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Abstract. Developing the pioneering work of Lars Olsen, and the work
[SUZ] we deal in the present paper with the question of continuity of numeri-
cal values of Hausdorff measures in parametrized families of linear (similarity)
and conformal dynamical systems. We prove Hölder continuity of the func-
tion ascribing to a parameter the numerical value of the Hausdorff measure of
the limit set, for naturally parametrized families of both conformal iterated
function systems in Rk, k ≥ 3, and linear iterated function systems consisting
of similarities in Rk, k ≥ 1 (in this latter case the Hölder exponent is univer-
sal equal to 1/2), both satisfying the Strong Separation Condition, and for
analytic families of conformal expanding repellers in the complex plane C.
For families of naturally parametrized linear IFSs in R, satisfying the Strong
Separation Condition, this function is proved to be piecewise real–analytic.
On the other hand, we also give an example of a family of linear IFS in R
for which the Hausdorff measure function is not even differentiable at some
parameters.

1. Introduction

The question of dependence on a parameter of the Hausdorff dimension of the
limit (ex. Julia) set in naturally parametrized families of conformal dynamical
systems has been studied intensively over the last decades. In his seminal paper
[Ru2] D. Ruelle proved that if Jc is the Julia set ofthe quadratic polynomial

Ĉ 3 z 7→ z2 + c, then the function C 3 c 7→ HD(Jc), is real-analytic if c belongs
to an open disk cenetred at 0 with a sufficiently small radius; see e.g. [UZi],
[UZd], [U3] or [AU] for further generalization and extensions of this result.

A more subtle question is about regularity of the function ascribing to a
system, or parameter, the numerical value of the Hausdorff measure of the
corresponding limit set. A breakthrough work has been done by L. Olsen in ([Ol]
who proved there such continuity for finite iterated function systems consisting
of similarities and satisfying the strong separation condition.
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Further continuity results (e.g. for families of conformal hyperbolic and par-
abolic systems, and for some families of infinite 1-dimensional iterated function
systems) have been obtained in [SUZ].

In this paper, we study the modulus of continuity of the above function. We
do this for several types of naturally parametrized families of systems. These are
called, in the sequel, admissible families. Denoting by Λ the set of parameters
here and in the sequel, for every λ ∈ Λ, Jλ denotes either the limit set of a given
conformal iterated function system or the phase space of a given conformal
expanding repeller, called also the limit set in the sequel, under consideration.
From now onwards we denote

hλ := HD(Jλ).

We have the following results. For parametrized families of linear systems, i. e.
consisting of similarities, satisfying the Strong Separation Condition we prove,
in Section 6 the following.

Theorem. Let Λ′ ⊂ Λ be an arbitrary bounded domain such that Λ′ ⊂ Λ. Let
(Sλ)λ∈Λ be an admissible family of similarity iterated function systems in Rk,
k ≥ 1. Then the function Λ′ 3 λ 7→ Hhλ(Jλ) is Hölder continuous with Hölder
exponent equal to 1/2.

A remarkable observation about this theorem is that the Hölder exponent (=
1/2) is unversal, i. e. does not depend on the system in question. If we however
relax linearity the situation deteriorates, we still keep Hölder continuity; see
the second theorem below, but the exponents worsen, do depend on the system.
However, if we rather restrict the class of systems, namely requiring the ambient
dimension k to be equal to 1, we obtain much better regularity of the Hausdorff
measure function. Indeed, for parametrized families of linear systems acting in
the real line R we prove, in Section 7, the following.

Theorem. Let (Sλ)λ∈Λ be an admissible family of similarity iterated function
systems in the real line R. Then the function Λ 3 λ 7→ Hhλ(Jλ) is piecewise
real–analytic.

We also describe a simple example, showing that piecewise real analyticity can-
not be replaced by real analyticity. It is based on the observation that the
function (formula) giving the value of the Hausdorff measure can have several
global minima; the phenomenon essentially already observed in [AS]. Finally,
we prove in Section 8 this.

Theorem. Let (Sλ)λ∈Λ be an admissible family either of conformal IFS in Rk,
k ≥ 3, or conformal expanding repellers in the complex plane C (ex. Julia sets
of expanding rational functions). Let Λ′ be a bounded open set such that Λ′ ⊂ Λ.
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Then the function

Λ′ 3 λ 7→ Hhλ(Jλ)

is Hölder continuous with an exponent equal to (3 + inf{hλ : λ ∈ Λ′})−1.

Our paper is organised as follows. In Section 2 we describe the class of
systems we deal with in this article. In Section 3 we recall the density theorems
for Hausdorff measures. These provide starting tools for our proofs. In Section 4
we develop several functional analysis techniques forming crucial ingredients of
our approach. We also obtain in this section some appropriate estimates for the
values of conformal measures. In Sections 5, 6, 7 and 8 we formulate and prove
our results.

2. Preliminaries

We now describe the class of analytic families of dynamical systems which we
deal with in this paper. As we have already indicated in the introduction these
systems will be referred to as admissible systems.

2.1. Similarity IFSs satisfying Strong Separation Condition. Let ϕ be
a similarity contraction in Rk, k ≥ 1. Then ϕ can be uniquely written in the
form

(2.1) ϕ(x) = η · Ax+ b,

where 0 < η < 1, A is an orthogonal matrixs, i. e. a linear isometry map, and
b ∈ Rk.
Now given an integer N ≥ 1, let

ϕi(x) = ηi · A(i)x+ bi, i = 1, . . . , N,

be a family of similarity contractions in Rk. It is well-known that there exists
a unique compact subset of Rk such that

J(S) =
N⋃
i=1

ϕi (J(S)) .

It is called the limit set, or attractor, of the system S, and will be denoted in the
sequel by J = J(S). We say that the linear IFS satisfies the Strong Separation
Condition (SSC) if, for i 6= j,

(2.2) ϕi(J(S)) ∩ ϕj(J(S)) = ∅.

Remark 2.1. Note that the Strong Separation Condition equivalently means
that there exists a neighbourhood V of J(S) such that

ϕi(V ) ⊂ V and ϕi(V ) ∩ ϕj(V ) = ∅
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whenever in the latter i 6= j. The limit set of such a system is a topological
Cantor set, i. e. compact, perfect and totally disconnected.

We denote

Σn := {1, . . . N}n and Σ∞ := {1, 2 . . . , N}N.
The space Σ∞ is equipped with the metric d∞ defined as d∞(i, j) = 1

2n
where

n is the least integer for which in 6= jn. The topology induced by this metric
coincides with the product (Tichonov) topology on Σ∞.

For an arbitrary sequence i ∈ Σn, i = (i1, i2, . . . , in) we denote by ϕi the
composition

(2.3) ϕi = ϕi1 ◦ · · · ◦ ϕin .

For i ∈ Σ∞ we denote by i|n the initial segment of first n terms of i. Then the

infinite intersection
⋂∞
n=1 ϕ

in(V ) is a singleton, and one can define a natural
coding π : Σ∞ → J(S) by

(2.4) {π(i)} :=
∞⋂
n=1

ϕi|n(V )

Note that both maps π : Σ∞ → J(S) and π−1 : J(S)→ Σ∞ are Hölder continu-
ous homeomorphisms. The limit set J(S) can be now equivalently characterized
as

(2.5) J(S) =
∞⋂
n=1

⋃
i∈Σn

ϕi(V ).

As a particular case, we will consider real linear IFSs, i. e. the systems acting
on some closed bounded interval in the real line R.

2.2. Conformal Iterated Function Systems in Rk, k ≥ 3, satisfying
Strong Separation Condition.

It is well known (Liouville’s Theorem) that every conformal map defined in an
open connected subset of Rk, k ≥ 3, is a restriction of a Möbius transforma-
tion. More precisely, every C1 conformal homeomorphism defined on an open
connected subset of Rk is a restriction of some map of the form

(2.6) ϕ = ηA ◦ i+ b,

where η > 0 is a positive scalar, A is a linear isometry in Rk, i is either the
inversion with respect to some sphere S(a, 1) (with center a ∈ Rk and radius
1), or the identity map. In the latter case, ϕ is just a similarity map.
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Definition 2.2. Let S = {ϕi}i=1,...N be a finite collection of conformal maps.
We assume that there exists an open and connected set V ⊂ Rk such that, for
every i = 1, . . . , N

ϕi(V ) ⊂ V

and that all the maps ϕi|V are contractions, with Lipschitz constants si ≤ s < 1.

The colection S is then called a Conformal Iterated Function System (CIFS).

The limit set J(S) of the system S is then defined, similarly as in the previous
section, as the unique compact subset of V such that

J(S) =
N⋃
i=1

ϕi(J(S)).

We keep the notation ϕi, introduced in (2.3). The natural coding map π :
Σ→ J(S) is defined analogously as in (2.4). Like for similarity IFSs, this map
is Hölder continuous. The Strong Separation Condition (SSC) has the same
formulation as in the previous section, see (2.2). If it holds, then then also the
inverse map π−1 : J(S)→ Σ is a Hölder continuous too. Briefly, the projection
π : Σ→ J(S) is then a Hölder continuous homeomorphism. As in the previous
linear case, the formula (2.5) is true.

