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Abstract

The notion of topological pressure for continuous maps has proved to be an extremely rich
and beautiful subject, with many applications, for example to give estimates and formulae for
the Hausdorff dimension of dynamically defined sets.

In this paper we define a few notions of inverse topological pressure (p_, P~, P_) which in
the case of endomorphisms take into consideration consecutive preimages of points (prehistories)
instead of forward iterates. This inverse topological pressure has some properties similar to the
regular (forward) pressure but, in general if the map is not a homeomorphism, they do not
coincide.

In fact, there are several ways to define inverse topological pressure; for instance we show
that the Bowen type definition coincides with the one using spanning sets.

Then we consider the case of a holomorphic map f : P2C — P2C which is Axiom A and such
that its critical set does not intersect a particular basic set A. Such maps were first studied by
Fornaess-Sibony ([5]).

We will prove that, under a technical condition, the Hausdorff dimension of the intersection
between the local stable manifold and the basic set is equal to ¢°, i.e HD(W{ ()N A) =t*, for
all points # belonging to A. Here ¢* represents the unique zero of the function t — P~ (t¢*),

with P~ denoting the inverse topological pressure and ¢*(x) = log|Df|g:|,# € A. In general
HD(W;(x) N A) will be estimated above by ¢* and below by t2, where ¢* is the unique zero of
the map ¢t — P_(t¢*).

As a corollary we obtain that, if the stable dimension is non-zero, then A must be a non-
Jordan curve, and also, if f|5 happens to be a homeomorphism (like in the examples from [14]),

then the stable dimension cannot be zero.

Keywords: Inverse topological pressure, preimage entropy, stable Hausdorff dimension, holomor-

phic Axiom A maps

AMS 2000 Subject Classification: 37D20, 37A35, 37F35



1 Introduction

The notions of entropy and topological pressure have found many interesting applications in dy-
namical systems. In particular Ruelle ([18]) proved (see [2] for the first result of this type) that, for
a hyperbolic rational map f on P'C, the Hausdorff dimension of its Julia set is equal to the unique
zero of the pressure function of ¢(x) := —log|D f(z)|. This can be used further to give estimates

on the Hausdorff dimension of the Julia set for some rational maps.

Notation: In the sequel we will denote the Hausdorff dimension of a set A by HD(A); also, P*

will denote the k-dimensional complex projective space.

Relations between Lyapunov exponents, Hausdorfl dimension and entropy were also given by
Manning in [9]. Equalities between stable/unstable Hausdorff dimension and the zero of the con-
traction/expansion in the stable/unstable direction have been given for complex Henon mappings
by Verjovsky-Wu [20]). They proved the following theorem (shown in the case of plane horseshoes
by Manning and McCluskey in [10]):

Theorem (Verjovsky-Wu). For any hyperbolic Henon map g on C? and x € J, (with J denoting
the Julia set of g ), the Hausdorff dimension t* of W2(z) NJ is given by Bowen’s formula:

Py ;(t®@*) =0,

where 0 < t° < 2 is independent of v € J, and ®°(z) := log |Dg|g:|, with E the stable tangent
space at x.
A similar equality is true for the unstable dimension HD(W(z) N .J).

In [11] we noticed that a similar equality is not valid for the stable dimension of a holomorphic
endomorphism of P? which is hyperbolic on its nonwandering set Q(f). However we still have one

inequality:

Theorem ([11]). If f is Azviom A, holomorphic map on P?, and A is a basic set of Q(f), then
HDWZ(z)NA) <, with t§ the unique zero of the pressure function t — P(t¢®), but in general

the inequality is strict.

Counterexamples to the equality are given in [11]. In [12] we gave also a similar estimate for
the Hausdorff dimension of the set K~ of points with ”bounded inverse iterates”; K~ represents
actually the union of unstable sets of points from the saddle part 57 of the nonwandering set. For
s-hyperbolic maps on P?, K~ was shown to have empty interior [12].

The problem of estimating H D(W2(z) N A) for a hyperbolic holomorphic map f on P? was
studied in [13] as well. In that paper we obtained an upper bound using the number of preimages

that a point from A can have in A.

Theorem (Mihailescu-Urbanski). Assume f is an Aziom A, holomorphic map of degree d > 2
on P2, and A is one of the basic sets with unstable index equal to 1. Suppose Cy N A = (Cy=



critical set of f) and also that fla: A — A has the property that each point x € A has at least

sup [Df|ps|
EA

x
inf [D]]5s
inf [D f1z;]

d' < d preimages in A. Then HD(W2(z) N A) < M, where o =

log a+log~y and V=

sup|Df|g:|, as long as o < 471
rEA

The number of preimages of a point, belonging to A, is not constant and is not stable under
perturbation. In [14] we gave a large class of perturbations of the map f(z,w) = (2% + ¢, w?), ||
small, which are homeomorphisms on their respective basic sets close to the basic set {pg(c)} x St
of the initial map, where pg(c) is a fixed attracting point of z? + c.

We would like now to introduce a notion of inverse topological pressure which is better suited
to the stable Hausdorfl dimension problem. This inverse topological pressure has some properties
similar to the regular (forward) pressure, but in general they do not coincide if the map is not a
homeomorphism. (compare also to the notions of inverse entropy studied in [6], [15], etc.).

In the sequel, let us introduce several notions that will be used throughout the paper. We
will start with the topological entropy defined in the usual manner. The general setting is that
of (X,d), a compact metric space, and f: X — X a continuous map. For n, a positive integer,
d,(z,y) = max{d(fiz, f'y), i = 0,...,n — 1} is a metric on X inducing the same topology as the

metric d.

Definition 1. A subset £/ C X is called (n,¢)-separated (for some ¢ > 0) if for all z,y € F, z # y,
we have d,,(z,y) > e.

Definition 2. The topological pressure of f is the functional Py: C(X,R) — R defined on the

space of continuous functions by:

n—1
1 .
Pi(p) =lim lim —log sup{ E exp ( E c,o(flw)) , E C X, (n,e)-separated set.} .
=0

e—=0n—oo n
zeE

Definition 3. When considering ¢ = 0 in Definition 2, we obtain the notion of topological entropy

of f.

There exists an interesting relationship between Borel invariant measures and Py, contained in
the following;:
Theorem (Variational Principle). In the above setting, Ps(p) = sup{h,(f) + [ du}, where
m
the supremum is taken over all f-invariant Borel probability measures p, and h,(f) = measure-

theoretic entropy of yt.

For the definition of h,(f) and proofs of all these facts, as we mentioned, a good reference is [21].

The topological pressure has several useful properties:

Theorem (Properties of Pressure). If f: X — X is a continuous transformation, and ¢, €

C(X,R), then:



1) ¢ <= Pr(p) < Ps(¢)

2) Ps(:) is either finitely valued or constantly oo

3) Py is convex

4) for a strictly negative function ¢, the mapping t — Py (ty) is strictly decreasing if P(0) < oo.
5) Py is a topological conjugacy invariant.

