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Abstract

The notion of topological pressure for continuous maps has proved to be an extremely rich

and beautiful subject� with many applications� for example to give estimates and formulae for

the Hausdor� dimension of dynamically de�ned sets�

In this paper we de�ne a few notions of inverse topological pressure � �P�� P�� P
�

� which in

the case of endomorphisms take into consideration consecutive preimages of points �prehistories�

instead of forward iterates� This inverse topological pressure has some properties similar to the

regular �forward� pressure but� in general if the map is not a homeomorphism� they do not

coincide�

In fact� there are several ways to de�ne inverse topological pressure	 for instance we show

that the Bowen type de�nition coincides with the one using spanning sets�

Then we consider the case of a holomorphic map f 
 P�C � P
�
C which is Axiom A and such

that its critical set does not intersect a particular basic set �� Such maps were �rst studied by

Fornaess�Sibony �
����

We will prove that� under a technical condition� the Hausdor� dimension of the intersection

between the local stable manifold and the basic set is equal to ts� i�e HD�W s

�
�x� � �� � ts� for

all points x belonging to �� Here ts represents the unique zero of the function t � P��t�s��

with P� denoting the inverse topological pressure and �s�x� � log jDf jEs

x

j� x � �� In general

HD�W s

�
�x�� �� will be estimated above by ts and below by ts

�

� where ts
�

is the unique zero of

the map t� P
�

�t�s��

As a corollary we obtain that� if the stable dimension is non�zero� then � must be a non�

Jordan curve� and also� if f j� happens to be a homeomorphism �like in the examples from 
�����

then the stable dimension cannot be zero�
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� Introduction

The notions of entropy and topological pressure have found many interesting applications in dy�

namical systems� In particular Ruelle �

��� proved �see 
�� for the �rst result of this type� that� for

a hyperbolic rational map f on P�C � the Hausdor� dimension of its Julia set is equal to the unique

zero of the pressure function of ��x� �� � log jDf�x�j� This can be used further to give estimates

on the Hausdor� dimension of the Julia set for some rational maps�

Notation� In the sequel we will denote the Hausdor� dimension of a set A by HD�A�� also� Pk

will denote the k�dimensional complex projective space�

Relations between Lyapunov exponents� Hausdor� dimension and entropy were also given by

Manning in 
��� Equalities between stable�unstable Hausdor� dimension and the zero of the con�

traction�expansion in the stable�unstable direction have been given for complex Henon mappings

by Verjovsky�Wu 
����� They proved the following theorem �shown in the case of plane horseshoes

by Manning and McCluskey in 

����

Theorem �Verjovsky�Wu�	 For any hyperbolic Henon map g on C � and x � J� � with J denoting

the Julia set of g �� the Hausdor� dimension ts of W s
� �x� � J is given by Bowen�s formula�

PgjJ�t�
s� � ��

where � � ts � � is independent of x � J� and �s�x� �� log jDgjEs
x
j� with Es

x the stable tangent

space at x�

A similar equality is true for the unstable dimension HD�Wu
� �x� � J��

In 


� we noticed that a similar equality is not valid for the stable dimension of a holomorphic

endomorphism of P� which is hyperbolic on its nonwandering set ��f�� However we still have one

inequality�

Theorem �
����	 If f is Axiom A� holomorphic map on P�� and � is a basic set of ��f�� then

HD�W s
� �x� � �� � ts�� with ts� the unique zero of the pressure function t � P �t�s�� but in general

the inequality is strict�

Counterexamples to the equality are given in 


�� In 

�� we gave also a similar estimate for

the Hausdor� dimension of the set K� of points with �bounded inverse iterates�� K� represents

actually the union of unstable sets of points from the saddle part S� of the nonwandering set� For

s�hyperbolic maps on P�� K� was shown to have empty interior 

���

The problem of estimating HD�W s
� �x� � �� for a hyperbolic holomorphic map f on P� was

studied in 

�� as well� In that paper we obtained an upper bound using the number of preimages

that a point from � can have in ��

Theorem �Mihailescu�Urbanski�	 Assume f is an Axiom A� holomorphic map of degree d � �

on P�� and � is one of the basic sets with unstable index equal to 	� Suppose Cf � � � � �Cf


�



critical set of f� and also that f j� � � � � has the property that each point x � � has at least

d� � d preimages in �� Then HD�W s
� �x� � �� �

log d��htop�f j��
log��log� � where � ��

sup
x��

jDf jEsx j

inf
y��

jDf jEsy j
and � ��

sup
x��

jDf jEs
x
j� as long as � � ����

The number of preimages of a point� belonging to �� is not constant and is not stable under

perturbation� In 

�� we gave a large class of perturbations of the map f�z� w� � �z� � c� w��� jcj

small� which are homeomorphisms on their respective basic sets close to the basic set fp��c�g� S�

of the initial map� where p��c� is a �xed attracting point of z
� � c�

We would like now to introduce a notion of inverse topological pressure which is better suited

to the stable Hausdor� dimension problem� This inverse topological pressure has some properties

similar to the regular �forward� pressure� but in general they do not coincide if the map is not a

homeomorphism� �compare also to the notions of inverse entropy studied in 
��� 

	�� etc���

In the sequel� let us introduce several notions that will be used throughout the paper� We

will start with the topological entropy de�ned in the usual manner� The general setting is that

of �X� d�� a compact metric space� and f � X � X a continuous map� For n� a positive integer�

dn�x� y� �� maxfd�f ix� f iy�� i � �� ���� n� 
g is a metric on X inducing the same topology as the

metric d�

De�nition �	 A subset E 	 X is called �n� ���separated �for some � 	 �� if for all x� y � E� x 
� y�

we have dn�x� y� � ��

De�nition �	 The topological pressure of f is the functional Pf � C�X�R� � R de�ned on the

space of continuous functions by�

Pf �
� � lim
���

lim
n��




n
log sup

�X
x�E

exp

�
n��X
i��


�f ix�

�
� E 	 X� �n� ���separated set�

�
�

De�nition 
	 When considering 
 � � in De�nition �� we obtain the notion of topological entropy

of f �

There exists an interesting relationship between Borel invariant measures and Pf � contained in

the following�

Theorem �Variational Principle�	 In the above setting� Pf �
� � sup
�
fh��f� �

R

 d�g� where

the supremum is taken over all f �invariant Borel probability measures �� and h��f� � measure�

theoretic entropy of ��

For the de�nition of h��f� and proofs of all these facts� as we mentioned� a good reference is 
�
��

The topological pressure has several useful properties�

Theorem �Properties of Pressure�	 If f � X � X is a continuous transformation� and 
� � �

C�X�R�� then�

�



	� 
 � � � Pf �
� � Pf ���

�� Pf �
� is either 
nitely valued or constantly �

�� Pf is convex

�� for a strictly negative function 
� the mapping t� Pf �t
� is strictly decreasing if P ��� ���

