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Abstract

We study the Hausdorff dimension of the intersection between stable manifolds and basic
sets for an Axiom A holomorphic endomorphism on the complex projective space P2 For a
map which is at least d’-to-1 on a basic set A, we are improving the upper estimate given in
[11] by taking into consideration the number of preimages, and thus proving for non-invertible
maps results parallel to those of Verjovsky-Wu [17] from the case of Henon diffeomorphisms.
Also a lower estimate for HD(W;(xz) N A) is given by using a concept of preimage entropy
modeled after Bowen. This preimage entropy plays the role of the entropy of f~' from the case
of homeomorphisms, but in general, if the map f is an endomorphism like in our situation, the
preimage entropy does not coincide with the usual forward entropy h(f|s). We also show that,
given ¢ with |c| small, the perturbation (22 + ¢ + ew, w?) of (22 4 ¢, w?) is injective on its basic
set A. close to A := pg(e) x ST (where po(c) is the fixed attracting point for 22 + ¢) and also its
stable dimension is strictly positive. An interesting consequence of our results is the fact that
HD(W;(x) N Ay) does not depend continuously on ¢, (for # € A,), which is opposite to the
situation of diffeomorphisms. We study also the stable dimension for a large class of quadratic
endomorphisms and show that under a mild technical condition it is either zero, or it can be

estimated easily using the derivative on the respective basic set.
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1 Introduction

We consider Axiom A holomorphic functions f: P? — P? on the 2-dimensional complex projective
space. For definitions of hyperbolicity and Axiom A we refer to [5], [16]. We will use the notations
from [5], where the nonwandering set € of f is partitioned into three invariant subsets Sp, Sy, S,

according to the dimension of the unstable tangent space at points from these sets.

Let A be a basic set of the saddle part S7 of the nonwandering set €. This means that at every
point of A there exist both stable and unstable directions. According to [5], at a point @ € A there
exist a local stable manifold of size ¢, denoted by W¢(z) and, for every prehistory & of z, a local

unstable manifold of size §, Wy'(2). These local manifolds are analytic disks in our case.

Definition 1. Given a point z of the basic set A for an Axiom A map as above, we will call stable
dimension at z, the Hausdorff dimension HD(W¢(z) N A), for some positive, small 5. The stable

dimension will be denoted by d,(z) or by §;, when no confusion about the point z is possible.

If 2z € A and one denotes by ¢°(x) := log |Df|g:|, where EJ is the stable tangent subspace at
x, then we have the result of [11]:

Proposition 1. Let f a holomorphic Aziom A endomorphism of P? such that Cy NSy = 0, where
Cy = critical set of f. Then HD(Wg(z) N A) < t°, where t° is the only zero of the function
t — P(t-¢°). Hence the estimate does not depend on x € A. O

In the case of diffeomorphisms we have HD(W{(x) N A) =1° as was proved in [10].

In this article, we denote the nonwandering set of f by € and we consider the partition of Q
as Sp U Sy U Sy, where the dimension of the unstable spaces over S; is equal to i, i € {0,1,2}.
The function P(-) referred to in Proposition 1 is the topological pressure. We will now define
the topological pressure and give some of its properties, following [18]. Our purpose in doing this
is two-fold: first as a convenience for the reader, second because later we shall define a related

concept, that of preimage entropy. Parallels between these two notions shall prove very useful.

The general setting is that of (X, d), a compact metric space, and f: X — X a continuous
map. For n, a positive integer, d,(x,y) := max{d(f'z, f'y), i = 0,...,n — 1} is a metric on X

inducing the same topology as the metric d.

Definition 2. A subset £ C X is called (n,¢)-separated (for some ¢ > 0) if for all z,y € F, z # y,
we have d,,(z,y) > e.

Definition 3. The topological pressure of f is the functional Py: C(X,R) — R defined on the

space of continuous functions by:

n—1
1 .
Ps(¢) = lim lingo ;log sup{ E exp ( E c,o(flw)) , E C X, (n,e)-separated set.} .
=0

e—=0n—
zeE

Definition 4. When considering ¢ = 0 in Definition 3, we obtain the notion of topological entropy

of f, denoted by hyop(f) or h(f).



There exists an interesting relationship between Borel invariant measures and Py, contained in

the following;:

Theorem (Variational Principle). In the above setting, Ps(p) = sup{h,(f) + [ du}, where
n

the supremum is taken over all f-invariant Borel probability measures p, and h,(f) = measure-

theoretic entropy of yt.

For the (long) definition of h,(f) and proofs of all these facts, as we mentioned, a good reference
is [18].

Theorem (Properties of Pressure). If f: X — X is a continuous transformation, and ¢, €
C(X,R), then:

1) ¢ <= Prp) < Pr(v)

2) Ps(:) is either finitely valued or constantly oo

3) Py is convex

4) for a strictly negative function ¢, the mapping t — Py (ty) is strictly decreasing if P(0) < oo.
5) Py is a topological conjugacy invariant.

In our situation X = A (with A a basic set of S7); then, because ¢* < 0, it follows that there
exists a unique zero of the map t — P(t¢°), since t — P(t¢®) is strictly decreasing. We shall denote
this unique zero by t*. It is true that ¢* > 0 since P(0) = h(f|a) > 0, and P(t¢*) < 0 for large ¢.