The need appears however for a notion of topological pressure on non-compact sets. This was
done beautifully in a paper by Pesin-Pitskel [16]. However, in the case of defining the inverse
topological pressure, there is no apriori backward sum similar to the forward sum ¢(z) + ¢(fz) +
O(f*x) + ... + ¢(f™x) that was taken in the definition of P(¢) in the usual case.

One can define a notion of inverse pressure using the supremum over all prehistories, or the
infimum, or by restricting to a certain set of points and prehistories.

We will give in the following section a definition for the inverse pressure, P~, which is good
from the point of view of its similarity to the Pesin-Pitskel notion and, more importantly, since it
will give an upper estimate for the stable dimension.

Let us now also give the definition of inverse entropy, studied by Hurley [6], Nitecki-Przytycki
[15], etc. Although the notion we will introduce will be in general different from this one, parallels
between the two shall prove interesting. We will call a branch of length ¢ (or prehistory of length
0) in X, a sequence of preimages, § = (z0,2-1,...,2_¢), with z; € X, —¢ <7 < 0, such that
flzic1) = 2, =€+ 1 < ¢ < 0. For another branch ' = (z{,...,2,) of same length, define their

branch distance to be d°(3, ') = maxd(z_;, z' ;). The reader can notice the similarity between the
7=0,¢
branch distance and d,,(-,-) introduced earlier. Like d,(-,-) for forward iterates, d® measures the

growth of inverse iterates. Using this, we now define a branch metric on X:
oz, 2') < e,

if for every branch 3 of length ¢ with zy = 2, there exists a branch 3’ of length ¢ with z{ = 2’
such that d®(8,3') < e, and vice versa. Denote by Ngpan(c,d5, X) the smallest cardinality of an
e-spanning set for X in the dz metric. Hence, if A is an e-spanning set with #A4 = Ngpan(e, dz, X),
then, Vo € X, dy € A with dz(x,y) < £. Let also Nsep(e,dz,X) be the largest cardinality of an
e-separated set for X. So, if A is e-separated, then for all z,y € A, 2 # y, dg(x, y) > ¢. Like in the

case of usual entropy, spanning and separated sets each approximate the preimage branch entropy.

Proposition ([15]). For f: X — X continuous, (X, d) compact metric space, we have

1 1
lim fim —log Nyep(e,db, X)) = lim Tim —log Nepan(s, d, X)
e—0n—oo n e—=0n—oo N

and the common value is called the preimage (branch) entropy, denoted by h;(f). O

Proposition. In the same setting as above, if f is a homeomorphism, then h;(f) = h(f).



So, in the particular case of homeomorphisms, the two notions coincide; the proof is immediate.
Let us recall now two cases when h;(f) = 0.

a. Forward-expansive coverings
If X is a metric space, then a continuous map f: X — X is called forward expansive if there exists

g9 > 0 such that for all z,y € X with z # y there exists m > 0 with
d(f"z, f"y) > eo > 0.

For example, f is forward-expansive on any invariant subset of a Riemannian manifold on which

Df is expanding by a constant factor A > 1. Recall that f: X — X is a covering map if for all

x € X there exists a neighborhood U, of z, such that f~'(U,) = JV* with {V'} open disjoint
7

sets, and such that f: V*— U, is homeomorphism.
Proposition ([15]). If f: X — X is a forward expansive covering map, then h;(f) = 0. O

b. Graph maps.

A finite graph is a compact metric space K with a distinguished finite set of points called
vertices, whose complement has finitely many connected components, edges, homeomorphic to the
open interval (0,1). We fix the metric on K by assigning length 1 to each edge and the distance

between two points in K is the length of the shortest path connecting them.

Theorem (Nitecki-Przytycki, [15]). Let K « finite graph and f: K — K continuous map.
Then hi(f) = 0. a

Corollary. For any continuous self-map f of a closed interval [a,b], or of the circle S, we have

hz(f) =0. O

We end this section with a short discussion of possible definitions for inverse topological pressure
and their advantages or disadvantages.

First, one may try to generalize the definition of preimage branch entropy h;(f) and obtain a
notion of inverse pressure using the spanning sets in the metric d and then taking supremum over
all the sums of the test function ¢ along prehistories of points in the spanning set.

This could be done in the spirit of [16].

However in this definition, if we concatenate prehistories of length nq,no, ..., n,,, then there is
no way one can obtain small sets in the d21+n2+...+nm metric. This, because the chosen prehistories
form just a strict subset in the set of all (nq + ... + n,,)-prehistories of points in the tail.

The fact that prehistories do not concatenate makes the equality between the inverse pressure
defined with spanning sets and the one using the outer measure construction (like in [1] or [16])
break down.

However we need the outer measure construction since it is better suited for the different
diameters of the sets appearing in the definition of Hausdorff dimension.

In the next section we will address these questions and will introduce a notion of inverse topo-

logical pressure which is good from the point of view of stable dimension. By stable dimension at



a point * we will understand the Hausdorff dimension of the intersection between the local stable
manifold at # and the respective basic set A.

We will define P~ with a construction similar to [16] where we will take all possible prehistories
covering a set. So, this time two points will be (n,e)-close if they have some n-prehistories which
are ¢ close at each level.

We shall define also another notion of inverse pressure, called P_ which uses bigger sets for the
cover. The stable dimension will be contained between the zeros of P_(t¢*) and P~ (t¢*).

2 Two definitions for inverse topological pressure

We shall start with the definition of P~ and P~. Let us fix £ > 0 small enough.

Let X a compact metric space, ¥ C X, and f: X — X a continuous map.

Denote by C, () the set of collections of length m of balls of radius € centered at points of a cer-
tain prehistory, C' = {Uy = B(z0,), ..., Un—1 = B(@m—_1,¢)}, where f(z_1) = zo,..., f(2—mt1) =
Z_m+2 and of collections of length k& < m which are terminal, i.e {Uy = B(zo,€),....Up—1 =
B(z_p41,6)}, with f(z—;) = v—iy1,1 = 1,..,k— 1 and f~'(z_41) = 0. We denote by n(C') the
number of elements of C'. It is clear that terminal branches with k& < m can be taken only if the

map f is not surjective. In most of our applications the map f will be surjective on X, however.

Now let C' = {Up, ..., Up—1} € Cin(€), k = n(C), and define
X(C)i={y e Up,Iy—1 € fTHy) N UL, Ty—2 € [T (y—1) N V2, ..}

For a real continuous function ¢, on X, define also S ¢(C') := sup{o(y) + ... + ¢(y—p+1).y €
X (C') and the prehistory y,...y_r41 as in the definition of X (C')}, where k = n(C').

Remark: Let us denote by d4(¢) the maximum oscillation of the function ¢ on a ball of radius
ein X, i.e d4(¢) := sup{|¢(z) — ¢(y)|}, where the supremum is taken over all pairs z,y € X for
which there exists z € X such that z,y € B(z,¢).

Then, for any y,y" € X(C), [6(y)+0(y-1)+---+S(y-n(c)+1) =) =Sy 1) = . =S, ) 41)| <
n(C) by (e).

