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Abstract: This survey collect basic results concerning fractal and ergodic properties
of Julia sets of rational functions of the Riemann sphere. Frequently these results are
compared with with their counterparts in the theory of Kleinian groups and this enlarges
the famous Sullivan’s dictionary. The topics concerning Hausdorff and packing measures
and dimensions are given most attention. Then, conformal measures are constructed and
their relations with Hausdorff and packing measures are discussed throughout the entire
article. Also invariant measures absolutely continuous with respect to conformal measures
are touched on. While the survey begins with facts concerning all rational functions, much
time is devoted toward presenting the well-developed theory of hyperbolic and parabolic
maps, and in Section 3 the class NCP is dealt with. This class consists of such rational
functions f that all critical points of f which are contained in the Julia set of f, are non
recurrent. The NCP class comprises in particular hyperbolic, parabolic and subhyperbolic
maps. Our last section collects some recent results about other subclasses of rational
functions, e.g. Collet-Eckmann maps and Fibonacci maps. At the end of this article two
appendices are included which are only loosely related with Sections 1-4. They contain
a short description of tame mappings and the theory of equilibrium states and Perron-
Frobenius operator associated with Holder continuous potentials.
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Appendix 1; Tame functions.
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§1. Dimensions of Julia sets. A first issue we will be dealing with in this article is
to describe various fractal of Julia sets as captured by the Hausdorff, packing and box
dimensions. Afterwords, we address the question of when the corresponding Hausdorff
and packing measures are positive and finite. Given a subset A of a metric space (X,d) a
countable family { B(z;,r;)}32, of open balls centered at points of A is said to be a packing
of A if and only if for any pair ¢ # j

d(:L'i, .’Ej) >r; + Tj.

The supremum sup{r; : ¢ > 1} is called the radius of the packing {B(x;,7;)}2,. Given
in addition a positive radius r > 0, denote by N(A,r) the minimal number of open balls
with radius r needed to cover A and by P(A,r) the maximal number of open balls with
radius r forming a packing of A.

In order to get an idea of what the box dimension is, imagine a two-dimensional smooth
surface A in the Euclidean space IR3. It is reasonable to expect the minimal number
N(A,r) and the maximal number P(A,r) to be some multiples of 7=2. The coefficient
is not important to understand dimensionality of A but the exponent is crucial, and it is
captured by the following limits.

. logN(A,r) .. logP(A,r)
lim —-————= = lim ———=.
r—0 —logr r—0 —logr

In general these limits fail to exist and the following two quantities are defined.

log N (A log P(A
BD(A) = lim inf 28N g l08 PUAT)
r—0 —logr r—0 —logr
and —__ log N (A log P(A
BD(A) = limsup -2V AT ) o 108 PAT)
r—0 —logr r—0  —logr

The second and forth equality signs in these formulas are due to the fact that minimal
covers by balls with radii » and maximal packings with radii r, do not differ so much.

Namely
P(A,r) < N(A,r) and N(A,2r) < P(A,r).

The quantity BD(A) is called the lower box dimension and BD(A) is called the upper box
dimension. If the lower and upper box dimensions coincide, then their common value
BD(A) = BD(A) = BD(A) is called the box dimension of A. In the literature all box
dimensions are also called, perhaps more properly, box counting dimensions; we will keep
here the shorter name. Although the box dimension is a quantity relatively easy to calculate
and appreciated by physicists, it behaves rather badly under simplest topological and

set-theoretical operations. For example, BD(A) = BD(A) (so the box dimension of the
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countable set of all rational numbers from the interval [0, 1], is equal to 1) and the box
dimension of a countable union of sets (even closed) does not have to be equal to the
supremum of the box dimensions of its constituents (check that BD({1/n : n > 1}) =
1/2). In order to remedy this situation and to capture a finer fractal structure of sets,
one considers Hausdorff and packing dimensions. For smooth spaces all these dimensions
coincide but in general they split and can be greater than the topological dimension. In
fact, one can reasonably call a set A fractal if at least one of its Hausdorff, packing, or box
dimension is strictly greater than its topological dimension. For our further purposes, let
us present now the definition of Hausdorff and packing measures in generality bigger than
require just to define Hausdorff and packing dimensions.

Given a nondecreasing function g : (0,e) — (0, 00) for some € > 0, the g-dimensional outer
Hausdorff measure Hy(A) of the set A is defined as

Hy(A) = supinf{) _ g(diam(4,))},

=0 o

where the infimum is taken over all countable covers {A; : i > 1} of A by arbitrary sets
whose diameters do not exceed . If g is of the form z* instead of writing H,: we write
H; and speak about ¢-dimensional outer Hausdorff measure. In this case one will get
comparable numbers (in the sense that ratios are bounded away from zero and infinity) if

instead of covering A by arbitrary sets one considers only open balls centered at points of
A.

The g-dimensional outer packing measure I1;(A) of the set A is defined as

UA,; =

My(4) = inf D T5(40)}

(A; are arbitrary subsets of A), where 117, the g-packing premeasure is given by:

5 (A) = ;I>1f(; sup{Z g(2r;)}.

