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Abstract. Recall that a Borel probability measure µ on IR is called extremal if µ-almost
every number in IR is not very well approximable. In this paper, we prove extremality (and
implying it the exponentially fast decay property (efd)) of conformal measures induced by
1-dimensional finite parabolic iterated function systems. We also investigate the doubling
property of these measures and we estimate from below the Hausdorff dimension of the limit
sets of such iterated systems.

1. Introduction

This paper is about not very well approximable and badly approximable numbers occuring
in the limit set of a 1-dimensional finite parabolic iterated function system. A point x ∈ IR
is called very well approximable if there exist δ > 0 and infinitely many integers p, q ∈ ZZ,
q ≥ 1, such that

|qx− p| ≤ q−(1+δ).

It is a classical result that the set of all very well approximable numbers has the Lebesgue
measure zero but the Hausdorff dimension equal to 1. Thus the natural question arises about
other measures. To be more precise, a Borel measure µ on IR is called extremal if µ-almost
every number in IR is not very well approximable. Barak Weiss has provided in [10] a nice
sufficient condition, which we call exponentially fast decay (efd) (see the beginning of Section 3
for its definition) for a Borel probability measure on IR to be extremal. We will use this result
frequently. We have originated in [8] to study the extremality property of conformal measures
of 1-dimensional regular iterated function systems with special attention paid to the systems
generated by the ordinary continued fraction algorithm. For the corresponding results about
multi-dimensional systems see [2], [1] and [9] for example. In this paper we continue the topic
of 1-dimensional systems focusing this time on finite parabolic iterated function systems. Our
ultimate result here, Theorem 5.1, is that the conformal measure of every 1-dimensional finite
parabolic iterated function system satisfies the (efd) property, and is consequently extremal.

The second leading theme of this paper concerns badly approximable numbers. Recall that
a number x ∈ IR is badly approximable if there is C > 0 such that for all p ∈ ZZ and q ∈ IN ,
we have that ∣∣∣∣∣x− p

q

∣∣∣∣∣ ≥ c

q2
.

D. Kleinbock and Barak Weiss provided in [1] a very useful tool to estimate from below the
Hausdorff dimension of the set of badly approximable points lying in the topological support
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of a Borel probability measure. Let us describe this tool in our special 1-dimensional context.
Following [2] we say that a Borel probability measure µ on IR is absolutely decaying if there
exist a constant C > 0 and α > 0 such that for all x, y ∈ IR and all r, ε > 0 it holds

µ
(
B(x, r) ∩B(y, εr)

)
≤ Cεαµ(B(x, r)).

The measure µ is said to satisfy the doubling (Federer) property provided that there is a
constant F > 0 such that

µ(B(x, 2r)) ≤ Fµ(B(x, r))

for every x ∈ IR and every r > 0. Finally, given s > 0 the measure µ is said to be s-upper
geometric if

µ(B(x, r)) ≤ Grs

for some constant G > 0, all x ∈ IR and all r > 0. The result (in our context) of of Kleinbock
and Weiss from [1] is given by the following.

Theorem 1.1. If a Borel probability measure µ on IR is absolutely decaying, s-upper geo-
metric and satisfies the doubling property, then the Hausdorff dimension of the set of badly
approximable points lying in the topological support of the measure µ is greater than or equal
to s.

In Section 6 we introduce the concept of extendable 1-dimensional finite parabolic iterated
function systems and we prove in Section 7 that the Hausdorff dimension of the set of badly
approximable points lying in the limit set of such a system is greater than or equal to h +
pS(h− 1) > 0, where h ∈ (0, 1] is the Hausdorff dimension of the limit set and pS > 0 is the
parameter describing the local behavior of our system around parabolic points. The idea of the
proof is to verify the assumptions of Theorem 1.1 for the h-conformal measure m. And indeed,
the absolute decaying property of m is a rather easy consequence of the (efd) property and
the doubling property. That the conformal measure m is h + pS(h− 1)(> 0)-upper geometric
follows easily from [7]. The issue is the doubling property, which is interesting itself. The
doubling property of conformal measures of 1-dimensional systems was studied in [5]. Here,
we provide at the beginning of Section 4 a general sufficient condition for the conformal
measure of a 1-dimensional iterated function system to satisfy the doubling property, the
condition weaker that those from [5]. As we have already indicated we introduce in Section6
the concept of extendable 1-dimensional finite parabolic iterated function systems, which
repalaces the annoying super strong open set condition from [5], and we ultimately prove that
each extendable 1-dimensional finite parabolic iterated function system satisfies the doubling
property.
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2. Prelimanaries from Conformal IFS

Our setting is the following. Let X be a compact subset of a Euclidean space IRd with
nonempty interior such that the boundary of X has no isolated points. We consider a count-
able family of conformal maps φi : X → X, i ∈ I, where I has at least two elements, satisfying
the following conditions.

(1) (Open Set Condition) φi(Int(X)) ∩ φj(Int(X)) = ∅ for all i 6= j.
(2) |φ′i(x)| < 1 everywhere except for finitely many pairs (i, xi), i ∈ I, for which xi is

the unique fixed point of φi and |φ′i(xi)| = 1. Such pairs and indices i will be called
parabolic and the set of parabolic indices will be denoted by Ω. All other indices will
be called hyperbolic.

(3) (extension) There exist an open connected neighbourhood V of X and s < 1 such
that ∀n ≥ 1 ∀ω = (ω1, ..., ωn) ∈ In if ωn is a hyperbolic index or ωn−1 6= ωn, then φω

extends conformally to V , maps V into itself and ||φ′ω|| ≤ s.
(4) If i is a parabolic index, then

⋂
n≥0 φin(X) = {xi} (Thus, the diameters of the sets

φin(X) converge to 0.)
(5) (Cone Condition) There exist α, l > 0 such that for every x ∈ ∂X ⊂ IRd, there exists

an open cone Con(x, ux, α, l) ⊂ Int(X) with vertex x and a central angle of Lebesgue
measure α, where Con(x, ux, α, l) = {y : 0 < (y − x, ux) ≤ cos α||y − x|| ≤ l} and
||ux|| = 1.

