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Abstract. This paper deals with families of conformal iterated function systems (CIFS).
The space of all CIFS, with common seed space X and alphabet I, is successively endowed
with the topology of pointwise convergence and a new, weaker topology called λ-topology.
It is proved that the pressure and the Hausdorff dimension of the limit set are continuous
with respect to the topology of pointwise convergence when I is finite, and are lower semi-
continuous, though generally not continuous, when I is infinite. It is then shown that these
two functions are, in any case, continuous in the λ-topology. The concepts of analytic,
regularly analytic and plane-analytic families of CIFS are also introduced. It is established
that if a family of CIFS is regularly analytic, then the Hausdorff dimension function is real-
analytic; if a family is plane-analytic, then the Hausdorff dimension function is continuous and
subharmonic, though not necessarily real-analytic. These results are then applied to finite
parabolic CIFS. Counterexamples highlighting breakdowns of real-analyticity in the Hausdorff
dimension among analytic, but not regularly analytic, families are further provided. Such
families often exhibit a phenomenon coined phase transitions. Sufficient conditions preventing
the occurence of such transitions are supplemented.

1. Introduction

The last 15 years were a period of extensive study of single infinite conformal iterated func-
tion systems. Recently, interest in families of such systems has emerged (see [1] and [2] for
example). The aim of this paper is to provide a good background for further research in this
direction. In section 2, Preliminaries from Iterated Function Systems, we collect the defini-
tions, concepts, and most of the known results concerning single iterated function systems
which will be needed in the sequel. In section 3, Preliminaries from Topology, we define and
collect some general properties of what we call λ-topologies. In section 4, Continuity in Finite
Iterated Function Systems, we topologize (in fact, metricize) the space CIFS(X, I) of all con-
formal iterated function systems sharing the same seed space X and the same finite alphabet
I. The topological pressure and the Hausdorff dimension functions prove to be continuous
with respect to the abovementioned topology. Section 5, Continuity in Infinite Iterated Func-
tion Systems, is devoted to systems with a countably infinite alphabet I. We endow the space
CIFS(X, I) with two topologies: the topology of pointwise convergence, which arises from
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a natural metric, and an appropriate, weaker λ-topology. Not only does a λ-converging se-
quence converge pointwise, but it also satisfies a condition on the difference of the logarithms
of the norms of the derivatives of its underlying maps. This condition essentially requires that
the maximum distortion of the space created by a sequence of CIFS be comparable to the
maximum distortion generated by its limit. We first prove that the pressure and the Hausdorff
dimension functions are lower semi-continuous, though not generally continuous, with respect
to the topology of pointwise convergence. A class of examples underlining the possible lack of
continuity in these two functions is thereafter constructed. Then we demonstrate that both
functions are continuous with respect to the λ-topology. The section ends with a complete
characterization of the behavior of sequences and their limits in the λ-topology. In section 6,
Real-analyticity, Continuity and Subharmonicity in Analytic Families, we define the concepts
of analytic, regularly analytic and plane-analytic families of iterated function systems. We
note that every plane-analytic family is analytic, and every analytic family on a finite alpha-
bet I is regularly analytic. Regular analyticity forms, up to our knowledge, the most general
sufficient condition preserving the real-analyticity of the Hausdorff dimension function. If a
family is plane-analytic, then the Hausdorff dimension function proves to be continuous and
subharmonic. This result is similar to the one discovered by Ransford [10] for analytic families
of hyperbolic rational maps, and our proof is inspired from his work. Like Ransford’s, our
argumentation relies on the existence of a Bowen-Ruelle-type formula (Theorem 2.1) and on
the variational principle for the pressure function. Our result also extends the one obtained
by Baribeau and Roy [2] for plane-analytic families of CIFS consisting of similitudes, in which
case a completely different proof was brought up. These results are then applied in section 7,
Parabolic Iterated Function Systems, to finite parabolic CIFS. Finally, counterexamples show-
ing the possible failure of real-analyticity in analytic, but not regularly analytic, families are
provided in section 8, Phase Transitions and Breakdown of Real-analyticity. Such families
often display what we call phase transitions. We give sufficient conditions prohibiting these
from appearing.

2. Preliminaries from Iterated Function Systems

Let us first describe the setting of conformal iterated function systems introduced in [5].
Let I be a countable (finite or infinite) index set (so-called alphabet) with at least two
elements, and let Φ = {φi : X → X | i ∈ I} be a collection of injective contractions from
a compact metric space (X, dX) (sometimes coined seed space) into (X, dX) for which there
exists 0 < s < 1 such that dX(φi(x), φi(y)) ≤ s dX(x, y) for every i ∈ I and for every x, y ∈ X.
Any such collection Φ is called an iterated function system (abbr. IFS). We define the limit
set JΦ of this system as the image of the coding space I∞ under a coding map πΦ as follows.
(Remark: We will drop the subscript Φ when a single IFS is considered.) Let In denote the
space of words of length n with letters in I, I∗ =

⋃
n∈IN In be the space of finite words, and

I∞ the space of one-sided infinite words (sequences) of letters in I. For every ω ∈ I∗∪ I∞, we
write |ω| for the length of ω, that is, the unique n ∈ IN ∪ {∞} such that ω ∈ In. For ω ∈ In,
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n ∈ IN , let φω = φω1 ◦φω2 ◦ · · · ◦φωn. If ω ∈ I∗∪ I∞ and n ∈ IN does not exceed the length of
ω, we denote by ω|n the word ω1ω2 . . . ωn. Since, given ω ∈ I∞, the diameters of the compact
sets φω|n(X), n ∈ IN , converge to zero and since these sets form a decreasing family, the set

∞⋂
n=1

φω|n(X)

is a singleton, and we denote its element by π(ω). This defines the coding map π : I∞ → X.
Clearly, π is a continuous function when I∞ is equipped with the topology generated by the
cylinders [i] = {ω ∈ I∞ : ω1 = i}, i ∈ I. The main object of our interest will be the limit set

J = π(I∞) =
⋃

ω∈I∞

∞⋂
n=1

φω|n(X).

Observe that J satisfies the natural invariance equality, J =
⋃

i∈I φi(J). Note that if I is
finite, then J is compact, and this property usually fails when I is infinite.

An IFS Φ = {φi : X → X | i ∈ I} is said to satisfy the Open Set Condition (OSC) if there
exists a nonempty open set U ⊂ X (in the topology of X) such that φi(U) ⊂ U for every
i ∈ I and φi(U) ∩ φj(U) = ∅ for every pair i, j ∈ I, i �= j. (We do not exclude the possibility

that φi(U) ∩ φj(U) �= ∅.)
An IFS Φ satisfying the OSC is called conformal (abbr. CIFS) if X ⊂ IRd for some d ∈ IN
and the following conditions are satisfied:

• U = IntIRd(X);
• There exists an open connected set V , with X ⊂ V ⊂ IRd, such that all maps φi,

i ∈ I, extend to C1 conformal diffeomorphisms of V into V (Notice that for d = 1 this
just means that the maps φi, i ∈ I, are C1 monotone diffeomorphisms; for d ≥ 2 the
words C1 conformal mean holomorphic or antiholomorphic; and for d > 2, this means
that the maps φi, i ∈ I, are Möbius transformations. The proof of the last statement
can be found in [3] for instance, where it is called Liouville’s theorem.);

• There exist γ, l > 0 such that for every x ∈ X there is an open cone Con(x, γ, l) ⊂
Int(X) with vertex x, central angle of Lebesgue measure γ, and altitude l;

• Bounded Distortion Property (BDP): There exists K ≥ 1 such that

|φ′
ω(y)| ≤ K|φ′

ω(x)|
for every ω ∈ I∗ and every x, y ∈ V , where |φ′

ω(x)| denotes the norm of the derivative.

As demonstrated in [5], infinite CIFS, unlike finite ones, may not possess a conformal measure.
There are even continued fraction systems which do not admit a conformal measure (see [6],
Example 6.5). Thus, the infinite systems naturally break into two main classes, irregular
and regular systems. This dichotomy can be determined from the existence of a conformal
measure or, equivalently, the existence of a zero of the topological pressure function. Recall
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that the topological pressure P(t) = PΦ(t), t ≥ 0, is defined as follows. For every n ∈ IN , set

P(n)(t) =
∑

ω∈In

||φ′
ω||t.

Then

P(t) = lim
n→∞

1

n
log P(n)(t) = inf

n∈IN

1

n
log P(n)(t).

Recall also that the shift map σ : I∗ ∪ I∞ → I∗ ∪ I∞ is defined for each ω ∈ I∗ ∪ I∞ as

σ
(
{ωn}|ω|n=1

)
= {ωn+1}|ω|−1

n=1 .

