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Abstract. Because of its double periodicity, each elliptic function canon-
ically induces a holomorphic dynamical system on a punctured torus. We
introduce on this torus a class of summable potentials. With each such
potential associated is the corresponding transfer (Perron-Frobenius-Ruelle)
operator. The existence and uniquenss of ”Gibbs states” and equilibrium
states of these potentials are proved. This is done by a careful analysis of
the transfer operator which requires a good control of all inverse branches.
As an application a version of Bowen’s formula for expanding elliptic maps
is obtained.

1. Introduction

We consider an arbitrary non-constant elliptic function F : C → Ĉ. This

function is periodic with respect to a lattice Λ. Denote by π : C → C/Λ the

canonical projection from C to the torus T = C/Λ. Now the map F naturally

projects down to a holomorphic map f : T \ π(F−1(∞)) → T by means of the

semi-conjugacy π so that π ◦ F = f ◦ π. This dynamical system f is a natural

object to study and is interesting itself. In addition, with its help we obtain

valuable information about the dynamics and the geometry of the Julia set of

the intial map F : C → Ĉ.

We introduce in the Section 3, on the torus T , a class of summable poten-

tials. With each such potential associated is the corresponding transfer opera-

tor, which is represented as a sum of an infinite series. The right natural choice

of the class of our summable potentials ϕ makes this series converge, and the

represented by it transfer operator Lϕ acts continuously on the Banach space
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of continuous functions on the torus T . For every x ∈ T , put

P (x, ϕ) = lim sup
n→∞

1

n
logLn

ϕ1(x)

= lim sup
n→∞

1

n
log

∑
fn(y)=x

exp
{
ϕ(y) + ϕ(f(y)) + ... + ϕ(fn−1(y))

}
.

The main result of our paper is this.

Theorem 1.1. Let ϕ be an summable potential such that sup ϕ < supx∈T P (x, ϕ).

Then:

(1) The limit

P (ϕ) = lim
n→∞

1

n
logLn

ϕ1(x)

exists and is independend of x ∈ T . It is called the topological pressure

of the potential ϕ.

(2) There is a unique exp{P (ϕ) − ϕ}–conformal measure ν on T and a

unique Gibbs state μ, i.e. a unique f -invariant measure that is equivalent

with respect to ν. Moreover, both measures are ergodic and supported on

the conical limit set.

(3) The Radon-Nikodym derivative h = d μ/d ν is continuous (and log h ∈
L∞).

We want to add that in the case the elliptic function F is expanding the as-

sumption P (ϕ) > sup(ϕ) is not needed. In this case all the potentials −t log |f ′|
are summable and Bowen’s formula for the Hausdorff dimension of the Julia set

of f (or equivalently of F ) holds.

The Theorem 1.1 is proven by a detailed analysis of the transfer operator

and its decomposition into ”bad” and ”good” parts. This end requires a careful

control of all inverse branches of the map f . In order to make the picture more

complete, we show that the transfer operator is almost periodic and, conse-

quently, the dynamical system (f, μ) is metrically exact.

We also show that the Gibbs states coming from Theorem 1.1 are the only

equilibrium states for potentials ϕ in the sense of classical variational principle.

2. Preliminaries on elliptic functions

An elliptic function is a meromorphic function F : C → Ĉ which is doubly

periodic: there is a lattice Λ =< w1, w2 >, w1, w2 ∈ C with �
(

w1

w2

)
�= 0, such

that F (z + ω) = F (z) for every ω ∈ Λ. If T = C/Λ is the quotient torus and

π : C → T the canonical projection, then there is a induced map f0 : T → Ĉ
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(defined by f0 ◦ π = F ) which is a finite branched covering map. Let d be the

number of critical points of f0 counted with multiplicity.

If R = {t1w1 + t2w2 ; 0 ≤ t1, t2 < 1} is the basic fundamental parallelogram

of Λ, then F (R) = F (C) = Ĉ. The set of poles is

P0 = F−1(∞) =
⋃

m,n∈Z

(
R∩ F−1(∞) + mw1 + nw2

)
.

For every pole b of F let qb denote its multiplicity.

The main example is the Weierstrass elliptic function

℘(z) =
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
.

As usual we denote by FF the Fatou set which is the set of points z ∈ C such

that all the iterates of F are defined and form a normal family on a neighborhood

of z. The Julia set JF is the complement of FF in Ĉ. The periodicity of F is

reflected in these sets:

JF + ω = JF and FF + ω = FF for all w ∈ Λ .

Therefore, the natural way of studying the dynamics of the elliptic function F

is to consider its projection f on the torus T which is given by semi-conjugation

via the projection π:

(2.1)

C \ P0
F
−→ C⏐⏐π

⏐⏐π

T \ P f
−→ T

where P = π(P0).

The conical set Λc is the subset of the Julia set where the dynamics can be

nicely rescaled. More precisely, z ∈ Λc if there is r > 0 and an increasing

sequence of integers nj → ∞ such that fnj : Uj → D(fnj(z), r) is conformal

with bounded distortion, where Uj is the component of f−nj (D(fnj(z), r)) that

contains z.
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3. Our class of potentials

The transfer operator of a potential ϕ : T → R is, for the moment formally,

defined by

(3.1) Lϕψ(x) =
∑

y∈f−1(x)

ψ(y)eϕ(y) .

This operator is well defined as a positive, continuous and linear operator on

the space of continuous functions C(T ) if the following condition is satisfied (it

appeared in [Wal]): there is K > 0 such that

(3.2) Lϕ1(x) =
∑

y∈f−1(x)

eϕ(y) ≤ K for all x ∈ T .

Fix x0 ∈ π−1(x). Then y ∈ f−1(x) if and only if there is ω ∈ Λ such that

f0(y) = x0 + ω. Therefore,

Lϕ1(x) =
∑
ω∈Λ

∑
y∈f−1

0 (x0+ω)

eϕ(y) .

If |ω| is big, then y ∈ f−1
0 (x0 + ω) is near a pole b of f0 : T → Ĉ, where we can

write

(3.3) x0 + ω = f0(y) =
Gb(y)

(y − b)qb

with Gb, a holomorphic function defined near b such that Gb(b) �= 0 and where

qb is the multiplicity of the pole b. If we compare here with the series
∑

ω∈Λ |x0+

ω|−(2+εb) convergent for every εb > 0, we get the following sufficient condition

for the transfer operator to be continuous: there is a constant C > 0 such that,

still for y near the pole b,

exp ϕ(y) ≤ C|x0 + ω|−(2+εb) = C

(
|y − b|qb

|Gb(y)|

)2+εb

.

It follows that there is a Hölder continuous function Hb defined near the pole b

such that

ϕ(y) ≤ Hb(y) + (2 + εb)qb log |y − b| near b .

Later on we will need equality here. So we are lead to the following class of

potentials:

Definition 3.1. [Class of Potentials] We will always assume that the potential

ϕ : T \ P0 → R satisfies:

C1: ϕ is Hölder continuous on T \ V (P0) for any neighborhood V (P0) of

P0.
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C2: For every pole b ∈ P0 there is εp > 0 and a Hölder continuous function

Hb such that

ϕ(y) = Hb(y) + (2 + εb)qb log |y − b| near b ,

where qb is the multiplicity of the pole b.

Such a potential will be called summable.

We can now resume the above discussion by:

Proposition 3.2. For every summable potential ϕ the transfer operator Lϕ

is a well defined positive and continuous operator on the space of continuous

functions on the torus T . Since The Julia set Jf is f -invariant, the same

is true for the transfer operator Lϕ acting on the space C(Jf) of continuous

functions on Jf .

4. Distortion and good inverse branches

We start with some definitions: ‖.‖ denotes the sup–norm and ‖ϕ‖E = supx∈E |ϕ(x)|,
E ⊂ T . We will denote as usual by mod(A) the modulus of an annulus A. For

a simply connected bounded domain U we denote

Distortion(U) = R/r,

where R = inf{R > 0 U ⊂ D(z, R)} and r = sup{r > 0 U ⊃ D(z, r)}.