2.3. Conformal Expanding Repellers in C.

Below, we recall the definition of a conformal expanding repeller in C:

Definition 2.3. Let U be an open subset of C. Let J be a compact subset of
U . Let T : U → C be a conformal map and note that T is not required to be
one-to-one. The map T is called a conformal expanding repeller if the following
conditions hold:

(1) T (J) = J ,

(2) |T ′||J > 1,

(3) there exists an open set V such that V ⊂ U and

J =
∞⋂
k=0

T−n(V ).

(4) T|J is topologically transitive.

Abusing slightly notaion we frequently refer also to the sets J alone as a con-
formal expanding repeller. In order to use a uniform terminology we also call J
the limit set of T .

Typical examples of conformal expanding repellers are provided by the following.
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Proposition 2.4. If f is a rational map in C of degree d ≥ 2, such that the
map f restricted to the Julia set J(f) is expanding, then J(f) is a conformal
expanding repeller.

A conformal IFS in C satisfying the Strong Separation Condition is a very
special example of expanding repeller:

Proposition 2.5. For every conformal iterated function system S in C satisfy-
ing the Strong Separation Condition, the limit set J(S) is a conformal expanding
repeller; see (2.7) below.

2.4. Admissible systems; Dynamics. In the sequel, we denote by J the limit
set of one of three types of dynamics described in Section 2: the limit set J(S) of
a similarity IFS in Rk, k ≥ 1, satisfying SSC, the limit set J(S) of a conformal
IFS in Rk, k ≥ 3, satisfying SSC, or a conformal expanding repeller in C, defined
in Definition 2.3. Recall that for all these systems the set J is invariant under
the expanding map defined in a neighbourhood of J , and denoted in the sequel
by T . For IFSs the map T is defined as

(2.7) T (x) =
(
ϕi
)−1

(x) for x ∈ ϕi(V ).

For conformal expanding repellers, the map T is given by its definition. The
systems described above will be referred to as admissible systems. The set J
will be referred to as the limit set of an admissible system.

2.5. Distortion estimates.

We will use the notation |ϕ′(x)| to denote the norm of the derivative of the map
φ at the point x. Observe that for a similarity map ϕ, the number |ϕ′(x)| is
just the value |η| in the representation (2.1). For a conformal map in Rk, k ≥ 3,
|ϕ′(x)| is equal to |η| · |i′(x)|, according to the representation (2.6). We need the
standard distortion estimates in the three types of dynamical systems described
above. In the conformal case in Rk, k ≥ 3, we use the following estimate: (see
e.g [SUZ]).

Proposition 2.6. Suppose V is a non-empty open connected subset of Rk, where
k ≥ 3 and F ⊂ V is a bounded set such that F ⊂ V . If ϕ : V → Rk is a
conformal map (implying in particuar that ϕ−1(∞) /∈ V ), then

|ϕ′(x)|
|ϕ′(y)|

≤
(

1 +
diam(F )

dist(F, V c)

)2

for all x, y ∈ F .

Corollary 2.7. If S = {ϕi}Ni=1 is a conformal IFS satisfying the Strong Separa-
tion Condition, then the above estimate in Proposition 2.6 applies to an arbitrary
map ϕi, i ∈ Σn, and for any set F ⊂ J(S).
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Proof. Indeed, it is enough to notice that δ = dist(J(S), ∂V ) > 0, and that for
every i, ϕi(V ) ⊂ V , so that V ⊂ (ϕi)−1(V ). As∞ /∈ V , this yields (ϕi)−1(∞) /∈
V . �

For the case of conformal expanding repellers and conformal IFS satisfying
Strong Separation Condition in C, we use the following classical Koebe Distor-
tion Theorem:

Theorem 2.8. If g : B(0, 1)→ C is a univalent holomorphic function, the for
all z ∈ B(0, R):

1− |z|
1 + |z|3

≤ |g
′(z)|
|g′(0)|

≤ 1 + |z|
(1− |z|)3

Since every conformal map in the plane is either holomorphic or antiholomor-
phic, and since the complex conjugation is an isometry, we get immediately:

Corollary 2.9. The statement of Theorem 2.8 holds true for any univalent
conformal function g : B(0, 1)→ C.

3. Hausdorff dimension and Hausdorff Measure

In this section we collect some well-known general density theorems. We
start with the following density theorem for Hausdorff measures (see [Ma] for
example).

Fact 3.1. Let X be a metric space, with HD(X) = h, such that Hh(X) < +∞.
Then (see p. 91 in [Ma]),

lim
r→0

sup

{
Hh(F )

diamh(F )
: x ∈ F, F = F, diam(F ) ≤ r

}
= 1

for Hh–a.e. x ∈ X.

As an immediate consequence of this, we get the following fundamental fact,
which was extensively explored in [Ol] and [SUZ].

Theorem 3.2. Let X be a metric space and 0 < Hh(X) < +∞. Denote
by H1

h the normalized h-dimensional Hausdorff measure on X, i.e H1
h(F ) =

Hh(F )/Hh(X) for all subsets F of X. Then

(3.1) Hh(X) = lim
r→0

inf

{
diamh(F )

H1
h(F )

: x ∈ F, F = F, diam(F ) ≤ r

}
for H1

h–a.e. x ∈ X.

Clearly, we then have the following.
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Corollary 3.3. If X is a subset of a Euclidean metric space Rd and 0 <
Hh(X) < +∞, then
(3.2)

Hh(X) = lim
r→0

inf

{
diamh(F )

H1
h(F )

: x ∈ F, F ⊂ Rd is closed, convex, diam(F ) ≤ r

}
for H1

h–a.e. x ∈ X.

For subsets of the real line R we can write a more specific formula:

Corollary 3.4. If X is a subset of an interval ∆ ⊂ R and 0 < Hh(X) < +∞,
then

Hh(X) = lim
r→0

inf

{
diamh(F )

H1
h(F )

: x ∈ F, F ⊂ ∆ is a closed interval, diam(F ) ≤ r

}
for H1

h–a.e. x ∈ X.

4. Functional Analysis tools

In subsections 4.1– 4.5 we recall, in a suitable form the basic facts about
dependence of the Perron-Frobenius operator on a parameter. We use them in
subsection 4.6 to obtain the required estimates for conformal measures.

4.1. Perron-Frobenius operator. Let J be the limit set of an admissible
system S. Fix some α ∈ (0, 1]. Let Hα(J) be the space of all complex valued
Hölder continuous functions, defined in J . As usually, we denote

vα(ψ) = inf {L ≥ 0 : |ψ(x)− ψ(y)| ≤ L||x− y||α for all x, y ∈ J} .
The vectorr space Hα(J), endowed with the norm

||ψ||α := max{||ψ||∞, vα(ψ)}
becomes a Banach space. We denote by H∗α(J) the dual spaces to Hα(J), i.
e. the space of all complex valued continuous functionals in Hα(J), endowed
with the norm topology. It is evident that every probability measure, being
a continuous functional in the space C(J), of all continuous functions from J
to C, is also an element of the space H∗α(J). Denote by ||| · |||α the norm in
the space H∗α(J). Also, denote by L(Hα(J)) the space of all bounded linear
operators from Hα(J) to Hα(J).

Definition 4.1. For every α ∈ (0, 1] the Perron-Frobenius operator Lt : Hα(J)→
Hα(J) is defined as:

Lt(g)(x) =
∑

y∈T−1(x)

1

|T ′(y)|t
· g(y).
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Remark 4.2. Note that, in the case of Iterated Function Systems, the formula
defining Lt can be rewritten as

Lt(g)(x) =
N∑
i=1

|(ϕi)′(x)|t · g(ϕi(x)).

We denote by

P(t) := P(−t log |T ′|)
the topological pressure for the potential −t log |T ′| and the dynamical system
T : J → J . Its definition and most transparent properties can be found for
example in [Wa1], [Wa2] or [PU]. The following fact (see for example [PU] for
its proof) is crucial for our considerations.

Theorem 4.3. For every α ∈ (0, 1] the linear operator Lt is bounded as an
operator acting on the space Hα(J). The value exp(P(t)) is a simple eigenvalue
of this operator and an isolated point of the spectrum σ(Lt).

4.2. Conformal measures.

Let S be an admissible system. For every t ∈ R the t–conformal measure mt is
defined as a Borel probability measure on the limit set satisfying the following:

L∗t (mt) = exp(P(t))mt,

or, equivalently,

mt(T (A)) = exp(P(t))

∫
A

|T ′|dmt

for every Borel set A ∈ J such that T|A is injective.

If S is an admissible system then, for every t ∈ R, the measure mt exists
and is unique; see [PU] and [MU]. There is also a unique normalized, i. e.∫
J
ρtdmt = 1, Hölder continuous eigenfunction ρt of Lt, corresponding to the

for the eigenvalue exp(P(t)). In addition, the function ρt is strictly positive.

