =
0, 1, 2, . . . , q and thus we get that∑

z∈B̂(ξ,r∗)∩An(τ)

e−sd(z,0) = 0 ≤M if n ≤ q

and that ∑
z∈B̂(ξ,r∗)∩An(τ)

e−sd(z,0) ≤
∑

z∈B̂(ξ,r)∩An(τ)

e−sd(z,0) ≤M if n ≥ q + 1.

Therefore we have that
∑

z∈B̂(ξ,r∗)∩An(τ)
e−sd(z,0) ≤M for all n ≥ 0. Hence

∑
z∈G(0)∩B̂(ξ,r∗)

e−td(z,0) =
∞∑
n=0

∑
z∈B̂(ξ,r∗)∩An(τ)

e−(t−s)d(z,0)e−sd(z,0)

≤
∞∑
n=0

∑
z∈B̂(ξ,r∗)∩An(τ)

e−(t−s)τne−sd(z,0)

=
∞∑
n=0

e−(t−s)τn
∑

z∈B̂(ξ,r∗)∩An(τ)

e−sd(z,0)

≤M
∞∑
n=0

e−(t−s)τn

< +∞.

The last inequality follows since s was chosen strictly smaller that t and so we have a geometric
series that converges. But then this contradicts the hypothesis that ξ is a t-divergent point and
finishes the proof. �

We sometimes, for emphasis, will use the shorthand Be, de and similarly Bh, dh to distinguish
between the Euclidean and hyperbolic settings respectively. In general the absence of subscripts
refers to the hyperbolic setting, though diam without a subscript will refer to Euclidean diameter.

Lemma 8.11. There exists α > 0 such that for all σ > log 2 we have

Π[Bh(z, ασ)] ⊆ Be
(

Π[z],
1

8
diameΠ[Bh(z, σ)]

)
,

for every z with d(z, 0) > σ.

Proof. The proof immediately follows from the estimate

diame

(
Π[B(z, σ)]

)
= diame

(
Shad(z, σ)

)
� σe−d(z,g(z))

described in Figure 7 above and [37, Lemma 2.1]. �

For every σ > 0, let rσ > 0 be chosen so small that

(8.9) rσ < πe−ασ.
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From this point on, for the remainder of the section, fix an arbitrary τ > 0. The main
ingredient, forming the inductive step in our proof of the Bishop-Jones Theorem, is the following
lemma, whose proof is illustrated on the Figure 2 and is provided after formulation of the lemma.

0

g(0)

g−1

0

g−1(0)

Figure 2. The strategy for the proof of Lemma 8.12 is to construct a collection
of “children” of the point g(0). We “pull back” the entire picture via g−1. In the
pulled-back picture, with the help of the Light Cone Lemma (cf. [37, Lemma 2.3])
we obtain the existence of many points x ∈ G(0) such that Shadg−1(0)(x, σ) ⊆
Shadg−1(0)(0, σ). These children can then be pushed forward via g to get children
of g(0).

Lemma 8.12. Fix 0 < s < t < δG. Let ξ1, ξ2 ∈ L(G) be two t-divergent points (see Lemma 8.8
for their existence). Then there exist σ > 0 and positive integers l1, l2 ≥ 1 such that the following
holds:
For every g ∈ G with d(g(0), 0) > σ, there exists a set Γ(g) contained in one of the sets

Γi := {h ∈ G : h(0) ∈ B̂(ξi, rσ) ∩Ali(ξi)(τ)} for i = 1, 2;

such that the following hold:-

(a) The family {Π[B(gh(0), σ)] : h ∈ Γ(g)} consists of mutually disjoint balls.
(b) For every h ∈ Γ(g),

Π[gh(0)] ∈ Be
(

Π[g(0)],
1

8
diameΠ[B(g(0), σ)]

)
.

(c) There exists a constant βσ ∈ (0, 1) depending only on l1, l2 and σ (in particular independent
of g) such that for every h ∈ Γ(g),

βσ
4

diam

(
Π[B(g(0), σ)]

)
≤ diam

(
Π[B(gh(0), σ)]

)
≤ 1

4
diam

(
Π[B(g(0), σ)]

)
.

(d) The following inequality holds∑
h∈Γ(g)

diams

(
Π[B(gh(0), σ)]

)
≥ diams

(
Π[B(g(0), σ)]

)
.
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Proof. Take σ > log 2 and as large so that

de(ξ1, ξ2) > 6πe−ασ.

Now by the choice of rσ, see (8.9), we have that

inf{de(x, y) : x ∈ B̂(ξ1, rσ), y ∈ B̂(ξ2, rσ)} > 4πe−ασ.