Define now the inverse limit of X, X = {(@n)n<o, f@po1) =25, n <0, 2, € X}, and call an

-~

element & = (JUn)ngo of X a prehistory of 9. The metric on X is the usual metric, i.e

d(2,7) = ZM

Il
i<0 2

The map f induces a homeomorphism fof X given by f((xn)ngo) = (Zn41)n<o, where 21 = f(z0).
In this case, denoting by p(#) = z¢ the canonical projection, p: X = X, the following diagram

commutes: R
X 1. X
pl lp

f
X — X

It is well-known that, in this case, h(f) = h(f). We now come back to HD(Wg(xz) N A). In [11]
the first author studied the Axiom A maps f(z,w) = (22 + ¢, w? + d), ¢ # 0, d # 0 and showed
that if ¢ is chosen such that [1 — /T —4c| = 2, then P(2¢°) > 0 implies t* > 2. So, the estimate
HD(Wg(x)NA) < ¢° is not sharp because W7 (x)NA consists of only one point. A different estimate

for a certain class of maps will be proved in §2 to take this fact into consideration.



Theorem 1. Assume f is Aziom A, holomorphic endomorphism on P? of degree d, and A is one
of the basic sets with unstable index 1. Suppose that Cy N A = 0 and that fla: A — A has the
property that each point x € A has at least d' preimages in A, d' < d. Then HD(WZ(z) N A) < ¢,
where t is the unique zero of the function t — P(tlog |Df|Ey| — logd').

The estimate is independent on © € A. O

This result complements the theorem from [12] stating that the union of all unstable manifolds
corresponding to points in Sy, has empty interior. In general, if flp: A — A is d’-to-1, then
h(f|a) > log d’ (this is proved similarly to the Misiurewicz-Przytycki theorem, [8]). For the example
given above, f(z,w) = (2% + ¢, w? + d), h(f]p) = log2,d = 2, hence the above estimate is sharp.
In the case of complex hyperbolic Hénon diffeomorphisms, H D(W¢(z) NA) =t* ([17]). However in
our case, that proof will not work mainly because the estimates using h,(f) break down due to the
non-invertibility of f. The main problem is that the entropy was defined by considering the forward
iterates of f, and, if f is not injective, h(f) does not shed any light upon the growth of preimages.

To compensate this, we will use in Theorem 2 a notion of preimage (branch) entropy. Let us call a

branch of length ¢ (or prehistory of length ) in X, a sequence of preimages, § = (20, 21, ..., 2-¢),

with z, € X, —=¢ < ¢ < 0, such that f(zi-1) = 2z, =+ 1 < 7 < 0. Given another branch

B = (zb,...,2",) of same length, define their branch distance to be d"(3, ') = maxd(z_j, 2’ ;).
7=0,¢

The reader can notice the similarity between the branch distance and d,(-,-) introduced earlier.
Like d,, (-, -) for forward iterates, d® measures the growth of inverse iterates. Using this, we now
define a branch metric on X:

dz(x,x’) < e,

if for every branch 3 of length ¢ with zy = 2, there exists a branch 3’ of length ¢ with z{ = 2’
such that d°(3,3') < ¢, and vice versa. Denote by Npan(s,d), X) the smallest cardinality of an
e-spanning set for X in the dz metric. Hence, if A is an e-spanning set with #A4 = Ngpan(e, dz, X),
then, Vo € X, Jy € A with d5(z,y) < e. Let also Nyp(c,d, X) be the largest cardinality of
an e-separated set for X in the df metric. So, if A is e-separated, then for all z,y € A, z # y,
bz, y) > e.

The following proposition gives the definition of the preimage entropy h;(f) and two ways to

calculate it.

Proposition ([13]). For f: X — X continuous, (X, d) compact metric space, we have

lim lim l1og Ny.p(e,d>, X) = lim lim l1og Napan(e, 2, X)

s Wi s Yno
e—=0n—oo N e—=0n—co N

and the common value is called the preimage (branch) entropy, denoted by h;(f). O

In general there is no relation between h;(f) and h(f). Let us recall now two cases when

hi(f) = 0.

a. Forward-expansive coverings



If X is a metric space, then a continuous map f: X — X is called forward expansive if 3¢ > 0

such that whenever 2,y € X, z # y, Im > 0 with
d(f"z, f"y) > eo > 0.

For example, f is forward-expansive on any invariant subset of a Riemannian manifold on which
Df is expanding by a constant factor A > 1. Denker and Urbanski [4] (see also Coven and Reddy
[3]) showed that, if X is a compact metric space, then a forward-expansive map is in fact exzpanding,
i.e. for some metric d on X (equivalent to the original one), there exists b > 0, A > 1 constants such
that d(z,y) < b implies d(f(z), f(y)) > Ad(z,y). We also say that f: X — X is a covering map
if (V)2 € X,3 a neighborhood U, of z, such that f~'(U,) = [JV* with {V'} open disjoint sets,

and such that f: V' — U, is a homeomorphism. If f is forward-expansive on X compact metric
space, then we can use Denker-Urbanski [4] characterization in connection to h;(f) because h;(f)
is a topological concept which does not depend on the metric ([13]). This is the idea of the proof
for the following:

Proposition ([13]). If f: X — X is a forward expansive covering map, then h;(f) = 0. O

b. A second situation when h;(f) =0 is that of graph maps.

A finite graph is a compact metric space K with a distinguished finite set of points called
vertices, whose complement has finitely many connected components, edges, homeomorphic to the
open interval (0,1). We fix the metric on K by assigning length 1 to each edge and the distance

between two points in K is the length of the shortest path connecting them.

Theorem (Nitecki-Przytycki, [13]). Let K « finite graph and f: K — K continuous map.
Then hi(f) = 0. a

Corollary. For any continuous self-map [ of a closed interval [a,b], or of the circle S*, we have

hz(f) =0. O

We will start by defining another concept of preimage entropy, modeled after Bowen’s covering
type entropy ([1]).