�� Pf is a topological conjugacy invariant�

The need appears however for a notion of topological pressure on non�compact sets� This was

done beautifully in a paper by Pesin�Pitskel 

��� However� in the case of de�ning the inverse

topological pressure� there is no apriori backward sum similar to the forward sum ��x� � ��fx� �

��f�x� � ���� ��fnx� that was taken in the de�nition of P ��� in the usual case�

One can de�ne a notion of inverse pressure using the supremum over all prehistories� or the

in�mum� or by restricting to a certain set of points and prehistories�

We will give in the following section a de�nition for the inverse pressure� P�� which is good

from the point of view of its similarity to the Pesin�Pitskel notion and� more importantly� since it

will give an upper estimate for the stable dimension�

Let us now also give the de�nition of inverse entropy� studied by Hurley 
��� Nitecki�Przytycki



	�� etc� Although the notion we will introduce will be in general di�erent from this one� parallels

between the two shall prove interesting� We will call a branch of length 
 �or prehistory of length


� in X � a sequence of preimages� � � �z�� z��� � � � � z���� with zi � X � �
 � i � �� such that

f�zi��� � zi� �
 � 
 � i � �� For another branch �� � �z��� � � � � z
�
��� of same length� de�ne their

branch distance to be db��� ��� � max
j����

d�z�j � z��j�� The reader can notice the similarity between the

branch distance and dn�
� 
� introduced earlier� Like dn�
� 
� for forward iterates� db measures the

growth of inverse iterates� Using this� we now de�ne a branch metric on X �

db��x� x
�� � ��

if for every branch � of length 
 with z� � x� there exists a branch �� of length 
 with z�� � x�

such that db��� ��� � �� and vice versa� Denote by Nspan��� db�� X� the smallest cardinality of an

��spanning set for X in the db� metric� Hence� if A is an ��spanning set with �A � Nspan��� db�� X��

then� �x � X � �y � A with db��x� y� � �� Let also Nsep��� d
b
�� X� be the largest cardinality of an

��separated set for X � So� if A is ��separated� then for all x� y � A� x 
� y� db��x� y� 	 �� Like in the

case of usual entropy� spanning and separated sets each approximate the preimage branch entropy�

Proposition �
����	 For f � X � X continuous� �X� d� compact metric space� we have

lim
���

lim
n��




n
logNsep��� d

b
n� X� � lim

���
lim
n��




n
logNspan��� d

b
n� X�

and the common value is called the preimage �branch� entropy� denoted by hi�f�� �

Proposition	 In the same setting as above� if f is a homeomorphism� then hi�f� � h�f��

�



So� in the particular case of homeomorphisms� the two notions coincide� the proof is immediate�

Let us recall now two cases when hi�f� � ��

a	 Forward�expansive coverings

If X is a metric space� then a continuous map f � X � X is called forward expansive if there exists

�� 	 � such that for all x� y � X with x 
� y there exists m � � with

d�fmx� fmy� � �� 	 ��

For example� f is forward�expansive on any invariant subset of a Riemannian manifold on which

Df is expanding by a constant factor � 	 
� Recall that f � X � X is a covering map if for all

x � X there exists a neighborhood Ux of x� such that f���Ux� �
S
i
V i with fV ig open disjoint

sets� and such that f � V i � Ux is homeomorphism�

Proposition �
����	 If f � X � X is a forward expansive covering map� then hi�f� � �� �

b	 Graph maps	

A 
nite graph is a compact metric space K with a distinguished �nite set of points called

vertices� whose complement has �nitely many connected components� edges� homeomorphic to the

open interval ���
�� We �x the metric on K by assigning length 
 to each edge and the distance

between two points in K is the length of the shortest path connecting them�

Theorem �Nitecki�Przytycki� 
����	 Let K a 
nite graph and f � K � K continuous map�

Then hi�f� � �� �

Corollary	 For any continuous self�map f of a closed interval 
a� b�� or of the circle S�� we have

hi�f� � �� �

We end this section with a short discussion of possible de�nitions for inverse topological pressure

and their advantages or disadvantages�

First� one may try to generalize the de�nition of preimage branch entropy hi�f� and obtain a

notion of inverse pressure using the spanning sets in the metric dbn and then taking supremum over

all the sums of the test function � along prehistories of points in the spanning set�

This could be done in the spirit of 

���

However in this de�nition� if we concatenate prehistories of length n�� n�� ���� nm� then there is

no way one can obtain small sets in the dbn��n������nm metric� This� because the chosen prehistories

form just a strict subset in the set of all �n� � ���� nm��prehistories of points in the tail�

The fact that prehistories do not concatenate makes the equality between the inverse pressure

de�ned with spanning sets and the one using the outer measure construction �like in 

� or 

���

break down�

However we need the outer measure construction since it is better suited for the di�erent

diameters of the sets appearing in the de�nition of Hausdor� dimension�

In the next section we will address these questions and will introduce a notion of inverse topo�

logical pressure which is good from the point of view of stable dimension� By stable dimension at

	



a point x we will understand the Hausdor� dimension of the intersection between the local stable

manifold at x and the respective basic set ��

We will de�ne P� with a construction similar to 

�� where we will take all possible prehistories

covering a set� So� this time two points will be �n� ���close if they have some n�prehistories which

are � close at each level�

We shall de�ne also another notion of inverse pressure� called P� which uses bigger sets for the

cover� The stable dimension will be contained between the zeros of P��t�
s� and P��t�s��

� Two de�nitions for inverse topological pressure

We shall start with the de�nition of �P� and P�� Let us �x � 	 � small enough�

Let X a compact metric space� Y 	 X � and f � X � X a continuous map�

Denote by Cm��� the set of collections of length m of balls of radius � centered at points of a cer�

tain prehistory� C � fU� � B�x�� ��� ���� Um�� � B�xm��� ��g� where f�x��� � x�� ���� f�x�m��� �

x�m�� and of collections of length k � m which are terminal� i�e fU� � B�x�� ��� ���� Uk�� �

B�x�k��� ��g� with f�x�i� � x�i��� i � 
� ���� k� 
 and f���x�k��� � �� We denote by n�C� the

number of elements of C� It is clear that terminal branches with k � m can be taken only if the

map f is not surjective� In most of our applications the map f will be surjective on X � however�

Now let C � fU�� ���� Uk��g � Cm���� k � n�C�� and de�ne

X�C� �� fy � U�� �y�� � f���y� � U�� �y�� � f���y���� U�� ���g�

For a real continuous function �� on X � de�ne also S�k ��C� �� supf��y� � ���� ��y�k���� y �

X�C� and the prehistory y� ���y�k�� as in the de�nition of X�C�g� where k � n�C��

Remark� Let us denote by �	��� the maximum oscillation of the function � on a ball of radius

� in X � i�e �	��� �� supfj��x�� ��y�jg� where the supremum is taken over all pairs x� y � X for

which there exists z � X such that x� y � B�z� ���

Then� for any y� y� � X�C�� j��y����y����������y�n�C�������y
�����y�����������y

�
�n�C����j �

n�C��	����

So� up to a di�erence of at most n�C��	���� it does not matter which point in X�C� we take to

calculate S�
n�C�

��C�� Let C��� �
S�
m�� Cm����

For an arbitrary function � � C�X�R�� a positive integer N � and a real number � let�

M��� �� Y�N� �� �� inff
P
C�	

exp���n�C� � S�n�C���C��g� where the in�mum is taken over all

 	 C��� such that Y 	 �
C�	

X�C�� n�C�� N � or n�C� � N and C is terminal g�

WhenN increases� the pool of possible candidates  appearing in the de�nition ofM��� �� Y�N� ��

decreases� Hence� there exists the limit limN��M��� �� Y�N� �� �� m��� �� Y� ��� The notation

m��� �� Y� �� emphasizes the nature of the construction in the spirit of Hausdor� outer measure�

Now let �P���� Y� �� �� inff��m��� �� Y� �� � �g�

Remark� Obviously� �P� depends on the map f � in general we will not record this when no

confusion can arise� however if we want to emphasize the dependence on f we will write �P�f �

�



Proposition �	 Given a continuous function f � X � X as above� and Y 	 X� the limit

lim
���

�P���� Y� �� exists and is called the inverse topological pressure of � on Y � and denoted

by �P���� Y �� When we want to emphasize the dependence on f we will write �P�f ��� Y ��

Proof� Assume � � �� � � and take a collection  � C���� covering Y Then taking the balls of same

centers as the ones in C� �  and radius �� we will obtain another cover of Y � this time from C���

and whose elements are denoted by C� As in the Remark above� if �	��� denotes the maximum

oscillation of � on a ball of radius � in X � we get S�n�C���C� � S�n�C���C
�� � n�C��	����

Therefore� �P���� Y� ����	��� � lim inf
����

�P���� Y� ���� This shows that the limit in the proposition

does exist�

Observation�

We will also denote by �P�����M��� ��N� ��� andm��� �� ��� respectively� the quantities �P����X��

M��� ��X�N� �� and m��� ��X� ��� when no confusion arises�

A few properties of �P� are easy to prove �

Proposition �	 �	� If Y� 	 Y� 	 X� then �P���� Y�� � �P���� Y���

��� If Y � �mYm� then �P���� Y � � supi �P
���� Yi��

��� If f is a homeomorphism of X� then �P����X� � P ���� so the inverse pressure of a function

� coincides with the usual �forward� one in the case of homeomorphisms�

�� �P���� Y � is invariant to topological conjugacy�

We can also de�ne another notion of inverse pressure using only collections C of the same length

or which are terminal� This time we de�ne it directly on the whole space X � Take P�m��� �� ��

inff
P
C�	

exp�S�n�C���C��� � Cm���� covers Xg� Then� set P���� �� �� lim
m��

�
m logP�m��� ��� Simi�

larly as for �P�� we can prove that P���� �� lim
���

P���� �� does exist� Again we write P���� when

the mapping f is �xed and there can be no confusion� if we want to record also the dependence on

f we will use the notation P�f ����

Theorem �	 If f � X � X is surjective� then P���� � �P����� for any continuous function

� � C�X�R��

Proof� Let us note in the begining of our proof that� since f is surjective� we do not need to worry

about terminal branches in Cm��� of length n�C� � m�

First we show that �P���� � P����� Let us take � 	 P���� ��� For every � � � � �� P���� ��

and all N large enough� we have

m��� �� ���M��� ��N� ��� �� �
�

Since there exists m 	 N such that jP���� ��� �
m log P�m��� ��j � �� we obtain

M��� ��N� ��� inff
X
C�	

exp���m� S�m��C��� � Cm��� covers Xg

� e�
mP�m��� �� � exp����� P���� �� � ��m�

�



as long as m � N � Combining this and �
� we get

m��� �� ��� exp����� P���� �� � ��m� � �

and� since �� � P���� �� � � � �� letting m � �� we get m��� �� �� � �� Letting in turn � � ��

we get m��� �� �� � � which implies that �P���� �� � �� Since � was chosen arbitrarily larger than

P���� ��� the required inequality thus follows�

Let us show now the opposite inequality� �P���� � P����� Firstly� we study the concatenation

of two prehistories� This is the main advantage of this de�nition for inverse pressure� i�e the

possibility of joining two di�erent prehistories to form another one� of length equal to the sum of

lengths of its components�

Let  m 	 Cm���� n 	 Cn���� each covering X � Since X is compact� we may assume that

both  m and  n have �nite number of chains C� Take now C �  m� C
� �  n� Assume that

C � fU�� ���� U�m��g� C
� � fU �

�� ���� U
�
�n��g� Let us de�ne X�CC�� �� fx � X�C� � x�m�� �

X�C��g� If X�CC �� 
� �� then if y� z are points in X�CC��� z will have a preimage z�� � U��

and y will have a preimage y�� � U�� hence d�y��� z��� � ��� Similarly� in a prehistory attached

to X�C�� y�m�� has a prehistory ym belonging to U �
�� so does z�m��� hence d�y�m� z�m� � ���

Repeating the reasoning� we get that� if C�� �� fB�y�� ���� ����B�y�m�n��� ���g � Cm�n����� then

X�CC�� 	 X�C���� Therefore

S�m�n��C
��� � S�m�C� � S�n �C

�� � �m� n��	����� ���

We now return to the problem of showing the inequality �P���� � P����� In order to prove it

�x � 	 �P����� Then m��� �� �� � � and therefore lim
N��

M��� ��N� �� � �� If N is large enough�

then M��� ��N� ��� �
� � Thus� there exists a covering  	 C��� such that

X
C�	

exp���n�C� � S�n�C���C�� �



�

Since  covers X which is compact� we can assume that  is �nite� By raising the sum above

to power s and then adding over s� we obtain that

X
s��

X
j�����js

exp����n�Cj�� � ���� n�Cjs�� � S�
n�Cj��

��Cj�� � ��� S�
n�Cjs�

��Cjs�� � ���

� M ��
�X
s��

�



�

�s

���

���

Similarly as above� we can associate to Cj� � ���� Cjs a chain denoted by Cj� ���Cjs obtained by

concatenation� If Cj is chosen arbitrarily in  � and  covers X � then the set of all such Cj� ���Cjs

gives a collection denoted  j���js 	 C����� By the same argument as in ���� we obtain the following�

S�nj������njs
��Cj� ��Cjs� � S�nj�

��Cj�� � ���� S�njs��Cjs� � �nj� � ���� njs� 
 �	���� �	�

�



If  � fC�� ���� Cqg� put N� �� max
��i�q

n�Ci�� Also denote the maximum oscillation �	���� by

����� when no confusion arises� For any given n � �� the sets fX�Cj����Cjs�� n � nj� � ���� njs �

n�N�g cover X � Denote the collection of these chains Cj� ���Cjs� by  n� Note that for every chain