4.1. Selecting good inverse branches. Fix m ≥ 1 an integer and U ⊂
T a topological disk that does not contain any critical value of fm. In our

applications we can always assume that

a: U has a lift U0 ⊂ C, i.e. π|U0
: U0 → U conformal, with U0 ⊂ D(0, r) for

a fixed radius r > 0, and

b: the domain U has a piecewise smooth boundary.

In this situation all the inverse branches

h
(m)
j : U → U

(m)
j ; j ∈ Im ,

of fm are well defined. Before taking further inverse branches and in order

to obtain the distortion control, we first have to replace the image domains

U
(m)
j = h

(m)
j (U) by bigger once as follows:

Lemma 4.1. There are constants K ≥ 1, κ ∈ N, with κ depending only on (the

fixed) radius r > 0, and there are simply connected domains V
(m)
j , j ∈ Im, such

that for all j ∈ Im the following hold:

(1) U
(m)
j ⊂ V

(m)
j ,
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(2) mod
(
V

(m)
j \ U

(m)
j

)
≥ 1

K
,

(3) Distortion(U
(m)
j ) ≤ K,

(4) the family {V (m)
j , j ∈ Im} is of multiplicity at most κ, i.e. any point

z ∈ T is in at most κ sets V
(m)
j .

Proof. Recall that f = π ◦ f0, where f0 : T \ P → C and π : C → T is

the natural projection, and that f0 (respectively f) do have at most d critical

points counted with multiplicities. Let U0 be a lift of U to C coming from item

a) and suppose that U0 ⊂ V0 = D(0, r). For ω ⊂ Λ, we write Uω = U0 + ω and

Vω = V0 + ω. Clearly, there is κ ∈ N (depending only on the fixed r > 0) such

that the family {Vω, w ∈ Λ} is of multiplicity at most κ.

A map h
(m)
j : U → U

(m)
j , j ∈ Im, is the composition of an inverse branch of

π, say π−1
ωj

: U → Uωj
, with one of the inverse branches g−1

j of g = f0 ◦ fm−1.

If Vωj
is without critical values of g, then g−1

j is well defined on Vωj
and it

suffices to put V
(m)
j = g−1

j (Vωj
). A second case which is also easy to handle is

when critical points of g do belong to Vωj
but not to Uωj

. It suffices then to

shrink Vωj
in order to get a simply connected domain that still contains Uωj

but

no critical value of g. Then we can proceed as before and define V
(m)
j = g−1

j (Vωj
).

Notice that such a new choice of Vωj
is only necessary in finitely many cases,

the map g having only finitely many critical values.

Let us consider the remaining third case, namely if there is a critical value

of g in the boundary of Uωj
. This means that for some k ∈ 0, ..., m − 1, the

set fk(U
(m)
j ) does contain a critical points of f . Choose k to be minimal with

this property. Then fk is without critical point in U
(m)
j . We now can choose a

simply connected domain V such that fk(U
(m)
j ) ⊂ V and such that the inverse

of the map fk : U
(m)
j → fk(U

(m)
j ) does extend conromally to V . The image

of V under this inverse gives the set V
(m)
j we look for (in case k = 0 one has

V
(m)
j = V ).

Remark that in this third case only finitely many sets V are chosen. Indeed,

this is due to the fact that the map f has only finitely many critical points and

since for every k ∈ {0, ..., m − 1}, the multiplicity of the family {fk(U
(m)

j ); j ∈
Im} is bounded above by κ. This, together with Koebe’s Distortion Theorem,

immediatley prove the assertions (2) and (3). In order to obtain (4) one possibly

has to shrink the domains V such that

f0 ◦ fm−1−k(V ) ⊂ Vωj
.
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The assertion follows then because the Vω are of multiplicity bounded by κ. �

Lemma 4.2. In the previous setting, there exist, for every n ≥ m, holomorphic

inverse branches

h
(n)
i : U → U

(n)
i ⊂ T ; i ∈ In ,

of fn having the following properties:

(1) For any i ∈ In+1 there is j ∈ In such that f ◦ h
(n+1)
i = h

(n)
j .

(2) There is K > 0 such that, for all n ≥ m and i ∈ In,

Distortion(U
(n)
i ) ≤ K and

|(h(n)
i ◦ fm)′(x)|

|(h(n)
i ◦ fm)′(x′)|

≤ K for all x, x′ ∈ fn−m(U
(n)
i ) .

(3) Fix x ∈ U arbitrary. For n > m, let Hn(x) be the set of y ∈ f−n(x)

such that there exists j ∈ In−1 with h
(n−1)
j (x) = f(y) but h

(n)
j (x) �= y for

all j ∈ In. Then


Hn(x) ≤ κd for all n > m .

Proof. For n = m everything follows from Lemma 4.1. The inductive step goes

as follows:

Let n ≥ m and suppose that the inverse branches h
(n)
i : U → U

(n)
i , n ∈ In,

of fn are constructed such that every h
(n)
i is of the form Ψi,j ◦ h

(m)
j with Ψ :

V
(m)
j → V

(n)
i , U

(n)
i ⊂ V

(n)
i , and fn−m ◦ Ψi,j = id. Write then

f−1(V
(n)
j ) =

⋃
i

Vi,j

with Vi,j, the connected components of f−1(V
(n)
j ). Clearly the family built by all

these sets Vi,j is of multiplicity at most κ. Since f has d critical points, it follows

that at most κd sets Vi,j can contain critical points. Therefore, all but at most

κd inverse branches Ψi,j : V
(n)
j → Vi,j of f defined on the sets Vi,j, j ∈ In, do

exist. The mappings h
(n+1)
j we look for are relabelling of the Ψi,j ◦h

(n)
j . Remark

that each a map h
(n+1)
j again is of the form Ψ ◦ h

(m)
k with Ψ : V

(m)
j → V

(n+1)
i .

From Koebe‘s Theorem and the distortion control of the U
(m)
k in Lemma 4.1 we

finally get (2). The proof is complete. �

Among these inverse branches, only those that shrink exponentially will be

good for our applications. The others have to be controlled. That is the aim of

the next Lemma where we use the previous notation again.
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Lemma 4.3. Let 0 < λ < 1, Em = ∅ and, for n > m, let En be the set of all

j ∈ In such that diam
(
U

(n)
j

)
> Kλ

n−m
2 . Then


En ≤ λ−(n−m) for all n ≥ m.

Proof. The distortion control in the item (2) of Lemma 4.2 gives

l2(U
(n)
j ) ≥ 1

K2
diam(U

(n)
j )2 for all j ∈ In .

The domains U
(n)
j , j ∈ In, being disjoint

1 ≥ l2

( ⋃
j∈En

U
(n)
j

)
=
∑
j∈En

l2(U
(n)
j ) ≥ λn−m
En .

Therefore 
En ≤ λ−(n−m). �

The index set Jn ⊂ In corresponding to the exponential shrinking branches

according to the previous Lemma is defined inductively as follows: set Jm = Im

(because in Lemma 4.3 the set Em = ∅), suppose that Jn ⊂ In is already defined

for some n ≥ m and put then

Jn+1 =
{
j ∈ In+1 ; f ◦ h

(n+1)
j = h

(n)
i for some i ∈ Jn

}
\ En+1 .

Note that for any j ∈ In there is (jn, jn−1, ..., jm) with j = jn and such that

f ◦ h
(k+1)
jk+1

= h
(k)
jk

, k = m, ..., n − 1. Then j ∈ In \ Jn equivalently means that

there is some k ∈ {m + 1, ..., n} such that jk−1 ∈ Jk−1 but jk ∈ Ek.

4.2. Distortion estimation. Along exponentially shrinking inverse branches,

the variation of the function

(4.1) Snϕ =
n−1∑
j=0

ϕ ◦ f j , n ≥ 1 ,

can be controlled uniformly as follows.