The well-known Bowen’s type formula asserts that the Hausdorff dimension
of the limit set J can be expressed in terms of the pressure function as the only
value h = hJ for which

P(h) = 0.

The following proposition is also well-known; see ex. [PU], [MU] and the refer-
ences therein.

Proposition 4.4. If S is an admissible system and h = HD(J), then the Haus-
dorff measure Hh|J is positive and finite. Therefore, mh is then equal to the

normalized Hausdorff measure H1
h.
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4.3. Parametrized families of maps. Admissible families.

For S, a family of similarity IFSs in Rk, k ≥ 1, the representation (2.1) provides
a natural parametrization by some open subset of RM , where

(4.1) Mk(S) = N

(
k(k + 1)

2
+ 1

)
.

Similarly, for conformal IFSs in Rk, k ≥ 3, using (2.1) and (2.6) we have a
natural local parametrization by an open subset of RM . Here,

(4.2) M = Mk(S) = N1

(
k(k + 3)

2
+ 1

)
+N2

(
k(k + 1)

2
+ 1

)
,

where N1 is the number of maps ϕi for which i is an inversion, and N2 is the
number of maps for which i is the identity map. Of course if k ≥ 3, then the
case of similarity IFSs is included in conformal IFSs, just N1 = 0. In addition,
the set of parameters for which the SSC is satisfied is open. This justifies the
following.

Definition 4.5. Let Sλ = {ϕiλ}Ni=1, λ ∈ Λ ⊂ RM , be a system of linear (similar-
ities) or conformal Iterated Function Systems, with their natural parametriza-
tions. The family {Sλ}λ∈Λ is called admissible if for every λ ∈ Λ the system
Sλ is admissible. In particular, all systems Sλ, λ ∈ Λ, satisfy SSC, the Strong
Separation Condition.

Let Sλ be an admissible family of IFS. Denote by Jλ the limit set of the system
Sλ. We recall that the natural coding πλ : Σ∞ → Jλ introduced in (2.4), gives,
for every λ ∈ Λ, a Hölder continuous homeomorphism between the coding space
Σ∞ and the limit set Jλ; the inverse map is also Hölder continuous. Thus, fixing
some λ0 ∈ Λ, we can define, for λ ∈ Λ, a homeomorphism τλ : Jλ0 → Jλ, given
by

τλ = πλ ◦ π−1
λ0

The function τλ : Jλ0 → Jλ is Hölder continuous, with Hölder exponent con-
verging to 1 as λ→ λ0. Note that τλ conjugates the dynamics:

τλ ◦ ϕiλ0 = ϕiλ ◦ τλ.
In the case of conformal expanding repellers, we consider analytic families of
maps, defined as follows.

Definition 4.6. Let Λ̂ be an open subset of C. A family Tλ : U → U , λ ∈ Λ̂,
of admissible systems in C, is called analytic if the function

Λ× U 3 (λ, z) 7→ Tλ(z) ∈ C
is analytic.
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Observe that because of Hartog’s Theorem we would not gain any bigger gen-
erality if we considered Λ̂ as an open subset of some multidimensional space
Cn.

Denote by Jλ the limit set of Tλ. The conjugating homeomorphism τλ : Jλ0 →
Jλ is provided (see [PU] for ex.) by the following.

Proposition 4.7. Let
(
Tλ
)
λ∈Λ̂

be an analytic family of conformal maps from

U to C, where U is a bounded open subset of C. Assume that, for some λ0 ∈ Λ̂,
Tλ0 is a conformal expanding repeller with the limit set Jλ0. Then there exists

an open subset Λ ⊂ Λ̂ containing λ0 such that for every λ ∈ Λ sufficiently
close to λ0, there exists a conformal expanding repeller Tλ, whose limit set Jλ is
homeomorphic to Jλ0, and a homeomorphism τλ : Jλ0 → Jλ, being a holomorphic
motion (see [MSS], comp [Mi] for a more contemporary state of arts), such that,
for every fixed z the map

Λ 3 λ 7→ τλ(z)

is holomorphic, and for every λ ∈ Λ the map

z 7→ τλ(z)

is Hölder continuous, with Hölder exponent converging to 1 as |λ − λ0| → 0.
The homeomorphism τλ conjugates Tλ0 and Tλ:

Tλ ◦ τλ = τλ ◦ Tλ0 .

Definition 4.8. The family Tλ, restricted to the set of parameters Λ described
in Proposition 4.7 will be called an admissible family of conformal expanding
repellers.

Notation. We shall frequently use the common notation Sλ and the common
name admissible family of systems, to denote a family satisfying Definition 4.5
or Definition 4.8. Let Sλ be an admissible family of systems. For every λ ∈ Λ
and every t ∈ R we denote by mλ,t the t-conformal measure for the system Sλ.
We denote by hλ Hausdorff dimension of the set Jλ. The conformal measure
mλ,hλ , which is just the normalized Hausdorff measure Hhλ |Jλ , will be denoted by

mλ. The Perron-Frobenius operator for the system Sλ will be denoted by Lλ,t.
We will need the following common lower bound for the conformal measure:

Lemma 4.9. Let Sλ, λ ∈ Λ, be an admissible system. Let Λ′ ⊂ Λ be a bounded
subset such that Λ′ ⊂ Λ. Then there exists a constant c > 0 such that, for every
λ ∈ Λ′, every x ∈ Jλ and every 0 ≤ r ≤ diam(Jλ),

(4.3) mλ(B(x, r)) ≥ crhλ .
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Proof. The proof is based on standard arguments. We outline it briefly. Put
M = supλ∈Λ′ ||T ′λ||∞. Next, fix some A > 0 such that, for every Λ ∈ Λ′ and
for every y ∈ Jλ, the map Tλ is defined, and univalent in B(x, 2A). Since the
conformal measure mλ depends continuously, in weak-* topology, on λ, there
exists another positive constant D such that, for every λ ∈ Λ′, y ∈ Jλ, we have
that

mλ(B(y, A)) > D.

Now, take some λ ∈ Λ′, and an arbitrary point x ∈ Jλ. Let n be the largest
integer for which diamT nλ (B(x, r)) ≤ A. Then diam(T n+1

λ (B(x, r))) > A, and
diamT nλ (B(x, r)) > A/M . The standard distortion estimates give that for every
z ∈ B(x, r) we have C−1A|(T nλ )′(z)|r ≤ CA, where C is a constant independent
of x and r. Thus,

mλ(B(x, r)) ≥ D

supz∈B(x,r) |(T nλ )′(z)|hλ
≥ Drhλ

ChλAhλ
≥ crhλ

for another constant c. Thus, the estimate (4.3) is established for every 0 < r <
A. Modifying the constant c, and using the fact that supλ∈Λ′ diamJλ is finite,
we get the required estimate (4.3) for every r ≤ diam(Jλ).

�

4.4. Analytic perturbations of Perron–Frobenius operators; the case
of Similarity and Conformal IFSs.

Let {Sλ}λ∈Λ be a an admissible family of either similarity or conformal IFSs in
Rk with k ≥ 1 or k ≥ 3 depending on whether the former or the latter case is
considered. We recall the following fact proved, in a more general setting, in
[RU].

Proposition 4.10. Let S = {Sλ}λ∈Λ be an admissible family of either similarity
or conformal IFSs in Rk respectively with k ≥ 1 or with k ≥ 3. Let λ0 ∈ Λ.
Then, for every α ∈ (0, 1) there exists a neighbourhood Λ∗ of λ0 in CMk(S)

(Mk(S) defined respectively either by (4.1) or by (4.2)) such that, for every
λ ∈ Λ∗, the maps ϕiλ, i = 1, . . . N , of Sλ form a contracting holomorphic,
though usually not conformal, IFS in Ck satisfying the SSC. We denote it also
by Sλ. For every λ ∈ Λ∗ ∩RMk(S) the system Sλ acts in Rk as a conformal IFS.
Keeping the notation Jλ for the the limit set of systems Sλ, λ ∈ Λ∗, we have the
following:
For every i ∈ Σ∞ the projection

Λ∗ 3 λ 7→ πλ(i)

is a holomorphic function. Similarly, for every z ∈ Jλ0 the function

λ 7→ τλ(z) = πλ ◦ π−1
λ0

(z)



13

is holomorphic, and both functions τλ : Jλ0 → Jλ and τ−1
λ : Jλ → Jλ0 are Hölder

continuous with exponent α. The proof of the following theorem can be found in
[RU].