Let X a compact metric space, Y C X, and f: X — X a continuous surjective map.

Denote by C,,(¢) the set of collections of length m of balls of radius ¢ centered at points
of a certain prehistory of z, C' = {Uy = B(zg,¢),...,Upn—1 = B(_m41,¢)}, where f(z_1) =
Ty ooy f(Z_mg1) = Toimyo, With @ = zo an arbitrary point of X. We denote by n(C) the number
of elements of C'. We shall call C' a branch modeled after the prehistory (zo, ..., 2_p41)-

Now let C'={Uy, ..., Up—1} € Cp(€), and define

X(C):={y € Up,Iy—1 € [T y)NU1,Ty_z € [ (y-1) N Uy, ...}
Let C(¢) == U, _1 Cm ().

Definition 5. We shall call (n,¢)-inverse ball centered at z, the set %}JX(C)7 where (' ranges

over all branches modeled after the n-prehistories of z. It will be denoted by B (z,¢).



For an arbitrary A real, € > 0, integer NV and subset Y C X we introduce

H_(\,Y,N,e) :=inf{ g exp(—An,), where Y C UFB;m (z,¢),and n, > N,Vz € I},
re
F

When N increases, the pool of possible candidate spanning sets I appearing in the definition
of H_(A\,Y,N,¢) decreases. Hence, there exists the limit limy_., H_(A,Y,N,e) =: h_(A,Y,¢).
The notation h_(A,Y,e) emphasizes the nature of the construction in the spirit of Hausdorff outer
measure. Now let h_(Y,¢) :=inf{A, h_(A,Y,e) = 0}.

Let us note now that, similar to the case of usual (forward) entropy ([18]), il—r}% h_(Y,e) exists.
This limit will be denoted by h_(Y) and will be called the inverse entropy of f on Y. When
we will want to emphasize the dependence of h_ on f, we will write A_(f,Y). In the case Y = X,
we will often write just A_(f) or h_(X), when no confusion about the map f can appear.

We can notice now that the balls used in the definition of h; are smaller than the ones used for
h_. Indeed if y is a point in X, then the e-ball around y in the d® metric is given by the intersection
NX(C), when C ranges over all branches modeled after the n-prehistories of y. On the other hand,
the inverse ball B (y,¢) is equal to the union UX(C') when C' ranges over all the n-prehistories of
y. Therefore we will need more balls in the d’ metric than balls of the type B, in order to cover

X. This fact is used to prove the following Proposition:

Proposition 2. If f: X — X continuous map on a compact metric space X, then 0 < h_(f)
hi(f). Also, if f is a homeomorphism on X, then h_(f) = h(f™1) = h(f) = hi(f).

L1 IA

Remark:

In general we do not have the equality h_(f) = h;(f). Let us consider as a counterexample the
map f:5? — 5% constructed in [9] (where S? represents the two dimensional real sphere). f is a
smooth map which sends the square Ky :=[0,1] X [0, 1] on a horseshoe Hy touching the line y = 4
in such a way that the unstable directions are vertical.

f also sends the square Ky := [0,1] X [2,3] onto a horizontal horseshoe H; whose unstable
directions are horizontal as well. The square [0, 1] X [1, 2] is sent to a connecting image between the
two horseshoes Hy and Hj; this image lies outside the rectangle [0,1] x [0,4]. Denote by B the
unstable lamination of the basic set of the restriction of f to K and by BY the unstable lamination
of the basic set of f|x,. Let K denote the intersection Ko N By N BY.

If two points & and 1 from K belong to distinct components of ( f|x, )" (K1)N Kz, for some n, then
their inverse iterates (f|x,) ™ (&) and (f|x,) 7 (n) are in different components of (f|x, )~ (K1) N Ky
for some 7,1 < j < n. It is the same if £ and 7 belong to different components of KoM (f|x,)" (K2).

Now, there are 2" different components of (f|x,)" (K1) N K3, (called components of first type
of order n), and 2" different components of Ko N (f|k,)"(K3), called components of second
type of order n. The components of first type are transversal to the ones of second type.

A given point in K has prehistories in both the components of first type of order n, as well as
in the components of second type of order n. Therefore when calculating h;, one must take into

consideration at least 4™ balls in the d” metric, obtained from the intersections of components of



first type of order n with the components of second type of order n; these 4" balls are necessary to
cover K. Hence h;(K) > log4.

On the other hand, in order to cover K we need only 2-2" — 1 inverse balls B (z,¢), which are
given by the components of first type of order n union with those of second type of order n (if  is
chosen apropiately); hence we conclude that h_(K) < log2. This implies that in this case h; and

f_ do not coincide. O

From the definition of inverse entropy we obtain the following Proposition :

Proposition 3. In the above setting, given a continuous map f: X — X, we have that:
a) If Y =QY;, then h_(Y) = sup h_(Y).
b) If Y1 CYs C X, then h_ (Y1) < h_(Y3).
c) In case f is a homeomorphism of X, the inverse entropy coincides with the usual entropy of

f, e h=(X) = h(X).
Remark: Let us note that Proposition 2 and the discussion above about h;, imply that A= (f) =

0 for forward expansive maps and graph maps.

We are ready now to state Theorem 2 which gives a lower estimate for HD(Wg(z) N A).