So, up to a difference of at most n(C')d4(e), it does not matter which point in X (C') we take to
calculate S;(C)qb(C). Let C(e) = U, _; Cn(9).

For an arbitrary function ¢ € C(X,R), a positive integer N, and a real number X let:

MA@, Y,N,e) == inf{CXG:Fexp(—An(C) + S;(O)qb(C))}, where the infimum is taken over all

I' C C(g) such that Y C OUFX(C),n(C) > N,orn(C) < N and C'is terminal }.
€

When N increases, the pool of possible candidates I" appearing in the definition of M (X, ¢, Y, N, ¢)
decreases. Hence, there exists the limit limy_o, M (X, ¢,Y,N,e) = m(X, ¢,Y,¢). The notation

m(A, ¢, Y, e) emphasizes the nature of the construction in the spirit of Hausdorff outer measure.

Now let P~(¢,Y,¢) :=inf{\, m(\, ¢,Y,c) = 0}.

Remark: Obviously, P~ depends on the map f; in general we will not record this when no

confusion can arise, however if we want to emphasize the dependence on f we will write Pr.

6



Proposition 1. Given a continuous function f : X — X as above, and Y C X, the limit

lin% P‘(qﬁ, Y,¢e) exists and is called the inverse topological pressure of ¢ on Y, and denoted
e—

by p‘(qﬁ, Y). When we want to emphasize the dependence on f we will write ]Sf_(qb, Y).

Proof. Assume 0 < &’ < ¢ and take a collection I € C(¢’) covering Y Then taking the balls of same
centers as the ones in C’ € I' and radius ¢, we will obtain another cover of Y, this time from C(¢)
and whose elements are denoted by C'. As in the Remark above, if d4(c) denotes the maximum
oscillation of ¢ on a ball of radius ¢ in X, we get S;(O)qb(C) < S;(O)qb(C’) + n(C)dy(e).

Therefore, P~ (¢,Y,e) = d4(c) < lisrp_%gf P~ (¢,Y,£"). This shows that the limit in the proposition
does exist.

O

Observation:
We will also denote by P~(¢), M (), ¢, N, ), and m(), 6, <), respectively, the quantities P~ (6, X),
M(X, ¢, X, N,e) and m(A, ¢, X, ), when no confusion arises.

A few properties of P~ are easy to prove :

Proposition 2. (1) IfY) C Yy C X, then P~(¢,Y1) < P~ (¢,Y3).

(2) If Y = U, Y., then p‘(qﬁ, Y) = sup; p‘((b,Yz)

(3) If f is a homeomorphism of X, then P (¢, X)) = P(¢), so the inverse pressure of a function
¢ coincides with the usual (forward) one in the case of homeomorphisms.

4) P~(¢,Y) is invariant to topological conjugacy.

We can also define another notion of inverse pressure using only collections C' of the same length

or which are terminal. This time we define it directly on the whole space X. Take P, (¢,¢) :=
inf{ > ewp(S;(C)¢(C))7 I'€ Cp(2),I covers X}. Then, set P™(¢,2) := lim Llog P, (¢,e). Simi-
cel’ m—00

larly as for P~, we can prove that P=(¢) := lin% P~ (¢,¢) does exist. Again we write P~ (¢) when
the mapping f is fixed and there can be no confusion; if we want to record also the dependence on
f we will use the notation P} (¢).

Theorem 1. If f : X — X is surjective, then P~(¢) = P~(¢), for any continuous function
¢ € C(X,R).

Proof. Let us note in the begining of our proof that, since f is surjective, we do not need to worry
about terminal branches in C,, () of length n(C) < m.
First we show that P~ (¢) < P~(¢). Let us take A > P~ (¢,¢). For every 0 < 7 < A — P~ (¢,¢)

and all N large enough, we have
m(A, ¢,2) < M(X, ¢, N, ) +1. (1)
Since there exists m > N such that [P~ (¢,¢) — %log P (¢,2)| <, we obtain

M(A ¢,N,e) < inf{z exp(=Am+5,,¢(C)),I' € Cp,(€) covers X}
cer

< P (6,2) < expl(—A + PT(6,2) + n)m)



as long as m > N . Combining this and (1) we get
m(A, ¢,2) <exp((=A+ P7(¢,e) +n)m) + 1

and, since =X\ + P~ (¢,¢) +n < 0, letting m — oo, we get m(A, ¢,¢) < n. Letting in turn n — 0,
we get m(A, ¢,¢) < 0 which implies that p‘((b,e) < A. Since A was chosen arbitrarily larger than
P~ (¢,¢), the required inequality thus follows.

Let us show now the opposite inequality: P~(¢) > P~(¢). Firstly, we study the concatenation
of two prehistories. This is the main advantage of this definition for inverse pressure, i.e the
possibility of joining two different prehistories to form another one, of length equal to the sum of
lengths of its components.

Let I'y, C Ci(e),I's, C Cule), each covering X. Since X is compact, we may assume that
both T',, and I', have finite number of chains . Take now C' € T',,,C’ € T',. Assume that
C = {Uo,...; Usppgr ), €' = {Ug, ..., UL, 11}, Let us define X(CC') := {2 € X(C) : 2_pq1 €
X(Ch}. It X(CC") # 0, then if y, z are points in X (CC”), z will have a preimage z_y € Uy,
and y will have a preimage y_; € Uy, hence d(y_1,2-1) < 2¢. Similarly, in a prehistory attached
to X(C), y—m+1 has a prehistory y,, belonging to U{; so does z_,, 41, hence d(y_.,, z_pn) < 2e.
Repeating the reasoning, we get that, if C" := {B(yo,2¢), ..., B(y—m—nt1,26)} € Crntn(2¢), then
X(CC") C X(C"). Therefore

S ®(C") < S2(C) 4+ 5, (C) 4 (m + n)dg(2e). (2)

We now return to the problem of showing the inequality P~(¢) > P~ (¢). In order to prove it
fix A > P~(¢). Then m()\, ¢,¢) = 0 and therefore ]\;im M(X, ¢, N,e) = 0. If N is large enough,

then M (X, ¢, N,e) < % Thus, there exists a covering I' C C(¢) such that

> exp(-n(C) +8/0(C) < ;

Since I' covers X which is compact, we can assume that ' is finite. By raising the sum above

to power s and then adding over s, we obtain that
S apl-An(Cy) ok nCL)) + S GCH) + o S 0(C1)) < 3)

520 j17~~7js
o0 1 S
<M= (5) <
s=0
(4)

Similarly as above, we can associate to C;,...,C, a chain denoted by C},...C;, obtained by

concatenation. If C'; is chosen arbitrarily in I', and I' covers X, then the set of all such C;,...C’;,

gives a collection denoted I'1/s C C(2¢). By the same argument as in (2), we obtain the following:

Sy oy, D(C51-Ch) <S5 O(Ch) 4 oo+ S o(C50) + (g, + -4 15, - 04(22) (5)