Lemma 4.4. Let 0 < λ < 1, m ≥ 1 and U be a topological disk in T that does

not contain any critical value of fm. Then there is A > 0 (depending on λ, m

and the Hölder constants of ϕ but not on U) such that for all x, x′ ∈ U and all

j ∈ Jn, n ≥ m, we have∣∣∣Snϕ
(
h

(n)
j (x)

)
− Snϕ

(
h

(n)
j (x′)

)∣∣∣ ≤ A .
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Proof. Looking at the structure of the inverse images f−1(z) (see the paragraph

following formula (3.1)) one can choose open neighborhoods V1 =
⋃

b∈P0
D(b, r) ⊃

V2 of the poles P0 such that, whenever f−N
I is an inverse branch of fN defined

on some domain Ω ⊂ T , then

f−N
I (Ω) ⊂ T \ V2 or f−N

I (Ω) ⊂ D(b, r) for some pole b ∈ P0 .

Let c, α be Hölder constants that are common to ϕ|T \V2
and to the Hb functions

on D(b, r), b ∈ P0 (cf. condition (C2) of the definition of the class of potentials).

These constants are independent of U .

Call xn = h
(n)
j (x) and xn−i = f i(xn), 0 ≤ i ≤ n and define analogously points

x′
i. Then the definition of the sets Jn yields

(4.2) |xi − x′
i| ≤ Kλ

i−m
2 = K∗λ

i
2 .

Consider first the case when xi, x
′
i are in one of the discs D(b, r), b ∈ P0. Then

|ϕ(xi) − ϕ(x′
i)| ≤ |Hb(xi) − Hb(x

′
i)| + (2 + εb)qb |log(|xi − b|) − log(|x′

i − b|) |
≤ c|xi − x′

i|α + (2 + εb) log
(

|xi−b|
|x′

i−b|

)qb

.

Now, with an appropriate ω ∈ Λ(
|xi − b|
|x′

i − b|

)qb

=
|Gb(xi)|
|Gb(x

′
i)|

|x′
i−1 + ω|

|xi−1 + ω| ,

where we may suppose that Gb is holomorphic and Gb �= 0 on D(b, 2r), cf. (3.3).

Clearly

log

(
|Gb(xi)|
|Gb(x

′
i)|

)
≤ log

(
1 +

∣∣∣∣ |Gb(xi)| − |Gb(x
′
i)|

|Gb(x
′
i)|

∣∣∣∣
)

≤ cb|xi − x′
i|

and

log

( |x′
i−1 + ω|

|xi−1 + ω|

)
≤ |x′

i−1 − xi−1|
|xi−1 + ω| ≤ |x′

i−1 − xi−1| .

Altogether we have, in this case, the estimation:

|ϕ(xi) − ϕ(x′
i)| ≤ c|xi − x′

i|α + (2 + εb)
(
cb|xi − x′

i| + |xi−1 − x′
i−1|
)

≤ Cbλ
α
2

i .

In the other case, namely xi, x
′
i ∈ T \ V2, one gets

|ϕ(xi) − ϕ(x′
i)| ≤ c|xi − x′

i|α ≤ cK∗αλ
α
2

i .

To conclude this proof one just has to add up these estimations for all 0 < i ≤
n. �
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Later on we will need an asymptotically sharper version of Lemma 4.4.

Lemma 4.4’. Let 0 < λ < 1, m ≥ 1 and U be a topological disk in T that does

not contain any critical value of fm. Then, for every ε > 0, there is δ > 0 such

that ∣∣∣Snϕ
(
h

(n)
j (x)

)
− Snϕ

(
h

(n)
j (x′)

)∣∣∣ ≤ ε

for all j ∈ Jn, n ≥ 1 and for all x, x′ ∈ U with σU(x, x′) < δ where

σU(x, x′) = inf{|γ|; γ path in U joining x and x′}

is the internal chord arc distance in U .

Proof. We will prove the following claim from which the statement follows.

Indeed, it suffices then to inject this new estimation in the proof of Lemma 4.4.

Claim 4.5. For every ε > 0 there is δ > 0 such that, whenever x, x′ ∈ U with

σU(x, x′) < δ,

|h(n)
j (x) − h

(n)
j (x′)| ≤ ε diam(U

(n)
j )

for all j ∈ Jn and n ≥ m.

From the construction of the inverse branches and Lemma 4.1 we see that

each branch h
(n)
j is the composition of two mappings, the first one g1 being

an inverse branch of some fk defined on U and the second one g2, an inverse

branch of fn−k this time defined on U ′ = fn−k(U
(n)
j ). As is explained in the

proof of Lemma 4.1, the map g2 is defined on a larger domain V such that

mod(V \ U ′) ≥ 1/K which means that Koebe’s Distortion Theorem applies to

all these maps g2. Moreover, all the possible maps g1 are taken from a finite

set of conformal maps defined on the domain U . Since the boundaries of U and

g1(U) are locally connected, the maps g1 are uniformly continuous with respect

to the internal chordal metrics on U and g1(U). Now taking compositions g2◦g1,

the claim thus follows. �

5. Conformal measures and Pressure

As we have seen in the previous section, if ϕ is a potential from our class then

the transfer operator Lϕ is well defined as a continuous operator of the space of

continuous functions on T . It follows that the map

μ �→
L∗

ϕμ∫
Lϕ1 dμ
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is also continuous on the space of probability measures M(T ). The Schauder-

Tychonoff fixed point theorem applies and gives a measure ν ∈ M(T ) such

that

L∗
ϕν = ρν with ρ =

∫
Lϕ1 dν .

The first equality means that the Radon-Nikodym derivative is given by the

formula
d ν ◦ f

d ν
= ρe−ϕ .

Such a measure is called ρe−ϕ– conformal.

Denker and Urbański [DU1] gave an explicit construction of conformal mea-

sures from which precise information on the number ρ follows. Indeed, conformal

measures constructions in general involve Poincaré series

Σ(α, x) =

∞∑
n=1

e−nαLn
ϕ1(x) =

∞∑
n=1

∑
y∈f−n(x)

exp
(
Snϕ(x) − nα

)
.

For such a series there is a transition parameter:

P (x, ϕ) = lim sup
n→∞

1

n
logLn

ϕ1(x) .

It signifies that Σ(α, x) converges for α > P (x, ϕ) and diverges if α < P (x, ϕ).

Usually P (x, ϕ) is also called the topological pressure of ϕ at x. Notice that

P (x, ϕ) is finite which directly follows from the inequality (3.2). Now, if one

applies the Denker-Urbański method to our situation, then one obtains ([DU1]):

Proposition 5.1. Let x ∈ T . There then exists a ρe−ϕ–conformal measure ν

with log(ρ) = P (x, ϕ). Moreover, this measure ν is without atoms provided that

P (x, ϕ) > sup ϕ .

6. Existence of Gibbs states

6.1. Decomposition of the transfer operator. In this section we adapt the

arguments of [DU2]. They are based on the hypothesis

(6.1) sup ϕ < sup
x∈T

P (x, ϕ) = sup
x∈T

lim sup
n→∞

1

n
logLn

ϕ1(x)

to establish the existence of an Gibbs state.

Remark 6.1. Notice that if the map F is expanding (see Appendix) then all the

inverse branches are good and all the results of the following sections are true

without the hypothesis (6.1)
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Fix a point x0 ∈ T for which

log(σ) := sup ϕ − P (x0, ϕ) < 0

and let ν be a ρe−ϕ–conformal measure with ρ = exp(P (x0, ϕ)) (which exists

and is without atoms because of the Denker-Urbański construction).

Fix σ < λ < 1, denote

α =
μd

1 − σ
+

1

λ − σ
and fix m ≥ 1 such that ασm < 1. Choose then a topological disk U ⊂ T
as in Section 4. So, in particular, U does not contain any critical value of fm

and this disk can be chosen to be dense in T with U ∩ Jf �= ∅ (which implies

ν(U) > 0). Lemmas 4.2 and 4.3 on good inverse branches apply on U and allow

us to decompose the normalized transfer operator

Nϕ = ρ−1Lϕ = e−cLϕ

into

(6.2) N n
ϕ = e−ncLn

ϕ = Gn
ϕ + An

ϕ + Bn
ϕ , n ≥ m ,

where

Gn
ϕψ(x) =

∑
j∈Jn

ψ
(
h

(n)
j (x)

)
exp

{
Snϕ(h

(n)
j (x)) − nc

}
,

Bn
ϕψ(x) =

∑
j∈In\Jn

ψ
(
h

(n)
j (x)

)
exp

{
Sϕ(h

(n)
j (x)) − nc

}

and

An
ϕ = N n

ϕ − Gn
ϕ − Bn

ϕ .