(6) ∃s < 1 ∀n ≥ 1 ∀ω ∈ In if ωn is a hyperbolic index or ωn−1 6= ωn, then ||φ′ω|| ≤ s.
(7) (Bounded Distortion Property) ∃K ≥ 1 ∀n ≥ 1 ∀ω = (ω1, ..., ωn) ∈ In ∀x, y ∈ V if ωn

is a hyperbolic index or ωn−1 6= ωn, then

|φ′ω(y)|
|φ′ω(x)|

≤ K.

(8) There are constants L ≥ 1 and α > 0 such that∣∣∣|φ′i(y)| − |φ′i(x)|
∣∣∣ ≤ L||φ′i||(||y − x||)α,

for every i ∈ I and every pair of points x, y ∈ V .

Call a finite word ω = ω1ω2 . . . ωn−1ωn hyperbolic if ωn is a hyperbolic index or ωn−1 6= ωn.
As an esasy consequence of (7) and (8) we get the following strngtshening of (8).

(9) (Strong Bounded Distortion Property) For every ε > 0 there exists δ > 0 such that
for every hyperbolic word ω, every x ∈ X and every y ∈ B(x, δ), we have

|φ′ω(y)|
|φ′ω(x)|

≤ 1 + ε.

The system S = {φi : i ∈ I} is called a conformal iterated function system abbreviated as
conformal IFS. If Ω = ∅, the system S is called hyperbolic and if Ω 6= ∅, it is called parabolic.
By I∗ we denote the set of all finite words with alphabet I and by I∞ all infinite sequences
with terms in I. It follows from (3) that for every hyperbolic word ω, φω(V ) ⊂ V . For each
ω ∈ I∗ ∪ I∞, we define the length of ω by the uniquely determined relation ω ∈ I |ω|. If
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ω ∈ I∗ ∪ I∞ and n ≤ |ω|, then by ω|n we denote the word ω1ω2 . . . ωn. In [MU4], we proved
that limn→∞ sup|ω|=n{diam(φω(X))} = 0. So, the map π : I∞ → X, π(ω) =

⋂
n≥0 φω|n(X), is

uniformly continuous. Its range
J = JS = π(I∞),

the main object of our interest in this paper, is called the limit set of the system S. For every
integer q ≥ 1, we denote

Sq = {φω : ω ∈ Iq}.
Of course, JSq = JS and sometimes in the sequel it will be more convenient to consider an
appropriate family of iterates Sq of S rather than S itself. If d ≥ 3, we put pi = 1 for all
i ∈ Ω. If d = 2 and i ∈ Ω, then there are pi ∈ {1, 2, 3, . . . }, a ∈ CI \ {0} and an ∈ CI for every
n ≥ pi + 2 such that either

φi(z) = z +a(z−xi)
pi+1 +

∞∑
n=pi+2

an(z−xi)
n or φi(z) = z +a(z − xi)

pi+1 +
∞∑

n=pi+2

an(z − xi)
n

on a sufficiently small neighbourhood of xi ∈ CI. If d = 1, we assume that for every i ∈ Ω
there exist pi ∈ (0, +∞) and a > 0 such that

φi(x) = x− asgn(x− xi)|x− xi|pi+1 + o
(
|x− xi|pi+1

)
. (2.1)

Let
h = HD(JS)

be the Hausdorff dimension of the limit set JS. A Borel probability measure m on J is called
h-conformal if and only if

m(φi(A)) =
∫

A
|φ′i|hdm

for every Borel set A ⊂ X. If an h-conformal measure m exists, the system S is called regular
and the measure m is unique. The following result has been proved in [7] in the case when
d = 1 and in [4] in the case when d ≥ 2.

Theorem 2.1. If S is a finite parabolic IFS, then the system S is regular and, consequently,
an h-conformal measure for S exists. In addition

h > max

{
pi

pi + 1
: i ∈ Ω

}
.

Given two sets A, B ⊂ IRd let

dist(A, B) = inf{||y − x|| : x ∈ A, y ∈ B}
and

Dist(A, B) = sup{||y − x|| : x ∈ A, y ∈ B}
The formulas below have been proved in [4] assuming that d ≥ 2. If d = 1, these can be easily
derived from formulas established in [7]. Here they are. There exist a constant Q ≥ 1 and an
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integer q ≥ 0 such that for every parabolic index i ∈ I, every j ∈ I \ {i}, and all n, k ≥ 1 we
have that

Q−1n
− pi+1

pi ≤ inf
X
{||φ′inj(x)||}, ||φ′inj||, diam(φinj(X)) ≤ Qn

− pi+1

pi , (2.2)

Q−1n
− 1

pi ≤ dist(xi, φinj(X)) ≤ Dist(xi, φinj(X)) ≤ Qn
− 1

pi , (2.3)

Dist(φinj(X), φikj(X)) ≤ Q

∣∣∣∣min{k, n}−
1
pi − (max{k, n}+ 1)

− 1
pi

∣∣∣∣ (2.4)

and, furthermore, if |n− k| ≥ q, then

dist(φinj(X), φikj(X)) ≥ Q|n−
1
pi − k

− 1
pi |. (2.5)

These formulas along with Theorem 2.1 are sufficient for all the considerations in the last
section of [4] to go through regardless whether d = 1 or d ≥ 2. A convenient tool to study
limit sets of parabolic iterated function systems and corresponding conformal measures is the
hyperbolic (see Theorem 5.2 in [3]) system S∗ associated with S. The system S∗ is given by

S∗ = {φinj : n ≥ 1, i ∈ Ω, i 6= j} ∪ {φk : k ∈ I \ Ω}.
Thus, I∗, the countable set of indices or letters for the system S∗ is

I∗ = {inj : n ≥ 1, i ∈ Ω, i 6= j} ∪ {k : k ∈ I \ Ω}.
This system was described and analyzed in [3]. The limit sets generated by the system S∗

and S differ only by a countable set. If a parabolic system S is regular, in particular if it is
finite, then the h-conformal measure m for S is obviously h-conformal for S∗.