IfI' = {C4,...,Cy}, put Ny = [max n(C;). Also denote the maximum oscillation é4(2¢) by
<i<q
d(2¢) when no confusion arises. For any given n > 0, the sets {X (C},...C;.),n < nj, + ...+ n;, <

n+ No} cover X. Denote the collection of these chains C;,...C;, by I',,. Note that for every chain
C,...C5, € I'y, we have

S @(C-Ci) £ Sp 4gn;, 0(C5-.C.) + Nol |9 | oo
Hence, applying (3) and (5), we get
D " exp( = An+ S, ¢(Cy,.C) — nd(2e)) <
Cel'y,

< exp(Nolldllo) Y exp(=An+ S, o L. 6(C..Ch) — né(2¢))
CEln

< exp(No([[9]lse +1AD) Y exp(=Alnj, + .4 nj) + Sz S(Ciy) + oot S S(C) +
Celn

(nj, + ..n;.)0(2¢) — nd(2e))
< exp(No(|[¢lco + [A] +6(22))) - M < o0

This proves that

o, nf exp(5,,¢) < exp(No(|[¢llo 4 6(22) + [A[)) - Mexp((A 4+ 6(22))n),
'CC(2¢)

where M is a constant independent of n. In conclusion A+ §(2¢) > P~ (¢,2¢). But € can be taken
arbitrarily small and A was taken arbitarily larger than P~ (¢). Hence P~ (¢) > lin% P=(¢,2¢) =

P~ (¢). This finishes the proof of the required equality P~ (¢) = P‘(qﬁ) O

Remark: If f is not surjective, it is not true in general in the above proof that, if C” is terminal
with n(C”) < n, then C'C” gives also a terminal branch C” with n(C") < m 4+ n.

However, even if f is not surjective the proof above still gives the following.
Proposition 3. For any continuous map f: X — X, P~(¢) < P~(4),Y¢ € C(X,R).

The following properties of inverse pressure are similar to those of the usual (forward) topological

pressure; we denote by P~ the functional Py in the following;:

Proposition 4. If f : X — X is a continuous map of a compact metric space, and if ¢, €
C(X,R), we have:

(a) P~ (¢ + a) = P~ (¢) + a, for a real constant c.
] (b) zfqé < b, then P~ (¢) < P~(x). Hence if we denote by h=(f) := ~f_(0), then h= (f)+inf¢ <
P7(¢) < h7(f) + sup ¢.

(c) P~(-) is either finitely valued or constantly co.

(d) |P=(¢) — P~ ()| < ||¢ — || as long as P~(-) is finite.

(6) P~(6+ o f - ) = P~ (0).

(f) for a strictly negative function ¢, the mapping t — P~ (t¢) is strictly decreasing if P~(0) <



Proof. The items (a) and (d) follow immediately from the definition. The first part of (b) is clear
from the definition of inverse pressure. The second part follows from the first part combined with

(a).

In order to prove (c) notice that from (b) we have

h™(f) +infe < P7(¢) < h™(f) +sup¢.

Hence, if there exists ¢ € C(X,R), such that P~(¢) = oo, then, since ¢ is bounded on X, it follows
that 2~ (f) = oo, hence P~ (%) is infinite for any ¢ € C(X,R). The item (e) follows from the fact
that

exp(S, (¢4 ¢ o f—)(B)) = exp(S; (9)(8)) - exp(¢(f2) — ¥ (2-nt1)),
where 3 = (2_,41,..., 20 = z) is a prehistory of 2 and in general we define S ¢(5) := ¢(x_pny1) +

..+ ¢(z). Now we use the fact that, for two prehistories 3,~ corresponding to two points z,y in
a set of the form X (C'), (i.e assume 3,7 follow '), |5, ¢(8) — S, o(7)| < ndg(e), with §4(e) the
maximum oscillation of ¢ on a set of radius £ in X. Then by taking the limit over n approaching
infinity, one obtains the equality in the statement.

The item (f) follows easily from (a) and (c).

The notions of inverse pressure introduced, will give in particular two inverse entropies, h™ =
P=(0),h~ := P~(0) and from Proposition 4, h~ < h~.

Proposition 5. 0 < h= < h™ <h,.

Proof. The proof follows from the definitions. If two points are (n,<)-close in the d® metric, then
obviously they will be (n, ) close also from the point of view of entropy h~. Hence we need more

(n,e) spanning sets to cover X for h;, than we need for h~.

O

We shall give now an example showing that in general b~ # h;.

Example with h~ # h;. The example is basically one of a smooth map with infinite h; given
n [15]. In the notation of [15] we will need just the following properties:

(i) X := B(3)US(1), where S(r) :={z € C,|z| = r}

(ii) f X — X, and f|g() is the map z — 2% and also f(B(})) C S(1)

(i) BL) c S(3).

(iv) the metric on X is the one induced from the real plane.

(v) hi(f) = oo; this is proved in [15].

We now calculate 27 (f). For the points in S(1) we consider only prehistories whose elements are
all in S(1). So, the number of (n,e) spanning sets necessary to cover S(1) in the definition of
R~ is smaller than the number of spanning sets in the d° metric used for hi(fls@))- Then, since

f(B(3)) € S(1), and hence the points from B(%) have no preimages in X, it follows that we can
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cover B(3) only with (0,) balls centered at points of B(3), if £ < 1. Indeed the only terminal
branches of points from B(3) are the 0-branches.
But the number of such balls is independent of n, hence using also the fact from Section 1, that

hi(fls(y) = 0, we get h~(f) = 0.
So, h=(f) # hi(f), since from property (v) above, h;(f) = oo O

Let us introduce now another notion of inverse topological pressure, this time using inverse
spanning sets.

We will start with a continuous surjective map f: X — X, where X is a compact metric space.
The model we have in mind is that of a holomorphic map of algebraic degree d > 2 on P? which is
Axiom A and of a basic set A in the nonwandering set of f. Since f: X — X is a surjective map,
any point x € X will have n-prehistories for any positive integer n. Given an n-prehistory f :=
(20, ..oy T—py1) of 2, we say that C'is a branch modeled after g if C' = {B(zo,¢), ..., B(#_n41,¢) }.

Definition 4. We shall call (n,¢)-inverse ball centered at z, the set %}JX(C)7 where (' ranges over
all branches modeled after the n-prehistories of x. It will be denoted by B_ (z,¢).

Obviously if z € B;, (y,¢), then y € B, (z,¢) as well.
Similar to the first definition of inverse topological pressure, and given f: X — X surjective,
we introduce for an arbitrary function ¢ € C(X,R), a real number A, a positive integer N, and a

subset Y of X, the following quantity:

M_(X, ¢,Y,N,e) :=inf{ E exp(—Ang + Sy, —¢(z)), where Y C UFB;m (z,e),ne > N,V € I},
re
F

where S, _¢(z) :=inf{o(z)+P(z_1)+...+ d(2_pny1), (z,2_1, ..., 2_pq1)an n-prehistory of z}.
If N increases, we have less sets in the infimum above, therefore the limit ]\}im M_(\ ¢,Y,N,¢)

exists. We shall denote this limit by m_(A, ¢,Y, <) in order to keep a similar notation as for P~.
We take also P_(¢,Y, ) :=inf{\, m_(A, ¢,Y,e) = 0}. ldentically as for P~ one can prove that:

Proposition 6. The limit lin% P_(¢,Y,¢) exists; it will be denoted by P_(¢,Y) and will be called

the inverse lower topological pressure of ¢ on'Y relative to the map f.