6.2. Behavior of the good part. Let us first make the following observations

on the good part of the operator:

Lemma 6.2. There is c1 ≥ 1 such that

(6.3) Gn
ϕ1(x) ≤ c1Gn

ϕ1(x′) for all x, x′ ∈ U and n ≥ m .

Furthermore,

(6.4) Gn
ϕ1(x) ≤ c1 for all x ∈ U and n ≥ m .

Proof. Assertion (6.3) immediately follows from Lemma 4.4. The second asser-

tion follows from the first one and from the inequality∫
U

Gn
ϕ1 dν ≤

∫
N n

ϕ 1 dν =

∫
1 dν = 1 ,

since this implies the existence of a point x0 ∈ U for which Gn
ϕ1(x0) ≤ 1

ν(U)
. �
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6.3. Estimations for the bad parts. We first handle the part corresponding

to the preimages that cannot be reached by inverse branches.

Lemma 6.3. For every n ≥ 1,

‖An
ϕ1‖U ≤ μdσm+1

n−m−1∑
k=0

σk‖N n−m−1−k
ϕ 1‖ .

Proof. With the notations from Lemma 4.2,

An
ϕ(ψ)(x) = N n

ϕ (ψ)(x) − Gn
ϕ(ψ)(x) − Bn

ϕ(ψ)(x)

=
n∑

k=m+1

∑
y∈Hk(x)

exp{Skϕ(y) − kc}N n−k
ϕ (ψ)(y) .

Therefore, for any n ≥ m and x ∈ U ,

An
ϕ1(x) ≤

n∑
k=m+1


Hk(x)σk‖N n−k
ϕ 1‖ ≤ μdσm+1

n−m−1∑
k=0

σk‖N n−m−1−k
ϕ 1‖

and we are done. �

The corresponding statement for the remaining part is:

Lemma 6.4. For every n > m,

‖Bn
ϕ1‖U ≤ σm+1

λ

n−m−1∑
k=0

(σ

λ

)k

‖N n−m−1−k
ϕ 1‖ .

Proof. The estimation goes as follows. Let n > m and x ∈ U . Then, using

Lemma 4.3, we obtain.

Bn
ϕ1(x) =

n∑
k=m+1

∑
(j = jn, ..., jm)

jk−1 ∈ Jk−1 and jk ∈ Ek

exp{Snϕ(h
(n)
j (x)) − nc}

≤
n∑

k=m+1

∑
i ∈ Ek ,

y = h
(k)
i (x)

exp{Skϕ(y) − kc}N n−k
ϕ (y)

≤
n∑

k=m+1


Ekσ
k‖N n−k

ϕ ‖ ≤ λm
n∑

k=m+1

(σ

λ

)k

‖N n−k
ϕ ‖ .

�
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6.4. The normalized operator is uniformly bounded. .

Recall that σ < λ < 1 and that m ≥ 1 has been chosen such that ασm < 1

where α = μd
1−σ

+ 1
λ−σ

. We further define

c2 = max

{
c1

1 − ασm+1
, ‖N k

ϕ1‖ ; 0 ≤ k ≤ m

}
,

where c1 is the constant from Lemma 6.2.

Proposition 6.5. ‖N n
ϕ 1‖ ≤ c2 for every n ≥ 0.

Proof. We proceed again by induction. Let n > m and suppose ‖N k
ϕ1‖ ≤ c2 for

k = 0, 1, ..., n − 1. Lemmas 6.3 and 6.4 give, for every x ∈ U ,

An
ϕ1(x) + Bn

ϕ1(x) ≤ c2

{
μd

σm+1

1 − σ
+

1

λ − σ
σm+1

}
= ασm+1c2 .

Therefore

N n
ϕ (x) = Gn

ϕ1(x) + An
ϕ1(x) + Bn

ϕ1(x) ≤ c1 + ασm+1c2 ≤ c2

for every x ∈ U , and the proposition follows by density of U in T and continuity

of N n
ϕ 1. �

Remark 6.6. Once found this upper bound c2 for the operators N n
ϕ , we may, in

posteriori, suppose in the sequel that m ≥ 1 has been chosen so big that ασm+1c2

is arbitrarily small. This means that

‖N n
ϕ 1 − Gn

ϕ1‖U = ‖An
ϕ1 + Bn

ϕ1‖U ≤ ασm+1c2

is arbitrarily small.

Proposition 6.7. There is a constant c3 > 0 such that

N n
ϕ 1(x) ≥ c3 for all n ≥ 1 and x ∈ T .

Proof. We may suppose that

(6.5) ‖An
ϕ1 + Bn

ϕ1‖U ≤ 1

4
for all n > m .

Lemma 6.2 says that c1Gn
ϕ1(x) ≥ Gn

ϕ(x′) for all n > m and all x, x′ ∈ U . On

the other hand,
∫
N n

ϕ 1(x) dν(x) = 1 and so N n
ϕ 1(x) ≥ 1 for some x ∈ T . Since

U = T and N n
ϕ 1 is continuous, there is x′ ∈ U such that N n

ϕ 1(x′) ≥ 1/2.

Therefore,

N n
ϕ 1(x) ≥ Gn

ϕ1(x) ≥ 1

c1
Gn

ϕ1(x′)

=
1

c1

(
N n

ϕ 1(x′) −
(
An

ϕ1(x′) + Bn
ϕ1(x′)

) )
≥ 1

4c1
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for all x ∈ U and, again by density and continuity, also for all x ∈ Jf . The

constant we look for is

c3 = min
{ 1

4c1
, inf

x∈Jf

N k
ϕ1(x) ; k = 0, ..., m

}
.

�

6.5. Existence of the Gibbs state.

Theorem 6.8. Let ϕ be a potential from our class, x0 ∈ T such that log(ρ) =

P (x0, ϕ) > sup(ϕ) and ν a ρeϕ–conformal measure. Then there exists a f–

invariant measure μ which is absolutely continuous with respect to ν. Moreover,

the density function h = dμ/dν satisfies c3 ≤ h(x) ≤ c2 for every x ∈ Jf .

Proof. We have to construct a normalized fixed point h of Nϕ. Consider first

h̃(x) = lim inf
n→∞

1

n

n∑
k=1

N k
ϕ1(x) , x ∈ Jf .

Clearly, if hn = lim infn→∞
1
n

∑n
k=1 N k

ϕ1, then

Nϕ(hn) = hn +
1

n

(
N n+1

ϕ 1 −Nϕ1
)

.

Fix x ∈ Jf and choose nj → ∞ such that hnj
(x) → h̃(x). Then Nϕ(hnj

)(x) →
h̃(x).

Let ε > 0 and j ≥ j0 such that Nϕ(hnj
)(x) − h̃(x) < ε. The series∑

y∈f−1(x)

eϕ(y)−c = Nϕ1(x)

being convergent and c3 ≤ hnj
, h̃ ≤ c2, for all j, there are y1, ..., yN ∈ f−1(x)

such that ∣∣∣∣∣Nϕ(h̃)(x) −
N∑

k=1

h̃(yk)e
ϕ(yk)−c

∣∣∣∣∣ < ε .

On the other hand,

ε > Nϕ(hnj
)(x) − h̃(x) >

N∑
k=1

hnj
(yk)e

ϕ(yk)−c − h̃(x) .

Let j1 ≥ j0 such that for all j ≥ j1 and k = 1, ..., N

hnj
(yk)e

ϕ(yk)−c ≥ h̃(yk)e
ϕ(yk)−c − ε/N .
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It follows that

2ε >

N∑
k=1

h̃(yk)e
ϕ(yk)−c − h̃(x) ≥ Nϕ(h̃)(x) − h̃(x) − ε .

Therefore h̃(x) ≥ Nϕ(h̃)(x) for all x ∈ Jf . Equality follows from
∫
Nϕ(h̃) dν =∫

h̃ dν. Put now

h = h̃
/∫

h̃ dν .