3. Extremality and (efd) property for regular 1-dimensional systems

We have proved in [8] the following proposition.

Proposition 3.1. Let (X, ρ) be a metric space and let µ be a Borel probability measure on
X. Then the following two conditions are equivalent.

(a)
∃(α ∈ (0, 1)) ∃(β > 1)∃(ξ > 0)∀(x ∈ X)∀(r ≤ ξ)

µ(B(x, r)) ≤ αµ(B(x, βr)).

(b) There exists a Borel set Y ⊂ X with µ(Y ) = 1 such that the condition (a) is satisfied
with X replaced by Y .

Any Borel probability measure satisfying condition (a) or, equivalently, condition (b) of Propo-
sition 3.1, was said in [8] to satisfy the exponentially fast decay (efd) property. The significance
of this property, though interesting itself, results from the following fact, essentially proven
in [10] and crucial for our approach.
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Theorem 3.2. (B. Weiss) Every Borel probability measure on IR satisfying the (efd) property
is extremal.

For every x ∈ IR and r > 0 put

B+(x, r) = B(x, r) ∩ [x, +∞) and B−(x, r) = B(x, r) ∩ (−∞, x].

We prove in this section the following general condition for the conformal measure of a 1-
dimensional regular system to satisfy the (efd) property.

Theorem 3.3. Suppose that the 1-dimensional system S = {φi}i∈I is regular and denote by
m the corresponding h-conformal measure. Assume that there exist four real constants: γ ≥ 1,
β > 1, α ∈ (0, 1), κ ∈ (0, min{dist(X, ∂V ), |X|}), and a finite set F ⊂ I such that

m(B(x, r)) ≤ αm(B(x, βr)) (3.1)

for all i ∈ I \ F , all x ∈ φi(J) and all r ∈ [γ||φ′i||, κ]. Then the h-conformal measure m
satisfies the (efd) property and is consequently extremal.

Proof. Fix an integer s ≥ 0 so large that 3Khαs < 1. A straightforward induction gives
that

m(B(x, r)) ≤ αsm(B(x, βst)) (3.2)

for all i ∈ I \ F , all x ∈ φi(J) and all r ∈ [γ||φ′i||, β−sκ]. Since supp(m) = J , we have that
Q := inf{m(B(x, κ)) : x ∈ J} > 0 and, since the measure m has no atoms, there exists

θ ∈
(
0, K−1 min{1, κ, |X|}

)
so small that

m(B(x, Kθ)) ≤ αsQ (3.3)

for all x ∈ J . Fix now x ∈ J and r ∈ (0, θ). Write x = π(ω), where ω ∈ I∞, and let n ≥ 0 be
the least integer such that ||φ′ω|n|| ≤ θ−1r. Then n ≥ 1 and

||φ′ω|n−1
|| > θ−1r. (3.4)

Consequently

γθ−1Kr||φ′ω|n−1
||−1 ≥ γθ−1r||φ′ω|n||

−1||φ′ωn
|| ≥ γ||φ′ωn

|| (3.5)

and

Kr||φ′ω|n−1
||−1 < Kθ < κ ≤ dist(X, ∂V ). (3.6)

In view of (3.4) and the choice of θ, we get that

|φω|n−1(X)| ≥ K−1||φ′ω|n−1
|||X| ≥ K−1θ−1|X|r > r.
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Hence, the set φω|n−1(X) contains at least one side of the ball B(x, r). So, we may assume
without loss of generality that φω|n−1(X) ⊃ B+(x, r). Combining this with (3.6), we see that

φω|n−1

(
X ∩B

(
π(σn−1(ω), Kr||φ′ω|n−1

||−1
))

= φω|n−1(X) ∩ φω|n−1

(
B

(
π(σn−1(ω), Kr||φ′ω|n−1

||−1
))

⊃ B+(x, r). (3.7)

Hence, assuming that γθ−1βsKr||φ′ω|n−1
||−1 < κ, using (3.5) along with the fact that π(σn−1(ω) ∈

φωn(J) and also (3.2), we get that

m(B+(x, r)) ≤ m
(
φω|n−1

(
X ∩B

(
π(σn−1(ω)), Kr||φ′ω|n−1

||−1
)))

=
∫

X∩B

(
π(σn−1(ω)),Kr||φ′

ω|n−1
||−1

) |φ′ω|n−1
|hdm

≤ ||φ′ω|n−1
||hm

(
B

(
π(σn−1(ω)), Kr||φ′ω|n−1

||−1
))

≤ ||φ′ω|n−1
||hm

(
B

(
π(σn−1(ω)), γθ−1Kr||φ′ω|n−1

||−1
))

≤ αs||φ′ω|n−1
||hm

(
B

(
π(σn−1(ω)), βsγθ−1Kr||φ′ω|n−1

||−1
))

≤ Khαsm
(
φω|n−1

(
B

(
π(σn−1(ω)), βsγθ−1Kr||φ′ω|n−1

||−1
)))

≤ Khαsm
(
B(x, βsγθ−1Kr)

)
.