Remark:

The inverse lower pressure P_ depends on f, although we did not record this dependence in
order not to burden notation. When it will be necessary to record the dependence on f we will
write P_ ;.

The following properties of P_ are similar to those of P~ from Proposition 2. Notice also that

since f was assumed surjective on X, P~ and P~ coincide.

Proposition 7. If f : X — X is a continuous map of a compact metric space, and if ¢, €
C(X,R), then
(a) P_(¢ + o) = P_(¢) + o for a constant a.
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(b) if & < o, then P_(¢p) < P_(+p). If h—(f) := P_(0,f), then h_(f) +inf¢ < P_(¢) <
h_(f)+ sup ¢.

(c) P_(-) is either finite valued or constantly co.

(@) 1P_(8) — P_(0)] < 1|6 — b]| when P_() is finite

() P_(6+ o [ — 1) = P_(9).

(f) if ¢ <0 on X and h_(f) < oo, then the map t — P_(t¢) is strictly decreasing and has a
unique zero.

(g9) if f is a homeomorphism on X, then P~(¢) = P_(¢), V¢ € C(X,R). Hence P_,P~, P

coincide for homeomorphisms.

The decreasing part in consequence (f) above follows from (a) and (b); the uniqueness of the
zero follows from the fact that P_(0) = h_(f) > 0 and P_(t¢) < 0 if ¢ is large enough.

The name ”inverse lower pressure” is justified by the following Proposition:

Proposition 8. For a continuous surjective map f: X — X, and a continuous arbitrary function

¢ € C(X,R), we have P~ (¢) > P_(¢).

Proof. Let us take a covering of X with sets X (C'), where C' belongs to a finite set I'. For each
C € I', assume that C' corresponds to an n(C)-prehistory of a point z(C'). Let us denote the set
of all points (C') obtained in this fashion (when C'inl’), by F'. We could have several C’s from I’
corresponding to the same & € F'. If this happens then we take n(z) to be the smallest n(C') among
all the C7s giving . Then B[, (z,¢) contains all the sets of the form X (C') for all the C’s in I' with
2(C') = 2. This implies that X = xLeJF B;(l,)(x,e). Also, it is clear that, if n(C') > N for all C' €T,
then also n(z) > N, for all z € F. On the other hand, if for a branch C it happens that z(C') = z
and n(C') = n(z), then from definitions it follows that S;(C)qb(C) > Sp(e),~@(@). If for the branch
C', it happens that 2(C) = 2, but n(C) > n(z), then we do not even consider the corresponding
term in the sum from the definition of M_(A, ¢, X, N,¢). Hence in the sum from the definition of
M_(X, ¢, X, N,e) we have less sets than in M (A, ¢, X, N,¢), and for the ones that appear in both
sums, we have S7¢(C) > S, _¢(x(C')). Therefore M_(A, ¢, X, N,e) < M(X, ¢, X,N,e),VA, N, e.
In conclusion we get P_(¢) < P~ (¢).

O

3 Stable dimension

This section will present the main application of the previously introduced notions of inverse topo-
logical pressure. We will study the availability of a Bowen type relation for the Hausdorff dimension
of the intersection between a local stable manifold and a given basic set for a holomorphic Axiom
A map f of P2. We shall call this Hausdorff dimension the stable dimension for short. Precise
definitions will be given below.

It was observed in [11] that the stable dimension is in general just smaller than the zero ¢, of

the function t — P(t¢*), where P(-) denotes the usual (forward) pressure. In that article there are
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also given examples with strict inequality. This is due to the fact that P(-) takes into consideration
only forward orbits and hence we cannot estimate from below the diameters of the sets in a covering
using derivatives of the form ||D f"|g:||.

In [13] we also showed that the gap between ¢{ and the stable dimension can be explained
partially by the number of preimages that a point in A has in A.

Here we will prove some estimates between the unique zero of the inverse pressure P~, t°, the
unique zero of the inverse lower pressure P_, t°, and the stable dimension. This will imply that if
the stable dimension is non-zero, then the basic set cannot be a Jordan curve. Let us first introduce
some notation.

Our setting throughout this section is that of a holomorphic mapping on the complex projective
plane f:P? = P2

Set

Q(f) :== {2z € P2V(r > 0)3(n > 1) s.t f*(B(z,r)) N B(x,r) £ 0},

the non-wandering set of f. The space of prehistories in €2 is denoted by €2 := {2 := (@) n<os f@n—1) =
Ty Ty € Q,¥0 <0}
From now on f is assumed hyperbolic. In particular there exists a continuous splitting of the
tangent bundle over ) into subspaces which are invariated by D, Ty(2) = £, @ EY and constants
¢ > 0 and A > 1 such that
DS (@) < A |loll, v € B2,

and
1D (N > e A [W]], 0" € EX,¥n > 0.

Up to a change of metric it can be proved that in the above inequalities one can take ¢ = 1. It can
be shown that the above splitting will give birth to local stable and unstable manifolds respectively
denoted by

We(z) = {y € PLd(f "z, f*y) < e,¥n > 0}

and
WX (%) := {y € P? y has a prehistory § = (yn)n<0, d(¥n, yn) < ,¥n < 0}.

W2 (z) and W¥(2) are complex disks. More information about this subject and proofs can be found
in [5], [19], [7].

We now assume that f is Axiom A, meaning that there exists a hyperbolic splitting of the
tangent bundle as above and that periodic points are dense in (f).

In this case Q(f) will decompose as a union of finitely many invariant sets €;, called basic sets.
A good general reference for Axiom A in the case of endomorphisms is for example Ruelle’s book
[19]. For Axiom A maps it also makes sense to define the No-Cycle Property which says that
there can be no cycles among the basic sets for the ordering Q; > Q; iff W*(Q;) N W?*(Q;) # 0,
where W¥ W* are the global unstable/stable sets (as defined for example in [5]).

In the following we will be interested only in basic sets of saddle type, i.e which have both

stable and unstable directions (complex dimensions dim Ej =1 and dim £} = 1) and will denote
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in general such a set by A. By stable dimension at the point x from A, we will understand
HD(WZ(z)Nn A), for some £ > 0.

It follows from the definition of local manifolds that W2(z) depends only on its base point z,
whereas W(2) can depend on the whole prehistory € Q.

Denote also by C's the critical set of f. This is an analytic variety in P2. We fix a basic set of
saddle type, A, and will assume in the sequel that Cy N A = (.

Any holomorphic map on P?is of the form [z : w : t] — [P(z,w,t) : Py(z,w,t) : Py(z,w,1)],
with P, homogeneous polynomials in (z,w,t) of the same degree. This common degree is called the

algebraic degree of f. We will assume that this algebraic degree is larger or equal than 2.