Cj� ���Cjs �  n� we have

S�n ��Cj� ��Cjs� � S�nj������njs
��Cj� ��Cjs� �N�jj�jj��

Hence� applying ��� and �	�� we getX
C�	n

exp�� �n� S�n ��Cj� ��Cjs�� n������ �

� exp�N�jj�jj��
X
C�	n

exp���n� S�nj������njs
��Cj� ��Cjs�� n������

� exp�N��jj�jj�� j�j��
X
C�	n

exp����nj� � ��� njs� � S�nj�
��Cj�� � ���� S�njs��Cjs� �

�nj� � ��njs������� n������

� exp�N��jj�jj�� j�j� ������� 
M ��

This proves that

inf
	�	C����

X
exp�S�n �� � exp�N��jj�jj� � ����� � j�j�� 
Mexp���� ������n��

where M is a constant independent of n� In conclusion �� ����� � P���� ���� But � can be taken

arbitrarily small and � was taken arbitarily larger than �P����� Hence �P���� � lim
���

P���� ��� �

P����� This �nishes the proof of the required equality P���� � �P�����

Remark� If f is not surjective� it is not true in general in the above proof that� if C� is terminal

with n�C�� � n� then CC� gives also a terminal branch C�� with n�C��� � m� n�

However� even if f is not surjective the proof above still gives the following�

Proposition 
	 For any continuous map f � X � X� �P���� � P����� �� � C�X�R��

The following properties of inverse pressure are similar to those of the usual �forward� topological

pressure� we denote by P� the functional P�f in the following�

Proposition �	 If f � X � X is a continuous map of a compact metric space� and if �� � �

C�X�R�� we have�

�a� �P���� �� � �P���� � �� for a real constant ��

�b� if � � �� then �P���� � �P����� Hence if we denote by �h��f� �� �P�f ���� then
�h��f��inf � �

�P���� � �h��f� � sup ��

�c� �P��
� is either 
nitely valued or constantly ��

�d� j �P����� �P����j � jj�� �jj as long as �P��
� is 
nite�

�e� �P���� � � f � �� � �P�����

�f� for a strictly negative function �� the mapping t� �P��t�� is strictly decreasing if �P���� �

��

�



Proof� The items �a� and �d� follow immediately from the de�nition� The �rst part of �b� is clear

from the de�nition of inverse pressure� The second part follows from the �rst part combined with

�a��

In order to prove �c� notice that from �b� we have

h��f� � inf� � P���� � h��f� � sup��

Hence� if there exists � � C�X�R�� such that P���� ��� then� since � is bounded on X � it follows

that h��f� � �� hence P���� is in�nite for any � � C�X�R�� The item �e� follows from the fact

that

exp�S�n ��� � � f � ������ � exp�S�n ������� 
 exp���fx�� ��x�n�����

where � � �x�n��� ���� x� � x� is a prehistory of x and in general we de�ne S�n ���� �� ��x�n��� �

���� ��x�� Now we use the fact that� for two prehistories �� � corresponding to two points x� y in

a set of the form X�C�� �i�e assume �� � follow C�� jS�n ���� � S�n ����j � n�	���� with �	��� the

maximum oscillation of � on a set of radius � in X � Then by taking the limit over n approaching

in�nity� one obtains the equality in the statement�

The item �f� follows easily from �a� and �c��

The notions of inverse pressure introduced� will give in particular two inverse entropies� �h� ��
�P����� h� �� P���� and from Proposition �� �h� � h��

Proposition �	 � � �h� � h� � hi�

Proof� The proof follows from the de�nitions� If two points are �n� ���close in the dbn metric� then

obviously they will be �n� �� close also from the point of view of entropy h�� Hence we need more

�n� �� spanning sets to cover X for hi� than we need for h
��

We shall give now an example showing that in general h� 
� hi�

Example with h� 
� hi	 The example is basically one of a smooth map with in�nite hi given

in 

	�� In the notation of 

	� we will need just the following properties�

�i� X �� B���� � S�
�� where S�r� �� fz � C � jzj � rg

�ii� f � X � X � and f jS��� is the map z � z� and also f�B����� 	 S�
�

�iii� B���� 	 S�����

�iv� the metric on X is the one induced from the real plane�

�v� hi�f� ��� this is proved in 

	��

We now calculate h��f�� For the points in S�
� we consider only prehistories whose elements are

all in S�
�� So� the number of �n� �� spanning sets necessary to cover S�
� in the de�nition of

h� is smaller than the number of spanning sets in the dbn metric used for hi�f jS����� Then� since

f�B����� 	 S�
�� and hence the points from B���� have no preimages in X � it follows that we can


�



cover B���� only with ��� �� balls centered at points of B����� if � �
�
� � Indeed the only terminal

branches of points from B���� are the ��branches�

But the number of such balls is independent of n� hence using also the fact from Section 
� that

hi�f jS���� � �� we get h��f� � ��

So� h��f� 
� hi�f�� since from property �v� above� hi�f� �� �

Let us introduce now another notion of inverse topological pressure� this time using inverse

spanning sets�

We will start with a continuous surjective map f � X � X � where X is a compact metric space�

The model we have in mind is that of a holomorphic map of algebraic degree d � � on P� which is

Axiom A and of a basic set � in the nonwandering set of f � Since f � X � X is a surjective map�

any point x � X will have n�prehistories for any positive integer n� Given an n�prehistory � ��

�x�� ���� x�n��� of x� we say that C is a branch modeled after � if C � fB�x�� ��� ����B�x�n��� ��g�

De�nition �	 We shall call �n� ���inverse ball centered at x� the set �
C
X�C�� where C ranges over

all branches modeled after the n�prehistories of x� It will be denoted by B�
n �x� ���

Obviously if x � B�
n �y� ��� then y � B�

n �x� �� as well�

Similar to the �rst de�nition of inverse topological pressure� and given f � X � X surjective�

we introduce for an arbitrary function � � C�X�R�� a real number �� a positive integer N � and a

subset Y of X � the following quantity�

M���� �� Y�N� �� �� inff
X
F

exp���nx � Snx����x���where Y 	 �
x�F

B�
nx �x� ��� nx � N� �x � Fg�

where Sn����x� �� inff��x����x���� ������x�n���� �x� x��� ���� x�n���an n�prehistory of xg�

If N increases� we have less sets in the in�mum above� therefore the limit lim
N��

M���� �� Y�N� ��

exists� We shall denote this limit by m���� �� Y� �� in order to keep a similar notation as for P��

We take also P���� Y� �� �� inff��m���� �� Y� �� � �g� Identically as for P� one can prove that�

Proposition �	 The limit lim
���

P���� Y� �� exists� it will be denoted by P���� Y � and will be called

the inverse lower topological pressure of � on Y relative to the map f �

Remark�

The inverse lower pressure P� depends on f � although we did not record this dependence in

order not to burden notation� When it will be necessary to record the dependence on f we will

write P��f �

The following properties of P� are similar to those of P� from Proposition �� Notice also that

since f was assumed surjective on X � P� and �P� coincide�

Proposition �	 If f � X � X is a continuous map of a compact metric space� and if �� � �

C�X�R�� then

�a� P���� �� � P���� � � for a constant ��







�b� if � � �� then P���� � P����� If h��f� �� P���� f�� then h��f� � inf � � P���� �

h��f� � sup��

�c� P��
� is either 
nite valued or constantly ��

�d� jP����� P����j � jj�� �jj when P��
� is 
nite�

�e� P���� � � f � �� � P�����

�f� if � � � on X and h��f� � �� then the map t � P��t�� is strictly decreasing and has a

unique zero�

�g� if f is a homeomorphism on X� then P���� � P����� �� � C�X�R�� Hence P�� P
�� P

coincide for homeomorphisms�

The decreasing part in consequence �f� above follows from �a� and �b�� the uniqueness of the

zero follows from the fact that P���� � h��f� � � and P��t�� � � if t is large enough�

The name �inverse lower pressure� is justi�ed by the following Proposition�

Proposition �	 For a continuous surjective map f � X � X� and a continuous arbitrary function

� � C�X�R�� we have P���� � P�����

Proof� Let us take a covering of X with sets X�C�� where C belongs to a �nite set  � For each

C �  � assume that C corresponds to an n�C��prehistory of a point x�C�� Let us denote the set

of all points x�C� obtained in this fashion �when Cin �� by F � We could have several C!s from  

corresponding to the same x � F � If this happens then we take n�x� to be the smallest n�C� among

all the C!s giving x� Then B�
n�x��x� �� contains all the sets of the form X�C� for all the C!s in  with

x�C� � x� This implies that X � �
x�F

B�
n�x��x� ��� Also� it is clear that� if n�C� � N for all C �  �

then also n�x� � N � for all x � F � On the other hand� if for a branch C it happens that x�C� � x

and n�C� � n�x�� then from de�nitions it follows that S�
n�C���C� � Sn�x�����x�� If for the branch

C� it happens that x�C� � x� but n�C� 	 n�x�� then we do not even consider the corresponding

term in the sum from the de�nition of M���� ��X�N� ��� Hence in the sum from the de�nition of

M���� ��X�N� �� we have less sets than in M��� ��X�N� ��� and for the ones that appear in both

sums� we have S�n ��C� � Sn����x�C��� Therefore M���� ��X�N� �� � M��� ��X�N� ������N� ��

In conclusion we get P���� � P�����

� Stable dimension

This section will present the main application of the previously introduced notions of inverse topo�

logical pressure� We will study the availability of a Bowen type relation for the Hausdor� dimension

of the intersection between a local stable manifold and a given basic set for a holomorphic Axiom

A map f of P�� We shall call this Hausdor� dimension the stable dimension for short� Precise

de�nitions will be given below�

It was observed in 


� that the stable dimension is in general just smaller than the zero ts� of

the function t� P �t�s�� where P �
� denotes the usual �forward� pressure� In that article there are


�



also given examples with strict inequality� This is due to the fact that P �
� takes into consideration

only forward orbits and hence we cannot estimate from below the diameters of the sets in a covering

using derivatives of the form jjDfnjEsjj�

In 

�� we also showed that the gap between ts� and the stable dimension can be explained

partially by the number of preimages that a point in � has in ��

Here we will prove some estimates between the unique zero of the inverse pressure P�� ts� the

unique zero of the inverse lower pressure P�� t
s
�� and the stable dimension� This will imply that if

the stable dimension is non�zero� then the basic set cannot be a Jordan curve� Let us �rst introduce

some notation�

Our setting throughout this section is that of a holomorphic mapping on the complex projective

plane f � P�� P
��

Set

��f� �� fx � P�� ��r 	 ����n � 
� s�t fn�B�x� r���B�x� r� 
� �g�

the non�wandering set of f � The space of prehistories in � is denoted by "� �� f"x �� �xn�n��� f�xn��� �

xn� xn � �� �n � �g�

From now on f is assumed hyperbolic� In particular there exists a continuous splitting of the

tangent bundle over "� into subspaces which are invariated by Df � T
��"x� � Es
x��Eu


x and constants

c � � and � 	 
 such that

jjDfn�v�jj � c��n 
 jjvjj� v � Es
x�

and

jjDfn�v��jj � c���njjv�jj� v� � Eu

x � �n � ��

Up to a change of metric it can be proved that in the above inequalities one can take c � 
� It can

be shown that the above splitting will give birth to local stable and unstable manifolds respectively

denoted by

W s
� �x� �� fy � P�� d�fnx� fny� � �� �n � �g

and

Wu
� �"x� �� fy � P�� y has a prehistory "y � �yn�n��� d�xn� yn� � �� �n � �g�

W s
� �x� and W

u
� �"x� are complex disks� More information about this subject and proofs can be found

in 
	�� 

��� 
���

We now assume that f is Axiom A� meaning that there exists a hyperbolic splitting of the

tangent bundle as above and that periodic points are dense in ��f��

In this case ��f� will decompose as a union of �nitely many invariant sets �i� called basic sets�

A good general reference for Axiom A in the case of endomorphisms is for example Ruelle!s book



��� For Axiom A maps it also makes sense to de�ne the No�Cycle Property which says that

there can be no cycles among the basic sets for the ordering �i � �j i� Wu��i� �W s��j� 
� ��

where Wu�W s are the global unstable�stable sets �as de�ned for example in 
	���

In the following we will be interested only in basic sets of saddle type� i�e which have both

stable and unstable directions �complex dimensions dim Es
x � 
 and dim Eu


x � 
� and will denote


�



in general such a set by �� By stable dimension at the point x from �� we will understand

HD�W s
� �x�� ��� for some � 	 ��

It follows from the de�nition of local manifolds that W s
� �x� depends only on its base point x�

whereas W u
� �"x� can depend on the whole prehistory "x �

"��

Denote also by Cf the critical set of f � This is an analytic variety in P
�� We �x a basic set of

saddle type� �� and will assume in the sequel that Cf � � � ��

Any holomorphic map on P� is of the form 
z � w � t� � 
P��z� w� t� � P��z� w� t� � P��z� w� t���

with Pi homogeneous polynomials in �z� w� t� of the same degree� This common degree is called the

algebraic degree of f � We will assume that this algebraic degree is larger or equal than ��

Proposition �	 If f is an Axiom A holomorphic map on P� of algebraic degree d � �� and � is a

basic set of saddle type� then �P�f j���� � P�f j����� for any � � C���R��

Proof� Since f is surjective on �� we can apply Theorem 
 on the compact space X � � and we

are done�

Proposition ��	 �a� Consider an Axiom A map f as above� f holomorphic on P�� and � one of

the basic sets of f � such that � � Cf � �� Assume also that � can be written as a union of 
nitely