Here the supremum is taken over all packings {B(z;,r;)}32, of the set A by open balls
centered at points of A with radii which do not exceed e. Similarly as in the case of
Hausdorff measures if g is of the form z! instead of writing II,+ we write IT; and speak
about t-dimensional outer packing measure. These two outer measures Hy and 11, define
countably additive measures on the Borel g-algebra of X. For additional properties of
packing measures and a comprehensive discussion of these and related notions the reader
is referred to the paper [TT] and the books [Mat] and [PU1].

The definitions of the Hausdorff dimension HD(A) of A and the packing dimension PD(A)
are the following

HD(A) = inf{t : H;(A) = 0} = sup{t : H;(A) = oo}
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and
PD(A) = inf{t : II;(A) = 0} = sup{t : [I;(A) = oo}.

We recall (see [Fa] for example) that HD(A) < PD(A) < BD(A) and HD(A) < BD(A) =
BD(A) < BD(A) = BD(A). We will discuss in the context of rational functions the cases
when these inequalities become equalities.

Let v be a Borel probability measure on X and let ¢ > 0 be a real number. Define the
function p = pr(v) : X x (0,00) — (0,00) by

o(,7) = V(B(ﬂtﬁ,r))_

r
The following two theorems are for our aims the key facts from geometric measure theory.
These allow us to determine whether the Hausdorff or packing measure is finite, positive,
infinite or it vanishes. The proof of the first one follows from the results obtained in [RT]
and the proof of the second one is contained in [TT], comp. also Chapter 6 of the book
[PU1].

Theorem 1.3. Assume that X is a compact subset of a d-dimensional Euclidean space.
Then for every ¢ > 0 there exist constants hi(t) and ha(t) with the following properties:
If A is a Borel subset of X and C > 0 is a constant such that

(1) for all (but countably many) z € A

limsup p(z,r) > C~1,

r—0

then for every Borel subset £ C A we have H(E) < hy(t)Cv(E) and, in particular,
or
(2) for allz € A
limsup p(z,r) < C~H,

r—0

then for every Borel subset £ C A we have H¢(E) > Cha(t)v(E).

Theorem 1.4. Assume that X is a compact subspace of a d-dimensional Euclidean space.
Then there exist constants py(¢) and p2(t) with the following properties: If A is a Borel
subset of X and C > 0 is a constant such that
(1) for allz € A
lim inf p(z,r) < C71,
r—0
then for every Borel subset £ C A we have II(E) > Cp;(t)v(E),
or
(2) for allz € A
liminf p(z,r) > C~1,
r—0
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then for every Borel subset £ C A we have II;(E) < p2(t)Cv(F) and, consequently,
(1’) If v is non—atomic then (1) holds under the weaker assumption that the hypothesis of
part (1) is satisfied on the complement of a countable set.

Frequently a reach fractal structure of a set can be better visualized by examining the
structure of its measures. This motivates the following.

Definition 1.5. Given a Borel probability measure p on a compact metric space X by
HD(u), the Hausdorff dimension of measure p, we understand the number

inf{HD(Y) : u(Y') = 1}.

Check, using Theorem 1.3 and 1.4 that the Hausdorff dimension of the Lebesgue measure of
a d-dimensional unit cube is equal to d. Our main tool to understand fractal properties of a
Julia set, i.e. its dimensions and measures described above will be the concept of conformal
measures introduced in the case of Fuchsian groups by S. J. Patterson in [Pal], generalized
to the case of Kleinian groups in [Su4] (comp. a thorough presentation given in [Pa2])
and adopted to the case of rational functions by D. Sullivan in [Sul]. The definition of a
conformal measure is given below. This is the first and from the fractal point of view the
central point of the Sullivan’s dictionary. We will frequently mention which concepts and
theorems have their counterparts in both the theory of iteration of rational functions and
the theory of Kleinian groups. This is the level where the analogies are most transparent.
They considerably shrink on the level of proofs and almost completely disappear when
one deals with the thermodynamic formalism and invariant measures, natural for rational

functions and rather artificially adapted in some special cases of of Kleinian groups (see
[Bol], [BS], and [KS]).

From now on let f : @ — @ be a rational function of the Riemann sphere €. Always
assume that the degree of f is at least 2. The main object of our interest will be the Julia
set J(f) and the dynamics of f|(s). This dynamics is of chaotic unpredictable character
whereas the dynamics on its complement F, called the Fatou set of f is stable in the
sense of Lyapunov which means that any two close points stay close close for ever under
positive iterates of f. Recall that the Fatou set F(f) is defined as the set of those points
z € € that admit an open neighbourhood U such that the family of iterates {f"|v}n>1
is equicontinuous with respect to the spherical metric on @. The Julia set J(f) is then
defined as @'\ F. An astonishing result of Montel, which allowed Fatou and Julia to develop
an extensive global theory of iterates of rational functions, is that any family of analytic
functions which omits three points is equicontinuous. The following basic properties of
Julia sets can be found in [Bea] or [CG] for example.

(1.a) J(f) is a non-empty compact subset of .
(1.b) J(f) is totally invariant, meaning that f=1(J(f)) = f(J(f)) = J(f).
(1.c) Either J(f) = @ or J(f) is a nowhere dense subset of .
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The property (1.b) allows us to consider the dynamical system f : J(f) — J(f). The
following property completes our list of basic elementary properties of Julia sets J(f).