Theorem 2. Suppose that A is a basic sel of saddle type for an Aziom A holomorphic endomor-
phism f: P2 P2 CyNA=0. Then for any x € A,

-1

HD(W:(z)NA) >

og nf DSl h-(/10) 2 0 0
Remark. For f(z,w) = (2? 4+ ¢,w? + d), ¢,d small and non-zero, and A = {z} x J(w2 44y, with
Jw24q) the Julia set of w — w? 4 d, and 2z an attracting fixed point for z? + ¢, we already know
that W¢(z) N A consists of a single point for 2 € A, and therefore HD(W7(z) N A) = 0. This is
in accordance with the fact from the Corollary, that h;(f|a) = 0 if A is a circle (or homeomorphic
with a circle), hence also h_(f|a) = 0. a

We also show that, given ¢ with |c| small, the perturbation g(z,w) = (2? + ¢ + cw, w?) of
(2% 4 ¢,w?) is injective on its basic set A, close to A := po(c) x S! (where po(c) is the fixed
attracting point for 22+4¢). Then using Theorem 2 and the observation that for any homeomorphism
g we have h_(g) = h(g) = log2, we will get also that its stable dimension is greater than a
positive number independent of g. Since the perturbation can be taken arbitrarily close to the map
(z,w) = (2% 4 ¢, w?), it will follow in Section 4 that HD(W§(z)NA,) does not depend continuously
on the map ¢, when 2 € A, which is in contrast with the case of Hénon maps, [17]. In Section 4 we
study a large class of quadratic maps on P? and prove that, if the basic set A is connected and we
have an additional technical assumption, then one can control the number of preimages and hence,

by using Theorems 1 and 2, the stable dimension. All this will be made precise in the sequel.



2 Upper Estimate for HD(W§(z) N A)

Theorem 1 Assume f is an Axiom A, holomorphic map of degree d > 2 on P2, and A is one of the
basic sets with unstable index equal to 1. Suppose CyNA =0 (C'y denotes the critical set of f) and
also that f|p: A — A has the property that each point @ € A has at least d’ < d preimages in A.
Then HD(W§(x)NA) < t3, where {3 is the unique zero of the function t — P(tlog|D f|g;| —logd').

h(f]a)=logd’
As a consequence, HD(W¢(z) N A) < H%%m.
Y

Observation: In the case of diffeomorphisms, HD(W(xz) N A) = t*, where ¢° is the unique
zero of the pressure of the stable function ¢t — P(t¢*), ¢°(y) = 10g|Df|E§|. Also, it follows
from the Variational Principle, that there exists a probability measure u,; such that ¢* = hAL, As
being the Lyapunov exponent of p,. In the case of endomorphisms, it was shown in [11]L that
HD(W7(x)nA) < t°, but in general, the inequality is strict. For example for the case of a map
f(z,w) = (P(2),Q(w)), with @ hyperbolic on its Julia set Jg and A := {2} X Jg, where z, is
an attracting periodic point for P, we obtain HD(W¢(z,w) N A) = 0, for all (z,w) € A. So, the
formula in the Theorem explains that the gap between H D(W¢(x)NA) and ¢° is due to the number

of preimages.

Proof. First of all, consider the function ¢t — P(tlog|D f|g;| — logd’) which is well defined since
Cyn A = 0. Notice also that P(tlog|Df|g:| — logd’) = P(tlog|Df|g;|) — logd'. It is strictly
decreasing and at ¢ = 0 takes the value h(f|p) — logd’ > 0 and for ¢ very large, it takes negative
values. Henceforth it has exactly one zero denoted by ¢§, and ¢ > 0. Denote now W := W (z)NA
and W its lift inside A, i.e W := 7='(W), where 7(#) = ¢ is the canonical projection from A to A.
In this proof we will use the map f: A — A. Also it is well known that P(¢) = P(¢ o), for any
continuous real function ¢ on A, so the topological pressure does not change by lifting the function
to A. Let E be an (n + 1, §)-separated set of maximal cardinality inside f~"(W) with § << ¢ to
be determined in the course of the proof.

Since t;) is the unique zero of the pressure function, it follows that if we consider an arbitrary
t > tf, then there exists 3 < 0 such that

P(tlog|Df|g;| —logd') < < 0.

Therefore, from the definition of pressure, if n is large enough,

1
n+1

logZeS"“q)(ZA) < B <0,
sek

where ®(g) := tlog|[Df|g;| — logd'. Hence,
D 1D el < P ()
t€E

But £ has been taken as a separated set of maximal cardinality, hence it is also (n + 1,9) -

spanning for the compact set f~"(W) in the metric d(%,%) from A. This means that the balls



Boy1(9,0) := {2 € A d(f*2, fFj) < 6,k = 0,..,n},§ € E, cover the entire set f~"(W). From
above, it follows that {fn(Bn(@v‘s))}geE cover the set W, and for brevity, we will denote this
collection of sets by {B;};es, where E = (§;);es, J finite. Let us consider now a point y from W
and ¢, 4’ two prehistories of ¥ which are different as n-prehistories, i.e there exists 0 < 7 < n such
that y_; # y’ ;. Can we have two such prehistories both in the same Bj?

Assume ¢ > 0 is the largest integer for which y_; = y’ .. Denote by [y the constant of injectivity
of f,ieif f(z) = f(2') and z # 2’ (2,2 € A), then d(z, 2') > Iy ( here we use again that the critical
set of f does not intersect A ). Then for the prehistories §, 7’ as above, d(f~"(9), f~"(7)) >
lo > 4, if 4 is small enough. Therefore, the points f‘”(@) and f‘”(@’) cannot be in the same ball
B, (f, 5)75 € L. Consequently also 3,3’ cannot be in the same Bj, since f is a homeomorphism.