If the function ζ = ζΦ : I∞ → IR is given by the formula

ζ(ω) = log |φ′
ω1

(π(σ(ω)))|,
then P(t) = P(tζ), where P(tζ) is the classical topological pressure of the function tζ when
I is finite (so the space I∞ is compact), and is understood in the sense of [4] and [9] when I
is infinite. The finiteness parameter, θ = θΦ, of the system is defined by inf{t ≥ 0 : P(1)(t) <
∞} = θ. In [5], it was shown that the topological pressure function P(·) is non-increasing
on [0,∞), (strictly) decreasing, continuous and convex on [θ,∞), and P(d) ≤ 0. Of course,
P(0) = ∞ if and only if I is infinite. The following characterization of the Hausdorff dimension
h = hΦ of the limit set J = JΦ was proved in [5], Theorem 3.15. For every F ⊂ I, we write
Φ|F for the subsystem {φi}i∈F of Φ.

Theorem 2.1.

hΦ = sup{hΦ|F : F ⊂ I is finite } = inf{t ≥ 0 : P(t) ≤ 0}.
If P(t) = 0, then t = hΦ.

The system Φ was called regular provided there is some t ≥ 0 such that P(t) = 0. It follows
from the strict decrease of P on [θ,∞) that such a t is unique. Also, the system is regular
if and only if there is a t-conformal measure. A Borel probability measure m is said to be
t-conformal provided m(J) = 1 and for every Borel set A ⊂ X and every i ∈ I

m(φi(A)) =
∫

A
|φ′

i|t dm,

and
m(φi(X) ∩ φj(X)) = 0

for every pair i, j ∈ I, i �= j.

There are natural subclasses of regular systems. Following [5] still, a system Φ is said to be
strongly regular if 0 < P(t) < ∞ for some t ≥ 0. As an immediate application of Theorem 2.1
we get the following:

Theorem 2.2. A system Φ is strongly regular if and only if h > θ.
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Also, a system Φ = {φi}i∈I was called hereditarily regular or cofinitely regular provided every
nonempty cofinite subsystem Φ′ = {φi}i∈I′ (i.e. I ′ is a cofinite subset of I) is regular. A finite
system is clearly cofinitely regular, and it was shown in [5] that an infinite system is cofinitely
regular exactly when the pressure is infinite at the finiteness parameter:

Theorem 2.3. An infinite system Φ is cofinitely regular if and only if P(θ) = ∞ ⇔ P(1)(θ) =
∞ ⇔ {t ≥ 0 : P(t) < ∞} = (θ,∞) ⇔ {t ≥ 0 : P(1)(t) < ∞} = (θ,∞).

Remark that every cofinitely regular system is strongly regular, and every strongly regular
system is regular. Finally, we coin a new class of systems. These are regular systems at the
threshold between strongly regular and irregular systems:

Definition 2.4. A system Φ is named critically regular if P (θ) = 0.

3. Preliminaries from Topology

Fix an arbitrary set Y among whose elements there is no empty set and suppose that a
function λ : Y IN → Y ∪ {∅} is given with the following properties:

(a) If λ
(
{xn}∞n=1

)
∈ Y , then for every increasing sequence {nk}∞k=1, λ

(
{xnk

}∞k=1

)
=

λ
(
{xn}∞n=1

)
;

(b) Consider a sequence {xn}∞n=1 ∈ Y IN . If there exists x ∈ Y such that for every increasing

sequence {nk}∞k=1 there exists a subsequence {nkj
}∞j=1 such that λ

(
{xnkj

}∞j=1

)
= x,

then λ
(
{xn}∞n=1

)
= x;

(c) If x ∈ Y , then λ
(
{x}∞n=1

)
= x.

A sequence {xn}∞n=1 ∈ Y IN is called λ-converging if λ
(
{xn}∞n=1

)
∈ Y , and then λ

(
{xn}∞n=1

)
is

called the λ-limit of the sequence {xn}∞n=1. Otherwise, this sequence is said to be λ-diverging.
A set F ⊂ Y is declared to be closed if the λ-limit of every λ-converging sequence of points
from F belongs to F . Clearly, ∅ and Y are closed sets. We shall next prove the following
(actually straightforward) facts:

Lemma 3.1. If {Ft}t∈T is an arbitrary family of closed subsets of Y , then
⋂

t∈T Ft is a closed
subset of Y . If F and E are closed subsets of Y , then F ∪ E is a closed subset of Y , too.

Proof. Suppose that {xn}∞n=1 is a λ-converging sequence of points from
⋂

t∈T Ft. Then
{xn}∞n=1 is a λ-converging sequence of points from each Ft. Since each set Ft is closed,

λ
(
{xn}∞n=1

)
∈ Ft for all t ∈ T . Consequently, λ

(
{xn}∞n=1

)
∈ ⋂

t∈T Ft, and the first part of our

lemma is proven. In order to prove the second part, suppose that {yn}∞n=1 is a λ-converging
sequence of points from F ∪E. Then at least one of the sets F or E contains infinitely many
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yn’s. Without loss of generality, we may assume that F has this property. This means that
there is an increasing sequence {nk}∞k=1 such that ynk

∈ F for every k ∈ IN . Since F is closed,

it follows from (a) that λ
(
{yn}∞n=1

)
= λ

(
{ynk

}∞k=1

)
∈ F ⊂ F ∪ E. The second part of the

lemma is thus proved.

It follows from this lemma that the family of complements of closed subsets of Y forms a
topology on Y , which will be called the λ-topology on Y .

Lemma 3.2. Consider an arbitrary sequence {xn}∞n=1 ∈ Y IN . If λ
(
{xn}∞n=1

)
∈ Y , then the

sequence {xn}∞n=1 converges with respect to the λ-topology on Y and its limit with respect to

this topology is λ
(
{xn}∞n=1

)
. Conversely, if the sequence {xn}∞n=1 converges with respect to the

λ-topology to some point x ∈ Y , then λ
(
{xn}∞n=1

)
= x.

Proof. Take a sequence {xn}∞n=1 ∈ Y IN . Suppose that x := λ
(
{xn}∞n=1

)
∈ Y but that the

sequence {xn}∞n=1 does not converge to x with respect to the λ-topology. This means that there
are an open set U ⊂ Y containing x and an increasing sequence {nk}∞k=1 such that xnk

/∈ U
for all k ∈ IN . So, xnk

∈ Y \U for all k ∈ IN . Since Y \U is closed, using (a), we deduce that

x = λ
(
{xnk

}∞k=1

)
∈ Y \U . This contradicts the fact that x ∈ U and establishes the first part of

our lemma. In order to prove the second part, suppose that the sequence {xn}∞n=1 converges
with respect to the λ-topology to some point x ∈ Y . Seeking a contradiction once again,

assume first that λ
(
{xnk

}∞k=1

)
= ∅ for every increasing sequence {nk}∞k=1. Then, in view of

(c), xn = x for finitely many n’s only. Denote the largest of these n’s by q − 1 (it is allowed

that q−1 = 0). Then, the sequence {xn}∞n=q does not contain x and λ
(
{xnk

}∞k=1

)
= ∅ for every

increasing sequence {nk}∞k=1 with n1 ≥ q. Consequently, the set {xn}∞n=q is trivially closed,
as it admits no λ-converging sequence. Therefore, Y \ {xn}∞n=q is open and contains x. This
contradicts the assumption that x is the limit of {xn}∞n=q with respect to the λ-topology. So,
we may assume that {xn}∞n=1 contains a λ-converging subsequence {xnk

}∞k=1. It then follows

from the first part of this lemma that λ
(
{xnk

}∞k=1

)
= x. Since every subsequence of {xn}∞n=1

converges to x with respect to the λ-topology, we may conclude that every subsequence of the
sequence {xn}∞n=1 contains a subsequence λ-converging to the point x. It thus follows from

(b) that λ
(
{xn}∞n=1

)
= x. This completes the proof.

Lemma 3.3. Let Y and Z be topological spaces, Y being endowed with a λ-topology. Let
f : Y → Z be an arbitrary function. Then the following two conditions are equivalent:

(i) f : Y → Z is continuous;

(ii) If a sequence {xn}∞n=1 ∈ Y IN is λ-converging, then limn→∞ f(xn) = f
(
λ

(
{xn}∞n=1

))
.

Proof. The implication (i)⇒(ii) follows immediately from Lemma 3.2. So, suppose that (ii)
is true and, in order to prove (i), consider an arbitrary closed set F ⊂ Z. Let {xn}∞n=1
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be an arbitrary λ-converging sequence of points from f−1(F ). Then f
(
λ

(
{xn}∞n=1

))
=

limn→∞ f(xn) ∈ F since F ⊂ Z is closed and each point f(xn) is in F . Hence, λ
(
{xn}∞n=1

)
∈

f−1(F ) and therefore, according to the definition of the λ-topology, f−1(F ) is closed. This
proves that f : Y → Z is continuous.

