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Abstract. Using the theory of infinite iterated function systems, we show
that the Julia set of any function of the type G = λ exp ◦F , λ ∈ C \ {0} and
with F : C → Ĉ a non–constant elliptic function, has Hausdorff dimension
two. However there exist elliptic functions F such that the Julia sets of the
maps G = exp ◦F are nowhere dense in C.

1. Introduction

The aim of this paper is to prove the following result.

Theorem 1.1. Let F : C → Ĉ be any non–constant elliptic function and let

λ ∈ C \ {0}. Then the Julia set JG of the function G = λ exp ◦F has Hausdorff

dimension two. Moreover, the hyperbolic dimension of G is also two.

The main idea of the proof of this result is that we are able to associate

with the dynamical system generated by the function G an infinitely generated

iterated function system for which the Poincaré series turns out to converge if

and only if its exponent is greater than or equal to two. This type of arguments

has been used in [KU] to show that the HD(JF ) > 2q
q+1

, where q is the maximal

multiplicity at all poles of F . Therefore, our result can be treated as an ”infinite

multiplicity” version of the above estimate.

Our method of proof of Theorem 1.1 gives in fact more: the hyperbolic dimen-

sion, the dimension of the set of conical points of G (see [PU] for appropriate

definitions), is equal to two. In contrast, in the case of hyperbolic exponential

functions, this dimension is shown in [UZd] to be strictly less than two, whereas

the dimension of the Julia set is still equal to two [MCM].

In the last section of this paper we provide a class of examples for which the

Julia set is nowhere dense in the plane.
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2. Preliminaries on elliptic functions

An elliptic function is a meromorphic function F : C → Ĉ which is doubly

periodic: there is a lattice Λ =< w1, w2 >, w1, w2 ∈ C with �
(

w1

w2

)
�= 0, such

that F (z + ω) = F (z) for every ω ∈ Λ. We denote T = C/Λ the quotient

torus and π : C → T the canonical projection. The standard example is the

Weierstrass elliptic function

℘(z) =
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
.

We essentially use the fact that the set of poles

P = F−1(∞) =
⋃

m,n∈Z

(
R∩ F−1(∞) + mw1 + nw2

)

is non–empty. Let b ∈ P be such a pole of F and denote by q ≥ 1 its multiplicity.

Near this pole b the function F takes the form

F (z) =
H(z)

(z − b)q

where H is a holomorphic function defined near b and H(b) �= 0. Remark that

a straight forward calculation gives that

(2.1) |F ′(z)| 
 1

|z − b|q+1

 |F (z)|

q+1
q ,

still for z in a sufficiently small neigborhood D of b, where A 
 B means that the

quotient A
B

stands away from 0 and ∞ independently of the variables involved.

The objects in this paper are mappings of the form

G = λ exp ◦F : C \ P → C ,

where λ is any non zero complex number and F an elliptic function as described

above. Since F is periodic with respect to Λ, the same is true for G. This allows

us to project the map G onto the torus T which is given by semi-conjugation

via the projection π:

(2.2)

C \ P G
−→ C⏐⏐�π

⏐⏐�π

T \ P0
g

−→ T

where P0 = π(P).
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As usual we denote by FG the Fatou set of G which is the set of points

z ∈ C such that all the iterates of F are defined and form a normal family on

a neighborhood of z. The Julia set JG is the complement of FG in Ĉ. An easy

to verify fact is that the Julia set of the torus map g is Jg = π(JG).

3. Proof of the Theorem 1.1

Let G = λ exp ◦F : C → Ĉ a map of the family we consider and let b be a

pole of multiplicity q ≥ 1 of the non–constant elliptic function F . As explained

in the previous section, we associate to G the torus map g : T \P0 → T . Denote

also a = π(b).