Theorem 4.11. For every z ∈ Jλ0 the real-valued function

(Λ∗ ∩ RMk(S))× R 3 (λ, t) 7→ t log |(ϕiλ)′|(τλ(z))

admits a holomorphic extension

Λ∗ × C 3 (λ, t) 7→ tζz(λ) ∈ C.
The function (Λ∗ ∩ RMk(S))× R 3 (λ, t) 7→ L0

λ,t ∈ L (Hα(Jλ0)) defined by:

L0
λ,tg(z) =

N∑
i=1

|(ϕiλ)′|t(τλ(z))g(ϕiλ0(z)),

extends to a holomorphic function Λ∗ × C 3 (λ, t)→ Lλ,t ∈ L(Hα(Jλ0)):

Lλ,tg(z) =
N∑
i=1

exp(tζz(λ))g(ϕiλ0(z)).

4.5. Analytic perturbations of the Perron–Frobenius operator; the
case of conformal expanding repellers in C.

In this section we consider an admissible family of systems formed by conformal
expanding repellers, see Definition 4.8.

Fix α ∈ (0, 1). Let λ0 ∈ Λ. Fix a positive r such that for all |λ− λ0| ≤ r, the
minimal Hölder exponent of the maps τλ and τ−1

λ in |λ− λ0| ≤ r is not smaller
than α . Then for every t ∈ R the operator L0

λ,t defined as the Perron–Frobenius
operator induced by the weight function |T ′λ ◦ τλ|−t : Jλ0 → R :, i.e.

L0
λ,tg(z) =

∑
w∈T−1

λ0
(z)

|T ′λ(τλ(w))|−tg(w),

act continuously as a linear operator from Hα(Jλ0) to Hα(Jλ0). Note that,
for λ = λ0 the operator L0

λ0,t
is just the operator Lt : Hα(Jλ0) → Hα(Jλ0)

introduced in Definition 4.1. So, L0
λ0,t

is a family of perturbations of Lt. A

parameter λ ∈ C can be naturally embedded into C2 by identifying λ = λ1 + iλ2

with the point (λ1, λ2) ∈ R2 ⊂ C2. Similarly, a real parameter t can be treated
as an element of C. The following theorem goes back to [Ru1], its proof can be
also found in [PU].

Theorem 4.12. Fix λ0 ∈ Λ. Then there exists a neighbourhood Λ∗ of λ0 in
C2, and a holomorphic function L : Λ∗ ×C→ L (Hα(Jλ0)), (λ, t) 7→ Lλ,t, such
that, for every (λ, t) ∈ (Λ∗ × C) ∩ (C× R),

Lλ,t = L0
λ,t.
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4.6. Application of the perturbation theory of linear operators. In this
section we consider together all kinds of families of admissible systems, linear
(similarity) IFSs in Rk, k ≥ 1, conformal IFSs in Rk, k ≥ 3, and conformal
expanding repellers in the complex plane C. We do it simultaneously without
discerning which of these cases holds. We keep the notation of Theorem 4.10
and Theorem 4.12. We denote by M either the number Mk(S) coming from
(4.1) or from (4.2) or just the number 2, depending on the, one of the three,
kinds of admissible systems under consideration. Fix some (λ0, t0) ∈ Λ × R,
and denote, following Theorem 4.3, γλ0,t0 = exp

(
P(−t0 log |T ′λ0|)

)
. Now, the

analytic perturbation theory of linear operators (see [Zi] for example) together
with Theorem 4.3 both guarantee the existence of a holomorphic function

γ : Λ∗ × DC(t0, R)→ C
(with possibly smaller open set Λ∗ 3 λ0 and some R > 0) such that γ(λ0, t0) =
γλ0,t0 , and γ(λ, t) is an isolated simple eigenvalue of the operator Lλ,t. So, in
particular, for every (λ, t) ∈ (Λ∗ × DC(t0, R)) ∩ (Λ× R) we have

γ(λ, t) = exp
(
P(−t log |T ′λ|)

)
.

Proposition 4.13. For every (λ0, t) ∈ Λ × R there exists a neighbourhood
Λ∗ × DC(t0, R) ⊂ CM × C of the point (λ0, t0) in CM × C and a holomorphic
function

ν : Λ∗ × DC(t0, R)→ H∗α(Jλ0)

such that for every (λ, t) ∈ Λ∗ × DC(t0, R) ∩ (Λ× R) and every g ∈ H1(Jλ) we
have

νλ,t(g ◦ τλ) = mλ,t(g).

In particular, νλ0,t(g) = mλ0,t(g).

Proof. Let ε > 0 be so small that with G := D(γ(λ0, t0), ε), the point γ(λ0, t0)
is the only element of the spectrum of Lλ0,t0 in the disk 2G := D(γ(λ0, t0), 2ε).
Choosing the neighbourhood Λ∗ and the value R small enough, we may assume
that for all (λ, t) ∈ Λ∗×DC(t0, R), γ(λ, t) is the only element of the spectrum of
the operator Lλ,t in 2G. Denote by 11G(Lλ,t) the projection onto the eigenspace
corresponding to this eigenvalue:

11G(Lλ,t) =
1

2πi

∫
∂G

(zI − Lλ,t)−1 dz.

Then the function

Λ∗ ×DC(t0, R) 3 (λ, t) 7→ 11G(Lλ,t)

is analytic.
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Let S be an arbitrary element of H∗α(Jλ0), not vanishing on some eigenvec-
tor of Lλ0,t0 corresponding to the eigenvalue γ(λ0, t0). Then, shrinking the
neighbourhood Λ∗ × DC(t0, R) if necessary, we may assume that for every
(λ, t) ∈ Λ∗ × DC(t0, R), the functional S does not vanish on some eigenvec-
tor of Lλ,t corresponding to the eigenvalue γ(λ, t).

Consider the vector v = 11G(Lλ0,t0)(11). We claim that v 6= 0. Indeed, writing
Lλ0,t0 = 11G(Lλ0,t0)+(Lλ0,t0−11G(Lλ0,t0)) = L1+L2 we have L1◦L2 = L2◦L1 = 0,
Lj ◦Lj = Lj (j = 1, 2), and Hα(Jλ0) = E1⊕E2, where Ej = Lj(Hα(Jλ0)). Both
E1 and E2 are invariant subspaces, and the spectral radius of Lλ0,t0 : E2 → E2

is strictly smaller than γ(λ0, t0). On the other hand, see [PU], we have

lim
n→∞

γ(λ0, t0)−nLnλ0,t0(11)→ ρλ0,t0 ,

and the convergence is uniform. This shows that 11 /∈ E2 and 11G(Lλ0,t0)(11) 6= 0.
Thus, shrinking the neighbourhood Λ∗ × DC(t0, R) again, if necessary, we can
assume that 11G(Lλ,t)(11) 6= 0 for all (λ, t) ∈ Λ∗ × DC(t0, R). Therefore, the
following function is well defined:

Λ∗ ×DC(t0, R) 3 (λ, t) 7→ νλ,t :=
S ◦ 11G(Lλ,t)

S ◦ 11G1(Lλ,t)(11)
∈ H∗α(Jλ0).

Hence, the function (λ, t) 7→ νλ,t ∈ H∗α(Jλ0) is analytic, as a composition of
analytic and linear functions. Moreover, we have, for all g ∈ Hα(Jλ0), that

(4.4)

L∗λ,tνλ,t(g) = νλ,t(Lλ,t(g)) =
S ◦ 11G(Lλ,t)(Lλ,tg)

S ◦ 11G(Lλ,t)(11)
=
S ◦ Lλ,t(11G(Lλ,t(g)))

S ◦ 11G(Lλ,t)(11)

=
S(γ(λ, t)11G(Lλ,t)(g))

S ◦ 11G(Lλ,t)(11)
=
γ(λ, t)S ◦ 11G(Lλ,t)(g)

S ◦ 11G(Lλ,t)(11)

= γ(λ, t)νλ,t(g).

In the formula above, we used the fact that the operators 11G(Lλ,t) and Lλ,t
commute and that 11G(Lλ,t) is the Riesz projection onto the one–dimensional
eigenspace corresponding to the eigenvalue γ(λ, t). Recall that for all λ ∈ Λ
and t ∈ R the operator Lλ,t is real and positive. For each such (λ, t) put

ρ̃λ,t = ρλ,t ◦ τλ.

At the moment, as an ingredient of the proof of Proposition 4.13, we will need
and we will prove the following.

Lemma 4.14. For every function g ∈ Hα(Jλ0) and for every (λ, t) ∈ (Λ∗ ×
DC(R)) ∩ (Λ× R), we have

11G(Lλ,t)(g ◦ τλ) = mλ,t(g)ρ̃λ,t.
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Proof. A straightforward calculation shows that

Lλ,t(g ◦ τλ)(z) = Lλ,t(g)(τλ(z)),

or, denoting by R : H1(Jλ)→ Hα(Jλ0) the linear operator R(g) = g ◦ τλ,

Lλ,t ◦R = R ◦ Lλ,t.