4. Continuity in Finite Iterated Function Systems

Given a set X ⊂ IRd and a countable (finite or infinite) set I, denote by CIFS(X, I) the
family of all conformal iterated function systems with seed set X and alphabet I. Suppose
throughout this section that I is finite and define the metric ρ on CIFS(X, I) by the formula
below. Given Φ = {φi}i∈I and Ψ = {ψi}i∈I , set

ρ(Φ, Ψ) = ||Φ − Ψ|| + ||Φ′ − Ψ′|| =
∑
i∈I

(
||φi − ψi|| + ||φ′

i − ψ′
i||

)
.

Our goal in this section is to show that, given t ≥ 0, the pressure function P (t) : CIFS(X, I) →
IR ∪ {∞}, Φ �→ PΦ(t), is continuous and that so is the Hausdorff dimension function h :
CIFS(X, I) → [0,∞), Φ �→ hΦ. We start with the following intermediate result:

Lemma 4.1. The coding map π : CIFS(X, I) → C(I∞, X), Φ �→ πΦ, is continuous, where
C(I∞, X) is the space of continuous maps from I∞ to X endowed with the supremum norm.
Moreover, for all Φ, Ψ ∈ CIFS(X, I),

||πΨ − πΦ|| ≤ min
{

1

1 − ||Φ′|| ,
1

1 − ||Ψ′||
}
||Ψ − Φ|| ≤ min

{
1

1 − ||Φ′|| ,
1

1 − ||Ψ′||
}
ρ(Φ, Ψ).

Proof. We shall show by induction that for every x ∈ X, every n ∈ IN , every ω ∈ In and
all Φ, Ψ ∈ CIFS(X, I)

|ψω(x) − φω(x)| ≤ ||Ψ − Φ||
n−1∑
j=0

||Φ′||j. (4.1)

Indeed, this is obvious when n = 1. So, suppose that (4.1) is true for some n ∈ IN . Take an
arbitrary x ∈ X and ω ∈ In+1. By our inductive assumption we have that

|ψω(x) − φω(x)| ≤ |ψω1(ψσω(x)) − φω1(ψσω(x))| + |φω1(ψσω(x)) − φω1(φσω(x))|
≤ ||Ψ − Φ|| + ||φ′

ω1
|| · |ψσω(x) − φσω(x)|

≤ ||Ψ − Φ|| + ||Φ′|| · |ψσω(x) − φσω(x)|

≤ ||Ψ − Φ|| + ||Φ′|| · ||Ψ − Φ||
n−1∑
j=0

||Φ′||j

= ||Ψ − Φ||
n∑

j=0

||Φ′||j.
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Since for every τ ∈ I∞, πΨ(τ) = limn→∞ ψτ |n(x) and πΦ(τ) = limn→∞ φτ |n(x), letting n → ∞
in (4.1), we obtain

|πΨ(τ) − πΦ(τ)| ≤ ||Ψ − Φ||
∞∑

j=0

||Φ′||j =
1

1 − ||Φ′|| ||Ψ − Φ|| ≤ 1

1 − ||Φ′||ρ(Ψ, Φ).

The proof is complete.

We are now in a position to study the pressure function:

Lemma 4.2. For every t ≥ 0, the function Φ �→ P(tζΦ), Φ ∈ CIFS(X, I), is continuous.

Proof. Fix Φ ∈ CIFS(X, I), γ ∈ (0, inf |Φ′|), and δ > 0 so small that inf |Ψ′| ≥ γ for all
Ψ ∈ B(Φ, δ). Then for every i ∈ I and every x ∈ X, we have that

∣∣∣ log |ψ′
i(x)| − log |φ′

i(x)|
∣∣∣ ≤ γ−1|ψ′

i(x) − φ′
i(x)| ≤ γ−1||Ψ′ − Φ′|| ≤ γ−1ρ(Ψ, Φ).

Thus, for every ω ∈ I∞, we get that∣∣∣t log |ψ′
ω1

(πΨ(σω))| − t log |φ′
ω1

(πΦ(σω))|
∣∣∣

= |t|
∣∣∣ log |ψ′

ω1
(πΨ(σω))| − log |φ′

ω1
(πΦ(σω))|

∣∣∣
≤ |t|

(∣∣∣ log |ψ′
ω1

(πΨ(σω))| − log |φ′
ω1

(πΨ(σω))|
∣∣∣ +

∣∣∣ log |φ′
ω1

(πΨ(σω))| − log |φ′
ω1

(πΦ(σω))|
∣∣∣)

≤ |t|
(
γ−1ρ(Ψ, Φ) + γ−1|πΨ(σω) − πΦ(σω)|

)

≤ γ−1|t|
(
1 + (1 − ||Φ′||)−1

)
ρ(Ψ, Φ).

Therefore ||tζΨ − tζΦ|| ≤ γ−1|t|
(
1 + (1 − ||Φ′||)−1

)
ρ(Ψ, Φ) and, consequently, the function

Φ �→ tζΦ ∈ C(I∞) is continuous. Since the pressure function P : C(I∞) → IR is Lipschitz
continuous (with Lipschitz constant 1), the proof is complete.

We shall next investigate the Hausdorff dimension function:

Theorem 4.3. The Hausdorff dimension function h : CIFS(X, I) → (0,∞), Φ �→ hΦ, is
continuous.

Proof. Fix Φ ∈ CIFS(X, I) and ε > 0. In view of the previous lemma, there exists δ > 0
such that if Ψ ∈ B(Φ, δ), then

max
{∣∣∣P(

(hΦ − ε)ζΨ

)
− P

(
(hΦ − ε)ζΦ

)∣∣∣ , ∣∣∣P(
(hΦ + ε)ζΨ

)
− P

(
(hΦ + ε)ζΦ

)∣∣∣
}

≤ 1

2
min

{
P

(
(hΦ − ε)ζΦ

)
,−P

(
(hΦ + ε)ζΦ

)}
.
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Therefore

P
(
(hΦ − ε)ζΨ

)
≥ P

(
(hΦ − ε)ζΦ

)
− 1

2
P

(
(hΦ − ε)ζΦ

)
=

1

2
P

(
(hΦ − ε)ζΦ

)
> 0

and

P
(
(hΦ + ε)ζΨ

)
≤ P

(
(hΦ + ε)ζΦ

)
+

1

2

[
−P

(
(hΦ + ε)ζΦ

)]
=

1

2
P

(
(hΦ + ε)ζΦ

)
< 0.

It follows from the first inequality that hΨ > hΦ − ε, and from the second inequality that
hΨ < hΦ + ε. So |hΨ − hΦ| < ε, and we are done.

5. Continuity in Infinite Iterated Function Systems

Throughout the entire section the alphabet I is assumed to be countably infinite. Whenever
convenient, we assume that I = IN . We endow CIFS(X, I) with two topologies. First, given
Φ, Ψ ∈ CIFS(X, I), set

ρ∞(Φ, Ψ) =
∞∑
i=1

2−i min
{
1, ||φi − ψi||, ||φ′

i − ψ′
i||

}
.

It is easy to verify that this formula defines a metric on the space CIFS(X, I) and that a
sequence {Φn}∞n=1 converges to Φ with respect to this metric if and only if for every i ∈ I,

lim
n→∞max

{
||φn

i − φi||, ||(φn
i )

′ − φ′
i||

}
= 0.

This implies in particular that for every i ∈ I,

lim
n→∞ ||φn

i || = ||φi|| and lim
n→∞ ||(φn

i )′|| = ||φ′
i||.

The topology induced by the metric ρ∞ on CIFS(X, I) is called the pointwise convergence
topology. It is now important to make the following observation:

Lemma 5.1. A sequence {Φn}∞n=1 converges to Φ pointwise if and only if for every ω ∈ I∗,

lim
n→∞max

{
||φn

ω − φω||, ||(φn
ω)′ − φ′

ω||
}

= 0.

Proof. The “if” part is trivial. Since I∗ = ∪∞
k=1I

k, we will prove the “only if” part by
induction on k. When k = 1, we have ω ∈ I, and the result is immediate. So, let k > 1 and
ω ∈ Ik, and suppose that for every τ ∈ Ik−1,

lim
n→∞max

{
||φn

τ − φτ ||, ||(φn
τ )

′ − φ′
τ ||

}
= 0.
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Then, on the one hand, for every x ∈ X,∣∣∣∣φn
ω(x) − φω(x)

∣∣∣∣ =
∣∣∣∣φn

ω1
(φn

σω(x)) − φω1(φσω(x))
∣∣∣∣

≤
∣∣∣∣φn

ω1
(φn

σω(x)) − φn
ω1

(φσω(x))

∣∣∣∣ +

∣∣∣∣φn
ω1

(φσω(x)) − φω1(φσω(x))

∣∣∣∣
≤ ||(φn

ω1
)′|| · ||φn

σω − φσω|| + ||φn
ω1

− φω1||.
Thus,

||φn
ω − φω|| ≤ ||(φn

ω1
)′|| · ||φn

σω − φσω|| + ||φn
ω1

− φω1 ||.
Both terms on the right-hand side tend to 0 since limn→∞ ||φn

σω − φσω|| = 0 by our inductive
hypothesis, and limn→∞ ||(φn

ω1
)′|| = ||φ′

ω1
|| and limn→∞ ||φn

ω1
− φω1 || = 0 by the basis step.