We take now the projections of Bj onto W, B; = T(B]‘) NW. Let d; denote the diameter of
B; and for all j € J take Bj := B(z;,d;), where z; is an arbitrary point in B;. In general, by
M B(z,r) we shall denote the ball B(z, Mr). From the discussion a few lines above, it can be seen
easily that the multiplicity of the cover {QBj}j of W, is at least d', if 0 < § < %0. This is true
because every point in W has at least d'™ different n-prehistories.

We will now extract a subcover of W of multiplicity bounded by some universal constant C',

coming from the following version of Besicovitch Theorem :

Theorem ([6]). Let A be a bounded set of R™. For each x € A, a set H(x) is given satisfying the

following properties:

(a) there exists a fized number M > 0, independent of x, and two closed Fuclidian balls centered
at x, B(z,r(z)) and B(x, Mr(z)), such that B(x,r(z)) C H(z) C B(z, Mr(z));
(b) for each z € H(x), the set H(x) contains the convex hull of the set {z} U B(x,r()).

Then one can select from among {H (x)}zeca a sequence Hy, satisfying the following conditions:

(i) the set A is covered by {Hy}i;
(ii) no point of R™ is in more than b(n) sets Hy, and b(n) depends only on the dimension n;

(iii) the sequence {Hy}, can be split into at most b(n) subfamilies, each of which consists of

mutually disjoint elements.

As an easy observation, notice that if the sets H(z) are convex, then condition (b) of the
theorem above is immediately satisfied. Also, part (iii) of the claim of the theorem implies part
(ii). However for our purposes, part (ii) will turn out to be enough.

Based on this theorem, we will prove the following covering theorem which will be useful in our

context.

Theorem (Covering Theorem). Let A be a bounded set of R™. Assume that A is covered by a
family of balls {B(z;,r;) }ie1 centered at some points of A, where r; > 0, for all i € I. Then there



exists a cover of A with balls {B(x;,2r;)};ey, where J C I and the multiplicity of this cover is

bounded by the universal constant b(n).

For each z € A, choose one ball B(z;,r;) containing x. Set H(z) := B(z;,2r;) and denote by
r(z) the radius r;. Obviously the sets {H (z)},e4 will cover A. They are also convex. For every
x € A, we have that B(z,r(2)) C H(z) C B(z,3r(z)). Therefore the assumptions of the previous

theorem are satisfied and its direct application ends the proof.

Coming back to the actual proof of Theorem 1 we apply the above Covering Theorem for the
balls Bj, j € J. Hence, we obtain a subcover 2By, where k belongs to a subset K C J and such
that the multiplicity of this subcover is bounded above by a universal constant C' > 0 coming from
the Covering Theorem. But the multiplicity of the cover QBj, j € J is larger than or equal to d',
if 6 < ly/6. However, if n is large enough, the remaining sets {QB]‘}]EJ\K, still cover W and we can
extract again, out of them, a subcover of W of multiplicity bounded by C'. Repeating the procedure
and applying the Covering Theorem at each step, one can find at least C'~'d'™ such subcovers, each
with multiplicity bounded by . But in this case, there will exist a cover {QBs}seL of W, L C J,

corresponding to a subset F of E for which :
S IDflpl < e dn - C(d) T = C e (1)
seF

We make now the connection between the diam2B, and |Df"| | using the bounded distortion
property. First observe that in general, B; = ﬂ(f”BnH(@,(S)) = f"(7(Bnt1(9,0))). Also, if
€ € Bny1(i,8), then d(f*¢, fFij) < 8, for 0 < k < n, hence d(f*¢, f*y) < 6. This implies that
& € Wg(y). In this case, we will be able to apply the property of bounded distortion on stable

manifolds (see [11]) to conclude that, for a positive constant A,
diam2B; < A- |Df"|g: |.
J
Applying now inequality (1), and remembering that g < 0, we get that

Z(diam?Bs)t < Const ™ < Const.
seL

In conclusion, since ¢ has been chosen arbitrarily larger than ¢, we obtain H D (W) < ¢. The proof
of the last consequence from the statement is immediate if one uses the properties of the topological
pressure from Section 1 and the fact that P(¢ + ¢) = P(¢) + ¢, for any continuous real function ¢

and any constant c.

O

3 Lower Estimate for HD(W{(z) N A)

We are now ready to prove the following.
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Theorem 2. Suppose that A is a basic set of unstable index 1 for the Aziom A holomorphic map

-1
f: P2 P2 and CynA=0. Then HD(W§(z)NA) > “h_(f|a), for all € A.

log inf |Df|g:
ongElAl flE:]

Proof. Let W := W¢(x) N A for a point 2 in A, and consider y € A. Let also £ be a small positive
number.

We will prove that there exists an integer m such that f=™(W)NA intersects any local unstable
manifold W;‘/Q@), (V)i € A. Denote by B(y,(/4) the {/4-ball around y.

Since A is a basic set, hence f|a is transitive, it follows that 3 my integer and z € B(y, {/4)NA
such that f™ (z) € B (z,%). Now take the unstable manifold W(f™ (2)), where W) is any
prehistory of f™1(z) such that (f™ (2))—m, = 2.

From the local product structure, Wg‘(@)) NW = &. The point ¢ has a prehistory ¢ with
d(§m,,2) < /4, &y € A, if my is big enough. So, W3, ,(§-..,) intersects qu/z@) transver-
sally, for any prehistory ¢ of y, where M is some constant which does not depend on y, giving
the maximum inclination of the unstable spaces w.r.t. stable ones. Also, f™({_,,,) € W and
Fr W (Eom ) NA) C W, so Wi (6o ) NAC f7™M (W) NA.