(3.8)

If, on the other hand, γθ−1βsKr||φ′ω|n−1
||−1 ≥ κ, then using (3.3), (3.6) and (3.7), we obtain

m
(
B(x, βsγθ−1Kr)

)
≥ m

(
φω|n−1

(
B

(
π(σn−1(ω)), κ

)))
≥ K−h||φ′ω|n−1

||hm
(
B

(
π(σn−1(ω)), κ

))
≥ K−hα−s||φ′ω|n−1

||h
(
B

(
π(σn−1(ω)), Kθ

))
≥ K−hα−sm

(
φω|n−1

(
B

(
π(σn−1(ω)), Kθ

)
∩X

)))
≥ K−hα−sm

(
φω|n−1

(
B

(
π(σn−1(ω)), Kr||φ′ω|n−1

||−1
)
∩X

))
≥ K−hα−sm(B+(x, r)).

In any case, (3.8) always holds. Now let y ∈ J be the infimum of all z ∈ B−(x, r) for which
(3.8) holds with x replaced by z. Since the measure m has no atoms, (3.8) also holds for y.
If J ∩ (x− r, y) = ∅, then B(x, r) ∩ J = J ∩ (B+(y, r) ∪B+(x, r)), and consequently

m(B(x, r) ≤ m(B+(y, r)) + m(B+(x, r))

≤ Khαs
(
m

(
B(y, βsγθ−1Kr)

)
+ m

(
B(x, βsγθ−1Kr)

))
≤ 2Khαsm

(
B

(
x, (1 + βsγθ−1K)r

))
.

If J ∩ (x− r, y) 6= ∅, then set w = sup(J ∩ (x− r, y)). There then exists an infinite sequence
{wk}∞k=1 of points (not necessarily distinct) in J ∩ (x − r, y) converging to w such that for
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every k ≥ 1 the formula (3.8) is satisfied with B+(x, r) replaced by B−(wk, r). Since m is
atomless, (3.8) therefore holds also for B+(x, r) replaced by B−(w, r). Since J ∩ B(x, r) ⊂
B(w, r) ∪B+(y, r) ∪B+(x, r), we thus get

m(B(x, r)) ≤ m
(
B−(w, r) ∪B+(y, r) ∪B+(x, r)

)
≤ Khαs

(
m

(
B(w, βsγθ−1Kr)

)
+ m

(
B(y, βsγθ−1Kr)

))
+ m

(
B(x, βsγθ−1Kr)

)
≤ 3Khαsm

(
B

(
x, (1 + βsγθ−1K)r

))
.

We are done.

4. The Doubling Property for Regular 1-Dimensional Systems

A Borel probability measure ν in a metric space Y is said to satisfy the doubling (Federer)
property provided that there exists a constant C ≥ 1 such that for every x ∈ Y and every
radius r > 0 we have that ν(B(x, 2r)) ≤ Cν(B(x, r)). In [5] (see Theorem 2.1) we have
provided a sufficient condition for the h-conformal measure of a regular iterated function
system to satisfy the doubling property. In here, in the setting of 1-dimensional systems, we
want to get rid of this rather restrictive and annoying condition replacing it by condition (a)
in the next proposition. In order to formulate it we need one definition. Given a conformal
iterated function system S = {φi : X → X}i∈I , X ⊂ V , a pair (Y, W ) is called S-eligible
provided that the following conditions are satisfied.

(a) Y ⊂ X is a compact connected set and W ⊂ V is an open connected set.
(b) Y ⊂ W .
(c) φi(Y ) ⊂ Y and φi(W ) ⊂ W for all i ∈ i.

Obviously S ′ = {φi : Y → Y }i∈I , Y ⊂ W , is a conformal iterated function system, JS′ = JS,
and conformal measures for S and S ′ (if at least one exists) coincide. S ′ is called an eligible
version of S. Let a and b be respectively the left hand endpoint of Y and the right hand
endpoint of Y . We shall prove the following.

Proposition 4.1. Suppose that S = {φi}i∈I is a regular 1-dimensional iterated function
system and denote by m the corresponding h-conformal measure. Suppose also that there
exist an S-eligible pair (X, V ) and constants γ ≥ 1, ρ ∈ (0, dist(X, ∂V ) and C > 0 with the
following properties:

(a) ∀(ω ∈ I∗)∀(r ∈ (0, ρ)

m(φω(B+(b, r))) ≤ Cm(φω(B−(b, r))) and m(φω(B−(a, r))) ≤ Cm(φω(B+(b, r))).

(b) ∀(i ∈ I)∀(x ∈ φi(J)) m
(
B

(
x, 2γdiam(φi(X)

))
≤ C||φ′i||h.

(c) ∀(i ∈ I)∀(x ∈ φi(J))∀(r ≥ diam(φi(X)))) m(B(x, 2r)) ≤ Cm(B(x, r)).

Then the measure m satisfies the doubling property.
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Proof. It follows from the Strong Bounded Distortion Property that there exists R ∈ (0, ρ)
such that for all ω ∈ I∗, all x ∈ X, and all y ∈ B(x, 2R), we have that

3

4
≤ |φ′ω(y)|
|φ′ω(x)|

≤ 4

3
. (4.1)

Fix now an arbitrary point x ∈ J and radius r ∈ (0, R/2). Write x = π(ω), ω ∈ I∞. There

then exists the least n ≥ 0 such that 2r||φ′ω|n||
−1 < R. Then B

(
π(σn(ω)), 2r||φ′ω|n||

−1
)
⊂ V ,

and it follows from (4.1) that

φω|n

(
B

(
π(σn(ω)),

3

4
r||φ′ω|n||

−1
))
⊂ B(x, r).

Hence,

m(B(x, r)) ≥
(

3

4

)h

||φ′ω|n||
hm

(
B

(
π(σn(ω)),

3

4
r||φ′ω|n||

−1
))

. (4.2)

Also

φω|n

(
B

(
π(σn(ω)),

3

2
r||φ′ω|n||

−1
))
⊂ B

(
x,

9

8
r
)
. (4.3)

Since 2r||φ′ω|n||
−1 < R, it follows from condition (a) that

m
(
φω|n

(
B

(
π(σn(ω)),

3

2
r||φ′ω|n||

−1
)))

≤ (1 + C)m
(
φω|n

(
X ∩B

(
π(σn(ω)),

3

2
r||φ′ω|n||

−1
)))

.