On the other hand, for every x ∈ X,∣∣∣∣(φn
ω)′(x) − φ′

ω(x)

∣∣∣∣ =

∣∣∣∣(φn
ω1

)′(φn
σω(x)) · (φn

σω)′(x) − φ′
ω1

(φσω(x)) · φ′
σω(x)

∣∣∣∣
≤

∣∣∣∣(φn
ω1

)′(φn
σω(x)) · (φn

σω)′(x) − φ′
ω1

(φn
σω(x)) · (φn

σω)′(x)
∣∣∣∣

+

∣∣∣∣φ′
ω1

(φn
σω(x)) · (φn

σω)′(x) − φ′
ω1

(φn
σω(x)) · φ′

σω(x)

∣∣∣∣
+

∣∣∣∣φ′
ω1

(φn
σω(x)) · φ′

σω(x) − φ′
ω1

(φσω(x)) · φ′
σω(x)

∣∣∣∣
≤ ||(φn

ω1
)′ − φ′

ω1
|| · ||(φn

σω)′|| + ||φ′
ω1
|| · ||(φn

σω)′ − φ′
σω||

+
∣∣∣∣φ′

ω1
(φn

σω(x)) − φ′
ω1

(φσω(x))
∣∣∣∣ · ||φ′

σω||.
Thus,

||(φn
ω)′ − φ′

ω|| ≤ ||(φn
ω1

)′ − φ′
ω1
|| · ||(φn

σω)′|| + ||φ′
ω1
|| · ||(φn

σω)′ − φ′
σω||

+ sup
x∈X

∣∣∣∣φ′
ω1

(φn
σω(x)) − φ′

ω1
(φσω(x))

∣∣∣∣ · ||φ′
σω||.

The first term on the right-hand side tends to 0 since limn→∞ ||(φn
ω1

)′ − φ′
ω1
|| = 0, and

limn→∞ ||(φn
σω)′|| = ||φ′

σω|| by our inductive hypothesis (in fact, limn→∞ ||(φn
σω)′ − φ′

σω|| = 0).
So does the second term for this latter reason. Finally, the third term tends to 0 since
limn→∞ ||φn

σω − φσω|| = 0 by our inductive hypothesis and φ′
ω1

is uniformly continuous on X.

We now describe the properties of the pressure and Hausdorff dimension functions in the
topology of pointwise convergence.

Theorem 5.2. The Hausdorff dimension function h : CIFS(X, I) → (0,∞) is lower semi-
continuous when CIFS(X, I) is equipped with the pointwise convergence topology.

Proof. Fix Φ ∈ CIFS(X, I) and a sequence {Φn}∞n=1 converging to Φ in the pointwise
convergence topology. Take ε > 0. In view of Theorem 2.1, there exists a finite set F ⊂ I
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such that hΦ|F > hΦ − ε. Since the sequence {Φn|F}∞n=1 converges to Φ|F with respect to the
metric ρ introduced in section 4, it follows from Theorem 4.3 that

lim inf
n→∞ hΦn ≥ lim inf

n→∞ hΦn|F = hΦ|F > hΦ − ε.

Since ε was chosen arbitrarily, we conclude that lim infn→∞ hΦn ≥ hΦ.

Based on Theorem 2.1.5 from [9] and on Lemma 4.2, the argument used in Theorem 5.2 gives
the following:

Lemma 5.3. For every t ≥ 0, the function Φ �→ PΦ(t), Φ ∈ CIFS(X, I), is lower semi-
continuous with respect to the pointwise convergence topology on CIFS(X, I).

It is not difficult to see that the pressure and Hausdorff dimension functions are not upper
semi-continuous (and thus not continuous) in the topology of pointwise convergence. Further-
more, the finiteness parameter function θ is generally neither upper nor lower semi-continuous.

Example. Let X be the unit square in the complex plane with vertices 0, 1, 1 + i, i. Let
X0 ⊂ X be the square determined by the vertices 0, 1

2
, 1

2
+ i

2
, i

2
, and let X1 ⊂ X be the square

whose vertices are 1
2

+ i
2
, 1 + i

2
, 1 + i, 1

2
+ i. One can easily find maps φn : X → X0, n ∈ IN ,

such that
φn(z) = 2−(n+1)z + an

and Φ = {φn}∞n=1 is a member of CIFS(X, IN) (one can even require that φn(X)∩φm(X) = ∅
if n �= m). Notice that θΦ = 0, which means that Φ is absolutely regular in the sense of [6].

So Φ is cofinitely regular. A short calculation further shows that hΦ = log(1+
√

5)
log 2

− 1 < 1. It is

also easy to build an irregular system Ψ = {ψn}∞n=1 consisting of maps ψn : X → X1, n ∈ IN ,
of the form

ψn(z) = rnz + bn

for which hΨ = θΨ = 1. Now, for every n ∈ IN construct the system

Φn = {φi}n
i=1 ∪ {ψj}∞j=n+1.

Since Φ, Ψ ∈ CIFS(X, IN) and X0 ∩ X1 = {1
2

+ i
2
}, all the systems Φn, n ∈ IN , satisfy the

OSC and, consequently, belong to CIFS(X, IN). Obviously, the sequence {Φn}∞n=1 converges
pointwise to Φ. However, it is clear that θΦn = θΨ, which shows that the function θ is not
upper semi-continuous. It is also easy to see that Φn is irregular for each n ∈ IN large enough.
Moreover, since the system Ψ is irregular, all its cofinite subsystems are irregular and share
the same finiteness parameter. Hence

h{ψj}∞j=n+1
= θ{ψj}∞j=n+1

= θΨ = 1.

Therefore
hΦn ≥ h{ψj}∞j=n+1

= 1,
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and thus lim supn→∞ hΦn ≥ 1 > hΦ, which establishes that the Hausdorff dimension function is
not upper semi-continuous. Finally, this example shows that the pressure function Ξ �→ PΞ(t)
is not upper semi-continuous at Φ (take any 0 < t < θΨ).

It is also interesting to observe from this example that there are sequences of irregular
CIFS that converge in the pointwise topology to cofinitely regular CIFS. We will later show
(see Lemma 5.5) that this cannot happen in the λ-topology we will soon introduce. Below is
another example.

Example. In the same setting as before, for every n ∈ IN form the system

Ψn = {ψi}n
i=1 ∪ {φj}∞j=n+1.

Since Φ, Ψ ∈ CIFS(X, IN) and X0 ∩ X1 = {1
2

+ i
2
}, all the systems Ψn, n ∈ IN , satisfy the

OSC and, consequently, belong to CIFS(X, IN). Of course, the sequence {Ψn}∞n=1 converges
pointwise to Ψ. However, θΨn = θΦ = 0 and Ψn is absolutely regular, and thereby cofinitely
regular, for all n ∈ IN . This shows that the function θ is not lower semi-continuous.

It is also worth noticing from this example that there are sequences of cofinitely regular
CIFS that converge pointwise to irregular CIFS. We will later show (see Lemma 5.5) that this
is impossible in the λ-topology. In fact, it is possible to construct similar examples showing
that every class of systems can converge to any class in the pointwise topology.

We now turn our attention to the more delicate problem of identifying a topology with respect
to which the pressure and Hausdorff dimension functions are continuous. The first example
above shows that these functions generally fail to be upper semi-continuous in the topology of
pointwise convergence. In order to remedy this flaw, we introduce a weaker, but rich enough,
topology on the space CIFS(X, I) as follows. Given a sequence {Φn}∞n=1 in CIFS(X, I) and

Φ ∈ CIFS(X, I), we say that λ
(
{Φn}∞n=1

)
= Φ provided that {Φn}∞n=1 converges to Φ in the

topology of pointwise convergence and that there exist C > 0, M ∈ IN and a finite set F ⊂ I
such that ∣∣∣ log ||φ′

i|| − log ||(φn
i )′||

∣∣∣ ≤ C (5.1)

for all i ∈ I \ F and all n ≥ M . Notice that due to pointwise convergence the set F can
always be chosen to be empty and that Φ (if it exists) is unique. If a sequence {Φn}∞n=1 in
CIFS(X, I) does not admit any Φ ∈ CIFS(X, I) for which the above conditions are fulfilled,

we declare that λ
(
{Φn}∞n=1

)
= ∅.