Despite the fact that usually R is not surjective, so not a conjugacy, this equality
is good enough to proceed further. Because of it and the integral formula for
the projection 11G(Lλ,t)), a straightforward calculation yields

(4.5) 11G(Lλ,t)(g ◦ τλ)(z) = 11G(Lλ,t)(g)(τλ(z)),

where in here the first projection is in the space Hα(Jλ0) while the second one
is in the space H1(Jλ). Since the operator Lλ,t can be treated as an operator

Lλ,t : H1(Jλ)→ H1(Jλ),

for every g ∈ H1(Jλ), the iterates γ(λ, t)−nLnλ,t(g) converge to the function
mλ,t(g) · ρλ,t. This implies that the projection 11G(Lλ,t) (in H1(Jλ)) onto the
1–dimensional eigenspace corresponding to the eigenvalue γ(λ, t) must be given
by the formula

g 7→ mλ,t(g) · ρλ,t.
Consequently, using formula (4.5), we see that

11G(Lλ,t)(g ◦ τλ) = mλ,t(g) · ρ̃λ,t
�

Continuing the proof of Proposition 4.13, by making use of Lemma 4.14, we can
write:

(4.6)

νλ,t(g ◦ τλ) =
S ◦ 11G(Lλ,t)(g ◦ τλ)
S ◦ 11G(Lλ,t)(11)

=
S(mλ,t(g)ρ̃λ,t)

S(mλ,t(11)ρ̃λ,t)

=
mλ,t(g)S(ρ̃λ,t)

mλ,t(11)S(ρ̃λ,t)
= mλ,t(g).

This ends the proof of Proposition 4.13. �

Remark 4.15. In particular, it follows from Proposition 4.13 that for (λ, t) ∈
(Λ∗ × DC(t0, R)) ∩ (Λ × R) the functional νλ,t which is a priori an element of
(H∗α(Jλ0)) is, actually, a restriction of the measure mλ,t ◦ τ−1

λ to Hα(Jλ0).

Notation. The functionals νλ,t ∈ Hα(Jλ0), (λ, t) ∈ Λ∗ × DC, where, we recall,
Λ∗ is a neighbourhood of λ0) depend on ”basic” point λ0. Since we shall use
a collection of ”basic points” (λ0, t0), to underline this dependence, we will
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write νλ0,t0λ,t . Similarly, we will write τλ0λ : Jλ0 → Jλ, and, whenever defined,

τλ1λ2 := τλ0λ1 ◦
(
τλ0λ1
)−1

: Jλ1 → Jλ2 .

As a straightforward consequence of holomorphic dependence of ν on λ and t,
we get the following.

Proposition 4.16. Let Λ′ be a bounded open set of parameters with Λ′ ⊂ Λ′ ⊂
Λ, let T be a bounded interval in R. Then for every α ∈ (0, 1) there exist two
reals C > 0, η > 0, and two finite sets Λ0 ⊂ Λ′ and T0 ⊂ T , such that the
collection

{B(λ0, η/2)×B(t0, η/2) : (λ0, t0) ∈ Λ0 × T0}
forms a cover of Λ′ × T and for every (λ0, t0) ∈ Λ0 × T0, and (λ1, t1), (λ2, t2) ∈
B(λ0, η)×B(t0, η), we have

(4.7) |||νλ0,t0λ1,t1
− νλ0,t0λ2,t2

|||α ≤ C (||λ1 − λ2||+ |t1 − t2|) ,

where, we recall, the norm ||| · |||α is calculated in H∗α(Jλ0).

Denote by F the family of all compact subsets of Rk. We shall prove the
following.

Lemma 4.17. Let G be an arbitrary set in F . Then for every δ ∈ (0, 1) there
exists a Lipschitz continuous function ψδ,G : Rk → R such that

(a) with characteristic functions 11G and 11B(G,δ), it holds

11G ≤ ψδ,G ≤ 11B(G,δ),

and

(b)
||ψδ,G||1 ≤ δ−1,

where ||ψδ,G||1 denotes the Lipschitz norm of the function ψδ,G.

Proof. Define the function ψδ : [0,∞)→ [0, 1] be the following formula

ψ(t) =

{
1− t

δ
if t ∈ [0, δ]

0 if t ∈ [δ,+∞).

Of course ψ is well-defined and contiuous. In fact, it is straightforward to
observe that ψ is Lipschitz continuous with Lipschitz constant bounded above
by δ−1. Now, let G be an arbitrary set in F . Define ψδ,G : Rk → R by putting

ψδ,G(z) := ψ(dist(z,G)).

Thus, as a composition of two Lipschitz continuous functions, one with Lipschitz
constant bounded above by 1 and the other with Lipschitz constant bounded
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above by δ−1, the function ψδ,G is Lipschitz continuous with Lipschitz constant
bounded above by δ−1. Hence

||ψδ,G||1 ≤ max{1, δ−1} = δ−1,

and the proof is complete. �

Let Λ′ be a bounded set of parameters, with Λ′ ⊂ Λ. Let T = [0, k] where,
we recall, k ≥ 1 is the dimension of the ambient space Rk. Fix an arbitrary
α ∈ (0, 1). Applying Proposition 4.16 we obtain two finite sets Λ0 and T0, so
that the statement of Proposition 4.16 holds. Let C, η > 0, be the constants
provided by this proposition. By increasing C, if necessary, we can assume that
for all λ0 ∈ Λ0, all λ1, λ2 ∈ B(λ0, η) and all y ∈ Jλ1 , we have

(4.8) ||τλ1λ2 (y)− y|| ≤ C||λ1 − λ2||.
Since hλ = HD(Jλ) depends in a real–analytic manner on λ (see [PU], [RU],
comp. [Ru2] and [UZd] and the references therein), increasing C > 0, if neces-
sary, again, we get

(4.9)
1

C
||λ1 − λ2|| ≤ |hλ1 − hλ2| ≤ C||λ1 − λ2||

and

(4.10) ||τλ0λ (x)− τλ0λ (y)|| ≤ C||x− y||α

for all λ, λ0 ∈ Λ′ with ||λ− λ0|| ≤ η. We in addition require that C ≥ 2. Recall
from Proposition 4.16 that the collection {B(λ0, η/2) × B(t0, η/2) : (λ0, t0) ∈
Λ0×T0} is an open cover of the compact set Λ′×T . Let γ > 0 be its Lebesgue
number. Put

ε := min{γ, η/C}.
Consider an arbitrary pair of parameters λ1, λ2 ∈ Λ′ with ||λ1 − λ2|| < ε. We
then see that there exists (λ0, t0) ∈ Λ0 × T0 such that for all i = 1, 2 we have

||λi − λ0|| < η and |hλi − hλ0| < η.

Given an arbitrary set G ∈ F , consider the function ψδ,G : Rk → [0, 1], and
then, two additional functions

ψδ,G ◦ τλ0λi : Jλ0 → [0, 1],

i = 1, 2. Taking η > 0 small enough we may require all α-Hölder norms of τλ0λ ,
with λ0 ∈ Λ0 and λ ∈ B(λ0, η), to be bounded above by the constant C > 0
dealt with above. Then

(4.11) ||ψδ,G ◦ τλ0λi ||α ≤ C||ψδ,G||1 ≤ Cδ−1.

hence

(4.12) mλ1(G) = mλ1,hλ1
(G) ≤ mλ1,hλ1

(ψδ,G) = νλ1,hλ1 (ψδ,G ◦ τλ0λ1 )
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and

(4.13) mλ2(B(G, δ)) = mλ2,hλ2
(B(G, δ)) ≥ mλ2(ψδ,G) = νλ2,hλ2 (ψδ,G ◦ τλ0λ2 ).

Hence,
(4.14)

mλ1(G) ≤ νλ2,hλ2 (ψδ,G ◦ τλ0λ2 ) +
(
νλ1,hλ1 (ψδ,G ◦ τλ0λ1 )− νλ2,hλ2 (ψδ,G ◦ τλ0λ2 )

)
≤ mλ2(B(G, δ)) + (νλ1,hλ1 − νλ2,hλ2 )(ψδ,G ◦ τλ0λ1 )+

+ νλ2,hλ2 (ψδ,G ◦ τλ0λ1 − ψδ,G ◦ τ
λ0
λ2

)

≤ mλ2(B(G, δ)) + C(|λ2 − λ1|+ |hλ2 − hλ1 |) · ||ψδ,G ◦ τλ0λ1 ||α+

+ ||ψδ,G ◦ τλ0λ2 − ψδ,G ◦ τ
λ0
λ2
||∞

≤ mλ2(B(G, δ)) + C2δ−1(|λ2 − λ1|+ |hλ2 − hλ1 |)+
+ ||ψδ,G ◦ τλ0λ2 − ψδ,G ◦ τ

λ0
λ2
||∞.