(1.d) The dynamical system f : J(f) — J(f) is topologically exact, i.e. for every non-empty
open (in the relative topology) set U C J(f) there exists an integer n > 0 such that

M) = J(f).

One can add here that the repelling periodic points are dense in J(f). This property along
with (1.d) are the first signals of already mentioned chaotic behavior of f : J(f) — J(f).

Definition 1.6. Let t > 0. A measure m on J(f) is said to be t-conformal for f: @ — @,
if m(J(f)) =1 and

m(f(A)) = /A £t dm

for every Borel set A C J(f) such that f|4 is injective. A ¢-conformal measure for some
t > 0 will be called a conformal measure. Since these measures are concentrated on the
set J(f), they also will be called conformal for f: J(f) — J(f) or conformal for f.

In order to motivate this definition notice that if J(f) = € and ¢ = 2, then the normalized
Lebesgue measure is 2-conformal. Even more, if either z-dimensional Hausdorff or packing
measure is finite and positive on J(f), then the corresponding normalized Hausdorff or
packing measure is t-conformal. The issue is however to prove that the Hausdorff or packing
measure is finite and positive on J(f). So far this is only known in the hyperbolic parabolic
and non-recurrent case, and the main tool to prove this constitutes of the concept of
conformal measure. Notice also that although conformal, Hausdorff and packing measures
share many common features, the first one has s dynamical definition whereas the two
other are of purely geometric character. It is not obvious even in the hyperbolic case that
they coincide (modulo a constant factor).

In [Su2] Sullivan showed that for every rational mapping f there exists a conformal mea-
sure. We briefly sketch his construction below. It parallels the construction performed
in the case of Kleinian groups (see [Su4], comp. [Pal] and [Pa2]). First, if J(f) = @,
this measure is the 2-dimensional Lebesgue measure on @. Then the exponent will be 2.
Otherwise, if J(f) # @, take a point z in the Fatou set of f, the complement of the Julia
set, but not in a Siegel disk nor in a Herman ring (the Siegel disks proven to exist by C. L.
Siegel in [Si], comp [CG, p. 43 and 86] capture the part of the dynamics which is conjugate
to a rotation of the unit disk, while a Herman ring constructed first time by M. Herman
in in 1984, see [CG, p. 103] is a structure similar to a Siegel disk but conjugacy holds only
on a topological ring and cannot be extended beyond its boundaries). Such a point must
exist since f9 restricted to those domains is of degree 1, where ¢ denotes their period. We
may also require z to be the center of a disk D such that 2D is disjoint from

PCV(f) = | f(Crit(f)) = | FH(f(Crit())),

n>1 n>0



where

Crit(f) ={z € : f'(z) =0}

is the set of critical points of f and

F(Crit(f))

is the set of all critical values of f. One fairly interesting feature of the set PCV(f) is
that all analytic inverse branches of all forward iterates of f are well defined on simply
connected open sets disjoint from PCV(f). Since for sufficiently small disk D considered
above, the sets f~"(2D) are mutually disjoint (this is why we did not want z to be located
in a Siegel disk or a Herman ring), it follows from Koebe’s distortion theorem that

Yoo UM @) < oo,

n2lzef-"(z)

Let now 0 > 0 be the infimum of all the exponents ¢t > 0 for which the series

=3 X @

nzlzef—"(z)

converges. Of course § < 2. For every s > 0 let us consider the following atomic probability

measures
MY, D U @I

n>lzef- ”(Z)

To conclude the construction of conformal measures consider any limit point of measures
{m,} if s \( 6 in the weak topology of probability measures on the sphere @. Denote
this limit by m. This is our candidate for a conformal measure and we want to discuss
the problem of whether m really fulfills the requirements imposed on conformal measures.
First, is m concentrated on the Julia set? Omne can easily notice that if the series Mj
converges this is not the case. Then simply

lizz ()] 7°6,

n>lzef- ”(Z)

which gives measure 0 to the Julia set. There is however a way of overcoming this difficulty
by modifying the the series M; and the sequence mg a little bit. Namely, one employs so
called slowly varying factors. To be more precise there exists a function h : (0,e) — (0, 4+00)
such that lim;_o(h(at)/h(t)) =1 for every a > 0 and the series

S 3 U @I @)

n>1aef—r(z)

diverges. Each factor |(f™)'(z)|~t appearing in the definition of the series M; is then
multiplied by A(|(f™)'(x)|7t) and each factor |(f™)'(x)|~* appearing in the definition of
the measure mg is multiplied by A(|(f™)'(x)|~%). Then, having in mind how the point z
was chosen, we conclude that m(J(f)) = 1. It can be verified by an explicit computation
that the measure m is conformal.



This construction does not tell us too much about the exponent of conformal measure. In
order to get such information, a general scheme of constructing generalizations of conformal
measures was proposed in [DU1] and it was applied in [DU2] to the case of (Sullivan’s)
conformal measures. This approach is a modification of Patterson’s and Sullivan’s and the
main difference is that we start with a point in the Julia set and not in the Fatou set. We
will not go into the details here. The interested reader is referred to [DU2] (comp. also
[PU1, Chapters 8,10] and [Mc]). Instead, we will describe the precise statements of results
from [DU2] and some selected results from Chapters 8-10 of [PU1] that are interesting for
us at the moment.