Proposition 9. If f is an Aziom A holomorphic map on P? of algebraic degree d > 2, and A is a
basic set of saddle type, then ]Sf_|A (¢) = ij'A(¢), for any ¢ € C(A,R).

Proof. Since f is surjective on A, we can apply Theorem 1 on the compact space X = A and we
are done.

O

Proposition 10. (a) Consider an Aziom A map f as above, f holomorphic on P%, and A one of
the basic sets of f, such that ANCy = 0. Assume also that A can be written as a union of finitely
(countably) many compact, pathwise connected and simply connected subsets (V;);, and that f has
no cycles among its basic sets. Perturb the map f to a holomorphic map g on P?, such that the
corresponding basic set of g close to A is A,. Then A, can also be written as a (possibly uncountable)
union of compact, pathwise connected and simply connected subsets which are homeomorphic images
of the sets V;,1 > 0.

(b) In the above setting, if f|a is a homeomorphism, and g is a close pertubation of f, then g|a,

is also a homeomorphism.

Proof. Let us take V a subset of A which is pathwise connected, compact and simply connected.

Since f is Axiom A and with the No Cycle condition, one can apply the Stability Theorem
([17]) for a close perturbation ¢ of f, to obtain that:

i) g is also Axiom A and there exists a basic set A, of ¢, such that A, is close to A and

ii) there exists a homeomorphism A : A= E commuting with the liftings f, g,1.e h of =goh,
or equivalently "1 oh =ho f‘l.

The homeomorphism £ is uniquely defined with the above commuting property. Let us notice
also that h depends continuously on ¢; when we will want to emphasize this dependence on ¢, we
shall write h,. Hence from the continuity of the homeomorphism h, with respect to g, it follows
that m o h, converges towards the canonical projection 7 : A— A, when g — f.

(a) Now, since V' is simply connected and A does not intersect the critical set Cs of f, we can
define a branch of f=! on V| call it 7, which takes its values in A. But in this case, f71(V) will be
also simply connected, and contained in the set A which does not intersect the critical set Cy, hence
we can define again a branch of f~!, this time on f7!1(V); in this way, we can define on V a sequence

of inverse branches f7",n > 0. If # is a point in A, let us define o(z) := (x,2", 2% 4, ...,2%,, ...),
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where in general 2%, := f7"(x), for all integers n > 0. So o is a section over V of the canonical
projection 7 : A — A. Let V denote the set oV). o :V = V is a homeomorphism. Let
also V, := w(h(V)). We shall prove that rohoo : V — V, is a homeomorphism, which will
imply the conclusion of the theorem. Let us assume that there exist points z,y in V such that

7 (h(2)) = 7(h(y)), where & = o(z),y = o(y). In this case we can write:

h(i) = (ZO7 By ey Zktly Z—ky Z—k—1, )7

h(@) = (207 B—1yeoey k41, Z/—k7 Z/—k—17 )

where k is the first positive integer such that the k-preimages of zy are different, i.e z_j # 2/
and z_; = z’_j7j < k. Also, from the definition of h, we have z_;, 2’ ; in A, for all 1.

Notice that from the construction of h, we get that g7' oh = ho f‘l, and by induction,
G "oh=nho f", forall n > 0. But g=* o (&) = (2—k, 2—k—1s--.) and G750 h(9) = (21, 2" 4 15 eer)-

On the other hand,

FH@) = (2o oty o)y and f 75 () = (e Yooy o)

T_p,Y_p are the images of z,y by the k-th inverse iterate f=* on V.
Since ANCy = 0, it follows that, if the perturbation g is close enough to f, there exists a positive
constant &g depending only on f such that

(&, &) > o,

for any £,&' € Ay, & # & with g(€) = ¢g(¢). This is true since Ay is close to Ay and C, is close

to Ay. Fix now n > 0 sufficiently small such that n < 53—0 and

0
A(€,€) < 2y implies d(f71(§), [71(€) < 3 V& €V

Consider now g so close to f such that d(7 o hy (é),fg) <, forall £ € A.

But in our case, §79 0 hy (&) = (2_j,...) = hy o f~9(&),¥j > 0. Hence from above, d(z_;, z_;) <
17, V3 > 0. Similarly, d(y—;, 2’ ;) < n,Yj > 0.

This implies that z_gyq1 is n-close to z_p4q and y_g4q1 is n-close to Z/—k+1 = Z_f41-

But 2 = fr (2 _gy1),v—k = fo (y—xks1) and from above, d(z _j11,y_r+1) < 2. So, from the

way 1 was chosen, we obtain

)
d(z_p,y-r) < go

But, from the way ¢ was taken close to f,

d(mohy(f7%%), x_1) <n, and d(m o h,(f7*9),y_x) <7

So from the preceding two inequalities, we get
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d(m o hy(f~4),m 0 hy(f745)) < b

But ﬂ'ohg(f_ki) =z y, ﬂ'ohg(f_kﬁ) =2, and z_, ', are different g-preimages in A, of the
same point z_g41, hence from the definition of dp, we should have d(z_g, 2" ) > do. We have thus
obtained a contradiction.

Therefore the map m o hyo 0o : V. — V, is a homeomorphism, so V, has all the topological
properties of V', in particular it is compact, pathwise connected and simply connected.

Now, o was determined by a fixed prehistory of an arbitrary point z from V. By taking all the
possible prehistories of z, and the corresponding sections ¢ given by them, we will obtain for each
such o a homeomorphic image in A,. In conclusion if we take all such sections o for all the sets V;
which cover A, we will obtain a cover of A,.

(b) For the proof of (b), we already have the (unique) sequence of inverse iterates defined on
the whole A, since f|5 is a homeomorphism. So we do not need anymore that A is written as a
union of simply connected subsets.

Thus we have just one section ¢ as in (a) and hence A, is homeomorphic to A.

O

As was already said, in this section we assume C'y N A = (). Therefore |Df|E23| # 0,Yz € A.
Hence, it makes sense to consider the function ¢°, from C(X,R), defined by ¢°(z) := log |D f|g:|.
We now use the fact that, since ¢° is strictly negative on the space X = A, the mapping ¢t — P~ (t¢°)
is strictly decreasing (Proposition 3 and 4 (f)), and the fact that P~(0) = h~ > 0. We assume
also that A~ < oo. Also, it is not difficult to see that P~ (¢t¢®) < 0 for ¢ large enough. Hence this
implies that there exists a unique ¢* > 0 such that P~ (¢°¢°) = 0.

The same argument can be used to find a unique zero of t — P_(t¢°).

Definition 5. In the above setting, the unique ¢ > 0 such that P~ (t¢*) = 0 will be denoted by ¢* and
will be called the zero of P~ (t¢*). The unique zero of t — P_(t¢*) will be denoted by t* and will
be called the zero of P_(t¢*).