Since ασ > log 2, it then follows from the Light Cone Lemma (cf. [37, Lemma 2.3]) that at least

one of the balls B̂(ξ1, rσ) or B̂(ξ2, rσ) is contained in g−1
(
Π[B(g(0), ασ)]

)
. Assume without loss

of generality that B̂(ξ1, rσ) ⊆ g−1
(
Π[B(g(0), ασ)]

)
. Consequently, if we fix two integers l1, l2 ≥ 1

that we will specify later in the course of the proof, then

Π[h(0)] ∈ g−1
(
Π[B(g(0), ασ)]

)
for every h ∈ Γ1. Therefore g(Π[h(0)]) ∈ Π[B(g(0), ασ)] and g maps the geodesic from 0 to
Π[h(0)] with h(0) on it to the geodesic from g(0) to gΠ[h(0)] with gh(0) on it. Since the light
cone generated by 0 and B(g(0), ασ) is convex and contains both the points g(0) and gΠ[h(0)] it
also contains the point gh(0) and thus

Π[gh(0)] ∈ Π[B(g(0), ασ)] ⊆ Be
(

Π[gh(0)],
1

8
diamΠ[B(g(0), σ)]

)
where the inclusion follows from Lemma 8.11. Note that condition (b) of our Lemma has been
established.

Assume now that l1 > σ/τ . Then d(h(0), 0) > σ for all h ∈ Γ1 and we can apply the Geometric
Distortion Lemma (cf. [37, Lemma 2.2]) to get

(8.10) d(g(0), 0) + d(h(0), 0)− 2σ ≤ d(gh(0), 0) ≤ d(g(0), 0) + d(h(0), 0)

for every h ∈ Γ1. Note that we also needed g(Π[h(0)]) ∈ Π[B(g(0), σ)] to apply the Geometric
Distortion Lemma, but we already have that g(Π[h(0)]) ∈ Π[B(g(0), ασ)] ⊆ Π[B(g(0), σ)]. Now
since h(0) ∈ Al1(τ), we have that l1τ ≤ d(h(0), 0) < l1τ + τ for every h ∈ Γ1, we then get

(8.11) d(g(0), 0) + l1τ − 2σ ≤ d(gh(0), 0) ≤ d(g(0), 0) + l1τ + τ

for every h ∈ Γ1. Now define Γ(g) to be a maximal (in the sense of inclusion) subset of Γ1 such
that

(8.12) d(h1(0), h2(0)) > τ + 6σ

for all h1, h2 ∈ Γ1 with h1 6= h2. Let us now prove item (a). Suppose by way of contradiction that,
Π[B(gh1(0), σ)]∩Π[B(gh2(0), σ)] 6= ∅ for some h1, h2 ∈ Γ1 with h1 6= h2. Let ξ ∈ Π[B(gh1(0), σ)]∩
Π[B(gh2(0), σ)] and for each i ∈ {1, 2} let zi ∈ B(ghi(0), σ) be chosen on the ray [0, ξ].

0

ξ

h2(0)

h1(0)

z2

z1
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Then the following estimates are true using (8.11):

d(g(0), 0) + l1τ − 3σ < d(z1, 0) < d(g(0), 0) + l1τ + τ + σ

and

d(g(0), 0) + l1τ − 3σ < d(z2, 0) < d(g(0), 0) + l1τ + τ + σ.

It then follows that

d(z1, z2) = |d(0, z1)− d(0, z2)|
< [d(g(0), 0) + l1τ + τ + σ]− [d(g(0), 0) + l1τ − 3σ]

= τ + 4σ.

Therefore we have that

d(h1(0), h2(0)) = d(gh1(0), gh2(0))

≤ d(gh1(0), z1) + d(z1, z2) + d(z2, gh2(0))

< σ + [τ + 4σ] + σ

= τ + 6σ

which contradicts (8.12) and finishes the proof of item (a). It follows directly from the left-hand
side of (8.11) and [37, Lemma 2.1] (see Figure 7) that with l1 ≥ 1 chosen large enough the right-
hand side of (c) holds. Similarly the left-hand side of (c) follows from the right-hand side of (8.11)
and [37, Lemma 2.1].

We have only left to show item (d) and this where the final specification of l1 will be made.
First for every h ∈ Γ(g), define

Qg(h) := {f ∈ Γ(g) : d(f(0), h(0)) ≤ τ + 6σ}.

By maximality of Γ(g), see (8.12), we have that⋃
h∈Γ(g)

Qg(h) = Γ1.