Then dμ = h dν defines an f–invariant probability measure having all the re-

quired properties. �

6.6. Pressure.

Proposition 6.9. Let ϕ be a potential of our class such that sup(ϕ) < ‖P (., ϕ)‖.
Then x �→ P (x, ϕ) is constant on T . The common value

P (ϕ) = P (x, ϕ) = lim
n→∞

1

n
logLn

ϕ1(x) for all x ∈ Jf

will be called the topological pressure of ϕ. If m ∈ M(T ) is any te−ϕ–conformal

measure, then log(t) = P (ϕ).

Proof. Let x0 be a point such that P (x0, ϕ) > sup(ϕ). Then we know from

Proposition 6.5 and 6.7 that

(6.6) c3 ≤ ρ−nLn
ϕ1(x) ≤ c2 for all n ≥ 1 and x ∈ T

where ρ = exp(P (x0, ϕ)). Therefore x �→ P (x, ϕ) is constant on T equal to say

P (ϕ).

Consider now m any teϕ–conformal measure. Then L∗
ϕm = tm. Iterating and

integrating this equation gives

log(t) =
1

n
log

∫
Ln

ϕ1 dm for all n ≥ 1 .

Applying (6.6) gives t = ρ = eP (ϕ). �

7. Uniqueness and ergodicity of Gibbs states

Right now we know that for any ρe−ϕ–conformal measure the factor of con-

formality ρ = eP (ϕ).

Theorem 7.1. Let ϕ be a potential from our class. Then there exists a unique

probability measure ν that is eP (ϕ)−ϕ–conformal. Moreover, this measure ν is

ergodic and supported on the conical set: ν(Λc) = 1.
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Remark 7.2. Any invariant measure μ that is absolutely continuous with re-

spect to the unique eP (ϕ)−ϕ–conformal measure ν is also ergodic. Therefore there

is only a unique ergodic invariant measure which has this property. This is the

measure dμ = h dν, that has been obtained in Theorem 6.8, and it will be called

in the sequel the Gibbs state of ϕ.

Proof. We have to show that a eP (ϕ)−ϕ–conformal measure ν has non-zero mass

on the conical set. Ergodicity and uniqueness follow then by known arguments

(see [DMNU] and [McM1]).

We take again the notation of section 5.1 and may suppose that the constants

have been chosen such that

‖An
ϕ1 + Bn

ϕ1‖U ≤ 1

2

c3

c2
, for all n > m ,

with c2, c3 the bounds of the density function h in Theorem 6.8 (cf. Remark

6.6).

For i ∈ Jn, call U
(n)
i = h

(n)
i (U). Then

ν(U
(n)
i ) =

∫
U

exp
(
Snϕ(h

(n)
i (x)) − nc

)
dν(x) ,

where c = P (ϕ). Therefore,

∑
i∈Jn

ν(U
(n)
i ) =

∫
U

∑
i∈Jn

exp
(
Snϕ(h

(n)
i (x)) − nc

)
dν(x)

=

∫
U

Gϕn1(x) dν(x)

=

∫
U

N n
ϕ 1(x) dν(x) −

∫
U

(
An

ϕ1(x) + Bn
ϕ1(x)

)
dν(x) .

But ∫
U

N n
ϕ 1 dν =

∫
N n

ϕ 1f−n(U) dν = ν(f−n(U)) ≥ 1

c2
μ(f−n(U)) ≥ c3

c2
ν(U)

=
1

c2
μ(U) =

c3

c2

because of the invariance of μ and the fact that dμ = h dν with c3 ≤ h ≤ c2

(Theorem 6.8). In conclusion

(7.1)
∑
i∈Jn

ν(U
(n)
i ) ≥ c3

2c2
.



18 VOLKER MAYER AND MARIUSZ URBAŃSKI

The points that are in
⋃

i∈Jn
U

(n)
i for infinitely many n > m are conical. Hence,

E =
⋂
k>m

Ek =
⋂
k>m

⋃
n≥k

( ⋃
i∈Jn

U
(n)
i

)
⊂ Λc .

Since Ek is a decreasing sequence of sets with

ν(Ek) ≥ ν
( ⋃

i∈Jk

U
(k)
i

)
≥ c3

2c2

,

for all k ≥ m, we get

ν(Λc) ≥ ν(E) ≥ c3

2c2
> 0 .

Since the measure ν is ergodic and since the conical set Λc is f–invariant, we

get that ν(Λc) = 1. �

8. Almost periodicity of the transfer operator

Theorem 8.1. For any Φ ∈ C(T ), the Banach space of continuous functions

on the torus T , the family {N n
ϕ Φ}n is equicontinuous.

In particular we see that the sequence of functions hn = 1
n

∑n
k=1 N k

ϕ1, n ≥ 1

forms an equicontinuous family. Arzéla-Ascoli’s Theorem applies and gives this.

Corollary 8.2. The Radon-Nikodym derivative h of the Gibbs state μ with

respect to the eP (ϕ)−ϕ–conformal measure ν is continuous.

Theorem 8.1 means that the normalized transfer operator Nϕ is almost peri-

odic. This leads to the following spectral properties (see [DU2] for details):

Corollary 8.3. The space of complex valued continuous functions C(Jf) de-

composes into a direct sum C(Jf) = C(Jf)u + C(Jf)0 with

C(Jf)u = Ch

is the closure of the linear span of the unitary eigenvectors of Nϕ and

C(Jf)0 =

{
Φ ;

∫
Φ dν = 0

}
.

Moreover, if Φ = Φu + Φ0 with Φu ∈ C(Jf)u and Φ0 ∈ C(Jf)0, then Φu =

(
∫

Φ dν)h.

As an immediate consequence of Theorem 8.1 and of Corollary 8.3, we get

the following (see [DU2]). Denote by B the σ–algebra of Borel sets on Jf .

Corollary 8.4. The dynamical system (f, μ) is metrical exact, the intersection⋂∞
n=0 f−n(B) is the trivial σ–algebra consiting only of sets of measure zero and

one and, consequently, its Rokhlin natural extension is a K–automorphism.



GIBBS AND EQUILIBRIUM MEASURES FO
Proof of Theorem 8.1: Let 0 < ε < 1. We use again the decomposition (6.2) of

the normalized transfer operator N n
ϕ = Gn

ϕ + An
ϕ + Bn

ϕ, n ≥ m, on a topological

disk U that is dense in T and has the properties mentioned sooner. Because of

Remark 6.6, this can be done such that ‖An
ϕ1 + Bn

ϕ1‖U ≤ ε
4‖Φ‖ , for all n ≥ m.

Let ε′ > 0 and choose then δ > 0 according to Lemma 4.4’. Let x, x′ ∈ U

with σU(x, x′) < δ and let i ∈ In. We denote e
(n)
i (x) = exp

(
Snϕ(h

(n)
i (x))−nc

)
.

It follows from Lemma 4.4’ that∑
i∈Jn

|e(n)
i (x) − e

(n)
i (x′)| =

∑
i∈In

(
e
(n)
i (x′)

∣∣∣1 − exp
(
Snϕ(h

(n)
i (x)) − Snϕ(h

(n)
i (x′))

)∣∣∣ )

≤ 2ε′
∑
i∈Jn

e
(n)
i (x′) = 2εGn

ϕ1(x′)

≤ 2ε′c1 for all n ≥ m

by Lemma 6.2. Therefore,

∣∣Gn
ϕΦ(x) − Gn

ϕΦ(x′)
∣∣ =

∣∣∣∣∣
∑
i∈In

Φ(h
(n)
i (x))e

(n)
i (x) − Φ(h

(n)
i (x′))e

(n)
i (x′)

∣∣∣∣∣
≤ ‖Φ‖

∑
i∈In

|e(n)
i (x) − e

(n)
i (x′)| +

∑
i∈In

e
(n)
i (x′)

∣∣∣Φ(h
(n)
i (x)) − Φ(h

(n)
i (x′))

∣∣∣
≤ ‖Φ‖2ε′c1 + c1 sup

i∈In

∣∣∣Φ(h
(n)
i (x)) − Φ(h

(n)
i (x′))

∣∣∣ .