In the last line of this estimate we used the observation from Remark 4.15- that
νλ2,h2 is, as a matter of fact, a probability measure. The supremum norm which
appears in the same last line can be easily bounded as follows:

(4.15)

||ψδ,G ◦ τλ0λ2 − ψδ,G ◦ τ
λ0
λ2
||∞ =

= sup
x∈Jλ0

{|ψδ,G ◦ τλ0λ1 (x)− ψδ,G ◦ τλ0λ2 (x)|}

= sup
y∈Jλ1
{|ψδ,G(y)− ψδ,G ◦ τλ1λ2 (y)|}

≤ ||ψδ,G||1 · sup
y∈Jλ1
{||y − τλ1λ2 (y)||}

≤ Cδ−1||λ1 − λ2||.
Using also (4.9) we can summarize the above calculations in the following.

Corollary 4.18. Let Λ′ ⊂ Λ be a bounded set of parameters with Λ′ ⊂ Λ. There
exist positive constants C ′ and ε such that if λ1, λ2 ∈ Λ′ with ||λ1 − λ2|| < ε
then, for every set G ∈ F and for every δ > 0 the following holds:

(4.16) mλ1(G) ≤ mλ2(B(G, δ)) + C ′||λ1 − λ2||δ−1.

Remark 4.19. In fact, increasing the constant C > 0 if necessary, we can get
rid of the hypothesis ||λ1 − λ2|| < ε in the above corollary.

5. Similarity IFSs satisfying the Strong Separation Condition;
the case of arbitrary k ≥ 1; Preparatory Results

Consider an admissible family of finite similarity IFSs in Rk, k ≥ 1. The
following proposition was proved in [Ol].
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Proposition 5.1. Let λ0 ∈ Λ. If U is a neighbourhood of λ0 such that U ⊂ Λ,
then there exist positive constants A and R such that for all λ ∈ U ,

(5.1) Hhλ(Jλ) = inf

{
diamhλ(F )

mλ(F )
: F ∈ F(A,R)

}
,

where

F(A,R) =
{
F ⊂ B(0, R) : F is closed and diam(F ) ≥ A

}
.

Corollary 5.2. Let Λ′ be a bounded set of parameters such that Λ′ ⊂ Λ. Then
there exist positive constant A and R such that for all λ ∈ Λ′,

(5.2) Hhλ(Jλ) = inf

{
diamhλ(F )

mλ(F )
: F ∈ F(A,R)

}
.

We shall prove the following.

Lemma 5.3. Let Λ′ ⊂ Λ′ ⊂ Λ be a bounded set of parameters. Then for
every λ ∈ Λ′ there exists a set Fλ ∈ F(A,R) (with A,R given by the previous
corollary) such that

(5.3) Hλ(Jλ) =
diamhλ(Fλ)

mλ(Fλ)
.

Proof. By Corollary 5.2 there exists a sequence Fn ∈ F(A,R), n ≥ 1, such that

lim
n→∞

diamhλ(Fn)

mλ(Fn)
= Hhλ(Jλ).

Since, by Blaschke Selection Theorem the space F(A,R), endowed with Haus-
dorff metric, is compact, passing to a subsequence, we may assume that

Fn −→ Fλ ∈ F(A,R),

where the converges is with respect to the Hausdorff metric on F(A,R). Then,
obviously,

lim
n→∞

diamhλ(Fn) = diamhλ(Fλ)

and

mλ(Fλ) ≥ lim sup
n→∞

mλ(Fn).

Thus, diamhλ (Fλ)
mλ(Fλ)

≤ Hhλ(Jλ). Since the opposite inequality immediately follows

from Corollary 5.2, the proof is thus complete. �

Now, fix some bounded set of parameters Λ′ with Λ′ ⊂ Λ, and then the
constants C ′, ε > 0 according to Corollary 4.18. For each λ ∈ Λ′ let Fλ ∈
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F(A,R) be the set produced in Lemma 5.3. Fix λ1, λ2 ∈ Λ′ with ||λ1−λ2|| < ε.
In order to simplify notation we write

h1 := hλ1 , h2 := hλ2 , m1 := mλ1 , m2 := mλ2 ,

and

F1 := Fλ1 , F2 := Fλ2 , J1 := Jλ1 , J2 := Jλ2 .

Fix some δ > 0. Then, since Hhλ1
(J1) < +∞ and diam(F1) > 0, it follows from

Lemma 5.3 that m1(B(F1, δ) ≥ m1(F1) > 0. Corollary 5.2 then yields

(5.4)

Hh2(J2) =
diamh2(F2)

m2(F2)
=

diamh2(F2)

diamh1(F2)
· diamh1(F2)

m1(B(F2, δ))
· m1(B(F2, δ))

m2(F2)

≥ diamh2−h1(F2) · diamh1(F2)

diamh1(B(F2, δ))
· Hh1(J1) · m1(B(F2, δ))

m2(F2)

Writing δ = diam(F2)γ, we get:

diamh1(B(F2, δ))

diamh1(F2)
≤ diamh1(F2)(1 + 2γ)h

diamh1(F2)
. = (1 + 2γ)h1 .

Thus,

diamh1(F2)

diamh1(B(F2, δ))
≥ 1

(1 + 2γ)h1
≥ 1− 2h1γ ≥ 1− 2h1

A
δ.

Therefore, the estimate (5.4) implies that

(5.5) Hh2(J2) ≥ Hh1(J1) · diamh2−h1(F2) ·
(

1− 2h1

A
δ

)
· m1(B(F2, δ))

m2(F2)
.

Thus, in order to proceed with continuity issues, we need a good lower estimate
of the ratio m1(B(F2, δ))/m2(F2). This is done in the next section.

6. Similarity IFSs satisfying the Strong Separation Condition;
the case of arbitrary k ≥ 1;

Holder Continuity of Hausdorff Measure

We keep the setting, notation, and hypotheses the same as in Section 5. In
order to estimate the ratio m1(B(F2, δ))/m2(F2) we shall prove the following.

Lemma 6.1. There exists a positive constant c such that mλ(Fλ) ≥ c for all
λ ∈ Λ′.
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Proof. We already know, see [Ol] or [SUZ], that the function λ 7→ Hhλ(Jλ) is
continuous, thus bounded in the set Λ′. Denote the corresponding supremum
by B. Then, with the use of Lemma 5.3, we get for every λ ∈ Λ′ that

B ≥ Hhλ(Jλ) =
diam(Fλ)

mλ(Fλ)
≥ A

mλ(Fλ)
.

Hence mλ(Fλ) ≥ A/B, and the proof is complete. �

Using Corollary 4.18 and Remark 4.19, with G := F2, we get

m2(F2) ≤ m1(B(F2, δ)) + C ′||λ1 − λ2||δ−1.

Therefore, taking also into account Lemma 6.1, we get

(6.1)
m1(B(F2, δ))

m2(F2)
≥ 1− C ′δ−1||λ2 − λ1|| ·

1

m2(F2)
≥ 1− C ′′δ−1||λ2 − λ1||,

where C ′′ = C ′/c. Along with (5.5) this gives

(6.2) Hh2(J2) ≥ Hh1(J1) · diamh2−h1(F2) ·
(

1− 2h1

A
δ

)
· (1−C ′′δ−1||λ2 − λ1||).

Putting M− = min{A, (2R)−1} we thus get, for all λ1, λ2 ∈ Λ′ that,

(6.3)
Hh2(J2)

Hh1(J1)
≥M

|h2−h1|
−

(
1− 2h1

A
δ

)
(1− C ′′δ−1||λ2 − λ1||).

Now, we relate δ to ||λ1 − λ2||. Fix some κ ∈ (0, 1) and write δ in the form
δ = ||λ1 − λ2||κ. Using formula (4.9) and (6.3); the latter as it is and also with
exchanged places of λ1 and λ2, we get

(6.4)

∣∣∣∣Hh2(J2)

Hh1(J1)
− 1

∣∣∣∣ ≤ Dmax{||λ2 − λ1||κ, ||λ2 − λ1||(1−κ)}

with some appropriate finite constant D. Since the value Λ′ 3 λ 7→ Hhλ(Jλ) is,
by its continuity, bounded, putting κ = 1/2 in (6.4), we get, for all λ1, λ2 ∈ Λ′,
that

(6.5)

∣∣Hhλ2
(Jλ2)− Hhλ1

(Jλ1)
∣∣ = Hhλ1

(Jλ1)

∣∣∣∣∣Hhλ2
(Jλ2)

Hhλ1
(Jλ1)

− 1

∣∣∣∣∣
≤ Hhλ1

(Jλ1)D||λ2 − λ1||
1
2

≤ E||λ2 − λ1||
1
2

with some other finite constant E. We thus proved the following.
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Theorem 6.2. If Λ′ ⊂ Λ is an arbitrary bounded domain such that Λ′ ⊂ Λ,
and Φλ, λ ∈ Λ, forms an admissible family of IFSs consisting of similarities
and satisfying the Strong Separation Condition, then the function

Λ′ 3 λ 7→ Hλ(Jλ)

is Hölder continuous with Hölder exponent 1/2.