We denote §°(z) := HD(W¢(x) N A) and then take ¢ > §°(x) arbitrary.

Since f is locally bi-Lipschitz near A we have that HD(W{(x) N A) = HD(f~™(W¢(x) N A)).
Therefore there will exist U = (U;);er, an open cover of f~"(W¢(x) N A) with mesh(U) < n << (,
such that

> (diam(U)) < 1
i

In the sequel we will denote |ka|Ey| by | D f¥(y)| for an arbitrary k positive integer and a point
y. Now let us consider the preimages of U;; since diam(U;) < £ and ¢ is small, it follows that the
different preimages of U; which intersect A, denoted by Ui_l, e Ui\f_ll are disjoint. Indeed, let us
take all the preimages in A, yi_l, ...,yi\fil, of a point y; from U;. If £ is small enough, then we
will have sets Ui_l, e Ui\f_ll around the points yi_l, e yi\fil respectively, such that the restrictions
f|Uik,_1 : Uf_l — U,; are homeomorphisms for all 1 < & < Np. This is due to the fact that C;NA = 0.
However by doing this, the diameters of the sets of the form Uf_l might increase. If the diameters
of the sets Uf_l remain still very small, then we can repeat the procedure for each one of them.
The preimages of Uﬁ_l and of Uﬁl_l are disjoint for k # k' since the sets Uﬁ_l and Uﬁl_l are disjoint
themselves. Then, if the diameter of Uf_l is small enough, its preimages will also be disjoint.
Therefore it makes sense in this case to talk about the components of f_l(UZ»’f_l) and about the
components of f~2(;).

Hence for ¢ small enough and diam(U;) < ¢, we will take the smallest integer n; with the
property that the diameters of all the components of f~*(U;) are smaller than ¢ and such that
there exists a component Uﬁ_ni of f7"(U;) whose diameter is larger than /.

In this case, the restriction f7|ya Uf_j — U; is a homeomorphism, for all components Uf_j
. 1,—7 ) )
of f77(U;), 1 <j < n.

11



But then, from the Mean Value Inequality there will exist a point &; in a component of the form
UF_ such that

1, =Ny

diam (Us) > (D f7 (&)] > Cinf | Df| i € 1.

The point f"(;) belongs to U;, for all ¢ € I.

Since all unstable manifolds of points in A, of size £ intersect the set f~"(W¢(z)NA), and since
(Us)ier cover f=™(W¢g(z)NA), it follows that A is the union of the inverse balls By (f™(&;),2(),i €
I. For each U; we have only one corresponding inverse ball B, (f™(&),2() and (diam(U;))" >

(Gt D L), s0
> . N > ) .
1> Z(dlam(Uz)) > Zexp(tm log 111{f |Dfsl)
But then, from the fact that the sets B, (f™(&:),2(),7 € I, cover A, it follows that H_ (¢

loginf | D1,]) <

0, hence ¢ |log iII{f |Df|| > h_({). Since t was chosen arbitrarily bigger than §°(z), and £ was chosen

-1

arbitrarily larger than 0, we get that §°(z) > h_(f|a) |log H}\f |Dfs|| , for all z in A.

Remark 1:

Let us notice that both Theorems 1 and 2 work for the case of an open, surjective, Axiom A
C® map f on a real compact manifold M. In addition we also need the conformality hypothesis
for f or at least the (real) dimension of the stable tangent space should be one.

The proofs in this more general case follow closely the ones already displayed.

We preffered to state and prove the theorems in the case of a holomorphic map on the complex

projective space P? since the question first appeared to us in this setting, vis-a-vis the papers by
Fornaess-Sibony ([5]) and Verjovsky-Wu ([17]).

Remark 2:

We conclude this section with the remark that h_(f|a) # h_(f|A) and that the value of h_ is
not stable under perturbations.

Indeed, let us take A, a basic set for an Axiom A endomorphism f without cycles among the
basic sets of its saddle part S7. Then, if f. is sufficiently close to f, f. will have a basic set A, close
to A in the Hausdorff metric. And we know from the Stability Theorem ([14]) that there exists a

homeomorphism §: A — A. which commutes with a surjection g: A — A,

A —2 5 A
P N lp p is the canonical projection.
A g A,

12



We know that h(f|p) = h(f|A) = h(f5|AE) = h(f:|a.), so the value of the entropy remains
constant under small perturbations. However h_(f|s) # h_(f|A) in general. For example when
fz,w) = (2% + e, w?), |e| small, A = {z} x J,2 = {20} x S! and we have h;(f|p) = 0 as we
showed in the Remark from §1 (since A is a circle); this implies A_(f|a) = 0. But at the same
time Proposition 2 implies that h_(f|A) = hz(f|A) = h(f|A) since f: A — A is a homeomorphism.
Combining this with h(f];) = h(f]a) = log2 shows h_(f]a) # h—(f];)-

If we consider the example discussed in Section 4 of a perturbation f. such that f.|s, is a
homeomorphism, we see that A_(f.|a.) = h(f:|a.) = log2. However h_(f) = 0 since A is a

quasicircle, hence the value of h_ is not stable under perturbation.

4 Examples and applications

First we study a large class of maps obtained as perturbations of (2% + ¢, w?) (0 # |c| small) and

identify a set of elements of this class which are injective on their respective basic sets.