Due to (uniform) continuity of Φ, this expression is arbitrarily small, say less

then ε
2
, provided σU(x, x′) is sufficiently small. Using the decomposition,∣∣N n

ϕ Φ(x) −N n
ϕ Φ(x′)

∣∣ ≤
∣∣(An

ϕ + Bn
ϕ)Φ(x) − (An

ϕ + Bn
ϕ)Φ(x′)

∣∣+ ∣∣Gn
ϕΦ(x) − Gn

ϕΦ(x′)
∣∣

≤ 2‖An
ϕ + Bn

ϕ‖U‖Φ‖ +
ε

2
≤ ε

for any n ≥ m and any x, x′ ∈ U with σU (x, x′) < δ.

The general case easily follows by continuity, by density of U in T and from

accessibility of the points in the piecewise smooth boundary of U . �

9. Bowen’s formula for expanding elliptic functions

In the setting of expanding rational functions it is well known that the Haus-

dorff dimension of the Julia set is the only zero of the pressure function. As an

application of our investigations we here extend this result to expanding elliptic

functions. This section also builds a bridge between the present paper and the

articles [KU1, KU2] written by Kotus and Urbański.



20 VOLKER MAYER AND MARIUSZ URBAŃSKI

In what follows we consider F : C → Ĉ elliptic and expanding, i.e. there are

c > 0 and λ > 1 such that

(9.1) |(F n)′(z)| ≥ cλn for all z ∈ JF and all n ≥ 1

(see Appendix for a equivalent topological characterization of expanding map-

pings). Denote again by f the projection of F to the underlying torus.

9.1. Summable potentials and study of the pressure function. Let

ϕt(z) = −t log |f ′(z)|, z ∈ Jf ,

and let P (t) = P (ϕt) be the corresponding pressure. Consider also

q = max{qb ; b ∈ F−1(∞)},
the maximal multiplicity of F at poles and let θ = 2q

q+1
. A straight forward

calculation gives the following.

Lemma 9.1. For every t > θ, ϕt is a summable potential .

The lower bound for t here turns out to be optimal because of [KU1]:

Lemma 9.2. The limit limt↓θ P (t) = ∞.

Proof. Recall that P (t) = limn→∞
1
n

log
∑

fn(y)=x |(fn)′(y)|−t where x ∈ T can

be chosen arbitrarily. The divergence of this series
∑

fn(y)=x |(fn)′(y)|−θ follows

from the proof of Theorem 1 in [KU1]. Indeed, it has been shown there that

there exists a conformal iterated function system S = {Φj} with generators Φj

being convenable chosen inverse branches of F 2 defined on some disk B ⊂ C

and having the property

Ψ(θ, x) =
∑

j

|Φ′
j(x)|θ = ∞ for all x ∈ B .

Therefore, again with x ∈ B,

1

2n
log

∑
F 2n(y)=x

|(F 2n)′(y)|−θ ≥ 1

2n
log

∑
|ω|=n

|Φ′
ω(x)|θ = ∞ ,

where Φω = Φω1 ◦ ... ◦ Φωn , from which the Lemma follows. �

At this point we can formulate the following Proposition who’s proof now is

standard.

Proposition 9.3. The pressure function P : [θ,∞) → R is continuous, convex,

strictly decreasing with P (t) < 0 for sufficiently big t > θ (in fact limt→∞ P (t) =

−∞). Consequently there is a unique zero δ of this function.
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9.2. Hausdorff dimension of the Julia set. We now are ready to show

Bowen’s formula in this setting:

Theorem 9.4. The Hausdorff dimension of the Julia set of a expanding elliptic

function coincides with the only zero of the pressure function.

Proof. For every t > θ there is a unique eP (t)|f ′|t–conformal measure νt for f .

In particular, for t = δ, the unique zero of t �→ P (t), Theorem 1.1 asserts that

there is a unique (classical) |f ′|δ–conformal measure νδ (usually simply called

δ–conformal measure). Clearly this measure lifts to a Λ–periodic δ–conformal

measure of F , and there is only one such measure up to a multiplicative constant.

On the other hand, it has been shown in [KU2, Theorem 4.1] that the packing

measure Πh, with h = HD(JF ), is such a measure. It follows that Πh = νδ up

to a multiplicative constant and that h = δ, proving the Theorem. �

An immediate consequence of Proposition 9.3 and Theorem 9.4 is

Corollary 9.5. If F is a expanding elliptic function, then

HD(JF ) > θ =
2q

q + 1
.

This is only an alternative point of view of the main Theorem of [KU1] where

this last statement has been proven for all elliptic functions.

10. Variational principle and equilibrium states

Given a summable potential ϕ : T → R denote by Mϕ the space of all Borel

probability f -invariant measures on J(f) for which
∫

ϕdμ > −∞. Since ϕ is

bounded above, this equivalently means that
∫
|ϕ|dμ < ∞, i.e. the function ϕ

is integrable. We shall prove in this section two main results. The first one, the

appropriate form of the variational principle is this.

Theorem 10.1. We have that

P (ϕ) = sup{hμ +

∫
ϕdμ : μ ∈ Mϕ}.

Following the classical definition of equilibrium states, a measure μ ∈ Mϕ is

called an equilibrium state of the potential ϕ if and only if hμ +
∫

ϕdμ = P (ϕ).

Our second main theorem is this.

Theorem 10.2. The Gibbs state μϕ of the summable potential ϕ is a unique

equilibrium state for ϕ.
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The proof of this theorm will follow as an outcome of several auxiliary results,

some of them interesting themselves. If a Borel probability measure μ on J(f) is

f -invariant and the function log+ |f ′| is integrable with respect to the measure

μ, then the integral
∫

log |f ′|dμ is well defined, although its value can be equal

to −∞, is denoted by χμ and is called the Lyapunov characteristic exponent.

We start with the following little observation.

Lemma 10.3. If μ ∈ Mϕ, then the function log+ |f ′| is integrable with respect

to the measure μ.

Proof. From conditions (C1) and (C2) of Definition 3.1 and the behaviour of

the derivative f ′ near poles P0, it follows that there exists a constant C > 0 so

big that log+ |f ′| ≤ C(|ϕ| + 1) and we are done. �

We will also need the following.

Lemma 10.4. If μ ∈ Mϕ, then the family of functions {log+ |f ′ ◦ f j|}∞j=0 is

uniformly integrable with respect to the measure μ. Precisely, for every ε > 0

there exists δ > 0 such that
∫

A
log+ |f ′ ◦ f j |dμ ≤ ε for every Borel set such that

μ(A) ≤ δ.

Proof. Since, by Lemma 10.3, the function log+ |f ′| is integrable , there exists

an open neighbourhood B of P0 such that
∫

B
log+ |f ′|dμ ≤ ε/2. Then M =

|| log+ |f ′|||J(f)\B < ∞. Choose δ = ε
2M

. For every j ≥ 0 and every Borel set A

with μ(A) ≤ δ, we have∫
A

log+ |f ′ ◦ f j|dμ =

∫
A∩f−j(B)

log+ |f ′ ◦ f j|dμ +

∫
A\f−j(B)

log+ |f ′ ◦ f j|dμ

≤
∫

f−j(B)

log+ |f ′ ◦ f j |dμ +

∫
A\f−j(B)

Mdμ

=

∫
B

log+ |f ′|dμ + Mμ(A \ f−j(B))

≤ ε

2
+ Mμ(A)

≤ ε

2
+ M

ε

2M
= ε.

We are done. �

Theorem 10.5. (Ruelle’s Inequality) If μ ∈ Mϕ is ergodic, then hμ(f) ≤
2 max{0, χμ}.
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Proof. Inspecting the proof of Theorem 9.1.1 from [PU], we see that in our

context we get that

(10.1) hμ ≤ 2

∫
1

n
log (c(|(fn)′(x) + 2)|) dμ(x)

for all n ≥ 1 with some universal constant c ≥ 1 depending only on the geometry

of the torus T . Now fix ε > 0. Choose n1 ≥ 1 so large that

2

n1

log c ≤ ε

4
and

1

n1

(2 log 2 + log 3) ≤ ε

8
.