We shall now check that the function λ hence defined satisfies the three conditions (a), (b)
and (c) specified at the beginning of section 3, and therefore induces a λ-topology. Conditions
(a) and (c) are obviously fulfilled. In order to verify condition (b), take a sequence {Φn}∞n=1

in CIFS(X, I) and Φ ∈ CIFS(X, I) such that λ
(
{Φn}∞n=1

)
�= Φ. If the sequence {Φn}∞n=1 does

not converge to Φ pointwise, then there exists an increasing sequence {nk}∞k=1 such that for
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every subsequence {nkj
}∞j=1, the sequence {Φnkj }∞j=1 does not converge to Φ pointwise, and in

particular λ
(
{Φnkj }∞j=1

)
�= Φ. We may therefore assume that {Φn}∞n=1 converges pointwise

to Φ, and that there exist a sequence {ik}∞k=1 in I and an increasing sequence {nk}∞k=1 such

that
∣∣∣ log ||φ′

ik
|| − log ||(φnk

ik
)′||

∣∣∣ > k. It is now clear that one cannot choose from the sequence

{Φnk}∞k=1 any subsequence whose λ-value is Φ. So, condition (b) has been checked. Hence the
function λ induces the λ-topology on CIFS(X, I) with respect to which a set G ⊂ CIFS(X, I)
is closed if and only if the λ-limit of every λ-converging sequence in G belongs to G. From
now on, unless otherwise specified, we consider CIFS(X, I) as the space topologized by the
function λ.

Before even considering the pressure and Hausdorff dimension functions, let us have a look
at the finiteness parameter function θ:

Lemma 5.4. The function θ : CIFS(X, I) → [0,∞), Φ �→ θΦ, is locally constant, and thereby
continuous, when CIFS(X, I) is endowed with the λ-topology.

Proof. We will equivalently prove that if {Φn}∞n=1 is a λ-converging sequence, then the

sequence {θΦn}∞n=1 is eventually constant. To do this, let Φ = λ
(
{Φn}∞n=1

)
. It follows from

condition (5.1) that there exist C > 0 and M ∈ IN such that

e−Ct ≤ ||(φn
i )′||t

||φ′
i||t

≤ eCt

for all i ∈ I, all n ≥ M and t ≥ 0. This readily implies that for every t ≥ 0 and all n ≥ M ,

P
(1)
Φn(t) < ∞ if and only if P

(1)
Φ (t) < ∞. But this means that θΦn = θΦ for all n ≥ M .

The proof of Lemma 5.4 also gives the following:

Lemma 5.5. If λ
(
{Φn}∞n=1

)
= Φ ∈ CIFS(X, I), then the following two conditions are equiv-

alent:

(i) The system Φ is cofinitely regular;
(ii) The systems Φn are cofinitely regular for all n ∈ IN large enough.

In particular, this shows that the set of all cofinitely regular systems is open and closed in
CIFS(X, I) when this space is endowed with the λ-topology. However, this set is neither
closed nor open in the pointwise convergence topology, as Examples 4 and 6 from section 8
show.

We shall now concentrate on the pressure function. Here is an intermediate result:

Theorem 5.6. Let k ∈ IN . For every t ≥ 0, the function P(k)(t) : CIFS(X, I) → (−∞,∞],

Φ �→ P
(k)
Φ (t), is continuous when CIFS(X, I) is endowed with the λ-topology.
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Proof. Fix Φ ∈ CIFS(X, I) and a sequence {Φn}∞n=1 in CIFS(X, I) such that λ
(
{Φn}∞n=1

)
=

Φ. Recall that for every t ≥ 0, P
(1)
Φ (t) < ∞ if and only if P

(1)
Φn(t) < ∞ for all n ∈ IN large

enough. Thus, for every t ≥ 0, P
(k)
Φ (t) < ∞ if and only if P

(k)
Φn(t) < ∞ for all n ∈ IN large

enough, since (K−1
Ψ P

(1)
Ψ (t))k ≤ P

(k)
Ψ (t) ≤ (P

(1)
Ψ (t))k for any Ψ ∈ CIFS(X, I), where KΨ is any

constant of bounded distortion for the CIFS Ψ. The result follows immediately from this

observation for those t ∈ {t′ ≥ 0 : P
(1)
Φ (t′) = ∞}. So, fix t ∈ {t′ ≥ 0 : P

(1)
Φ (t′) < ∞}. Let

ε > 0. It follows from condition (5.1) that there exist C > 0 and M ∈ IN such that

e−Ct ≤ ||(φn
i )′||t

||φ′
i||t

≤ eCt

for all i ∈ I and all n ≥ M . Since P
(k)
Φ (t) < ∞, there exists a finite set G ⊂ Ik such that

∑
ω∈Ik\G

||φ′
ω||t < e−kCtK−kt ε

2
,

where K = KΦ is a constant of bounded distortion for the CIFS Φ. Moreover, as {Φn}∞n=1

converges pointwise to Φ, Lemma 5.1 ensures that limn→∞ ||(φn
ω)′−φ′

ω|| = 0 for every ω ∈ Ik.
Hence limn→∞ ||(φn

ω)′|| = ||φ′
ω|| for every ω ∈ Ik, and thus there is N ∈ IN such that for every

n ≥ N , ∣∣∣∣
∑
ω∈G

||(φn
ω)′||t − ∑

ω∈G

||φ′
ω||t

∣∣∣∣ <
ε

2
.

On the one hand, it follows that for every n ≥ max{N, M}
P

(k)
Φn(t) =

∑
ω∈Ik

||(φn
ω)′||t =

∑
ω∈G

||(φn
ω)′||t +

∑
ω∈Ik\G

||(φn
ω)′||t

≤ ∑
ω∈G

||(φn
ω)′||t +

∑
ω∈Ik\G

k∏
j=1

||(φn
ωj

)′||t

≤ ∑
ω∈G

||(φn
ω)′||t +

∑
ω∈Ik\G

k∏
j=1

eCt||φ′
ωj
||t

≤ ∑
ω∈G

||(φn
ω)′||t + ekCt

∑
ω∈Ik\G

k∏
j=1

Kt|φ′
ωj

(φσjω(x))|t

=
∑
ω∈G

||(φn
ω)′||t + ekCtKkt

∑
ω∈Ik\G

|φ′
ω(x)|t

≤ ∑
ω∈G

||(φn
ω)′||t + ekCtKkt

∑
ω∈Ik\G

||φ′
ω||t

<
∑
ω∈G

||φ′
ω||t +

ε

2
+ ekCtKkte−kCtK−kt ε

2

=
∑
ω∈G

||φ′
ω||t + ε < P

(k)
Φ (t) + ε.
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On the other hand, for every n ≥ max{N, M}
P

(k)
Φn(t) =

∑
ω∈Ik

||(φn
ω)′||t >

∑
ω∈G

||(φn
ω)′||t

>
∑
ω∈G

||φ′
ω||t −

ε

2

=
∑

ω∈Ik

||φ′
ω||t −

∑
ω∈Ik\G

||φ′
ω||t −

ε

2

> P
(k)
Φ (t) − e−kCtK−kt ε

2
− ε

2

≥ P
(k)
Φ (t) − ε.

Consequently, for every n ≥ max{N, M}∣∣∣∣P(k)
Φn(t) − P

(k)
Φ (t)

∣∣∣∣ < ε.

Since ε was chosen arbitrarily, we have thus shown that limn→∞ P
(k)
Φn(t) = P

(k)
Φ (t). According

to Lemma 3.3, the function P(k)(t) is thereafter continuous for each t ≥ 0.

We will now reach our ultimate objective: the continuity of the pressure function.

Theorem 5.7. For every t ≥ 0, the function P(t) : CIFS(X, I) → (−∞,∞], Φ �→ PΦ(t), is
continuous when CIFS(X, I) is endowed with the λ-topology.

Proof. Fix Φ ∈ CIFS(X, I) and a sequence {Φn}∞n=1 in CIFS(X, I) such that λ
(
{Φn}∞n=1

)
=

Φ. Recall that for every t ≥ 0, P
(k)
Φ (t) < ∞ if and only if P

(k)
Φn(t) < ∞ for every k ∈ IN and all

n ∈ IN large enough. Thus, for every t ≥ 0, PΦ(t) < ∞ if and only if PΦn(t) < ∞ for all n ∈ IN

large enough, and the statement holds immediately for every t ∈ {t′ ≥ 0 : P
(1)
Φ (t′) = ∞}. So,

fix t ∈ {t′ ≥ 0 : P
(1)
Φ (t′) < ∞}. Lemma 5.3 asserts that lim infn→∞ PΦn(t) ≥ PΦ(t). Let ε > 0.

Choose k ∈ IN such that
1

k
log P

(k)
Φ (t) < PΦ(t) +

ε

2
.