Let us begin with recalling the notion of entropy of a measure-theoretic dynamical system.
Suppose that T : X — X is a continuous map of a compact metric space (X, d) and that u
is a Borel T-invariant probability measure on X. T-invariance means that if A is a Borel
subset of X then u(f~1(A)) = pu(A). We call u (or T) ergodic if the only Borel invariant
subsets of T' (i.e. satisfying T—!'(A) = A) are either of measure 0 or 1. Given n > 0 we
define the metric d,, on X by setting

dn(z,y) = max{d(T*(z), T*(y)) : 0 < i < n}.

Denote by By, (x,r) the open ball in the metric d,, centered in 2 and with radius r. If the
measure p is ergodic, then (see [BK]) for p-a.e. point z € X the limit

(1.1) lim lim _logu(Bn(:U,r))

r—0n—oo n

exists, is independent of z, and this limit is called the (metric) entropy of the system T
with respect to the measure p. This entropy is denoted by h,(T"). Roughly speaking it
measures the exponential rate of decay of the measure of points that stay e-close to the
point z under forward iterates of f. Observe that the entropy of any isometry with respect
to any invariant measure is always equal to zero, whereas the entropy of the map z — z¢,
z€ St ={z € : |z] =1}, with respect to the normalized arc-length measure on S?,
is equal to log2. Usually a different, more classical approach is undertaken to define the
entropy h,(T') (see [BK], [Wal], and [HK] for example), the one chosen here is probably
the fastest and, at the same time, it reflects in a better way, the nature of entropy.

If 1 is a Borel probability measure on the Julia set of a rational function f : @ — @, then
[log|f'|dp < log||f’]] < oo (we mean here the derivative calculated with respect to the
spherical metric and || - || is the supremum metric over @) and, as it was proved in [Prl1],
[log|f'|dw > 0. We call the integral [log]|f’|du the Lyapunov (characteristic) exponent
of f with respect to the measure p and we denote it by x,(f). The following theorem was
proved in [Mal] (comp. also [Pr2] and Chapters 8-10 of [PU1]) and we include its proof in
the hyperbolic case (next section) for Gibbs measures.

Theorem 1.7. If f : ( @ —  is a rational function and p is a Borel probability ergodic
invariant measure on € such that x,(f) > 0, then




We would like to point out that the ergodicity of f and the fact that the Lyapunov exponent,
is positive imply that p is supported on the Julia set. We would also like to add that due to
Ruelle’s inequality h,(f) < 2x,(f), the inequality x,(f) > 0 is implied by the inequality
h,(f) > 0. Look that due to Theorem 1.7 the purely geometric quantity HD(x) has been
expressed by purely dynamical terms h,(f) and x,(f). This makes it conceivable that the
Hausdorff dimension of the entire Julia set can be always expressed in dynamical terms.
Following this path, it is natural to introduce the following definition coming from [DU2].

Definition 1.8. The dynamical dimension DD(J(f)) is defined as

DD(J(f)) = sup{HD(u)},

where the supremum is taken over all ergodic invariant measures of positive entropy.

We call a compact forward invariant subset X C J(f) (i.e. satisfying property f(X) C X)
hyperbolic if there exists n > 1 such that

(™) (@) > 1

for every x € X and f" is topologically conjugate to a subshift of finite type. If only
condition |(f™)'(z)| > 1 is satisfied we call the map f|x expanding. Since the dynamics and
ergodic theory of subshifts of finite type is fairly well understood, it would be nice to know
that the hyperbolic sets approximate in some sens the entire set J(f), for example that
their Hausdorff dimensions approximate the Hausdorff dimension of J(f). This justifies
the following definition (see [Sh], comp. [PU1]).

Definition 1.9. The hyperbolic dimension hD(J(f)) is defined to be the supremum of
Hausdorff dimensions of all hyperbolic subsets of J(f).

The next definition aims to select, in a certain sense, the best of all conformal measures.
Definition 1.10. §(f) is the minimal exponent for which a conformal measure exists.
We are now in the position to formulate the main result of this section.

Theorem 1.11. For all rational functions f : @ — @ we have that

DD(J(f)) = hD(J(f)) = o(f)-

The equality of the numbers DD(J(f)) and 6(f) was essentially proved in [DU2]. The
proof became complete after F. Przytycki demonstrated in [Pr1] that each compact forward
invariant subset of .J(f) contains points z for which lim sup,,_, ., |(f™)’(2)| = co. The reader
may also consult [Mcl] for the proof. The equality DD(J(f)) = hD(J(f)) has been shown
in Chapter 8 of [PU1]. The general scheme of the proof of Theorem 1.11 is the following:
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First, it follows easily from the classical Bowen type formula (see [Bol], comp Chapter 6 of
[PU1]) that hD(J(f)) < DD(J(f)). A generalization of Bowen’s formula will be discussed
in Sections 2 and 3 which are devoted to hyperbolic and parabolic rational functions.
Second, using an appropriate version of Pesin’s theory and Katok’s type considerations
(see Chapter [8] of [PU1]) one shows that hD(J(f)) > DD(J(f)). The easiest part (modulo
Pesin’s theory and Katok-Strelcyn type results (see Chapter [8] of [PU1])) is to show that
hD(J(f)) < 0(f). One uses here the fact that each ergodic invariant measure of positive
entropy gives rise to a subset of the set of conical points of full measure. The set of conical
points will be discussed in greater detail soon. At this moment let us only informally say
that conical points are those whose forward iterates allow infinitely often univalent analytic
pull-backs from some fixed scale. Finally, developing the technique of so called compact
invariant K (V')-sets and defining on them classical topological pressure of the functions
—tlog|f'|, t € IR, one constructs a conformal measure with exponent < DD(J(f)). This
proves the inequality 6(f) < DD(J(f)) and finishes the proof of Theorem 1.11.