Take δ > 0 corresponding to the number ε/8 according to Lemma 10.4. By

Lemma 10.3 the Lyapunov exponent χμ =
∫

log |f ′|dμ is well defined, and there-

fore, in view of Birkhoff’s Ergodic Theorem, there exist a Borel set A ⊂ J(f)

and an integer n2 ≥ n1 such that μ(A) ≤ δ and |(fk)′(x)| ≤ exp
(
χμ + ε)k

)
for

all x ∈ J(f) \ A and all k ≥ n2. Now fix an arbitrary n ≥ n2 and put

Hn = {x ∈ J(f) : |(fn)′(x)| ≤ 1}.
If x /∈ Hn, then |(fn)′(x)| + 2 ≤ 2|(fn)′(x)|. For all n ≥ n2 we then have∫

1

n
log
(
|(fn)′(x)| + 2)

)
dμ(x)

=

∫
Hn

log
(
|(fn)′(x) + 2)|

)
dμ(x) +

∫
A\Hn

log
(
|(fn)′(x)| + 2)

)
dμ(x)+

+

∫
J(f)\(A∪Hn

log
(
|(fn)′(x)| + 2)

)
dμ(x)

≤ 1

n
log 3μ(Hn) +

∫
A\Hn

log
(
2|(fn)′(x)

)
dμ(x)+

+

∫
J(f)\(A∪Hn

log
(
2|(fn)′(x)|

)
dμ(x)

≤ log 3

n
+

log 2

n
μ(A \ Hn) +

∫
A\Hn

log(|(fn)′(x)|)dμ(x)+

+
log 2

n
μ
(
J(f) \ (A ∪ Hn)

)
+ max{0, χμ + ε}μ

(
J(f) \ (A ∪ Hn)

)
≤ 1

n
(2 log 2 + log 3) +

∫
A

n−1∑
j=0

log+ |f ′ ◦ f j|dμ + max{0, χμ + ε}

≤ ε

4
+ max{0, χμ + ε}.

Thus, using (10.1) and the choice of n1, we get that hμ(f) ≤ ε+max{0, χμ +ε}.
So, letting ε ↘ 0 finishes the proof. �
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Lemma 10.6. If ϕ : T : R is a summable potential, then μϕ ∈ Mϕ.

Proof. In view of conditions (C1) and (C2) from Definition 3.1 and of Theo-

rem 1.1, it suffices to prove that∫
B(b,R)

− log |z − b|dνϕ(z) < +∞

for every pole b on the torus T and some, sufficiently small, R > 0. Indeed, fix

b ∈ T and R > 0 so small that

|f0(z)| � |z − b|−qb and |f ′(z)| � |z − b|−qb−1

for all z ∈ B(0, 2R). Given w ∈ C and 0 ≤ r1 ≤ r2 let

A(w, r1, r2) = {z ∈ C : r1 < |z − w| ≤ r2}

be the corresponding annulus. Using then properties (C1) and (C2) along with

Theorem 1.1, we see that for every k ≥ 0 we have this.

1 � νϕ

(
f
(
A(b, Re−(k+1), Re−k)

))
� 1

qb

eP (ϕ)

l2
(
f
(
A(b, Re−(k+1), Re−k)

)) exp
(
k(2 + εb)qb

)
νϕ

(
A(b, Re−(k+1), Re−k)

)

�
exp
(
kqb(2 + εb)

)
l2
(
A(0, Reqbk, Reqb(k+1))

)νϕ

(
A(b, Re−(k+1), Re−k)

)
� exp(εbqbk)νϕ

(
A(b, Re−(k+1), Re−k)

)
.

Hence νϕ

(
A(b, Re−(k+1), Re−k)

)
� exp(−εbqbk), and therefore∫

B(b,R)

− log |z − b|dνϕ(z) =

∞∑
k=0

∫
A(b,Re−(k+1),Re−k)

− log |z − b|dνϕ(z)

= O(1) +
∞∑

k=0

k exp(−εbqbk) < +∞.

We are done. �

Lemma 10.7. If μ ∈ Mϕ is ergodic and χμ > 0, then there exists a countable

generator for μ that has finite entropy.

Proof. Since μ is ergodic and χμ > 0, an appropriate version of Pesin’s theory

(see [PU], Section 9.2) can be developed to give that for μ-a.e. z (say z ∈ Y1

with μ(Y1) = 1) there exist δ ∈ (0, 1] and C > 0 such that for every integer n

in some set N(z) ⊂ {1, 2, 3, . . .} with density > 1/2 and every 0 ≤ j ≤ n, there
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exists a unique holomorphic inverse branch fn−j

fj(z)
: B(fn(z), 2δ) → T of fn−j

such that fn−j
fj(z)

(
fn(z)

)
= f j(z) and

(10.2) |(f−n
z )′(w)| ≤ C exp

(
−χμ

2
n
)

for all w ∈ B(fn(z), δ). Let K ≥ 1 be the constant coming from Koebe’s

Distortion Theorem associated with the scale 1/2. Since the set P is finite,

there exists β > 0 so small that for every z ∈ J(f) \ P, the map f : T \
P → T restricted to the ball B

(
z, (8K + 1)βdist(z,P)

)
is injective. It was

established in the proof of Lemma 10.6 that the logarithm of the function ρ(z) =

min{δ, βdist(z,P)
)

is integrable. There thus exists (see Lemma 9.3.2 in [PU])

a countable partition α by Borel sets such that Hμ(α) < +∞ and

(10.3) α(z) ⊂ B(z, ρ(z))

for μ-a.e. z ∈ J(f), say z ∈ Y2 ⊂ Y1 with μ(Y2) = 1 and f(Y2) ⊂ Y2. Fix

x ∈ Y2. We shall show that

(10.4) αn(x) ⊂ f−n
x (B(fn(x), δ))

for all n ≥ 0, where αn(x) is the uniqe atom of the refined partition α∨f−1(α)∨
f−2(α) ∨ . . . ∨ f−n(α) containing x. In order to achieve this we shall show by

induction with respect to k = 0, 1, . . . , n that

(10.5) αk(f
n−k(x)) ⊂ f−k

fn−k(x)
(B(fn(x), δ)).

Indeed, for k = 0, this formula follows immediately from (10.3), the definition

of the function ρ, and the inclusion f(Y2) ⊂ Y2. Suppose now that (10.5) holds

for some 0 ≤ k ≤ n − 1, and consider two cases.

Case 10:

diam
(
f
−(k+1)

fn−(k+1)(x)
(B(fn(x), δ))

)
≤ 8Kρ

(
fn−(k+1)(x)

)
.

Then, using (10.3) and the inclusion fn−(k+1)(Y2) ⊂ Y2, we get that

αk(f
n−(k+1)(x)) ∪ f

−(k+1)

fn−(k+1)(x)
(B(fn(x), δ)) ⊂

⊂ B
(
fn−(k+1)(x), ρ

(
fn−(k+1)(x)

)
+8Kρ

(
fn−(k+1)(x)

))
⊂ B

(
fn−(k+1)(x), (8K + 1)ρ

(
fn−(k+1)(x)

)
.

Case 20:

diam
(
f
−(k+1)

fn−(k+1)(x)
(B(fn(x), δ))

)
≥ 8Kρ

(
fn−(k+1)(x)

)
.
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Then, applying Koebe’s 1
4
-Distortion Theorem, the standard version of Koebe’s

Distortion Theorem and, at the end, (10.3) we get that

f
−(k+1)

fn−(k+1)(x)
(B(fn(x), δ)) ⊃ B

(
fn−(k+1)(x), (8K)−1diam

(
f
−(k+1)

fn−(k+1)(x)
(B(fn(x), δ))

)
⊃ B

(
fn−(k+1)(x), ρ

(
fn−(k+1)(x)

)
⊃ α(fn−(k+1)(x)).

Invoking the definition of the function ρ, we see that in any case the function

f restricted to the union αk(f
n−(k+1)(x)) ∪ f

−(k+1)

fn−(k+1)(x)
(B(fn(x), δ)) is 1-to-1.