Therefore, applying (4.3), we get that

m
(
B

(
x,

9

8
r
))
≤ (1 + C)

(
4

3

)h

||φ′ω|n||
hm

(
X ∩B

(
π(σn(ω)),

3

2
r||φ′ω|n||

−1
))

= (1 + C)
(

4

3

)h

||φ′ω|n||
hm

(
X ∩B

(
π(σn(ω)),

3

2
r||φ′ω|n||

−1
))

. (4.4)

It follows from minimality of n ≥ 0 that 2r||φ′ω|n+1
||−1 ≥ R. So,

3

4
r||φ′ω|n||

−1 ≥ 3

8
R||φ′ω|n||

−1||φ′ω|n+1
|| ≥ 3

8
K−1R||φ′ωn+1

||. (4.5)

Suppose first that
3

4
r||φ′ω|n||

−1 ≥ γdiam
(
φωn+1(X)

)
.

Since π(σn(ω)) = φωn+1(π(σn+1(ω))), it therefore follows from item (c) that

m
(
B

(
π(σn(ω)),

3

2
r||φ′ω|n||

−1
))
≤ Cm

(
B

(
π(σn(ω)),

3

4
r||φ′ω|n||

−1
))

.

Hence, combining this along with (4.4) and (4.2), we obtain

m
(
B

(
x,

9

8
r
))
≤ C(1 + C))

(
4

3

)2h

m(B(x, r)). (4.6)
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Looking at (4.5) we may now assume that

3

8
K−1R||φ′ωn+1

|| ≤ 3

4
r||φ′ω|n||

−1 ≤ γdiam
(
φωn+1(X)

)
. (4.7)

Using the right-hand side of this formula and applying (4.4) along with item (b), we obtain

m
(
B

(
x,

9

8
r
))
≤ (1 + C)

(
4

3

)h

m
(
B

(
π(σn(ω)), 2γdiam

(
φωn+1(X)

)))
≤ C(1 + C)

(
4

3

)h

||φ′ω|n||
h||φ′ωn+1

||h.
(4.8)

Since supp(m) = J , the number

M = inf
{
m

(
B(

(
z,

3R

8K

))
: z ∈ J

}
is finite. Now using the left-hand side of (4.7) and (4.2), we get that

m(B(x, r)) ≥
(

3

4

)h

||φ′ω|n||
hm

(
B

(
π(σn(ω)),

3

8
K−1R||φ′ωn+1

||
))

≥
(

3

4

)h

||φ′ω|n||
hm

(
φωn+1

(
B

(
π(σn+1(ω)),

3R

8K

)))
≥

(
3

4K

)h

||φ′ω|n||
h||φ′ωn+1

||hm
(
B

(
π(σn+1(ω)),

3R

8K

))
≥ M

(
3

4K

)h

||φ′ω|n||
h||φ′ωn+1

||h.

Along with (4.8), this gives that

m
(
B

(
x,

9

8
r
))
≤ C(1 + C)M−1

(
16K

9

)h

m(B(x, r)).

This inequality and (4.6) complete the proof.

5. Extremality and the (efd) Property for 1-Dimesional Parabolic Iterated
Function Systems

The result of this section, and one of the two main results of the whole paper, is the following.

Theorem 5.1. The h-conformal measure of a finite 1-dimensional parabolic iterated function
system satisfies the (efd) property, and is consequently extremal.

Proof. Let S = {φi : X → X}i∈I be our parabolic system, and let m be the corresponding
conformal measure. The idea of the proof is to check that the assumptions of Theorem 3.3
are satisfied for the associated hyperbolic system S∗. Since I is finite, the set of hyperbolic
elements from I in I∗ is also finite, and it is therefore sufficient to verify (3.1) for the maps
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of the form φjki, where i, j ∈ I, i 6= j, j is a parabolic element and k ≥ 2 is an integer which
will be assumed appropriately large in the course of the proof. Fix γ = 2 max{1, |X|}. Fix
then i and j as in the previous sentence, x ∈ φjki(X), and r ∈ [γ||φ′jki||, κ], where κ > 0
will be assume sufficiently small in the course of the proof and γ ≥ 1 like k will be assumed
appropriately large in the course of the proof. Let

a = min{l ≥ 0 : B(x, r) ∩ φjli(X) 6= ∅}, b = sup{l ≥ 0 : B(x, r) ∩ φjli(X) 6= ∅}
and

c = min{l ≥ 0 : B(x, βr) ⊃ φjli(X)}, d = sup{l ≥ 0 : B(x, βr) ⊃ φjli(X)}.
Assume without loss of generality that the (parabolic) fixed point of the parabolic map φj is
equal to 0 and that φji(X) ⊂ (0, +∞). Put p = pj. Observe that if k ≥ 2 and γ are large
enough, then

a−
1
p � x + r and c−

1
p � x + βr. (5.1)

Iff x− r > 0 or x− βr > 0, then respectively

b−
1
p � x− r and d−

1
p � x− βr. (5.2)

Now, the Mean Value Theorem produces three points z ∈ (x − r, x + r), y ∈ (x − βr, x − r)
and w ∈ (x + r, x + βr) such that

(x + r)(p+1)h−p − (x− r)(p+1)h−p � rz(p+1)(h−1),

(x− r)(p+1)h−p − (x− βr)(p+1)h−p � ry(p+1)(h−1),

(x + βr)(p+1)h−p − (x + r)(p+1)h−p � rw(p+1)(h−1).