A natural byproduct of the proof of Theorem 1.11 is the appearance of the concept of
conical points. They correspond to conical points in the theory of Kleinian groups and
were introduced in [U1] (comp. also [DMNU] and [Mcl]). Here is their definition.

Definition 1.12. A point z € J(f) is called conical for f if there exist # > 0 and an
infinite increasing sequence ng > 1 of positive integers such that for each k there exists
f7 ™, a holomorphic inverse branch of f™ which is defined on the disk B(f"*(z),0) and
sends the point f™ (z) to z. The set of all conical points of f will be denoted by J.(f). A
conical point is called uniformly conical if one can find a sequence {ny} such that

|(f5 1) (2)]

limsup ——————~— < @
n—oo | (f™)(2)]
Using Koebe’s distortion theorem it is easy to see that for every conical point z there exists
a sequence of radii {rg(2)}$2, converging to 0 (4 (z) is approximately equal 8](f"*)’(2)|™1)
such that if m is a ¢-conformal measure on J(f), then

m(B(zri(2)))
i) = ©

for some constant C' depending on 6 and m. The reader may acknowledge the importance
of this formula by looking back at Theorem 1.3 and Theorem 1.4. In [DMNU] we have
proved the following.

(1.2) c <

Theorem 1.13. There exists at most one value of ¢ for which a ¢-conformal measure
exists and is supported on the set of conical points of f. Additionally, for such a t there is
exactly one t-conformal measure supported on the set of conical points of f.

We would like to end up the discussion concentrated around Theorem 1.11 with two prob-
lems.
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Problem 1.14. Is the Hausdorff dimension of the Julia set always equal to its dynamical
dimension?

Problem 1.15. Does there always exist a conformal measure supported on the set of
conical points?

Some partial positive answers to these problems will be given in the following sections.
In general, the answer to the Problem 1.15 is negative. Indeed, it has been recently
communicated to me by Volker Mayer ([May]) that discovered by Shishikura (see [Sh])
quadratic polynomials with dynamical dimension equal to 2 and vanishing 2-dimensional
Lebesgue measure admit no conformal measures supported on conical points. Indeed,
suppose on the contrary that such a polynomial has a ¢-conformal measure supported on
conical points. Since the dynamical dimension is equal to 2, t = 2. It then easily follows
from (1.2) that the Lebesgue measure would have to be positive.

We shall end this section with an estimate from below of the Hausdorff dimension of the
Julia set which is caused by the existence of so called parabolic points. First we need the
following.

Definition 1.16. A periodic point z of f, say of period ¢ > 1, is called parabolic if the
derivative (f9)(z) is a root of unity.

In the literature parabolic points are frequently called rationally indifferent or neutral
periodic points. A Fatou’s theorem says that (see [Bea] and [CG] for example) that the set
Q) of all parabolic points is finite and contained in the Julia set. Suppose now that w € €2
is a fixed point of f. Looking at the Taylor series expansion of f around w and at Fatou’s
flower theorem (see [Bea] and [CG] for example) one can deduce (see [ADU]) that there
exists o > 0 such that for every sufficiently small 6 > 0 and every point z € B(w,d) \ {w}
all continuous inverse branches f " : B(z,0|z — w|) — @, n > 1, of f™ sending point z
closer to w, are well defined. Looking again at the Taylor series expansion of f around w
one can conclude (see [ADU]) that for every z € B(z,0|z — w|)

(1.3) |(f57) ()| =< n~ D2
and
(1.4) £ (@) — w| < n7 P,

where p = p(w) is the number of petals associated with the parabolic point w and where
the comparability constants depend only on the distance of z to w. Relying on (1.3) and
following the proof of Theorem 8.5 in [ADU] (see also [Mcl]) we shall provide a simple
argument for the following.

Theorem 1.17. If a rational function f : @ — @ has a parabolic point with p petals than
HD(J(f)) > p/(p +1).
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Proof. Let w be a parabolic point of f. Passing to a sufficiently high iterate we may assume
that f fixes w. Consider now a point z € J(f) N (B(w,d) \ {w}) and let V' C B(z, 0|z —w|)
be a neighbourhood of z which is chosen so small that all the inverse images f;™(V), n > 0,
are mutually disjoint. Let m be an arbitrary conformal measure for f : J(f) — J(f) and
let h =HD(J(f)). Since z € J(f), m(V) > 0. Using (1.3) and Koebe’s distortion theorem
we obtain the following

tzm | W) | = mzr v = Yo mw).

n>1 n>1 n>1
Thus h > p/(p + 1) and the proof is complete. B

We would like to conclude this section with the remark that McMullen’s paper [Mc3]
contains an algorithm for computing the Hausdorff dimension of any conformal hyperbolic
set up to any desired accuracy. Also, in this paper lots of various examples are treated.