Now since our group is strongly discrete, the number of elements in Qg(h) is bounded above by
some constant, C1 = C1(τ, σ), depending only (τ+6σ) and of course on G. Also because of (8.11)
and in [37, Lemma 2.1], there exists another constant, C2 = C2(τ, σ), such that for every g ∈ G
with d(g(0), 0) > σ and all h1, h2 ∈ Γ1

C−1
2 ≤

diam
(
Π[B(gh2(0), σ)]

)
diam

(
Π[B(gh1(0), σ)]

) ≤ C2.

Hence,

(8.13)

∑
h∈Γ1

diams(Π[B(gh(0), σ)]) ≤
∑
h∈Γ(g)

∑
f∈Qg(h)

diams(Π[B(gf(0), σ)])

≤
∑
h∈Γ(g)

C2(τ, σ)s
∑

f∈Qg(h)

diams(Π[B(gh(0), σ)])

= C2(τ, σ)s
∑
h∈Γ(g)

[#Qg(h)]diams(Π[B(gh(0), σ)])

≤ C2(τ, σ)sC1(τ, σ)
∑
h∈Γ(g)

diams(Π[B(gh(0), σ)]).
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Now take M = CsσC2(τ, σ)sC1(τ, σ), where Cσ > 0 comes from [37, Lemma 2.1], and choose l1 ≥ 1
to be one of the numbers (nj(ξ1))∞j=1 appearing in Lemma 8.10 that is as large as required above.

Now by Lemma 8.10, [37, Lemma 2.1] and the right-hand-side of (8.10), we get that∑
h∈Γ1

diams(Π[B(gh(0), σ)]) ≥ C−sσ
∑
h∈Γ1

e−sd(gh(0),0)

≥ C−sσ
∑
h∈Γ1

e−sd(g(0),0)e−sd(h(0),0)

= C−sσ e−sd(g(0),0)
∑
h∈Γ1

e−sd(h(0),0)

≥MC−sσ e−sd(g(0),0)

≥MC−2s
σ diams(Π[B(g(0), σ)])

≥ C2(τ, σ)sC1(τ, σ)diams(Π[B(g(0), σ)]).

Now inserting this into (8.13), we finally get∑
h∈Γ(g)

diams(Π[B(gh(0), σ)]) ≥ diams(Π[B(g(0), σ)])

which establishes (d) and finished the proof of our Lemma. �

We are now in a position to prove the main result of this section, viz. the extension of the
Bishop-Jones theorem to the infinite dimensional case.

Theorem 8.13. If G is a strongly discrete group acting isometrically on B, then

HD(Lur(G)) = HD(Lr(G)) = δG.

Proof. As Lur(G) ⊆ Lr(G), we have that

(8.14) HD(Lur(G)) ≤ HD(Lr(G)).

We shall first show that

HD(Lr(G)) ≤ δG.
If δG = +∞, then we are done and so let’s assume that δG < +∞. Fix an arbitrary s > δG. Write
G as (gn)∞n=1. Fix σ > 0 and let

Lr,σ(G) :=
⋂
n≥1

⋃
k≥n

Π
[
B(gk(0), σ)

]
.

Since
∑

n≥1 e
−sd(gn(0),0) < +∞, we get that

lim
n→∞

∑
k≥n

diams(Π
[
B(gk(0), σ)

]
) �σ lim

n→∞

∑
k≥n

e−sd(gk(0),0) = 0.

Thus HD(Lr,σ(G)) ≤ s and consequently that HD(Lr,σ(G)) ≤ δG. Now Lr(G) =
⋃
n≥1 Lr,n(G)

and therefore by the σ-stability of Hausdorff dimension, we get

HD(Lr(G)) = sup
n≥1
{HD(Lr,n(G))} ≤ δG.

Along with (8.14) this gives HD(Lur(G)) ≤ HD(Lr(G)) ≤ δG, and we are left to show that

(8.15) HD(Lur(G)) ≥ δG.
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By means of Lemma 8.12 we will perform a construction to which Proposition 8.2 will apply. In
the setting of Lemma 8.12, for every n ≥ 1 let

En := E := Γ1 ∪ Γ2.