(5.3)

The choice of integers a, b, c, d along with (5.1) gives us that

m(B(x, r)) �
b∑

l=a

||φ′jli||h �
b∑

l=a

l−
p+1

p
h � a

p−(p+1)h
p − b

p−(p+1)h
p

� (x + r)(p+1)h−p − (x− r)(p+1)h−p

(5.4)

and

m(B(x, βr) \B(x, r)) = m((x− βr, x− r) ∪ (x + r, x + βr)) �
a∑

l=c

||φ′jli||h +
d∑

l=b

||φ′jli||h

� c
p−(p+1)h

p − a
p−(p+1)h

p + b
p−(p+1)h

p − d
p−(p+1)h

p
(5.5)

Now observe that verifying formula (3.1) is equivalent to verifying the formula

m(B(x, βr) \B(x, r)) � m(B(x, r)).

In order to do it consider two cases.

Case 10: x− βr > 0.
Using then (5.4) and (5.3), we get

m(B(x, r)) � rz(p+1)(h−1) � r(x− r)(p+1)(h−1).
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Using in turn (5.5), (5.3), and (5.2), we obtain

m(B(x, βr) \B(x, r)) � rw(p+1)(h−1) − (x− r)(p+1)h−p + (x− r)(p+1)h−p − (x− βr)(p+1)h−p

� ry(p+1)(h−1) � r(x− r)(p+1)(h−1).

Hence, we are done in this case.

Case 20: x− βr ≤ 0:
Then x + r ≤ (1 + β)r and x + βr ≤ 2βr. Thus, in view of (5.4), we get

m(B(x, r)) �
∞∑

s=a

s−
p+1

p
h � (x + r)(p+1)h−p � r(p+1)h−p.

Now it follows from (5.2) and (5.3) that

m(B(x, βr) \B(x, r)) ≥ m([x + r, x + βr)) � (x + βr)(p+1)h−p − (x + r)(p+1)h−p

� rw(p+1)(h−1) ≥ r(x + βr)(p+1)(h−1)

≥ rr(p+1)(h−1) = r(p+1)h−p.

Hence we are also done in this case, and the proof of our theorem is complete.

6. The Doubling Property for 1-Dimensional Parabolic IFS

As a fairly immediate consequence of reasonings contained in [3], which are stated only in the
case when d ≥ 2 but, as was explained in the paragraph following formula (2.4), which go
through with essentially no modifications in the case when d = 1 as well, we shall prove the
following.

Lemma 6.1. If S = {φi : X → X}i∈I is an arbitrary finite parabolic iterated function system,
then the condition (b) from Proposition 4.1 is satisfied for the hyperbolic system S∗, i.e. for
every γ ≥ 1 there exists C ≥ 1 such that for every ω ∈ I∗ and every x ∈ φω(J),

m
(
B

(
x, 2γdiam(φω(X))

))
≤ C||φ′ω||h, (6.1)

where m is the unique h-conformal measure for S and S∗.

Proof. Since the set I is finite, it suffices to prove (6.1) for all the elements of ω ∈ I∗ of
the form inj, where i is a parabolic element, j 6= i, and n ≥ 1 is large enough. Inspecting

the proof of Lemma 4.7 from [4], we see that all we need to do is to show that Σ2 � n
− pi+1

pi
h
.

And indeed, if n ≥ 1 is large enough, then 1
2
n
− 1

pi ≤ η ≤ 2n
− 1

pi , where η > 0 is taken from the
proof of Lemma 4.7 in [4]. But then, regardless whether h ≥ 1 or h ≤ 1, we conclude from
the third bottom line of page 251 of [4], that

Σ2 � n
− pi+1

pi n
− 1

pi
(pi+1)(h−1)

= n
− pi+1

pi
h

and we are done.
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Lemma 6.2. If S is a finite 1-dimensional parabolic iterated function system and m is the
corresponding h-conformal measure, then the condition (c) of Proposition 4.1 is satisfied for
the hyperbolic system S∗.

Proof. We shall use the notation and formulas established in the proof of Theorem 5.1
(assuming β = 2) before this proof was split into cases. And indeed, since h ≤ 1, it follows
from (5.4) and (5.3) that m(B(x, r)) � rz(p+1)(h−1) � r(x + r)(p+1)(h−1). It also follows from
(5.3) that (x + 2r)(p+1)h−p − (x + r)(p+1)h−p ≤ r(x + r)(p+1)(h−1). Therefore, we conclude from
(5.5) and (5.4) that in order to prove our lemma, it suffices to show that

b
p−(p+1)h

p − d
p−(p+1)h

p � a
p−(p+1)h

p − b
p−(p+1)h

p

or equivalently that

b
p−(p+1)h

p � a
p−(p+1)h

p + d
p−(p+1)h

p . (6.2)

But since p− (p + 1)h < 0, it follows from (5.2) and (5.1) that if x > r, then

b
p−(p+1)h

p � a
p−(p+1)h

p

and we are done in this case. If x ≤ r, then b = +∞ and (6.2) is trivially true. The proof is
complete.

Let S = ({φi : X → X}i∈I , V ) be a finite 1-dimensional parabolic iterated function system.

Denote by Ĵ the convex hull of J , i.e. the least closed segment containing J . Obviously
({φi : Ĵ → Ĵ}i∈I , V ) is an eligible version of S. Denote the left-hand endpoint of Ĵ by a
and the right-hand endpoint by b. Notice that there exists exactly one ia ∈ I such that
a ∈ φia(Ĵ) and exactly one ib ∈ I such that b ∈ φia(Ĵ). Rename the set I so that ia = a and
ib = b. Passing to S2, the second iterate of S, we may assume without loss of generality that
φa(a) = a and φb(b) = b. We call the parabolic system S extendable if one of the following
conditions is satisfied:

(ae) Ĵ is a proper subset of X

(be) Ĵ = X, both elements a and b are hyperbolic and |φ′a(a)| = |φ′b(b)|.
(ce) Ĵ = X, both elements a and b are parabolic and pa = pb.