Theorem 3. Given the map f.(z,w) = (22 +acz + bew + ¢+ dezw + esw?, wz), there exist small
positive constants c(a,b,d,e) and €(a,b,c,d,e) such that, for b # 0, 0 # |c| < c(a,b,d,e) and
0 < e <e(a,b,c,d, e) we have that f. is injective on its basic set A, close to po(c) x St (where po(c)
is the attracting fived point for z? + c).

Proof. Assume that f.(z,w) = f.(z/,w’) for two points (z, w), (z/, w') € A¢

= 22 b acz+bew+ c+dezw + esw? = 2% + ag + bew' + ¢ + deZ'w’ + esw'?

2

= (22 =) +efalz = 2) + b(w — w') + d(zw — Zw') + e(w? — w'?)] = 0.

2 2

Assume w # w’. Then, w' = —w since w* = w’

= (z—2)(z+ 2 +ea) + 20w+ dw(z + 2)] = 0.

= (z—2)(z+ 2 +ca) = —£[2bw + dw(z + 2')]. (2)

Let po(c) be the fixed attracting point for z — 2% + ¢, 0 # |¢| small. And consider o :=

sup |z — po(c)|. Let (z0,wo) a point in A, where the previous supremum is attained in A..
(zw)€EA:

Hence o = |29 — po(c)|, and p3(c) + ¢ = po(c). Now, we can find a point (z,w) € A, such that
fe(z,w) = (20, w0) = 20 = 22+ acz + bew + ¢ + dezw + esw?
= zp — polc) = 22— pg(c) + acz + bew + dezw + esw?
= (2 — po(e))® + 2zpo(c) — 2p3(c) + acz + bew + dezw + esw® =
a < a? 4 2|pole)|a+ K,

13



with K, a positive constant depending on the parameters of the map. Now a?+a(2|pg(c)|—1)+Ke >

0, and since @ < 1 (since A, is very close to {po(c)} x S!), we obtain (for some constant K'):

2Ke .
a < — < K'-¢
1= 2|po(e)] + /(1 = 2[po(c)])2 — 4Ke

From (3) one gets 2a(2|po(c)| + €la]) > |2bw + dw(z + 2')| for ¢ < €(a,b, ¢, d, €), since z, 2" are

0

IN

both e-close to po(c).

But for (z,w) € A., one has |w| = 1, and |z42'| is e-close to 2|py(c)| . Therefore, if b # 0, and |¢|
is small enough in comparison to |b|, then |po(c)| becomes so small that |2bw+dw(z+2")| > |b] > 0.
Hence 2K's(2|po(c)| +¢la|) > |b] > 0, which is a contradiction if |¢| is small enough (since |¢| small
will imply that |po(c)| is also small, and we can always reduce ¢ accordingly).

Hence, we proved that w’ = w. Then, from f.(z,w) = f.(z',w’) it follows that 2% — 2/ =
—cla(z — 2') + dw(z — 2')]. If z # 2/, we would then get z 4 2/ = —2(a + dw).

But z,z are both € -close to po(c) # 0, so if we choose ¢ < £(a,b, ¢, d, e) appropiately, then
|z 4+ 2’| > |po(c)| > 0. On the other hand, if |a 4+ dw| # 0, we can take £ small enough such that
ela 4 dw| < |po(c)|, which gives a contradiction. If |a 4+ dw| = 0, then we get a contradiction again
since po(c) # 0.

In conclusion z = 2/, w = w’ and in consequence f.|5,: A. — A. is an injective map.

O

Corollary 1. In the setting of Theorem 3, if f-(z,w) is injective on A; and |c| is small enough,
s log 2
then h_(felp.) = h(fe]a.) =1og2 and HD(W{(2) N Ac) > W.
In addition, in this case A, is not a graph and in particular not a Jordan curve.
Proof. 1f f.|a. is injective, then it is a homeomorphism of A. and hence h_(f:|a,) = hi(f:|a.) =
h(fe|a.) - But
h(fela.) = h(fe) = h(f) = h(f) =log2
In the above, f represents the lifting of f to a homeomorphism of A and we can use the conjugacy
between f and f. ([14]); also the last equality is due to the fact that f|, is just the map w — w?
whose entropy is log 2.

The estimate for the stable dimension in our claim is proved by using Theorem 2 and the fact
inf|Df|g-
ylenA| [l

2% + ¢, for |c| small.

> |po(c)|, where po(c) = H_\;lc_j is the unique fixed attracting point of the map

that

The last consequence to show is that the basic set A, is not a graph.
Indeed, if A. were a graph, the Nitecki-Przytycki Theorem in Section 1 would imply that
hi(f<|a.) is zero, but as we saw above, h;(f:|s,) = log 2.
O

In the case of diffeomorphisms the stable dimension depends continuously on the map, even
real analytically in the case of Hénon maps ([17]). However this property is not present anymore

for holomorphic endomorphisms.
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Indeed, from Corollary 1, if f. is a perturbation of f(z,w) = (2%+¢, w?), such that f; is injective
on its basic set A., then HD(W¢(z.) N A;) is bounded below by a constant which does not depend
on small e.

On the other hand HD(W¢(x)NA) = 0, if A is the basic set of f and @ € A. Therefore we get a
contradiction, since in any neighbourhood of f we were able to find a map having stable dimension

bounded below by a constant not depending on . This will be formulated in the following:

Corollary 2. There exist Aziom A holomorphic maps f on P? which have basic sets A, such that
if [ is an - perturbation of f and A. is the basic set of f. close to A, then HD(W{(x.) NAL) does
not converge to HD(W{(x) N A), when e — 0 and x. € A, € Az, — . Hence the dependence

of the stable dimension on the map is not continuous in general.