Hence, using (10.5), we obtain that

αk+1

(
fn−(k+1)(x)

)
= α(fn−(k+1)(x)) ∩ f−1

(
αk(f

n−k(x))
)

⊂ α(fn−(k+1)(x)) ∩ f−1
(
f−k

fn−k(x)
(B(fn(x), δ))

)
⊂ f

−(k+1)

fn−(k+1)(x)
(B(fn(x), δ)).

Thus, the inductive proof of (10.5) is complete, and taking k = n we obtain

(10.4). Taking two distinct points w, z ∈ Y2, we see from (10.4) and (10.2) that

for all n ∈ N(w)∩N(z) (which is an infinite set) large enough, we have αn(z) ⊂
B(z, |w − z|/2) and αn(w) ⊂ B(z, |w − z|/2). In particular αn(z) ∩ αn(w) = ∅
and we are done. �
Combining this lemma along with formulas (8.10) and (10.5) from [Pa], we get

the following.

Lemma 10.8. If μ ∈ Mϕ is ergodic and χμ > 0, then

hμ(f) =

∫
log Jμdμ,

where Jμ is the Jacobian of f with respect to the measure μ. Note that Jμ is

finite out of a set of measure zero.

Now we can easily deduce the following.

Lemma 10.9. If ϕ : T → R is a summable potential then, P (ϕ) = hμϕ +∫
ϕdμϕ.

Proof. It follows from Theorem 1.1 (2) and (3) that Jμϕ = h◦f
h

exp
(
P (ϕ) − ϕ

)
.

Hence

(10.6)∫
log Jμϕdμϕ =

∫
(P (ϕ) − ϕ)dμϕ = P (ϕ) −

∫
ϕdμϕ > P (ϕ) − sup(ϕ) > 0.

Since hμϕ ≥
∫

log Jμϕdμϕ regardless whether a generating partition with finite

entropy exists or not, we thus get that hμϕ > 0. Since by Lemma 10.6 μϕ ∈ Mϕ,

it follows from Ruelle’s inequality (Theorem 10.5) that χμϕ > 0. So, since by
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Theorem 1.1(2), the measure is ergodic, using Lemma 10.8 and (10.6), we obtain

that hμϕ = P (ϕ) −
∫

ϕdμϕ. We are done. �
The next crucial step towards proving the varational principle and towards

identifying the equilibrium states of ϕ is given by the following.

Lemma 10.10. If μ ∈ Mϕ, then hμ +
∫

ϕdμ ≤ P (ϕ) and if μ is an ergodic

equilibrium state for ϕ, then

J−1
μ =

h

h ◦ f
exp(ϕ − P (ϕ))

μ-a.e.

Proof. Suppose that μ ∈ Mϕ is ergodic. Let Lμ : L1(μ) → L1(μ) be the transfer

operator associated to the measure μ. The operator Lμ is determined by the

formula

Lμ(g)(x) =
∑

y∈f−1(x)

J−1
μ (y)g(y).

Using Theorem 1.1(3) (which implies that Nϕ(h) = h) and the f -invariance of

μ, we can write

(10.7)

1 =

∫
1dμ =

∫ Nϕ(h)

h
dμ

=

∫
Lμ

(
h · exp(ϕ − P (ϕ))

J−1
μ · h ◦ f

)
dμ

=

∫
h · exp(ϕ − P (ϕ))

J−1
μ · h ◦ f

dμ ≥ 1 +

∫
log

(
h · exp(ϕ − P (ϕ))

J−1
μ · h ◦ f

)
dμ

= 1 +

∫
log hdμ −

∫
log h ◦ fdμ +

∫
(ϕ − P (ϕ))dμ +

∫
log Jμdμ

= 1 +

∫
ϕdμ − P (ϕ) +

∫
log Jμdμ.

If now hμ = 0, then
∫

log Jμdμ = 0 = hμ. If hμ > 0, then it follows from

Ruelle’s inequality (Theorem 10.5) that χμ > 0. So, hμ =
∫

log Jμdμ in view of

Lemma 10.8. Thus, (10.7) can be continued to give

1 +

∫
ϕdμ − P (ϕ) +

∫
log Jμdμ = 1 +

∫
ϕdμ − P (ϕ) + hμ.

Hence, P (ϕ) ≥ hμ +
∫

ϕdμ and equality holds if and only if h·exp(ϕ−P (ϕ))

J−1
μ ·h◦f = 1

μ-a.e. So, we are done in the ergodic case. In general, inequality P (ϕ) ≥ hμ +∫
ϕdμ follows from the ergodic case and the Ergodic Decomposition Theorem.

We are done. �
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Our last lemma in the sequence is this.

Lemma 10.11. If μ ∈ Mϕ is an ergodic equilibrium state for the summable

potential ϕ, then μ = μϕ.

Proof. In view of Lemma 10.10 we may assume that

(10.8) J−1
μ =

h

h ◦ f
exp(ϕ − P (ϕ))

everywhere throughout the set J(f). Let Y1 be the set established to exist in

the proof of Lemma 10.7. Fix z ∈ Y1 and take an arbitrary z ∈ N(z). Pesin ’s

theory gives in fact more than (10.2), namely that

(10.9)

∣∣∣∣(fn−j
fj(z)

)′
(w)

∣∣∣∣ ≤ C exp
(
−χμ

2
(n − j)

)
for all 0 ≤ j ≤ n and all w ∈ B(fn(z), δ), where fn−j

fj(z) : B(fn(z), δ) → C is the

unique holomorphic inverse branch of fn−j, defined on B(fn(z), δ) and sending

fn(z) to f j(z). A slight obvious modification of of the proof of Lemma 4.4 using

(10.9), gives that

(10.10) |Snϕ
(
f−n

z (w)
)
−Snϕ(z)| ≤ B

with some constant B > 0, all n ∈ N(z) and all w ∈ B(fn(z), δ). It follows from

Koebe’s 1
4
-Distortion Theorem that B(z, 8−1|(fn)′(z)|δ) ⊂ f−n

z

(
B(fn(z), δ)

)
.

Therefore, using (10.10) along with (10.8), we get that

(10.11)
μ
(
B(z, 8−1|(fn)′(z)|δ)

)
≤ eB||h||∞||1/h||∞ exp

(
Snϕ(z) − P (ϕ)n)μ

(
B(fn(z), δ)

)
≤ eB||h||∞||1/h||∞ exp

(
Snϕ(z) − P (ϕ)n).

It follows from Koebe’s Distortion Theorem that

B(z, 8−1|(fn)′(z)|δ) ⊃ f−n
z

(
B(fn(z), (8K)−1δ)

)
,

where K ≥ 1 is the constant coming from Koebe’s Distortion Theorem corre-

sponding to the scale 1/2. Therefore, using Theorem 1.1(2) and (3) (implying

that J−1
μϕ

= h
h◦f exp(ϕ − P (ϕ)) along with (10.10), we get that

μϕ

(
B(z, 8−1|(fn)′(z)|δ)

)
≥

≥ e−B(||h||∞||1/h||∞)−1 exp
(
Snϕ(z) − P (ϕ)n)μϕ

(
B(fn(z), (8K)−1δ)

)
≥ Me−B(||h||∞||1/h||∞)−1 exp

(
Snϕ(z) − P (ϕ)n),

where M = inf{μϕ(B(ξ, (8K)−1δ)) : ξ ∈ J(f)} is positive since supp(μϕ) =

J(f). Combining this formula and (10.11), we get that

μ
(
B(z, 8−1|(fn)′(z)|δ)

)
≤ M−1e2B(||h||∞||1/h||∞)2μϕ

(
B(z, 8−1|(fn)′(z)|δ)

)
.
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Since, by (10.9), limn∈N(z) 8−1|(fn)′(z)|δ = 0 and since μ(Y1) = 1, a strightfor-

ward argument, using Besicowic covering theorem, gives that μ is absolutely

continuous with respect to μϕ. Since both measures μ and μϕ are ergodic, we

thus get that μ = μϕ. �
Since, by the Ergodic Decomposition Theorem, the uniqueness of equilibrium

states is equivalent to the uniqueness of ergodic equilibrium states, Theorema 10.1

and 10.2 follow now from the first part of Lemma 10.10, from Lemma 10.9 and

Lemma 10.11.
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