We shall prove the following.

Lemma 6.3. If a finite 1-dimensional parabolic iterated function system S =
(
{φi : X →

X}i∈I , V
)

is extendable, then the condition ( a) from Proposition 4.1 is satisfied for the

hyperbolic system S∗.

Proof. If both a, b ∈ IntX, then
(
{φi : Ĵ → Ĵ}i∈I , X

)
is an eligible version of S and

condition (a) from Proposition 4.1 is satisfied since φω

(
Int(X) \ Ĵ

)
∩ J = ∅ for all ω ∈ I∗.

So, keep the assumption that Ĵ is a proper subset of X but assume that Ĵ and X have
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exactly one common endpoint. Without loss of generality we may assume that this is the

right-hand endpoint b. Again, since φω

(
Int(X) \ Ĵ

)
∩ J = ∅ for all ω ∈ I∗, condition (a)

from Proposition 4.1 is satisfied by the left-hand endpoint a. Now fix an arbitrary finite word
ω ∈ I∗ and write ω = τbn, n ≥ 0, τ|τ | 6= b (allowing τ = ∅). Put |τ | = q. Consider the segment

φτq

(
φbn(B+(b, r))

)
. If τq = ∅, then φbn(B+(b, r)) ∩ J = ∅, and we are done. So, suppose that

τq ∈ I. Since τq 6= b, φτq(b) ∈ Int(Ĵ). If φτq(b) = φi(c), where c is the left-hand endpoint of X
and i ∈ I, then taking r > 0 universally sufficiently small, the open set condition implies that

φτq(B+(b, r)) ⊂ φi(X \ Ĵ) = φi(Int(X) \ Ĵ) ∪ {φi(c)} ⊂ X. Since φi

(
Int(X) \ Ĵ

)
∩ J = ∅, we

conclude that φω(B+(b, r)) ∩ J ⊂ {φi(b)}. Since the conformal measure m has no atoms, we
are done in this case. We similarly arrive in the same conclusion if φτq(b) is no endpoint of any
interval φi(X), i 6= τq. So, suppose that φτq(b) = φj(b) for some j ∈ I \ {τq}. Since φτq(b) 6= b
and φb(b) = b, we have that j 6= b. Notice also that regardless whether b is a parabolic fixed
point (see Lemma 5.1 in [7] for this case) or a repelling fixed point, there exists a constant
C1 ≥ 1 and κ > 0 (κ = h in the repelling case and κ = pb + (pb − 1)h in the parabolic case)
such that for all s > 0 small enough, we have that

C−1
1 sκ ≤ m(B−(b, s)) ≤ C1s

κ. (6.3)

Also observe (use formulas (2.2)-(2.5) in the parabolic case) that regardless of whether b is a
parabolic fixed point or a repelling fixed point, there exists a constant C2 ≥ 1 such that

C−1
2 ≤ |φn

b (b + s)− b|
|φn

b (b− s)− b|
≤ C2 (6.4)

for all n ≥ 1 and all s > 0 sufficiently small. Now, since φj(Ĵ) and φτq(B+(b, R)) overlap
with the common endpoint φτq(b) = φj(b) (R > 0 fixed), there exists a unique positive-valued
function Hb defined on [0, R] (assuming that R > 0 is small enough) such that φτq(b + s) =
φj(b−Hb(s)). Now, for every s ∈ [0, R], we have

|φτq(b + s)− φτq(b)| ≤ 2|φ′τq
(b)|s

and

|φτq(b + s)− φτq(b)| = |φj(b−Hb(s))− φj(b)| ≥
1

2
|φ′j(b)|Hb(s)|.

Hence,

Hb(s) ≤ As, (6.5)

where A = 4 max{|φ′i(b)| : i ∈ I}min−1{|φ′i(b)| : i ∈ I}. Using (6.5) and (6.4), we get that

φτbn(B+(b, r)) = φτ |q−1 ◦ φτq

(
B+(b, φn

b (b + r)− b)
)

= φτ |q−1 ◦ φj

(
B−

(
b, Hb(φ

n
b (b + r)− b)

))
⊂ φτ |q−1 ◦ φj

(
B−

(
b, A|φn

b (b + r)− b|
))

⊂ φτ |q−1 ◦ φj

(
B−

(
b, AC2|φn

b (b− r)− b|
))

.
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It therefore follows from h-conformality of the measure m and (6.3) that

m
(
φτbn(B+(b, r))

)
≤ ||φ′τ |q−1

||h||φ′j||hC1(AC2)
κ|φn

b (b− r)− b|κ. (6.6)

Since φbn(B−(b, r)) = B−(b, b − φn
b (b − r)|) and since τq 6= b, it follows from the Bounded

Distortion Property and (6.3) that

m
(
φτbn(B−(b, r))

)
= m

(
φτ

(
B−(b, b− φn

b (b− r))
))
≥ K−h||φ′τ ||hm

(
B−(b, b− φn

b (b− r))
)

≥ K−2h||φ′τ |q−1
||h||φτq ||hC−1

1 |φn
b (b− r)− b|κ. (6.7)

Combining this with (6.6) we get that

m
(
φτbn(B+(b, r))

)
≤ AA1C

2
1(AC2)

κK2hm
(
φτbn(B−(b, r))

)
, (6.8)

where A1 = max{||φ′i|| : i ∈ I}min−1{inf{|φ′i(x)| : x ∈ X} : i ∈ I}. So, we are done in the

case when Ĵ is a proper subset of X.