§2. Hyperbolic rational functions. Hyperbolic rational maps form the most thor-
oughly understood subclass of rational functions. They serve as a model for investigations
of other subclasses of rational functions as for example parabolic maps, NCP maps or
Collet-Eckmann maps (see following sections). The geometric structure of hyperbolic Ju-
lia sets exhibits the same formal properties as the structure of the limit sets of convex
co-compact Kleinian groups. In particular Theorem 1.1 and 1.2 are true in exactly the
same form for these groups. This is a clear transparent part of Sullivan’s dictionary. How-
ever the analogy breaks rather down when one passes to the concepts of topological pressure
and invariant measures. These have some counterparts in the theory of Kleinian groups in
some particular cases (see [Bol], [BS], and the recent article [KS] by M. Kesseb6hme and
B. Stratmann) and are by no means canonical.

In this survey we will present only basic geometric facts about hyperbolic maps. This will
equip the reader with the language and techniques sufficient to continue investigations of
this particular class as well as to deal with larger classes of rational functions. At the
end of this section we only briefly touch on four out of potentially infinitely many possible
continuations of the research on hyperbolic rational functions. One of the most systematic
treatments of hyperbolic Julia sets which form the most transparent class of conformal
expanding repellers, can be found in Chapter 7 of the book [PU1].

The central point of our exposition in this section (and others as well) is the concept of
conformal measures introduced in the previous section. In particular, in order to study the
geometry of Julia sets we do not need to use Markov partitions. This is of some importance
since the NCP maps treated in Section 4 do not have Markov partitions and, although
parabolic maps admit them, their diameters under backward iterates do not converge to
zero exponentially fast and not all of them have bounded distortion.

Definition 2.1. A rational function f : J(f) — J(f) is called hyperbolic if there exists
n > 1 such that

inf{[(f")'(2)] : z € ()} > 1.
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This definition coincides with the definition of a hyperbolic set given right after Defini-
tion 1.8 since each hyperbolic rational function is topologically conjugate to a subshift
of finite type. Let us look now closer at the polynomials z +— 2™, n > 2. The points
inside the open unit disk converge locally uniformly to zero under forward iterates of these
polynomials, the points outside the closure of the unit disk converge locally uniformly to
infinity, whereas the points on the unit circle S = {z € €': |2| = 1} stay on S! for ever.
Consequently, the Julia set of any map z — 2™, n > 2, is equal to the unit disk S!. Since
|(2")'| = n > 2 on S, we see that each map z — 2™, n > 2, is hyperbolic. Recall that
PCV(f) is the forward trajectory of the set of critical values of f. The following topologi-
cal characterization of hyperbolicity, usually much more suitable for verification than the
original definition was known already by Fatou and Julia (see [Bea] and [CG] for example
and the references therein).

Theorem 2.2. A rational function f : J(f) — J(f) is hyperbolic if and only if

PCV(f) N J(f) = 0.

It immediately follows from this theorem that each point of a hyperbolic Julia set is conical
(see Definition 1.12), in fact is uniformly conical. The same statement is true for convex
co-compact Kleinian groups - one item more to the Sullivan’s dictionary. This gives an
immediate positive answer to the Problem 1.15 in the class of hyperbolic rational functions.

Imagine now that you perturb the map z — 22 a little bit, say to a map f.(z) = 22 + ¢,
where € is very close to zero. Then the disk B(0,1/2) is compactly mapped into itself.
Thus due to Montel’s theorem, the family f* : B(0,1/2) — B(0,1/2) is equicontinuous.
Hence, the ball B(0,1/2) is contained in the Fatou set of f.. Since

PCOV(f) = {f2(0) :n = 1} U{oo} C B(0,1/2) U {oo} C F(f),

Theorem 2.2 implies that all the maps f., |¢| << 1, are hyperbolic.

Look now again at the simplest example of a hyperbolic map f(z) = z2. Then the normal-
ized arc-length measure m; on S' is 1-conformal for f, the m; measure of any sufficiently
small ball centered at a point in S, is comparable with the length of its radius, the Haus-
dorff dimension of the Julia set S! is equal to 1, and all three measures: conformal m,
Hausdorff H; and packing II; coincide on S up to multiplicative constants. As the next
theorem shows, these nice fractal properties, appropriately modified, continue to be true
for all hyperbolic maps.

Theorem 2.3. If m; is a t-conformal measure for a hyperbolic rational function f : @ — ,
then

(a) There exists C' > 1 such that for all r € (0, 1]

my(B(z, 7))

rt

c 1<

< (.
(b) ¢ = HD(J(f)).
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(c) The measures mg, H| 75y and I1¢| (5) coincide up to a multiplicative constant.

Proof. In this proof we will use Koebe’s distortion theorem although we would like to
emphasize that in the case of hyperbolic rational functions this theorem can be proved
by purely dynamical means as a special case of bounded distortion property valid in the
setting of distance expanding continuous maps and Holder continuous potentials (see for
example [PU1)).