We are now ready to prove that, under a certain technical condition, ¢* is equal to the Hausdorff
dimension of the intersection between any local stable manifold and A, where A is a basic set with
both stable and unstable directions (such basic sets are called of saddle type), and that in general,
without the technical condition, t* < HD(WZ(z)NA) < t°. Let us denote §°(z) = HD(WZ(z)NA).

Theorem 2. (a) Let f be a holomorphic Aziom A map of P2 and A a basic set of saddle type of
the nonwandering set of f. Assume that Cy N A = () and that A can be written as the union of
countably many compact, pathwise connected and simply connected subsets.

Then t* = §5(x), for any point x € A. In particular, HD(W?(2z) N A) does not depend on x € A
in this case.

(b) In the setting from (a), if A is not necessarily the union of countably many compact, pathwise

connected and simply connected sets, then t* > §°(z) > supt®*(V'), where the supremum in the last
v
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nequality is taken over all compact, pathwise connected and simply connected subsets V' of A, and
where t°(V') denotes the unique zero of the map t — P~ (t¢*, V).

Proof. In this proof we take X = A, f : A — A and z an arbitrary point in A. All the inverse
pressures considered are relative to f as a surjective mapping on X. Therefore from Theorem 1,
we know that P~(:) = P~ ().

We will use interchangeably these two definitions of P~.

Proof of (a):

First let us show that ¢* > 6°(2), where we remind the notation HD(WZ(z) N A) =: 6°(z). So,
take an arbitrary ¢ > ¢*. Then, P~ (t¢*) <  for some [ < 0. Hence nh—{%o Llog Py (,2") < B <0,
for &’ > 0 small enough. So, there exists a collection I' C C, (') such that > exp(S; (C)) < ¥,

cer

for n large enough. But since I covers A, i.e. since A = CUFA(C')7 we then have A(C) N W2 (z) C
€

S (WE(2_pq1)), where 2 € A and C is associated to an n-prehistory of @, (2o, 2 _1, ..., T_pg1),
(where zg = z).

Denote W := WZ(z) N A. Now by using the Distortion Lemma from [11], and the fact that f is
conformal on its stable sets, we obtain that diam(A(C)NW) < A€|Dfn|E§|, where £ is some point
in B(x_n4+1,¢") and A is a fixed constant independent of n. This implies that:

S (diamA(C))' < A=Y exp(S7 (16°)(C)) - exp(ndy () < et
cel’ cer

(In fact due to the bounded distortion property exp(ndg(c’)) can even be replaced by a constant).
But in the last inequality, § < 0 is independent of ¢’ and we can assume that § > 28,(c’) which
implies that for n large, > (diamA(C))* < 1. Since diam(A(C)) — 0 when n — oo, we obtain
0 <'t. But since ¢t was takc(;flrarbitrarily larger than ¢*, we conclude that t* > §°(z).

We now proceed to the proof of the other inequality, i.e 6°(x) > ¢*. Take an arbitrary ¢ > 6°(z).
We shall show that t > ¢%, i.e. that P~ (t¢®) < 0.

Fix ¢/ > 0 and n > 0. Since A was assumed to be a basic set, the map f|, is transitive. Using
this and the local product structure proof of Theorem 2 of [13], that there exists a positive integer
m such that f=7 (W2(z) NA)NA is £//2-dense in A and that any local unstable manifold, W25 (%)
intersects it, for all 2 € A. Since f is a local homeomorphism near A (due to C'y N A = ), we have
also that

HD(f™"(W2(x) N A)) = HD(W. (z) N A)

We can use now the fact that A is written as the union of countably many compact, pathwise
connected, simply connected subsets V;, ¢ > 0 integer.

From Proposition 2 we know that P~ (¢) = sup; P~ (¢, V;). If we denote the zero of the map
t — P7(t¢*, V;) by t°(V;), it is easy to see that t* = sup,; t*(V;).

Therefore, if we prove that for all integers ¢ > 0, 6°(z) > t*(V;), then the inequality 6°(z) > ¢*

will hold as well. So, in the sequel we restrict attention to such a simply connected subset V;, which
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will be denoted for brevity by V.

As in the proof of Proposition 10, one can define on V' a sequence of inverse iterates f7", n >
0. Therefore we have on V a well-defined distribution of unstable local manifolds given by the
prehistories obtained from the inverse iterates f".

For a point y from V denote by 1 (y) the local unstable manifold W¥ (j), where g is the
2

prehistory defined by taking y_; = f*_j(y),j > 0,90 = y.

Consider now a point y from V" and » belonging to ¥(y). Then there exists a prehistory (2_¢)r>0
of z such that d(z_g, y—_r) < %/,Vk > 0.

We claim there is only one prehistory of z with this property. Indeed, if (2’ ,)r were another
such prehistory, we would have d(z_, 2" ) < &’,Vk > 0. Assuming that N is an integer such that
zp =2 ,,0<k < N and z_n # 2, it follows that z_xn and 2z’ 5 are two different preimages
of the same point z_n41, and since Cy N A = (), we cannot have d(z_pn, 2’ ) < &’ if £’ has been
chosen small enough. Therefore the prehistory (z_j)x is uniquely defined by being the prehistory
of z which follows the prehistory of y corresponding to ¥ (y).

Hence we can extend the inverse iterates fZ% &k > 0 also to the unstable manifolds P(y),ye V.

Since ¢ > 6°(z), there exists U = (U;)ier, a cover of f~™(WZ(z) N A) by open balls with
mesh (U) < n/2, 1 << < and such that

> (diam(U;))" < 1.
In the sequel we shall denote | D f¥|g:| by |DfF(x)].

For every set U; let us take U; := U ¥(y), i > 0. Obviously U U; covers the entire set
yeVY(y)Ui#£0 ¢

V. From the discussion above, the inverse iterates f_ ™ are well defined on the sets U,.

For each i, take n; the first positive integer such that diam fZ"(U;) < &', n < n; and diam f; ™ (U;) >
. Iz € Y(y),y € V, then f7"(z). becomes closer and closer to f-"(y) when n increases, in any
case closer than £. Hence d(f~™(0;), f~(U;)) < &,¥n > 0.

Notice however that the set U;NU; is contained in a small open analytic disk inside f~™(W2(z)).
Also, the stable tangent space makes sense at all points in f~™(W2(z)), not only at points from A.

Let us denote U := U; N (72

By inflating slightly U to an open set D; contained in f~™(W2(z)), we can still define the
inverse iterates f7*, k < n; on D;. This is possible due to the fact that, first, diam f71 (U?) < &’
and the distance between different preimages of an open analytic disk neighbourhood of U; inside
f™(WE(z)), is bounded below by a positive constant a independent of i (since C;NA = § and U
is ’-close to A). One can arrange for £’ to be less than . Hence f!(U}) is contained in just one
analytic disk D!, preimage of an analytic disk D; containing U in f~" (W2 (z)) (since the distance
between different components of f~!(D;) would be, as we saw, larger than o > 2diam 71 (U?)).