7. Similarity IFSs in the real line;
Hausdorff measure is piecewise real–analytic

In this Section we keep the setting, notation, and assumptions of Section 5,
assuming in addition that the phase space X is contained in the real line R. In
particular, Jλ ⊂ R. Assume without loss of generality that X = I, the latter
being the unit interval [0, 1]. Such systems will be referred to as linear real
systems. The set Fλ coming from Lemma 5.3 can be taken to be compact and
convex, i. e. a closed bounded interval. Aiming to establish real analyticity of
Hausdorff measure, we start with the following simple fact.

Proposition 7.1. Let Λ′ be bounded set of parameters, with Λ′ ⊂ Λ. There
exist a constant k ∈ N such that, for every λ ∈ Λ′, the set Fλ is a convex hull
of some intervals ϕi

λ(I), with |i| ≤ k.

Proof. Fix some λ ∈ Λ′. Put F := Fλ, m := mλ, h := hλ, J := Jλ, L :=
diam(F ), M := m(F ). Write F = [a, b]. Of course then |b − a| = L. Since F
minimizes the ratio in Lemma 5.3, the endpoints a and b of F are in J .

Now consider a point x ∈ J with x < a. Put r := a− x. Set

F ′ = [a− 2r, b] = [x− r, x+ r] ∪ [a, b].

Using Lemma 4.9, we get

m(F ′) = m(F ) +m([x− r, x+ r]) ≥ m(F ) + crh = M + crh.

Since the set F was chosen to minimize the ratio diamh(G)/m(G) amongst all
the sets G with diameter larger than A, we thus have:

(L+ 2r)h

M + crh
≥ diamh(F ′)

m(F ′)
≥ diamh(F )

m(F )
=
Lh

M

or, equivalently,

(7.1)

(
1 +

2r

L

)h
≥
(

1 +
c

M
rh
)
.

Since h ≤ 1, (1 + x)h ≤ 1 + x for x > 0, and (7.1) gives

(7.2)

(
1 +

2r

L

)
≥
(

1 +
c

M
rh
)
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Equivalently,

(7.3) r ≥
(
cL

2M

) 1
1−h

.

The conclusion is that for all r < (cL/(2M))
1

1−h , we have that [a−r, a)∩J = ∅.
Likewise, with the same method of proof, (b, b + r] ∩ J = ∅. This means that
there are large gaps of the Cantor set Jλ on both sides of the interval F = Fλ.
Consequently, there is k ∈ N such that for every λ ∈ Λ′ the set Fλ is a union of
some sets of the form ϕi

λ(I), with |i| ≤ k. �

Now we can prove the main theorem of this section.

Theorem 7.2. The function Λ 3 λ 7→ Hλ(Jλ) is piecewise real–analytic.

Proof. This is consequence of Proposition 7.1. Indeed, let k ∈ N be taken from
Proposition 7.1. Fix some cylinders ij, j = 1, . . . n, |ij| ≤ k, and consider

the respective sets ϕ
ij
λ (I). Let Gλ be the convex hull of their union. Each set

constructed in this way will be called a (λ, k)–set. The endpoints of the interval
Gλ move in a real-analytic way with respect to λ. Likewise, the function

Λ 3 λ 7→ mλ(Gλ) =
n∑
j=1

mλ

(
ϕ
ij
λ (I)

)
=

n∑
j=1

|(ϕijλ )′|hλ

is real–analytic. This is so since obviously the function λ 7→ hλ is real-analytic,
as hλ is a unique solution to the equation

∑
|(ϕiλ)′|t = 1. We thus conclude

that the function

Λ 3 λ 7→ diamhλ(Gλ)

mλ(Gλ)

is real–analytic. Denote by Gkλ the family of all (λ, k)– sets Gλ defined as above,
with |ij| ≤ k. This is a finite family of sets. Now, Proposition 7.1 implies that
for every λ ∈ Λ,

(7.4) Hhλ(Jλ) = max

{
diamhλ(Gλ)

mλ(Gλ)
: Gλ ∈ Gkλ

}
.

This function is piecewise real–analytic and the proof is complete. �

Formula (7.4) suggests that, although the map λ 7→ Hhλ(Jλ) is piecewise real–
analytic, one should not expect to have more, namely a real–analytic dependence
throghout the whole set Λ. Below, we describe a simple example where the real
analyticity does fail.
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Example, where real analyticity of the Hausdorff measure fails: We
start with four basic intervals contained in I = [0, 1]:

I1 =

[
0,

1

9

]
, I2 =

[
2

9
,
3

9

]
, I3 =

[
6

9
,
7

9

]
, I4 =

[
8

9
, 1

]
.

Denote by ∆1,∆2, ∆3 the corresonding intervals gaps between those basic in-
tervals. In particular ∆1, ∆3 are of length 1/9 while ∆2 is of length 1/3.

Denote by ϕi, i = 1, 2, 3, 4, the linear increasing maps, mapping the interval
I onto respective intervals Ii. The limit set J0 of this iterated function system
is just the standard Middle-Third Cantor set. Denote by h0 = log 2/ log 3 its
Hausdorff dimension. Let m0 be the corresponding conformal measure on J0.
The proof of Lemma 5.3, in which the involvements of λ and Λ were irrelevant,
gives that

Hh0(J0) =
diamh0(F0)

m0(F0)
,

where F0 is some interval containing one of the gaps ∆1, ∆2 or ∆3, thus of
diameter at least 1/9. Obviously, the endpoints of F0 are in J0. Denote by L0

the interval [0, 1/3] and by R0 the interval [2/3, 1]. This means that L0 is the
convex hull of I1 ∪ I2 while R0 is the convex hull of I3 ∪ I4. Since Hh0(J0) = 1,
we have, for every interval G intersecting J0, that

(7.5)
diamh0(G)

m0(G)
≥ 1.

We need the following.

Lemma 7.3. If a closed interval F contains the gap ∆2 and F 6= I, then

diamh0(F )h0

m0(F )
> 1 =

diamh0(I)

m0(I)
.

Similarly, if a closed interval F either contains the gap ∆1 or ∆3 and F 6=
I, L,R then

diamh0(F )h0

m0(F )
> 1 =

diamh0(L0)h0

m0(L0)
=

diamh0(R0)

m0(R0)
.

Proof. Assume that F contains the gap ∆2. Denoting by r1 and r2 the lenghts
of two intervals forming the connected components of the difference F \∆2 and
using (7.5) we get diam(F ) = 1

3
+ r1 + r2, while m(F ) ≤ rh01 + rh02 . Thus,

diamh0(F )

m0(F )
≥

(1
3

+ r1 + r2)h0

rh01 + rh02

.

The following Lemma is based on elementary calculus. Its proof is omitted.
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Lemma 7.4. Consider the function [1, 1/3]× [0, 1/3] 3 (r1, r2) 7→ φ(r1, r2):

φ(r1, r2) =
(1

3
+ r1 + r2)h0

rh01 + rh02

.

Then for all (r1, r2) we have φ(r1, r2) ≥ 1. Moreover, φ(r1, r2) = 1 iff r1 = 1/3
and r2 = 1/3.

Using this lemma we conclude that if the maximizing interval F0 contains
the gap ∆2, then r1 = 1/3 and r2 = 1/3, thus F0 = I. We check in the same
way that, if the interval F0 contains the gap ∆1 = (1

9
, 2

9
) then either F0 = L0

or F0 = I, and, similarly, if F0 contains the gap (7
9
.8
9
) then either F0 = L0 or

F0 = I. �

Put r0 = 1
9
. For r close to r0 consider the linear iterated function system built in

an analogous way with the four basic subintervals Ir1 := [0, r], Ir2 := I2, Ir3 := I3,
Ir4 := I4; the only difference is thus that the first interval Ir1 is now equal [0, r]
rather than [0, 1/9]. Denote by Jr the limit set of this linear iterated function
system. The intervals Lr and Rr are defined analogously as L0 and R0. The
Hausdorff dimension hr of the set Jr is now given by the equation:

3 · (1/9)hr + rhr = 1.

Thus,

(7.6) r < r0 ⇐⇒ hr < hr0 .

Let Fr be an interval for which

Hhr(Jr) =
diamhr(Fr)

mhr(Fr)
.

As before, we can assume that Fr contains one of the gaps ∆r
1, ∆r

2 or ∆r
3. We

have checked, for r = r0, that the set F0 is one of three sets L0, R0 or I. For
every other set G containing one of the gaps, the ratio diamh0(G)/m0(G) is
strictly larger than that for L0, R0 or I. It follows from Proposition 7.1 that
there exists k ∈ N such that for all r close to r0 the set Fr must be an element of
the finite family of sets Grk. Each set Gr ∈ Grk is a convex hull of some cylinders
of generation at most k. Since, for every G0 ∈ G0

k we have

diamh0(G0)

m0(G)
> min

{
diamh0(L0)

m0(L0)
,
(diamh0(R0)

m0(R0)
,
diamh0(I)

m0(I)

}
,

the analogous inequality holds, by continuity, for all r in some interval (r0 −
δ, r0 + δ). We conclude that, for r ∈ (r0 − δ, r0 + δ) the set Fr is, again, one of
the sets Lr, Rr or I. Thus, we have the following formula:
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(7.7) Hhr(Jr) = max
{
L̃r, R̃r, Ĩr

}
,

where L̃r, R̃r, and Ĩr are the values of appropriate ratios diamhr(·)/mhr(·),
calculated for for the arguments (i. e. sets) Lr, Rr, and I:

L̃r =
(1

3
)hr

rhr + (1
9
)hr

, R̃r =
(1

3
)hr

(1
9
)hr + (1

9
)hr

, Ĩr = 1.