(a) Given 0 < r < land z € J(f) fixn > 1 determined by the condition that r|(f™)'(x)|¢ <
1, where ¢ = 3dist(J(f),PCV) > 0. It then follows from Koebe’s distortion theorem that
B(z,r) < f-™(B(f™"(x),£)), where f-™ : B(f™(x),{) — € is the holomorphic inverse
branch of f™ sending f™(x) to x, and that

my(B(z, 7)) = / |(f) () [Fdma(2) < [(f") (@)~ mu (B(" (), 6))
B(f"(2),£)
= (") (@) =t

The proof of part (a) is complete.
(b) This is an immediate consequence of (a) and Theorem 1.3.

(¢) It immediately follows from (a) along with Theorems 1.3 and 1.4 that all the three
measures appearing in item (c) are mutually equivalent with Radon-Nikodym derivatives
bounded away from zero and infinity. Since all these Radon-Nikodym derivatives are
constant along orbits of f, ergodicity of measure m; (see the discussion of equilibrium
states and Gibbs states of Holder continuous potentials below) completes the proof. H

Notice that it follows from items (b) and (c) of Theorem 2.3 that there exists exactly one
(in contrast with parabolic and non-recurrent cases) exponent ¢ for which a ¢-conformal
measure exists, namely ¢ = HD(J(f)). In addition, there exists exactly one HD(J(f))-
conformal measure. As an immediate consequence of Theorem 2.3(a) and (b), we get the
following.

Theorem 2.4. If f : @ — C'is a hyperbolic rational function, then BD(J(F)) = HD(J(f)).

An intriguing open problem is whether there exist Julia sets whose Lebesgue measure is
positive. In the class of hyperbolic maps such examples do not exist. As the following
theorem shows even more is true.

Theorem 2.5. If f : @ — @ is a hyperbolic rational function, then BD(J(F)) =
HD(J(f)) < 2.

Proof (Sketch) First notice that since all points of the Julia set of f are conical, one drags
from the large scale holes in the Julia set to arbitrarily small neighborhoods of all points of
J(f) and therefore, due to Koebe’s Distortion Theorem, for every z € J(f) we have that

o M) 0 B r)

T By b
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This, due to Lebesgue’s Density Theorem, implies that A(J(f)) = 0. Suppose now on the
contrary that h = HD(J(f)) = 2. Then Theorem 2.3(a) would imply that msy and the
Lebesgue measure on J(f) are equivalent. In particular A(J(f)) > 0. This contradiction
finishes the proof. B

We will add more details to this argument in the last part of the proof of Theorem 3.8 in
context of parabolic rational functions. We would like to mention here that Theorem 2.5
follows immediately from porosity (see the paragraph proceeding Theorem 3.9) of hyper-
bolic Julia sets and Theorem 3.9. The porosity of hyperbolic Julia sets is trivial: as in the
first part of the proof of Theorem 2.5 one drags holes in the Julia set from the large scale
to a neighbourhood of a given point 2 € J(f) but one needs to notice in addition that
they will be contained in geometric annuli centered at x with radii decreasing to zero as a
geometric sequence.

We would like to notice that this simple fact in the theory of hyperbolic rational functions
has a much more involved proof in the parabolic case (see [DU5]) and is not established
for all NCP maps (see Section 4).

In order to obtain a more dynamical description of Hausdorff and packing measures and a
dynamical interpretation of the Hausdorff dimension we need first the concept of topological
pressure (see [Ru], [Wal], [Bo2] and [PU1] for example). In order to introduce it, we
choose one of the fastest methods. For alternative approaches better suited to derive
various properties of topological pressure see also the positions quoted above. Consider
a continuous mapping T : X — X of a compact metric space (X,d) and a continuous
function ¢ : X — IR, called, following physical tradition, a potential. Given n > 0 and
e > 0, we say that a subset F' of X is (n,e)-separated if it is separated with respect to the
metric d,, which means that if z and y are two distinct points of X, then d,(z,y) > €.
Fixing now € > 0 we consider an arbitrary sequence F,(¢), n > 1, of maximal (in the sense
of inclusion) (n,e)-separated sets. We then define the topological pressure of the function
¢ with respect to the mapping T as follows

n—1
1 :
=1 1 — J
P(T, ¢) gl_IEl lim sup — log E exp E ¢ o T (x)

0 n
n—00 2EF, (e) =0

Observe that in the case of expansive maps (see the beginning of Section 3 for the appro-
priate definition) it is not necessary to take the limit for e — 0; it is then enough to take
€ as an expansive constant of 7. In case when ¢ = 0, the topological pressure is called
topological entropy. It has been proved (see [Gr] and [Ly2]) that topological entropy of
any rational function is equal to the logarithm of its degree. Topological pressure belongs
to topological dynamics, whereas metric entropy is a notion in ergodic theory. The link
joining them is given by the following formula called the variational principle (see [Rul,
[Wa], [Bo2] and [PU1] for example).

P(T.¢) = sup{h,(T) + / ns
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where the supremum is taken over all Borel probability T-invariant (ergodic) measures of
X.