�countably� many compact� pathwise connected and simply connected subsets �Vi�i� and that f has

no cycles among its basic sets� Perturb the map f to a holomorphic map g on P�� such that the

corresponding basic set of g close to � is �g� Then �g can also be written as a �possibly uncountable�

union of compact� pathwise connected and simply connected subsets which are homeomorphic images

of the sets Vi� i 	 ��

�b� In the above setting� if f j� is a homeomorphism� and g is a close pertubation of f � then gj�g
is also a homeomorphism�

Proof� Let us take V a subset of � which is pathwise connected� compact and simply connected�

Since f is Axiom A and with the No Cycle condition� one can apply the Stability Theorem

�

��� for a close perturbation g of f � to obtain that�

i� g is also Axiom A and there exists a basic set �g of g� such that �g is close to � and

ii� there exists a homeomorphism h � b�� c�g commuting with the liftings "f� "g� i�e h � "f � "g �h�

or equivalently "g�� � h � h � "f���

The homeomorphism h is uniquely de�ned with the above commuting property� Let us notice

also that h depends continuously on g� when we will want to emphasize this dependence on g� we

shall write hg � Hence from the continuity of the homeomorphism hg with respect to g� it follows

that � � hg converges towards the canonical projection � � b�� �� when g � f �

�a� Now� since V is simply connected and � does not intersect the critical set Cf of f � we can

de�ne a branch of f�� on V � call it f��
 � which takes its values in �� But in this case� f��
 �V � will be

also simply connected� and contained in the set � which does not intersect the critical set Cf � hence

we can de�ne again a branch of f��� this time on f��
 �V �� in this way� we can de�ne on V a sequence

of inverse branches f�n
 � n 	 �� If x is a point in �� let us de�ne ��x� �� �x� x
��� x


��� ���� x



�n� �����


�



where in general x
�n �� f�n
 �x�� for all integers n 	 �� So � is a section over V of the canonical

projection � � b� � �� Let �V denote the set ��V �� � � V � �V is a homeomorphism� Let

also Vg �� ��h� �V ��� We shall prove that � � h � � � V � Vg is a homeomorphism� which will

imply the conclusion of the theorem� Let us assume that there exist points x� y in V such that

��h�"x�� � ��h�"y��� where "x � ��x�� "y � ��y�� In this case we can write�

h�"x� � �z�� z��� ���� z�k��� z�k� z�k��� �����

h�"y� � �z�� z��� ���� z�k��� z
�
�k� z

�
�k��� ����

where k is the �rst positive integer such that the k�preimages of z� are di�erent� i�e z�k 
� z��k
and z�j � z��j � j � k� Also� from the de�nition of h� we have z�i� z

�
�i in �g for all i�

Notice that from the construction of h� we get that "g�� � h � h � "f��� and by induction�

"g�n �h � h � "f�n� for all n � �� But "g�k �h�"x� � �z�k� z�k��� ���� and "g
�k �h�"y� � �z��k� z

�
�k��� �����

On the other hand�

"f�k�"x� � �x�k� x�k��� ����� and"f
�k�"y� � �y�k � y�k��� ����

x�k� y�k are the images of x� y by the k�th inverse iterate f�k
 on V �

Since ��Cf � �� it follows that� if the perturbation g is close enough to f � there exists a positive

constant �� depending only on f such that

d��� ��� 	 ���

for any �� �� � �g� � 
� �� with g��� � g����� This is true since �g is close to �f and Cg is close

to �f � Fix now � 	 � su#ciently small such that � � ��
� and

d��� ��� � �� implies d�f��
 ���� f��
 ����� �
��
�
� ��� �� � V

Consider now g so close to f such that d�� � hg�"��� ��� � �� for all "� � b��
But in our case� "g�j � hg�"x� � �z�j � ���� � hg � "f�j�"x�� �j 	 �� Hence from above� d�x�j � z�j� �

�� �j 	 �� Similarly� d�y�j � z��j� � �� �j 	 ��

This implies that x�k�� is ��close to z�k�� and y�k�� is ��close to z
�
�k�� � z�k���

But x�k � f��
 �x�k���� y�k � f��
 �y�k��� and from above� d�x�k��� y�k��� � ��� So� from the

way � was chosen� we obtain

d�x�k� y�k� �
��
�

But� from the way g was taken close to f �

d�� � hg� "f
�k"x�� x�k� � �� and d�� � hg� "f

�k "y�� y�k� � �

So from the preceding two inequalities� we get


	



d�� � hg� "f
�k "x�� � � hg� "f

�k "y�� � ��

But � �hg� "f
�k "x� � z�k � � �hg� "f

�k "y� � z��k � and z�k � z
�
�k are di�erent g�preimages in �g of the

same point z�k��� hence from the de�nition of ��� we should have d�z�k� z
�
�k� 	 ��� We have thus

obtained a contradiction�

Therefore the map � � hg � � � V � Vg is a homeomorphism� so Vg has all the topological

properties of V � in particular it is compact� pathwise connected and simply connected�

Now� � was determined by a �xed prehistory of an arbitrary point x from V � By taking all the

possible prehistories of x� and the corresponding sections � given by them� we will obtain for each

such � a homeomorphic image in �g� In conclusion if we take all such sections � for all the sets Vi

which cover �� we will obtain a cover of �g�

�b� For the proof of �b�� we already have the �unique� sequence of inverse iterates de�ned on

the whole �� since f j� is a homeomorphism� So we do not need anymore that � is written as a

union of simply connected subsets�

Thus we have just one section � as in �a� and hence �g is homeomorphic to ��

As was already said� in this section we assume Cf � � � �� Therefore jDf jEs
xj 
� �� �x � ��

Hence� it makes sense to consider the function �s� from C�X�R�� de�ned by �s�x� �� log jDf jEs
x
j�

We now use the fact that� since �s is strictly negative on the spaceX � �� the mapping t� P��t�s�

is strictly decreasing �Proposition � and � �f��� and the fact that P���� � h� � �� We assume

also that h� � �� Also� it is not di#cult to see that P��t�s� � � for t large enough� Hence this

implies that there exists a unique ts � � such that P��ts�s� � ��

The same argument can be used to �nd a unique zero of t� P��t�s��

De�nition �	 In the above setting� the unique t � � such that P��t�s� � � will be denoted by ts and

will be called the zero of P��t�s�� The unique zero of t� P��t�
s� will be denoted by ts� and will

be called the zero of P��t�
s��

We are now ready to prove that� under a certain technical condition� ts is equal to the Hausdor�

dimension of the intersection between any local stable manifold and �� where � is a basic set with

both stable and unstable directions �such basic sets are called of saddle type�� and that in general�

without the technical condition� ts� � HD�W s
� �x���� � ts� Let us denote �s�x� � HD�W s