Afterwards, we apply the same argument again to preimages of Di_l. Inductively we obtain
that f~" (U7) is contained in an analytic disk, denoted by D™ where D;™ C f=7~"(W2(x)).
So the tangent space to this analytic disk is in the stable direction, induced from W (z).
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Hence there exists a point & € D™ (& is actually in the convex cover of f. ™ (U}) in the
analytic disk D;™) such that d(f¥(&), fF7(U7)) < EZ/, 0 < k < ny, n; large, (because f* contracts
distances on the stable disk D; ™ and, from the Mean Value Inequality on this analytic disk,

g < dlamf* "H(U;) < 2diamU; - [D f7 (&)

But d(f*(&), fF7(U7) < £,k < ny, and diam(f7%(U;)) < £/, therefore we can take a point
y; € V N U; such that d(f*(&), fk(yz)) < 2¢’. So the above inequality becomes:

()} < (diam £ (U)" < 2 (diam0;)! - [ D2 (yi))~* expltn: - 6(22")),

where §(2¢’) is the maximum oscillation of t¢* on a ball of radius 2¢’.

We may in addition require mesh(U) to be so small that n;, > N, Vi € I, N arbitrarily large.
We shall now denote by C}, i € I, the ordered collection of balls,

{B(f™ (y:),2¢"), B(f~1(y),2¢), ..., B(f(y:), 2¢") }, with y; found above.

We can then estimate as follows:

1> (diam(U5)" > C () > (D (i)l exp(—ni - 26(2¢")t) > C () exp(Sy (t6°) (Ci) — 2ni6(2¢")1),

el i€l el
(6)

where (' is a positive universal constant.

We shall show now that V- C UA(C;). This follows immediately from the fact that V = UU;

and since U; C A(C;). (since U is just a union of local unstable manifolds of the form <(y)).
Using the definition of M (-,-,-,-), and inequality (6), we therefore get that for any A > 36(2<)

M (A t¢°, N, ') < " exp(=An(Ci) + Sy, (t6°)(C1)) <
el
5(2¢") NZexp L(t0*)(Ch) — ni0(2e")) < 0_1(8/)_t6_5(26/)N
el

Hence, taking the limit if N — oo, we obtain m(\,t¢®,£') = 0, hence P~ (t¢*,V,<') < 36(2¢').
Then by taking &’ approaching zero, it follows that P~ (t¢*,V) < 0 and therefore t > t5(V).
Consequently 6°(z) > supt®(V;), and 6°(z) > t°. In conclusion the proof of (a) is finished.

Proof of (b): Z

In this case the proof follows in the same way as for (a). The inequality ¢* > 6%(x) does not
use the fact that A can be written as a countable union of simply connected sets V;, hence it still
holds in case (b). In the end of the proof of (a), since the simply connected set V is arbitrary, we
get that 6°(z) > 31‘1/p t*(V), which represents the lower estimate in the statement.

O

Another lower estimate for the stable dimension can be given using the inverse lower pressure
P_ and the unique zero t* of the map t — P_(t¢°):

19



Theorem 3. Let f be a holomorphic Aziom A map of P2, and A a basic set of saddle type for f
such that C; N A = 0. Then HD(W?(x) N A) > t5, for any point x in A.

Proof. The proof here will follow similarly as in the proof of Theorem 2. We denote §°(z) :=
HD(WZ$(z) N A) and then take ¢ > 6°(z) arbitrary.
Therefore there will exist U = (U;)ier, a cover of f=7(WZ(z) N A) with mesh(U) < n << &/,
such that Y, (diam(U;))* < 1; m and ¢’ have been taken as in the proof of part (a) of Theorem 2.
Now, for each U; let us take n; the largest integer such that all components of f~*(U;) have
diameter less than ¢’ small, and f~"(U;) has a component U of diameter larger or equal than ¢’.

But, from the Mean Value Inequality there will exist then a point & in U such that

diam(U;) > €| DI (&)] > €' exp(Sn, —&° (f7(&))),1 € 1.
The point f™(&;) belongs to U;, for all i € I. Since all unstable manifolds of points in A,

intersect the set f~™(W2(z) N A), it follows that A is the union of the inverse balls
B, (f™(&),2¢"),i € I. For each U; we have only one inverse ball B (f™(&;),2¢) and (diam (U;))* >

exp(Sn;,~10° (f"(&))), s0

of size %
i3

1> Z diam (U;))" > ZGXP =t (S (&)

But from the fact that the sets B (f"(&),2<),7 € I, cover A, it follows that P_(t¢®) < 0
hence ¢ > t* . Since t was chosen arbitrarily bigger than 6°(z), we get that 6°(z) > ¢*, for all z in
A.

O

Corollary 1. In the above setting, if f is an Aziom A holomorphic map on P? and A a basic set
of f, then, if there exists a point x € A such that HD(WZ$(z) N A) #£ 0, it follows that A cannot be

a Jordan curve.

Proof. Let us assume on the contrary, that there exists a basic set A such that HD(W) # 0 and

A is a Jordan curve, where again we denoted W := WZ(z) N A. But we proved in Proposition 5

that 0 < h™ < h;. Now we use the Theorem of Nitecki-Przytycki saying that if f is a continuous

map on a Jordan curve A, then h;(f|a) = 0. (as notations, h~ = h~(f), hi(f) = h; in the current
situation).

Therefore, h~ = P~(0) = 0, s0 t* = 0; contradiction with the fact that ¢t* > HD(WZ(z)NA) > 0

O

Corollary 2. In the above setting, if h(f|a) # 0 and f|a is a homeomorphism, then HD(WZ(z)N
A)#0,Vz € A.

Proof. Indeed, if f|p is a homeomorphism, then, from the properties of lower inverse pressure
(Proposition 7 g) ), we have that A(f|a) = A= (f|a) = h—(f|a) # 0. This implies that P_(0) # 0,
hence % # 0, so Theorem 3 now shows that HD(W2(z) N A) # 0.

O
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Examples:

In [14] we gave a large class of examples of perturbations of the map (z,w) — (2% + ¢, w?), on
P2, with basic sets on which they are homeomorphisms. These are maps of the form f./(z,w) =
(2% + ag’z + be'w + ¢ + de’zw + eg’w?, w?), where |c¢| # 0, small, and |c| < c(a,b,d,e),b# 0, <
e'(a,b,c,d,e). Ao denotes the basic set of f.s close to the circle {pg(c)} x S, where py(c) is a fixed
attracting point of the map z — 2% + c. It is shown in [14] that ferla,, is a homeomorphism.

Being perturbations of f(z,w) = (2? + ¢, w?) and since their considered basic set is close to
po(c) x St it will follow from the Stability Theorem ([17]) that there exists a homeomorphism
h: A — Ay commuting with f and for. Hence h(f) = h(f) = h(fo) = h(fo) = b= (fo) = log 2.
Therefore, for this type of maps, Corollary 2 implies that the stable dimension is non-zero.

Also, let us notice that, according to Proposition 10 b), if ¢ is itself a small perturbation of
feor, (for an ¢’ fixed, small) then g|s, : Ay — A, is a homeomorphism too, so we can apply again

Corollary 2 to get that the stable dimension on A, is non-zero and that A, is not a graph.
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