So, assume that either (be) or (ce) holds. Consider again without loss of generality the right-
hand endpoint b and then a word ω = τbn, n ≥ 0. Put also q = |τ |. If φτq(b) is no endpoint
of any segment φi(X), i 6= τq, then the same argument as in the previous case (ae) completes
the proof. If φτq(b) = φj(b) for some j ∈ I \ {τq}, then also exactly the same reasoning
as in the case (ae) completes the proof. So, suppose that φτq(b) = φj(a) for some j ∈ I.

Since, by the Open Set Condition, the sets φτq

(
B

(
b, dist(X, ∂V )

))
and φj(X) overlap with

the common enddpoint φτq(b) = φj(a), there thus exists a unique positive-valued function Ha

defined on [0, R] with R > 0 sufficiently small, such that φτq(b + s) = φj(a + Ha(s)). Formula
(6.5) remains true with Hb replaced by Ha if in the minimum part of the formula defining the
constant A, φ′i(b) is replaced by φ′i(a). Because of (be) or (ce), which mean that both fixed
points a and b are of the same kind, formula (6.3) remains the same with b replaced by a,
and (6.4) takes on the form

C−1
2 ≤ |φn

b (b− s)− b|
|φn

b (a + s)− a|
≤ C2.

Similarly as in the case (ae), we therefore get that

φτbn(B+(b, r)) ⊂ φτ |q−1 ◦φj

(
B+

(
a, A|φn

a(a+r)−a|
))
⊂ φτ |q−1 ◦φj

(
B+

(
a, AC2|φn

b (b+r)−b|
))

,

and from this

m
(
φτbn(B+(b, r))

)
≤ ||φ′τ |q−1

||h||φ′j||hC1(AC2)
κ|φn

b (b− r)− b|κ. (6.9)

Since (6.7) is always true, independently of any case considered, combining it with (6.9), we
obtain (6.8) also in this case ((be) or (ce)). We are done.

Combining Proposition 4.1, Lemma 6.1 Lemma 6.3, and Lemma 6.2, we obtain the following
main result of this section.
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Theorem 6.4. If S is a 1-dimensional finite extendable parabolic iterated function system,
then the corresponding h-conformal measure satisfies the doubling property.

7. Badly Approximable Points

We start with the following.

Lemma 7.1. If µ is a Borel probability measure on the real line IR, satisfying the (efd) and
the doubling property, then the measure µ is absolutely decaying.

Proof. In view of the doubling property and the (efd) property, there are constants C > 0
and α ∈ (0, 1) such that for all r > 0 sufficiently small and all z ∈ supp(µ), we have
µ(B(z, 2r)) ≤ Cµ(B(z, r)) and µ(B(z, r)) ≤ αµ(B(z, 2r)). In order to prove the lemma, fix
x ∈ supp(µ), y ∈ B(x, r) and ε ∈ (0, 1/4). If B(y, εr) ∩ supp(µ) = ∅, then µ(B(y, εr)) = 0
and we are done. Otherwise, take an arbitrary point w ∈ B(y, εr)∩supp(µ). Then B(y, εr) ⊂
B(w, 2εr) and B(w, r/2) ⊂ B(x, 2r). Let n be the least integer such that 2n ≤ (4ε)−1. Since
ε ∈ (0, 1/4), we see that n ≥ 0. Then (2εr)2n ≤ r/2, and consequently

µ(B(y, εr)) ≤ µ(B(w, 2εr)) ≤ αnµ(B(w, r/2)) ≤ αnµ(B(x, 2r)) ≤ Cαnµ(B(x, r)).

Now, by the definition of n, we have 2n ≥ (8ε)−1. Hence, as log α < 0,

αn = 2n log α
log 2 ≤ (8ε)−

log α
log 2 8

log(1/α)
log 2 ε

log(1/α)
log 2 .

Therefore

µ
(
B(x, r) ∩B(y, εr)

)
≤ µ(B(y, εr)) ≤ C8

log(1/α)
log 2 ε

log(1/α)
log 2 µ(B(x, r)),

and we are done.

Set
pS = max{pi : i ∈ Ω}.

Proposition 7.2. If S is a finite 1-dimensional parabolic iterated function system satisfying
condition (a) of Proposition 4.1, then the corresponding h-conformal measure m is h+pS(h−
1)-upper geometric.

Proof. We infer from condition (a) of Proposition 4.1 that for all r > 0 small enough, all
x ∈ X ((X, V ) is the S-eligible pair involved in condition (a)), and all ω ∈ I∗,

m
(
φω(B(x, r))

)
≤ (C + 1)m

(
φω(B(x, r)) ∩X

)
.

This is the property that makes the proofs of Lemma 6.3 and Theorem 6.4, which is the same
as Theorem 6.2 in [7], from [6] go through in the setting of our proposition. As the result, we
get that there exists a constant Q ≥ 1 such that for every r > 0 sufficiently small and every
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z = π(ω) ∈ JS there exist a number p(z, r) ∈ {pi : i ∈ Ω} ∪ {0} and an integer u ≥ 0 such
that

Q−1
(
r−1|φ′ω|u(π(σu(ω)))|

)p(z,r)(1−h)
≤ m(B(z, r))

rh
≤ Q

(
r−1|φ′ω|u(π(σu(ω)))|

)p(z,r)(1−h)
.
(7.1)

Since |φ′ω|u(π(σu(ω)))| ≤ 1 and since 1−h ≥ 0, we therefore get from (7.1) that m(B(z, r)) ≤
Qrh+p(z,r)(h−1) ≤ Qrh+pS(h−1) for all r > 0 sufficiently small and every z ∈ JS. The proof is
complete.

As an immediate consequence of this, Proposition 7.2, Lemma 6.3, and Theorem 1.1 from [1],
we get the following main result of this section.

Theorem 7.3. If S is a finite extendable 1-dimensional parabolic iterated function system,
then the Hausdorff dimension of badly approximable points in JΦ is greater than or equal to
h + pS(h− 1) > 0.

Note that because of Theorem 2.1, h + pS(h− 1) > 0
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