We define the set Σ ⊆ E∗ and the sets A(ω) for ω ∈ Σ by induction with respect to word length
in Σ. For the base of your recursion, we take E ∩ Σ := E := Γ1 ∪ Γ2 and A(h) := Π[B(h(0), σ)]
for all h ∈ E. For the inductive step, suppose that the set En ∩ Σ has been defined and that
all the sets A(f), f ∈ En ∩ Σ have been defined as well. To define En+1 ∩ Σ consider all the
elements g = f1, . . . , fn ∈ En ∩ Σ and declare that f = f1, . . . , fn+1 ∈ En+1 ∩ Σ if fn+1 ∈ E and
fn+1 ∈ Γ(f1 ◦ . . . ◦ fn) = Γ(g). Then put A(f) = Π[B(f1 ◦ . . . ◦ fn+1(0), σ)]. Verifying now the

hypotheses of Proposition 8.2, we see that Σ̂ ⊆ Σ directly by construction. Properties (c), (d),
(b) and (a) of Proposition 8.2 follow respectively from property a) of Lemma 8.12; property (d) of
Lemma 8.12; the left-hand side of property (c) of Lemma 8.12 and finally from both property (b)
and the right-hand-side of property (c) of Lemma 8.12 with κ = 1/4. Therefore all the properties
of Proposition 8.2 have been verified and as a result of applying it we get that

HD

( ⋂
n≥1

⋃
ω∈En∩Σ

A(ω)

)
≥ s.

It now follows from (c) of Lemma 8.12, or more directly from (8.11), that⋂
n≥1

⋃
ω∈En∩Σ

A(ω) ⊆ Lur(G)

and so we have that HD(Lur(G)) ≥ s. Since was arbitrarily smaller than δG, we therefore get
that HD(Lur(G)) ≥ δG. Thus (8.15) has been established and we are done. �

9. Convex-cobounded groups revisited

With the proof of the main theorem behind us, if only to whet the reader’s appetite, we conclude
with a proof sketch of the following theorem and encourage her to look up the papers [17, 10, 11].

Theorem 9.1. Let G < Isom(H) be strongly discrete and convex-cobounded. Then G is finitely
generated, has finite Poincaré exponent δ <∞, is of divergence type, and has a compact limit set.
The δ-dimensional Hausdorff and packing measures on L(G) are finite and positive and coincide
up to a multiplicative constant with the δ-conformal Patterson measure which is Ahlfors δ-regular.

Proof (sketch). The proof that the group G is finitely generated and then showing that the orbit
map is a quasi-isometry follows from the Milnor-Schwarz Lemma [2, Proposition I.8.19], once we
notice that L(G) being compact implies that C is also compact, since we are in a Hilbert space.
Say G has d generators, and let |g| denote the word-length of g ∈ G, i.e. the length of the shortest
word that g may be expressed in terms of the d generators. Then

Σs(G) =
∑
g∈G

e−sd(0,g(0)) ≤
∑
g∈G

e−s(ε|g|−K) = esK
∑
g∈G

e−sε|g| ≤ esK
∑
g∈Fd

e−sε|g| ,

where ε,K are the quasi-isometry constants and Fd denotes the free group on d generators which
surjects onto G. By taking sε to be sufficiently large we can force convergence of the final sum
above. Thus δ <∞. Next let us prove that G is of compact type. Consider a sequence xn ∈ G(0)
with d(0, xn)→∞. Choose yn ∈ ∂B(0, N) ∩ [0, xn] as in the figure below.
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0

xn

yn

zn

≤ R

B(0, N)

Since our group is convex-cobounded there exists a sequence zn ∈ G(0) with d(0, zn) ≤ N + R.
Since the action is strongly discrete there are only finitely many such zns for every n and therefore
we may extract a constant subsequence (nk)k with znk = z. Thus d(ynk , ynl) ≤ 2R and so

〈xnk |xnl〉0 ≥ 〈ynk |ynl〉0 ≥
1

2
[N +N − 2R] = N −R .

Here 〈x|y〉z := 1
2 [d(x, z) + d(y, z)− d(x, y)] denotes the Gromov product, see [41, Definition 2.7].

Now since N are arbitrary, we may extract a diagonal sequence such that for every k, l ∈ N
〈xnk |xnl〉0 ≥ min{k, l} −R −→

k,l
∞ .

Thus (xnk)k is a Gromov sequence [41, Section 5] whose distances from the origin become ar-
bitrarily large and thus we have convergence to a limit point on the boundary. Thus L(G) is
compact by Theorem 6.6.

Note that the compactness of the limit set allows the usual Patterson-Sullivan machinery via
weak limits to go through, see [38, Theorem 1]. The Ahlfors regularity of the Patterson–Sullivan
measure (and thus its equivalence with Hausdorff and packing measures) follows from a well-
known argument using Sullivan’s shadow lemma; see [38, Proposition 3] and [27, Section 8].
Finally, since Theorem 7.5 shows that the Patterson–Sullivan measure is supported on Lr(G), the
easy direction of the well-known Ahlfors-Thurston-Tukia argument (viz. µ is s-conformal implies
that Σs(G) =∞, see [33, Theorem 8.2.2 and 8.2.3]) shows that the G is of divergence type. This
completes the proof. �
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