Using Theorem 5.6, pick N ∈ IN such that∣∣∣∣1k log P
(k)
Φn(t) − 1

k
log P

(k)
Φ (t)

∣∣∣∣ <
ε

2

for every n ≥ N . It follows that for every n ≥ N ,

PΦn(t) ≤ 1

k
log P

(k)
Φn(t)

<
1

k
log P

(k)
Φ (t) +

ε

2
< PΦ(t) + ε.
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Since ε was chosen arbitrarily, we have thus shown that lim supn→∞ PΦn(t) ≤ PΦ(t).
Consequently,

lim sup
n→∞

PΦn(t) ≤ PΦ(t) ≤ lim inf
n→∞ PΦn(t),

that is, limn→∞ PΦn(t) = PΦ(t). According to Lemma 3.3, the function P(t) is thereafter
continuous.

We thereby have a complete classification of the behavior of sequences in CIFS(X, I) and
of their limits:

Lemma 5.8. If λ
(
{Φn}∞n=1

)
= Φ ∈ CIFS(X, I), then the following hold:

(i) If Φ is cofinitely regular, then the systems Φn are cofinitely regular for all n ∈ IN large
enough;

(ii) If the systems Φn are cofinitely regular for all n ∈ IN large enough, then Φ is cofinitely
regular;

(iii) If Φ is strongly regular, though not cofinitely regular, then the systems Φn are strongly
regular, though not cofinitely regular, for all n ∈ IN large enough;

(iv) If the systems Φn are strongly regular, though not cofinitely regular, for all n ∈ IN large
enough, then Φ is either strongly regular, though not cofinitely regular, or critically
regular (see Example 5, section 8);

(v) If Φ is critically regular, then the systems Φn are strongly regular, though not cofinitely
regular, or critically regular or irregular, or any combination of these, for all n ∈ IN
large enough (see Example 5, section 8);

(vi) If the systems Φn are critically regular for all n ∈ IN large enough, then Φ is critically
regular;

(vii) If Φ is irregular, then the systems Φn are irregular for all n ∈ IN large enough;
(viii) If the systems Φn are irregular for all n ∈ IN large enough, then Φ is either critically

regular (see Example 5, section 8) or irregular.

This classification can also be expressed in the form:

Lemma 5.9. In the space CIFS(X, I) endowed with the λ-topology,

(i) The set of cofinitely regular systems is both open and closed;
(ii) The set of strongly regular, though not cofinitely regular systems, is open but generally

not closed;
(iii) The set of critically regular systems is closed but usually not open;
(iv) The set of irregular systems is open but generally not closed;
(v) The set of critically regular or strongly regular, though not cofinitely regular, systems

is closed but usually not open;
(vi) The set of critically regular or irregular systems is closed but generally not open.
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Finally, we look at the Hausdorff dimension:

Theorem 5.10. The Hausdorff dimension function h : CIFS(X, I) → (0,∞), Φ �→ hΦ, is
continuous when CIFS(X, I) is endowed with the λ-topology. Moreover, it is locally constant
on the open set of irregular systems.

Proof. The latter part of the statement simply follows from Lemma 5.4 and Theorem 5.7.
Thus, the case where Φ is irregular is settled and solely the regular case needs to be addressed.

In this case, follow the proof of Theorem 4.3 with P
(
tζΦ

)
replaced by PΦ(t).

6. Real-analyticity, Continuity and Subharmonicity in Analytic Families

Let Λ ⊂ CIq, q ∈ IN , be an open analytic submanifold of CIq. Let {Φλ}λ∈Λ be a family of
CIFS from CIFS(X, I), where X is contained in V , an open connected subset of CId, d ∈ IN ,
and I is a countable alphabet, either finite or infinite. Fix λ0 ∈ Λ and for every ω ∈ I∞,
consider the function

λ �→ κω(λ) :=

(
φλ

ω1

)′(
πλ(σ(ω))

)
(
φλ0

ω1

)′(
πλ0(σ(ω))

) ,

where πλ := πΦλ : I∞ → X is the coding map induced by the CIFS Φλ.
A family {Φλ}λ∈Λ is said to be analytic if

(a) For every x ∈ X and every i ∈ I, the function λ �→ φλ
i (x), λ ∈ Λ, is analytic.

An analytic family {Φλ}λ∈Λ is called regularly analytic if in addition the following two
conditions are satisfied:

(b) Φλ0 is strongly regular;
(c) There exists η ∈ (0, 1) such that |κω(λ) − 1| ≤ η for every ω ∈ I∞ and all λ ∈ Λ.

Making a synthesis of arguments from the proof of Theorem 6.3 in [13] and from appropriate
parts of [14], we obtain the following result:

Theorem 6.1. If {Φλ}λ∈Λ is a regularly analytic family of CIFS from CIFS(X, I), then the
function λ �→ hλ := hΦλ, λ ∈ Λ, is real-analytic.

We omit the proof since it repeats, essentially word by word, various fragments from [13] and
[14]. When I is finite, every analytic family of CIFS from CIFS(X, I) is regularly analytic,
and therefore as an immediate consequence of Theorem 6.1, we get the following corollary:

Corollary 6.2. If I is finite and {Φλ}λ∈Λ is an analytic family of CIFS from CIFS(X, I),
then the function λ �→ hλ, λ ∈ Λ, is real-analytic.
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Note further the following very useful immediate consequence of the Mean Value Inequality.

Observation. If {Φλ}λ∈Λ is an analytic family of CIFS from CIFS(X, I) and if there is an
open neighbourhood U of λ0 contained in Λ such that

sup{||Dλκω(λ)|| : ω ∈ I∞, λ ∈ U} < ∞,

where Dλκω(λ) : CIq → CIq denotes the differential of the function λ �→ κω(λ) evaluated at the
point λ, then there is r > 0 such that condition (c) of the definition of regular analyticity is
satisfied whenever λ ∈ B(λ0, r).

Notice also that due to Cauchy’s formula for the derivative of a holomorphic function, the
above condition can be replaced by the one below:

sup{||κω(λ)|| : ω ∈ I∞, λ ∈ U} < ∞.

A family {Φλ}λ∈Λ is called plane-analytic if it is analytic and both Λ and V are open connected
subsets of the complex plane CI.

Our next result is analog to the one developed by Ransford [10] for analytic families of
hyperbolic rational maps. Like Ransford’s proof, our argument relies on the existence of a
Bowen-Ruelle-type formula (Theorem 2.1) and on the variational principle for the pressure
function. Our result also extends the one obtained by Baribeau and Roy [2] for plane-analytic
families of CIFS consisting of similitudes.

Theorem 6.3. If {Φλ}λ∈Λ is a plane-analytic family of CIFS from CIFS(X, I), then the
reciprocal 1/hλ of the Hausdorff dimension function is the infimum of a family of positive
harmonic functions of λ. In particular, it is continuous and superharmonic with respect to
the variable λ.

Proof. Suppose first that each Φλ is regular. For every λ ∈ Λ, put ζλ := ζΦλ, the function
associated to the CIFS Φλ defined in section 2. According to [12] and [4], each CIFS Φλ

satisfies for each t-potential −tζλ, t ≥ 0, the variational principle

P(λ, t) := P(−tζλ) = sup
μ∈M(λ)

{
hμ(σ) − t

∫
I∞

ζλ(ω)dμ(ω)
}

,

where M(λ) is the family of all σ-invariant Borel probability measures on I∞ such that
t
∫
I∞ ζλ(ω)dμ(ω) < ∞, and hμ(σ) is the measure-theoretic entropy of σ with respect to μ. Let
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μ be a σ-invariant Borel probability measure on I∞. Then we have for every λ ∈ Λ∫
I∞

ζλ(ω)dμ(ω) =
∫

I∞
− log |(φλ

ω1
)′(πλ(σ(ω)))|dμ(ω)

=
∑
i∈I

∫
[i]
− log |(φλ

i )
′(πλ(σ(ω)))|dμ(ω)

=
∑
i∈I

∫
σ([i])

− log |(φλ
i )

′(πλ(ω))|d(μ ◦ σ−1)(ω)

=
∑
i∈I

∫
I∞

− log |(φλ
i )

′(πλ(ω))|dμ(ω).