A direct calculation, using (7.6) entails the following Lemma.

Lemma 7.5. For r < r0 we have

R̃r < Ĩr < L̃r

while, for r > r0 we have

L̃r < Ĩr < R̃r.

Hence,

(7.8) Hhr(Jr) =


(1/3)hr

(1/9)hr+(1/9)hr
if r < r0

(1/3)hr

(1/9)hr+rhr
if r ≥ r0

.

This function is not even differentiable at r = r0, not to mention real-analytic.

8. Hölder continuity of the Hausdorff measures;
self-conformal case

In this Section, we consider simultaneously admissible families either of con-
formal IFS in Rk, k ≥ 3, satisfying Strong Separation Condition, or admissible
families of conformal expanding repellers in the complex plane C. We shall
prove the following main result of this section.

Theorem 8.1. Let Sλ, λ ∈ Λ, (resp. Tλ, λ ∈ Λ), be an admissible family either
of conformal IFS in Rk, k ≥ 3, or conformal expanding repellers in C; we do
not need and we do not specify which case holds. Let Λ′ be a bounded open set
such that Λ′ ⊂ Λ. Then the function

Λ′ 3 λ 7→ Hhλ(Jλ)

is Hölder continuous with an exponent equal to (3 + sup{hλ : λ ∈ Λ′})−1.
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Proof. Fix some set Λ′ satisfyng the assumptions and some κ ∈ (0, 1). Let
M = sup{|T ′λ||Jλ : λ ∈ Λ′}. Fix the constants C,C ′, ε > 0 with which the
statement of Corollary 4.18 holds. Let λ1, λ2 ∈ Λ′ with ||λ1 − λ2|| < ε. To
simplify notation we shall write

h1 = hλ1 , h2 = hλ2 , m1 = mλ1 , m2 = mλ2 , J1 = Jλ1 , J2 = Jλ2 .

By Propositon 3.1 there exists a set F2 ∈ F intersecting J2 for which diam(F2) ≤
||λ2 − λ1||κ and

(8.1)
diamh2(F2)

m2(F2)
≥ Hh2(J2) ≥ (1− ||λ2 − λ1||κ)

diamh2(F2)

m2(F2)
.

Let n ≥ 1 be the least integer for which

diam(T n2 (F2)) ≥ ||λ2 − λ1||κ.

Then

diam(T n2 (F2)) ≤M ||λ2 − λ1||κ.
with some constant M independent of λ and n. Due to distortion estimates (see
Proposition 2.6 and Theorem 2.8), we have

(8.2)

∣∣∣∣∣diamh2(T n2 (F2))

m2(T n2 (F2))

/diamh2(F2)

m2(F2)
− 1

∣∣∣∣∣ =

=

∣∣∣∣∣
(

diam(T n2 (F2)

diam(F2)

)h2
· m2(F2)

m2(T n2 (F2))
− 1

∣∣∣∣∣
= O(||λ2 − λ1||)κ).

So,

(8.3)

Hh2(J2) ≥ (1− ||λ2 − λ1||κ) ·
diamh2(F2)

m2(F2)

≥ (1−O(||λ2 − λ1||κ))(1−O(||λ2 − λ1||κ)) ·
diamh2(T n2 (F2))

m2(T nλ (F2))

≥ (1−O(||λ2 − λ1||κ)) ·
diamh2(T n2 (F2))

m2(T n2 (F2))
.

On the other hand, let G ∈ F be an arbitrary set intersecting J2 with

||λ2 − λ1||κ ≤ diam(G) ≤M ||λ2 − λ1||κ.

Fix

C||λ2 − λ1|| ≤ δ ≤ ||λ2 − λ1||κ.
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Then, by (4.8), the open set B(G, δ) intersects J1, and diam(B(G, δ)) ≤ (M +
2)||λ2−λ1||κ. Therefore, for m1–almost every point x ∈ J1 we have that T k1 (x) ∈
B(G, δ) for infinitely many k. For each such k put

Gk
x := T−k1,x (B(G, δ)),

where T−k1,x is the unique continuous branch of T−k1 sending T k1 (x) to x. Using
(8.2), by virtue of Theorem 3.2, for m1–almost every point x ∈ J1, we thus get

Hh1(J1) ≤ lim inf
k→∞

diamh1(Gk
x)

m1(Gk
x)

≤ (1 +O(||λ2 − λ1||κ))
diamh1(B(G, δ))

m1(B(G, δ))

Applying this to G := T n2 (F2) we thus get,

(8.4) Hh1(J1) ≤ (1 +O(||λ2 − λ1||κ))
diamh1(B(T n2 (F2), δ))

m1(B(T n2 (F2), δ))
.

Therefore, the inequalities (8.3) and (8.4) give an estimate of Hh2(J2) from below
by the following product

(8.5)

Hh1(J1) · (1−O(||λ2 − λ1||κ) · diamh2−h1(T n2 (F2))·

·
(

diam(T n2 (F2))

diam(B(T n2 (F2), δ))

)h1
· m1(B(T n2 (F2), δ)

m2(T n2 (F2))
.

The ratio
(
diam(T n2 (F2))/diam(B(T n2 (F2), δ))

)h1 is obviously bounded below by(
1− 2C ′′δ

diam
(
T n2 (F2)

))h1

with some appropriate finite constant C ′′ > 0. Using Corollary 4.18, we can
continue as follows:
(8.6)

Hh2(J2) ≥ (1−O(||λ2 − λ1||κ) · Hh1(J1)

(
1− C ′

m2(T n2 (F2))
δ−1||λ2 − λ1||

)
·

· (M ||λ2 − λ1||)−κ|h2−h1|) ·
(

1− 2C ′′δ

||λ2 − λ1||κ

)h1
.

In order to continue this estimate we need the following.

Lemma 8.2. There exists a constant d > 0 such that, for all λ ∈ Λ′,

mλ(T
n
λ (Fλ)) ≥ ddiamhλ(T nλ (Fλ)).
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Proof. Using only the bounded distortion property and the right-hand side of
(8.1), we get

mλ(T
n
λ (Fλ))

diamhλ(T nλ (Fλ))
≥ K−2h mλ(Fλ)

diamhλ(Fλ)
≥ K−2h

2Hhλ(Jλ)
,

with some (distortion) constant K > 0. So, it is enough to find a common upper
bound for Hhλ(Jλ), λ ∈ Λ′. This however, in turn, follows from continuity of
the function Λ 3 λ 7→ Hhλ(Jλ). �

Let us also note that, due to (4.9),∣∣1− ||λ2 − λ1||−κ|h2−h1|
∣∣ = O

(
||λ2 − λ1|| log

1

||λ2 − λ1||

)
= o(||λ2 − λ1||1−γ)

for every γ > 0. Therefore, fixing some small γ > 0 we can continue the estimate
(8.6), with some another constant c, as follows:
(8.7)

Hh2(J2) ≥ Hh1(J1)(1− c||λ2 − λ1||κ) ·
(
1− c||λ2 − λ1||−h2κδ−1||λ2 − λ1||

)
·

· (1− c(||λ2 − λ1||1−γ)) · (1− c||λ2 − λ1||−κδ).
Suppose now that we can choose δ > 0 so that

(8.8) ||λ2 − λ1||−h2κδ−1||λ2 − λ1|| ≤ ||λ2 − λ1||κ

and

(8.9) ||λ2 − λ1||−κδ ≤ ||λ1 − λ2||κ

then (8.7) gives, possibly with a modified positive constant c, that

(8.10) Hh2(J2) ≥ Hh1(J1)(1− c||λ2 − λ1||κ)
for all λ1, λ2 ∈ Λ′. One verifies easily that the choice of δ satisfying (8.8) and

(8.9) is possible if κ ≤
(
3 + sup{hλ : λ ∈ Λ′}

)−1
. Exchanging in (8.10) the roles

of λ1 and λ2 ∈ Λ′, and using also the common lower bound for Hhλ(Jλ), in the
same way as in (6.5)), we conclude that the function

Λ′ 3 λ 7→ Hhλ(Jλ)

is κ–Hölder continuous with κ =
(
3 + sup{hλ : λ ∈ Λ′}

)−1
. The proof is

complete. �
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[PU] F. Przytycki, M. Urbański, Conformal Fractals Ergodic Theory Methods, Cam-
bridge University Press (2010). 4.1, 4.2, 4.3, 4.5, 4.6, 4.6
vskip1mm
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