� �x�����

Theorem �	 �a� Let f be a holomorphic Axiom A map of P� and � a basic set of saddle type of

the nonwandering set of f � Assume that Cf � � � � and that � can be written as the union of

countably many compact� pathwise connected and simply connected subsets�

Then ts � �s�x�� for any point x � �� In particular� HD�W s
� �x���� does not depend on x � �

in this case�

�b� In the setting from �a�� if � is not necessarily the union of countably many compact� pathwise

connected and simply connected sets� then ts � �s�x� � sup
V

ts�V �� where the supremum in the last


�



inequality is taken over all compact� pathwise connected and simply connected subsets V of �� and

where ts�V � denotes the unique zero of the map t� P��t�s� V ��

Proof� In this proof we take X � �� f � � � � and x an arbitrary point in �� All the inverse

pressures considered are relative to f as a surjective mapping on X � Therefore from Theorem 
�

we know that �P��
� � P��
��

We will use interchangeably these two de�nitions of P��

Proof of �a��

First let us show that ts � �s�x�� where we remind the notation HD�W s
� �x� � �� �� �

s�x�� So�

take an arbitrary t 	 ts� Then� P��t�s� � � for some � � �� Hence lim
n��

�
n log P

�
n ��� �

�� � � � ��

for �� 	 � small enough� So� there exists a collection  	 Cn��
�� such that

P
C�	

exp�S�n ��C�� � en� �

for n large enough� But since  covers �� i�e� since � � �
C�	

��C�� we then have ��C��W s
� �x� 	

fn���W s
� �x�n����� where x � � and C is associated to an n�prehistory of x� �x�� x��� ���� x�n����

�where x� � x��

Denote W �� W s
� �x���� Now by using the Distortion Lemma from 


�� and the fact that f is

conformal on its stable sets� we obtain that diam���C��W � � A�jDfnjEs
�
j� where � is some point

in B�x�n��� �
�� and A is a �xed constant independent of n� This implies that�

X
C�	

�diam��C��t � At�t
X
C�	

exp�S�n �t�
s��C�� 
 exp�n�	��

��� � en�en����
���t�

�In fact due to the bounded distortion property exp�n�	����� can even be replaced by a constant��

But in the last inequality� � � � is independent of �� and we can assume that � 	 ��	��
�� which

implies that for n large�
P
C�	

�diam��C��t � 
� Since diam���C�� � � when n � �� we obtain

� � t� But since t was taken arbitrarily larger than ts� we conclude that ts � �s�x��

We now proceed to the proof of the other inequality� i�e �s�x� � ts� Take an arbitrary t 	 �s�x��

We shall show that t � ts� i�e� that P��t�s� � ��

Fix �� 	 � and � 	 �� Since � was assumed to be a basic set� the map f j� is transitive� Using

this and the local product structure proof of Theorem � of 

��� that there exists a positive integer

m such that f�m�W s
� �x������ is �����dense in � and that any local unstable manifold� Wu

��
��"z�

intersects it� for all "z � "�� Since f is a local homeomorphism near � �due to Cf � � � ��� we have

also that

HD�f�m�W s
� �x�� ��� � HD�W s

� �x�� ��

We can use now the fact that � is written as the union of countably many compact� pathwise

connected� simply connected subsets Vi� i 	 � integer�

From Proposition � we know that P���� � supi P
���� Vi�� If we denote the zero of the map

t� P��t�s� Vi� by t
s�Vi�� it is easy to see that t

s � supi t
s�Vi��

Therefore� if we prove that for all integers i 	 �� �s�x� � ts�Vi�� then the inequality �s�x� � ts

will hold as well� So� in the sequel we restrict attention to such a simply connected subset Vi� which


�



will be denoted for brevity by V �

As in the proof of Proposition 
�� one can de�ne on V a sequence of inverse iterates f�n
 � n 	

�� Therefore we have on V a well�de�ned distribution of unstable local manifolds given by the

prehistories obtained from the inverse iterates f�n
 �

For a point y from V denote by ��y� the local unstable manifold Wu
��

�

�"y�� where "y is the

prehistory de�ned by taking y�j � f�j
 �y�� j 	 �� y� � y�

Consider now a point y from V and z belonging to ��y�� Then there exists a prehistory �z�k�k��

of z such that d�z�k� y�k� �
��

� � �k � ��

We claim there is only one prehistory of z with this property� Indeed� if �z��k�k were another

such prehistory� we would have d�z�k � z
�
�k� � ��� �k 	 �� Assuming that N is an integer such that

z�k � z��k � � � k � N and z�N 
� z��N � it follows that z�N and z��N are two di�erent preimages

of the same point z�N��� and since Cf � � � �� we cannot have d�z�N � z
�
�N� � �� if �� has been

chosen small enough� Therefore the prehistory �z�k�k is uniquely de�ned by being the prehistory

of z which follows the prehistory of y corresponding to ��y��

Hence we can extend the inverse iterates f�k
 � k 	 � also to the unstable manifolds ��y�� y � V �

Since t 	 �s�x�� there exists U � �Ui�i�I � a cover of f�m�W s
� �x� � �� by open balls with

mesh �U� � ���� � �� �� and such that

X
i

�diam�Ui��
t � 
�

In the sequel we shall denote jDfkjEs
x
j by jDfks �x�j�

For every set Ui let us take �Ui �� �
y�V���y��Ui ��


��y�� i 	 �� Obviously �
i
�Ui covers the entire set

V � From the discussion above� the inverse iterates f�n
 are well de�ned on the sets �Ui�

For each i� take ni the �rst positive integer such that diamf�n
 � �Ui� � ��� n � ni and diamf
�ni

 � �Ui� 	

��� If z � ��y�� y � V � then f�n�z�
 becomes closer and closer to f
�n

 �y� when n increases� in any

case closer than ��

� � Hence d�f
�n� �Ui�� f

�n�Ui�� �
��

� � �n 	 ��

Notice however that the set Ui� �Ui is contained in a small open analytic disk inside f�m�W s
� �x���

Also� the stable tangent space makes sense at all points in f�m�W s
� �x��� not only at points from ��

Let us denote U

i �� Ui � �Ui�

By in$ating slightly U

i to an open set Di contained in f�m�W s

� �x��� we can still de�ne the

inverse iterates f�k
 � k � ni on Di� This is possible due to the fact that� �rst� diamf��
 �U

i � � ��

and the distance between di�erent preimages of an open analytic disk neighbourhood of Ui inside

f�m�W s
� �x��� is bounded below by a positive constant � independent of i �since Cf �� � � and �Ui

is ���close to ��� One can arrange for �� to be less than �

 � Hence f

��

 �U


i � is contained in just one

analytic disk D��
i � preimage of an analytic disk Di containing U


i in f
�m�W s

� �x�� �since the distance

between di�erent components of f���Di� would be� as we saw� larger than � 	 �diamf��
 �U

i ���

Afterwards� we apply the same argument again to preimages of D��
i � Inductively we obtain

that f�ni �U

i � is contained in an analytic disk� denoted by D�ni

i where D�ni
i 	 f�m�ni �W s

� �x���

So the tangent space to this analytic disk is in the stable direction� induced from W s
� �x��


�



Hence there exists a point �i � D�ni
i ��i is actually in the convex cover of f�ni
 �U


i � in the

analytic disk D�ni
i � such that d�fk��i�� f

k�ni

 �U


i �� �
��


 � � � k � ni� ni large� �because f
k contracts

distances on the stable disk D�ni
i and� from the Mean Value Inequality on this analytic disk�

�� � diamf�ni
 �Ui� � �diamUi 
 jDf
ni
s ��i�j

��

But d�fk��i�� f
k�ni

 �U


i �� �
��


 � k � ni� and diam�f�k
 �Ui�� � ��� therefore we can take a point

yi � V � �Ui such that d�f
k��i�� f

k�yi�� � ���� So the above inequality becomes�

����t � �diamf�ni
 �Ui��
t � �t�diamUi�

t 
 jDfnis �yi�j�
�t exp�tni 
 ����

����

where ������ is the maximum oscillation of t�s on a ball of radius ����

We may in addition require mesh�U� to be so small that ni � N� �i � I � N arbitrarily large�

We shall now denote by Ci� i � I � the ordered collection of balls�

fB�fni�yi�� ��
��� B�fni���yi�� ��

��� ���� B�f�yi�� ��
��g� with yi found above�

We can then estimate as follows�


 �
X
i�I

�diam�Ui��
t � C����t 


X
i�I

jDfnis �yi�j
t exp��ni 
 �����

��t� � C����t
X
i�I

exp�S�ni�t�
s��Ci�� �ni����

��t��

���

where C is a positive universal constant�

We shall show now that V 	 �
i
��Ci�� This follows immediately from the fact that V � �

i
�Ui

and since �Ui 	 ��Ci�� �since �Ui is just a union of local unstable manifolds of the form ��y���

Using the de�nition of M�
� 
� 
� 
�� and inequality ���� we therefore get that for any � 	 �������

M��� t�s� N� ��� �
X
i�I

exp���n�Ci� � S�ni�t�
s��Ci�� �

� e�����
��N
X
i�I

exp�S�ni�t�
s��Ci�� ni����

��� � C�������te�����
��N

Hence� taking the limit if N � �� we obtain m��� t�s� ��� � �� hence �P��t�s� V� ��� � ��������

Then by taking �� approaching zero� it follows that �P��t�s� V � � � and therefore t � ts�V ��

Consequently �s�x� � sup
i
ts�Vi�� and �

s�x� � ts� In conclusion the proof of �a� is �nished�

Proof of �b��

In this case the proof follows in the same way as for �a�� The inequality ts � �s�x� does not

use the fact that � can be written as a countable union of simply connected sets Vi� hence it still

holds in case �b�� In the end of the proof of �a�� since the simply connected set V is arbitrary� we

get that �s�x� � sup
V

ts�V �� which represents the lower estimate in the statement�

Another lower estimate for the stable dimension can be given using the inverse lower pressure

P� and the unique zero ts� of the map t � P��t�
s��


�



Theorem 
	 Let f be a holomorphic Axiom A map of P�� and � a basic set of saddle type for f

such that Cf � � � �� Then HD�W s
� �x� � �� � ts�� for any point x in ��

Proof� The proof here will follow similarly as in the proof of Theorem �� We denote �s�x� ��

HD�W s
� �x�� �� and then take t 	 �s�x� arbitrary�

Therefore there will exist U � �Ui�i�I � a cover of f
�m�W s

� �x� � �� with mesh�U� � � �� ���

such that
P

i�diam�Ui��
t � 
� m and �� have been taken as in the proof of part �a� of Theorem ��

Now� for each Ui let us take ni the largest integer such that all components of f�k�Ui� have

diameter less than �� small� and f�ni�Ui� has a component U
ni
i of diameter larger or equal than ���

But� from the Mean Value Inequality there will exist then a point �i in Uni
i such that

diam�Ui� � ��jDfnis ��i�j � �� exp�Sni���
s�fni��i���� i � I�

The point fni��i� belongs to Ui� for all i � I � Since all unstable manifolds of points in ��

of size ��

� intersect the set f�m�W s
� �x� � ��� it follows that � is the union of the inverse balls

B�
ni
�fni��i�� ��

��� i � I � For each Ui we have only one inverse ball B
�
ni
�fni��i�� ��

�� and �diam�Ui��
t �

exp�Sni��t�
s�fni��i���� so


 �
X
i

�diam�Ui��
t �
X
i

exp�Sni��t�
s�fni��i���

But from the fact that the sets B�
ni �f

ni��i�� ��
��� i � I � cover �� it follows that P��t�

s� � ��

hence t � ts�� Since t was chosen arbitrarily bigger than �
s�x�� we get that �s�x� � ts�� for all x in

��

Corollary �	 In the above setting� if f is an Axiom A holomorphic map on P� and � a basic set

of f � then� if there exists a point x � � such that HD�W s
� �x� � �� 
� �� it follows that � cannot be

a Jordan curve�

Proof� Let us assume on the contrary� that there exists a basic set � such that HD�W � 
� � and

� is a Jordan curve� where again we denoted W �� W s
� �x� � �� But we proved in Proposition 	

that � � h� � hi� Now we use the Theorem of Nitecki�Przytycki saying that if f is a continuous

map on a Jordan curve �� then hi�f j�� � �� �as notations� h� � h��f�� hi�f� � hi in the current

situation��

Therefore� h� � P���� � �� so ts � �� contradiction with the fact that ts � HD�W s
� �x���� 	 ��

Corollary �	 In the above setting� if h�f j�� 
� � and f j� is a homeomorphism� then HD�W s
� �x��

�� 
� �� �x � ��

Proof� Indeed� if f j� is a homeomorphism� then� from the properties of lower inverse pressure

�Proposition � g� �� we have that h�f j�� � h��f j�� � h��f j�� 
� �� This implies that P���� 
� ��

hence ts� 
� �� so Theorem � now shows that HD�W s
� �x� � �� 
� ��

��



Examples�

In 

�� we gave a large class of examples of perturbations of the map �z� w�� �z� � c� w��� on

P
�� with basic sets on which they are homeomorphisms� These are maps of the form f���z� w� �

�z� � a��z � b��w � c � d��zw � e��w�� w��� where jcj 
� �� small� and jcj � c�a� b� d� e�� b 
� �� �� �

���a� b� c� d� e�� ��� denotes the basic set of f�� close to the circle fp��c�g�S�� where p��c� is a �xed

attracting point of the map z � z� � c� It is shown in 

�� that f�� j��� is a homeomorphism�

Being perturbations of f�z� w� � �z� � c� w�� and since their considered basic set is close to

p��c� � S�� it will follow from the Stability Theorem �

��� that there exists a homeomorphism

h � "� � "��� commuting with "f and "f�� � Hence h�f� � h� "f� � h� "f��� � h�f��� � h��f��� � log ��

Therefore� for this type of maps� Corollary � implies that the stable dimension is non�zero�

Also� let us notice that� according to Proposition 
� b�� if g is itself a small perturbation of

f�� � �for an �� �xed� small� then gj�g � �g � �g is a homeomorphism too� so we can apply again

Corollary � to get that the stable dimension on �g is non�zero and that �g is not a graph�
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