Now, fix i ∈ I temporarily. Since (λ, z) �→ φλ
i (z) is an analytic function of two complex

variables, the function (λ, z) �→ ∂φi

∂z
(λ, z) = (φλ

i )
′(z) is analytic, too. Moreover, because

0 < |(φλ
i )

′(z)| < 1 for every (λ, z), this function is locally bounded (in modulus) away from
0 and 1. Since {λ �→ πλ(ω)}ω∈I∞ is a family of analytic functions, this implies that {λ �→
(φλ

i )
′(πλ(ω))}ω∈I∞ is a family of analytic functions, locally uniformly bounded away from 0 and

1. Consequently, {λ �→ − log |(φλ
i )

′(πλ(ω))|}ω∈I∞ is a family of positive harmonic functions,
locally uniformly bounded away from 0 and ∞. Applying Fubini’s theorem, we deduce that
λ �→ ∫

I∞ − log |(φλ
i )

′(πλ(ω))|dμ(ω) is a positive harmonic function. Using Harnack’s Theorem
(see, for instance, [11], Theorem 1.3.9), we conclude that the function λ �→ ∫

I∞ ζλ(ω)dμ(ω) is
either identically ∞ or an everywhere finite, positive, harmonic function. In particular, this
means that either μ ∈ M(λ) for every λ ∈ Λ, or μ �∈ M(λ) for every λ ∈ Λ. So, the function
λ �→ M(λ), λ ∈ Λ, is constant. Fixing any λ0 ∈ Λ, we have thus shown that

P(λ, t) = sup
μ∈M(λ0)

{
hμ(σ) − t

∫
I∞

ζλ(ω)dμ(ω)
}

,

and that the function λ �→ ∫
I∞ ζλ(ω)dμ(ω) is finite, positive and harmonic for every μ ∈

M(λ0). Applying Theorem 2.1, we get

0 = P(λ, hλ) = sup
μ∈M(λ0)

{
hμ(σ) − hλ

∫
I∞

ζλ(ω)dμ(ω)
}

.

Hence

hλ = sup
μ∈M(λ0)

hμ(σ)∫
I∞ ζλ(ω)dμ(ω)

.

So
1

hλ
= inf

μ∈M(λ0)

∫
I∞ ζλ(ω)dμ(ω)

hμ(σ)
.

Thus, 1/h is the infimum of a family of positive harmonic functions. This concludes the proof
in the case in which each Φλ is regular.

In general, using Theorem 2.1, we see that for λ ∈ Λ it holds that hλ := hΦλ = sup{hΦλ|F :
F ⊂ I is finite}. So 1/hλ = inf{1/hΦλ|F : F ⊂ I is finite}. Since every finite CIFS is regular,
we deduce that each of the functions λ �→ 1/hΦλ|F is the infimum of a family of positive
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harmonic functions. Therefore 1/h is an infimum of infimums, i.e. an infimum, of positive
harmonic functions. It follows from Harnack’s inequality (see, for example, [11], Theorem
1.3.1) that 1/h is continuous. It is then easy to see that 1/h is superharmonic.

Corollary 6.4. The functions h and log h are continuous and subharmonic. Moreover, h
satisfies the functional inequality

hΔh ≥ 2|∇h|2
whenever h is C2.

Proof. Since h and log h are decreasing convex functions of the superharmonic function
1/h, an application of Jensen’s inequality shows that these functions are subharmonic. The
last part of the corollary follows from the expansion of the inequality Δ(1/h) ≤ 0.

However, h is generally not harmonic. Indeed, consider a plane-analytic family {Φλ}λ∈Λ

of CIFS consisting of two similitudes φλ
1 and φλ

2 with (φλ
1)

′(z) = (φλ
2)

′(z) = eλ for every
z ∈ CI, where Λ ⊂ {λ ∈ CI : Re(λ) < 0}. Then hλ = h(λ) = − log 2/Re(λ) and (Δh)(λ) =
−2 log 2/(Re(λ))3. Now, observe that (Δh)(λ) > 0 for every λ ∈ Λ. Thus, h is nowhere
harmonic. Note also that hΔh = 2|∇h|2, so the functional inequality in the corollary is
sharp.

7. Parabolic Iterated Function Systems

We follow in this short section the definitions, terminology, and notation from [7] and [8].
Assume I is finite. Given a finite set Ip ⊂ I, a (finite) set Ω ⊂ ∂X ⊂ IRd with the same
cardinality as Ip, and a function p defined on Ip whose co-domain Gd is the set (0,∞) if
d = 1, IN if d = 2 and the singleton {1} if d ≥ 3, we consider PIFS(X, I; Ip, Ω, p), the space
of all parabolic CIFS whose parabolic indexes are formed by Ip, parabolic fixed points by Ω,
and the valency function on Ip is given by the function p. The space PIFS(X, I; Ip, Ω, p) is
endowed with the same metric structure ρ as at the beginning of section 4. Recall from [7]
that to each parabolic iterated function system Φ is associated a hyperbolic iterated function
system Φ∗ with the alphabet I∗. Improving substantially the calculations from sections 2 and
3 of [8], one can establish the following fact:

Lemma 7.1. Assume I is finite. Given two finite sets Ip ⊂ I and Ω ⊂ ∂X ⊂ IRd with
the same cardinality, and a function p : Ip → Gd, the function ∗ : PIFS(X, I; Ip, Ω, p) →
CIFS(X, I∗) is continuous if CIFS(X, I∗) is equipped with the λ-topology.

Since hΦ∗ = hΦ, combining this lemma with Theorem 5.10, we get the following result:
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Theorem 7.2. If I is finite, then the Hausdorff dimension function h : PIFS(X, I; Ip, Ω, p) →
(0,∞) is continuous.

Improving even more the calculations from sections 2 and 3 of [8], one can prove the following:

Lemma 7.3. If I is finite and {Φλ}λ∈Λ is an analytic family of parabolic iterated function
systems from PIFS(X, I; Ip, Ω, p), then {(Φλ)∗}λ∈Λ is a regularly analytic family.

Combining this lemma and Theorem 6.1, we obtain:

Theorem 7.4. If I is finite and {Φλ}λ∈Λ is an analytic family of parabolic iterated function
systems from PIFS(X, I; Ip, Ω, p), then the Hausdorff dimension function λ �→ hΦλ, λ ∈ Λ, is
real-analytic.

8. Phase Transitions and Breakdown of Real-analyticity

This section is consecrated to a number of examples highlighting the lack of real-analyticity
in the Hausdorff dimension function in analytic, but not regularly analytic, families of iterated
function systems. We will look for these examples among plane-analytic families {Φλ}λ∈Λ,
where all the maps φλ

i , λ ∈ Λ, are of the form

φλ
i (z) = ci(λ)z + bi(λ),

with bi(λ) and ci(λ) depending holomorphically on λ. Although the essence of this section
lies in counterexamples, we start with several positive results. Fix λ0 ∈ Λ. For each λ ∈ Λ,
let

p(λ) = inf
i∈I

∣∣∣∣∣
ci(λ)

ci(λ0)

∣∣∣∣∣ and q(λ) = sup
i∈I

∣∣∣∣∣
ci(λ)

ci(λ0)

∣∣∣∣∣ .
The following theorem is an immediate consequence of Theorem 6.1 and the observation that
follows Corollary 6.2.

Theorem 8.1. Assume that Φλ0 is strongly regular and that for some R > 0,

sup
λ∈B(λ0,R)

q(λ) < ∞.

Then there exists a neighbourhood Λ0 ⊂ Λ of λ0 on which the Hausdorff dimension function
h : Λ0 → (0,∞) is real-analytic.
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Before continuing, note that in order to simplify notation, we will write θλ instead of θΦλ , hλ

rather than hΦλ , and so on. Now, notice that
(
p(λ)

)t
P

(1)
λ0

(t) ≤ P
(1)
λ (t) ≤

(
q(λ)

)t
P

(1)
λ0

(t). (8.1)

Thus, if q(λ) < ∞, then P
(1)
λ0

(t) < ∞ implies that P
(1)
λ (t) < ∞, and θλ ≤ θλ0 . Similarly, if

p(λ) > 0, then P
(1)
λ (t) < ∞ implies that P

(1)
λ0

(t) < ∞, and θλ ≥ θλ0 in this case. In particular,

if both conditions are simultaneously satisfied, then P
(1)
λ (t) = ∞ if and only if P

(1)
λ0

(t) = ∞ for
every t ≥ 0, and θλ = θλ0 . If this turns out to be the case for every λ ∈ Λ, then the function θ
is constant on Λ. This is the case in the forthcoming Example 5. Although these conditions
are sufficient for the constancy of θ, they are not necessary, as the first four examples will
show.

Proposition 8.2. Assume that the function θ is constant. Suppose also that Φλ0 is irregular

for some λ0 ∈ Λ. If q(λ) <
(
P

(1)
λ0

(θ)
)−1/θ

for some λ ∈ Λ, then Φλ is irregular.

This follows immediately from the rightmost inequality in (8.1). In particular, if the above
condition holds on an open neighbourhood Λ0 of λ0, then Φλ is irregular on that neighbour-
hood, and h ≡ θ on Λ0. This is the case in Example 5 with λ0 ∈ Λ0 = B(0, 1).

Proposition 8.3. Assume that θ is continuous and that Φλ0 is strongly regular for some
λ0 ∈ Λ. Then there is a neighbourhood Λ0 of λ0 on which every Φλ is strongly regular.

Proof. Indeed, as P
(1)
λ0

(θλ0) > 1, there is a finite set F ⊂ I such that
∑

i∈F |ci(λ0)|θλ0 > 1. It

follows from the continuity of the ci’s that there exists δ > 0 so that P
(1)
λ (θλ) ≥ ∑

i∈F |ci(λ)|θλ >
1 for every λ ∈ B(λ0, δ) ⊂ Λ.