Now we ask what can be said about the number of preimages that a point in the basic set A

can have in A, in order to shed more light on the upper estimate from Theorem 1.

Lemma 1. Let f be a holomorphic map on P2, and A one of its basic sets of infinite cardinality,
such that CyNA = 0, where Cy is the critical set of f. Then the set {x € A, Card{f~(z)NA} =1}
is open with respect to the induced topology on A.

Proof. If Cy N A = (), then there exists § > 0 such that, if f(z1) = f(z2),21,22 € A,z # 23,
then d(z1,22) > 6. Now assume that the statement of our lemma is not true; we can assume
also that all the points we are working with are not isolated (as a matter of fact A cannot have
any isolated points since f|a is transitive and A is infinite, but this is not necessary here). Then
there would exist € A such that f~!'(z) N A = {z} and there would exist a sequence y, € A,
Yn — x, with {222} C f~Y(y.) N A,z # 22 ¥Vn. From the discussion above, it follows that
d(zl,22) > §. But since A is compact, there exists a subsequence of (z}),, denoted also by (z}),
such that z} — & € A.

By taking yet another subsequence, one can assume also that 22 — ¢2 € A.

Since f(z2l) = y, and y, — 2z, we have f(£!) = 2 and similarly f(¢%) = 2. But d(z},2%) > 4,
hence d(£',€?) > &. Therefore we get a contradiction with the fact that the set f~'(z) N A has
only one element. So the set of points x € A having only one preimage in A, is open in the induced

topology. O

Lemma 2. In the same setting as in Lemma 1 and assuming also that there exists a neighbourhood

U of A such that f~*(A)NU = A, it follows that the set {z € A, Card{f~™1(x) N A} = 1} is closed.

Proof. Assume that the set of points with only one preimage in A is not closed. Then, there would
exist € A having two preimages y;,y; in A and a sequence z, € A, 2, — « with f~1(z,)NA =
{zn}. By taking eventually a subsequence, one can suppose that d(y1, z,) > do, Vn, for some positive
constant . As observed before, the set A does not have any isolated points since f|, is transitive
and A was assumed infinite (otherwise the problem would be trivial if A finite). Let now V be the
open ball around y; of radius %0. Since f~H(U)NA = A and since A has no isolated points, it follows
that x,, € f(V) for n large enough. So, there exists &, € V such that f(§,) = z,. Also, since we

15



assumed d(yi, z,) > J, it is clear that z, # &,. Hence, this implies that {&,,z,} C f~1(z,) N A,
which is a contradiction with our assumption. Therefore the set {# € A, Card{f~ (z)NA} =1}1is
closed in A. We are done. O

Lemmas 1, 2 imply the following corollaries.

Corollary 3. In the same setting as in Lemma 2, and assuming also that the basic set A is con-
nected, one has that, if there exists a point © € A with only one preimage in A, then every point in

A has exactly one preimage in A.

Corollary 4. In the same setting as in Lemma 2, and assuming also that A is connected, the

number of preimages that a point from A has in A is constant.

As can be seen from the proofs of Lemmas 1, 2, this statement is true in a more general setting;:
f does not have to be necessarily holomorphic for example. A natural question is how we can check
which basic sets are connected. In fact it turns out that it is enough to perturb a map with a basic

set which we know to be connected in order to obtain other such examples.

Lemma 3. In the same setting as in Lemma 1, if A is connected and g is sufficiently close to f,

with its corresponding basic set Ay, then Ay is connected as well.

Proof. We know from a result of Przytycki ([14]) that there exists a conjugacy at the level of inverse
limits, between A and E if g is close enough to f. Also an easy result from topology shows that A
is connected if and only if A is connected. Hence if we assumed A to be connected, it follows also
that A, E, and A4 are all connected.

O

Corollary 3 and Lemma 3, together with Theorems 1 and 2 give now information about the

stable dimension of perturbations of the map (2% + ¢, w?).

Corollary 5. Let g be a perturbation of the map (2* + ¢, w?), where 0 # |c| small, and consider
the basic set A,, close to po(c) x S*. Assume also that, if gla, is not a homeomorphism, then there
exists a neighbourhood U of po(c) x St such that g~ (Ay)) NU = A,. Then we are in one of the

following two cases:

(a) gla, is a homeomorphism. In this case we have the following inequality

log 2 log 2

" < HDWSZx)N A, < ,
|log inf | D f]g:|| (W) Ay) |log sup [ D f|g||
yEA, EEA, ¢

(b) Or g|a, is not a homeomorphism. Then HD(W¢(x) NA,) = 0.

Proof. Let us prove first item (a). Since g is a homeomorphism on A, the Theorems 1 and 2 imply
the required inequalities for HD(W7(z) N A).
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We prove now item (b). Since the basic set A = {po(c)} x St is connected, Lemma 3 implies
that A, is also connected if g is a small perturbation of the map (2% + ¢, w?). Hence, from Corollary
4, the number of preimages that a point can have in A, is constant and will be denoted by d'.
To find this constant we notice that, since h(g|a,) = log2 and h(g|s,) > logd' (from §1), we get
1 < d' < 2. So, either every point of A, has exactly one preimage in A, or else every point from
A, has exactly two different preimages in this set. But the condition ¢='(A,)NU = A, prevents d’
from being equal to 1 in this case. Therefore, every point in A, has exactly two preimages in A,.
Thus, Theorem 1 gives that HD(Wg(x) N Ay) = 0. O

Obviously the same reasoning can be applied to other perturbations of maps f on P? for which

CyNA =10, (see for example [5] for more examples, like product maps, solenoids, etc.)
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