Let r > 0 such that the restriction of π to D(b, 2r) is injective and set Ω =

π(D) with D = D(b, r) and Ω′ = π(D(b, 2r)). We also suppose that r > 0 has

been chosen sufficiently small so that the estimation (2.1) holds on D. Clearly

a ∈ Ω. We will define an infinite iterated function sytem S = {Φω}ω∈Λ+ (where

Λ+ is a subset of Λ to be specified later in the course of the proof) on the domain

Ω who’s limit set JS will be contained in the Julia set Jg. The Theorem 1.1

then follows from the fact that the Poincaré series associated to the system S,

ψ(t) =
∑

ω∈Λ+

||Φ′||t 

∑

ω∈Λ+

|Φ′(a)|t

will converge if and only if t ≥ 2. Indeed, in the terminology of [MU] this means

that the critical exponent of the series ψ, θ(S) = 2. Therefore (see [MU] again)

HD(JS) ≥ θ(S) = 2. Since it will follow from the construction that the limit set

JS is contained in the closure of repelling periodic points of g, we have Jg ⊃ JS.

We are thus left to show that θ(S) = 2.

The generators Φω of the system are appropriately chosen inverse branches

of the map g that are defined on Ω′ in order to have Koebe distortion property

for the mappings of the system S. They are defined as follows: let

Λ+ = {ω ∈ Λ ; Re(b + ω) − 2r > 1}

and, for ω ∈ Λ+, let π−1
ω : Ω′ → D′

ω = D(b + ω, 2r) be the inverse branch of

π sending a to b + ω. The map z �→ λ exp(z) has well defined all holomorphic

inverse branches on the domain U = {Rez > 1}. We denote by log∗ one

such inverse branch selected so that log∗(U) is contained in the neighborhood of

infinity F (D) and, so that no critical values of F (there are only finitely many of

them) belong to log∗(U). We finally denote F−1
b the inverse branch of F defined

on log∗(U) which is given by F−1
b (∞) = b. The generators of the system we

look for are

Φω = π ◦ F−1
b ◦ log∗ ◦π−1

ω , ω ∈ Λ+ .
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We now evaluate the size of |Φ′
ω(a)|, ω ∈ Λ+. Indeed, first notice that.

|Φ′
ω(a)| = |G′(F−1

b ◦ logk(b + ω))|−1 .

Next, since G′(z) = G(z)F ′(z), we have that

|G′(F−1
b ◦ log∗(b + ω))| = |b + ω||F ′(F−1

b ◦ log∗(b + ω))| .

Notice that F−1
b ◦ log∗(D(b + ω, r)) ⊂ D and that the estimation (2.1) is true

on D. Therefore,

|Φ′
ω(a)| 
 |b + ω|−1| logk(b + ω)|−

q+1
q .

It follows that the series

ψ(t) =
∑

ω∈Λ+

|Φ′
ω|t 


∑
ω∈Λ+

|b + ω|−t| logk(b + ω)|−
q+1

q
t

converges if and only if t ≥ 2. This means that the critical exponent θ(S) = 2

and we are done.

4. Nowhere dense examples

Our aim in this section is to describe a large class of elliptic functions F :

C → Ĉ such that the Julia set of the map G = exp ◦F is nowhere dense in C.

Indeed, start of with an arbitrary non-constant elliptic function H such that

b = H ′(1) �= 0. Put a = H(1). Then

F (z) =
1

2b
H(z) − a

2b

is again an elliptic function with respect to the same lattice as H . Immediate

calculations give that F (1) = 0 and F ′(1) = 1/2. Then G(1) = exp(F (1)) =

e0 = 1 and G′(1) = G(1)F ′(1) = 1/2. This means that 1 is an attracting fixed

point of G. Since its basin of attraction is a non-empty open subset of the Fatou

set of G, we are done.
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Mariusz Urbański, Department of Mathematics, University of North Texas,

Denton, TX 76203-1430, USA

E-mail address: urbanski@unt.edu
Web:www.math.unt.edu/∼urbanski