This explains the absence of ’phase transitions’ from strongly regular systems to non strongly
regular systems when θ is continuous. As in the irregular case, we can be a little more specific
when θ is constant:

Proposition 8.4. Suppose that θ is constant. If Φλ0 is strongly regular and for some λ it

holds that p(λ) >
(
P

(1)
λ0

(θ)
)−1/θ

, then Φλ is strongly regular. If Φλ0 is cofinitely regular and

p(λ) > 0 for some λ, then Φλ is cofinitely regular.

This proposition is a straightforward consequence of the leftmost inequality in (8.1).

We now describe precisely what we mean by ‘phase transition’.
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Definition 8.5. We say that a family {Φλ}λ∈Λ undergoes a phase transition at λ0 ∈ Λ if in
every neighbourhood of λ0 there is a parameter λ at which Φλ is of a different type than Φλ0 .

More precisely, given that Φλ0 is of type T0, we say that a family {Φλ}λ∈Λ experiences
a phase transition at λ0 from a type T0 system to type T systems (T �= T0) if there is a
continuous path γ : [0, 1] → Λ originating from λ0 = γ(0) such that Φγ(t) is of type T for
every t > 0.

It is now time to give some concrete examples of this phenomenon. All of the following
examples involve similitudes. Recall that a CIFS Φ consisting of similitudes is regular if
and only if P(1)(t) = 1 for some t ≥ 0. Furthermore, if such a t exists, then it is equal to
the Hausdorff dimension h of the limit set J of Φ. Indeed, for such a CIFS, it holds that
P(t) = log P(1)(t) for every t ≥ 0.

Example 1. (Phase transitions from irregular to cofinitely regular systems; breakdown of the
real-analyticity of the Hausdorff dimension function)

Let I = {(n, k) ∈ IN × IN | k ≤ 2n2−1} and Φλ = {φλ
n,k : CI → CI | (n, k) ∈ I}, where

φλ
n,k(z) = cn,k(λ)z + bn,k(λ), with cn,k(λ) = λn3/2

2−(n2+n) and the bn,k’s to be specified later.
Then

P
(1)
λ (t) =

1

2

∑
n∈IN

exp
(
n2(1 − t) log 2 + n3/2t log |λ| − nt log 2

)
.

One deduces from this that θλ = 1 for every λ (θ ≡ 1). Moreover, P
(1)
λ (θ) ≤ 1/2 whenever

|λ| ≤ 1, the equality prevailing if and only if |λ| = 1. Hence Φλ is irregular and hλ ≡ θ ≡ 1

for every |λ| ≤ 1. However, P
(1)
λ (θ) = ∞ when |λ| > 1. Thus, Φλ is cofinitely regular

and hλ > θ = 1 for every |λ| > 1. We are therefore in the presence of phase transitions
from irregular to cofinitely regular systems at every point of the unit circle C(0, 1). This is
accompanied by a breakdown of the real-analyticity of the Hausdorff dimension function on
C(0, 1), as this function is constant (equal to 1 on B(0, 1)\{0}) but non-constant on every
neighbourhood of any point of C(0, 1). Nonetheless, observe that the Hausdorff dimension
function is continuous as it follows from Corollary 6.4 or can be checked by a direct calculation.
Note that it is possible to find analytic functions (in fact, even constant functions) bn,k’s such

that the OSC is satisfied for every |λ| <
√

2 through U = B(0, 1). Indeed, the sum of the

Jacobians of the φλ
n,k’s is P

(1)
λ (2), and it turns out that P

(1)
λ (2) < 1 whenever |λ| <

√
2.

Example 2. (Simultaneous phase transitions from critically regular to irregular and cofinitely
regular systems; breakdown of the real-analyticity of the Hausdorff dimension function)

To witness such phase transitions and breakdown, substitute the restriction k ≤ 2n2
for

k ≤ 2n2−1 in the previous example. One then deduces that P
(1)
λ (t) is simply twice what it was

earlier. Hence θ ≡ 1, and Φλ is cofinitely regular when |λ| > 1, as before. This time, however,

P
(1)
λ (θ) ≤ 1 for every |λ| ≤ 1, with equality precisely when |λ| = 1. This means that Φλ is

critically regular when |λ| = 1, and irregular when |λ| < 1.
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Example 3. (Phase transitions from strongly regular, though not cofinitely regular, systems
to cofinitely regular systems)

To observe such transitions, simply replace in the original example the restriction k ≤
2n2−1 by k ≤ 2n2+1. Then P

(1)
λ (t) is just 4 times what it was originally. So θ ≡ 1. Now,

1 < P
(1)
λ (θ) ≤ 2 for every δ < |λ| ≤ 1 and some δ > 0. This implies that Φλ is strongly

regular in the annulus δ < |λ| ≤ 1.

Example 4. (Phase transitions from cofinitely regular to strongly regular, but not cofinitely
regular, systems)

Replace in the original example the cn,k’s with cn,k(λ) = λn2−n2
. Then

P
(1)
λ (t) =

1

2

∑
n∈IN

exp
(
n2(1 − t) log 2 + nt log |λ|

)
.

As earlier, θ ≡ 1. Moreover, P
(1)
λ (θ) = ∞ for each |λ| ≥ 1, and thereby Φλ is cofinitely

regular in this region. However, Φλ is strongly regular, though not cofinitely regular, when

2/3 < |λ| < 1, for P
(1)
λ (θ) = |λ|/(2(1− |λ|)).

Example 5. (Simultaneous phase transitions from critically regular to irregular and strongly
regular, though not cofinitely regular, systems)

Set I = IN and choose a sequence of positive real numbers {cn}n∈IN so that
∑

n∈IN cn = 1
and

∑
n∈IN ct

n = ∞ for every 0 ≤ t < 1. Let Φλ = {φλ
n : CI → CI |n ∈ IN} consist of the

similarities φλ
n(z) = cn(λ)z + bn(λ), where cn(λ) = λcn and the bn’s will be specified later.

Then

P
(1)
λ (t) = |λ|t ∑

n∈IN

ct
n.

As in all the examples given so far, θ ≡ 1. Furthermore, P
(1)
λ (θ) = |λ|. This shows that Φλ is

critically regular when |λ| = 1, irregular when |λ| < 1 and strongly regular, but not cofinitely
regular, when |λ| > 1. The phase transitions that take place on C(0, 1) are, for similar reasons
as before, accompanied by a breakdown in the real-analyticity of hλ. Note that it is possible to
find analytic functions (in fact, even constant functions) bn’s such that the OSC is satisfied

for |λ| < 1/
√∑

n∈IN c2
n.

We now present an example where the function θ is not constant.

Example 6. Replace in the original example the expression for the functions {cn,k} by

cn,k(λ) = λ
1
4
n3/2

2−(λn2+n), and let Λ = {λ ∈ CI : Re(λ) > 1/2}. Then

P
(1)
λ (t) = 2

∑
n∈IN

exp
(
n2(1 − tRe(λ)) log 2 +

1

4
n3/2t log |λ| − nt log 2

)
.

In this case, θλ = 1/Re(λ). Moreover, P
(1)
λ (θλ) = ∞ for every |λ| > 1. This means that Φλ is

cofinitely regular whenever |λ| > 1. However, P
(1)
λ (θλ) < ∞ for every |λ| ≤ 1. Observe further

that P
(1)
λ (θλ) = 2

∑
n∈IN 2−n/Re(λ) on Λ∩C(0, 1) and is hence a continuous increasing function
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of Re(λ) there, with 2/3 < P
(1)
λ (θλ) ≤ 2 and equality when λ = 1. It is also easy to see that the

two complex conjugate parameters λc, λc ∈ Λ ∩ C(0, 1) such that P
(1)
λ (θλ) = 1 are determined

by the relation Re(λc) = ln 2/ ln 3. (Henceforth, we assume that λc has a positive imaginary

part.) The CIFS Φλc and Φλc are critically regular, and there are phase transitions at λc and

λc to cofinitely regular systems as λ leaves B(0, 1), to irregular systems as λ moves away from
these points along C(0, 1) in the direction of 1/2 + i (±√

3/2), respectively, and to strongly
regular, though not cofinitely regular, systems as λ moves along C(0, 1) in the direction of 1.
There are also phase transitions at every point of the arc (λc, λc) from strongly regular, but
not cofinitely regular, to cofinitely regular systems, and transitions at every point of the arcs
(1/2+ i

√
3/2, λc) and (1/2− i

√
3/2, λc) from irregular to cofinitely regular systems as λ quits

B(0, 1). The restriction Re(λ) > 1/2 ensures that P
(1)
λ (2) < 1 on Λ, and consequently that

constant functions bn,k’s can be found so that Φλ satisfies the OSC with U = B(0, 1).
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