In the case when T': X — X is an open distance expanding map (the latter means that
there are constants ¢ > 0 and A > 1 such that if d(z,y) < ¢, then d(T'(x),T(y)) > Ad(z,y))
and ¢ : X — IR is a Holder continuous function, there exists a unique T-invariant measure
1, called the equilibrium state of the potential ¢, such that h,, (T) + [ ¢dugy = P(T, $).
In particular pg is ergodic. Among all the Borel probability T-invariant measures /i is
characterized by the condition that for every r > 0 small enough there exists a constant
C, > 1 such that

1 /1,¢(Bn(l',7"))
(21) “ S e (Sugl) — P@) =

for every x € X and all n > 1. Here

n—1

Sup=> ¢oT’.
=0

Because of the property (2.1) the equilibrium state p is frequently called the Gibbs state
of the potential ¢. For a systematic exposition of the theory of Gibbs states for the distance
expanding maps the reader may consult Chapter 3 of the book [PU1] as well as [Bo2] and
[Ru]. We may assume without loss of generality that P(¢) = 0. In the case of hyperbolic
Julia sets condition (2.1) easily translates into the following. There exists E > 1 such that
for all z € J(f) and all » > 0 small enough

L1 palBlar)
22 BS e S =P

where n = n(z,r) is the largest integer such that |(f™)'(x)|rC < € and, let us recall £ =
%dist(J(f),m). With its help it is possible to provide a complete proof of Theorem 1.7
assuming that p is a Gibbs state. In the general case the idea of the proof is the same and
instead of (2.2) one uses the Brin-Katok (see the second last paragraph above Theorem 1.7)
definition of metric entropy.

Proof of Theorem 1.7 in the case when i = 14 is the Gibbs state of a Holder
continuous potential. First notice that in view of Theorem 1.3 it suffices to show that
for p14-almost every point = € J(f)

. logpg(B(z,r))  hu,(f)
}1_1)1(1) log r B Xuo (f)

In order to prove this formula notice first that for n = n(x,r) we have
—log E + Sp¢(z) <logps(B(x,r)) <logE + S,¢(x)
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and
log(EC||FII71) — log |(f™)' (2)] < logr <log(€C™") —log |(f™)'(x)].
Combining these four inequalities we obtain
—log B + Spo(x) < log(up(Blw,r)) . log B + Sné(x)
log(EC—H|f'|I71) —log [(f)'(z)] ~ logr ~ log(6C1) —log |(f)'(x)]

Now, in view of Birkhoff’s Ergodic Theorem, there exists a Borel set X € J(f) such that
py(X)=1and for all z € X

n—oo N,

lim S o(z /Qﬁdw, and hm llog|(f”)( )| = Xpu, (f)-

Keeping in mind that h,, (f)+ [ ¢dugy = P(¢) = 0 and combining the last four inequalities
along with the observation that n — oo as » — 0, we conclude that for all x € X

i 08 19(Blw,r) [ ¢dpg by (f)
r—0 10g7" _X,u¢> (f) X,u¢> (f) .

The proof is finished. l

Since the Julia set of a hyperbolic rational function f : J(f) — J(f) contains no critical
points, we may define the function

P(t) =P(f, —tlog|f']), t e R

which is called the pressure function. Since nP(t) = P(f™, —tlog|(f™)']), hyperbolicity
of f implies that the function ¢ — P(t) is strictly decreasing, lim;—,_, P(t) = 400 and
limy 4o P(t) = —o0. In addition it is easy to see that the function P(¢) is convex and
consequently continuous. In fact it is real-analytic. We are now in position to sketch
the proof of the following theorem (see [Bol], comp. [MC] and [PU1]) called the Bowen-
Manning-McCluskey formula.

Theorem 2.6. If f : @ — € is a hyperbolic rational function, then h = HD(J(f)) is
the only zero of the pressure function ¢ — P(t), t € IR. In addition, the (ergodic) Gibbs
state pp = p_p1og|f| 18 equivalent to the conformal measure mj; with Radon-Nikodem
derivatives bounded away from zero and infinity.

Proof. Let h be the only zero of P(¢). In view of (2.2) for every r > 0 small enough and
every « € J(f) we have
)y

|(f"(”))( )"
But since |(f*®M) (z)] < r~!, we get

pn(B(z, 7))

= 1.
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This formula along with Theorem 2.3 and Theorem 1.3 finish the proof. B

Since each Gibbs state of a Holder continuous potential has positive entropy, it imme-
diately follows from this definition that for hyperbolic rational functions the answer to
Problem 1.14 is positive.

The theory of hyperbolic rational functions (not to mention its generalizations) has devel-
oped in numerous still active directions. Let me only point out its connections with the
potential theory, especially with its part devoted to study geometric properties of harmonic
measure in the simply connected case (see [Man], [Pr2], [PUZ LII] for example) as well as
in the totally disconnected case (see [Ca], [Vo], [UZ] and references therein).

Another interesting subfield of hyperbolic systems concerns multifractal analysis of Gibbs
states of Holder continuous potentials. This topic having long history has been rigorously
and thoroughly investigated by Ya. Pesin and H. Weiss (see [Pe], [PW], comp. Chapter 7
of [PU1]).

We would also like to add that there exists a huge theory of stochastic and statistical
properties of Gibbs states. Its results rely mostly on the possibility of constructing Markov
partitions and to work with corresponding symbolic representation of hyperbolic systems.
As an introduction to this theory the reader may consult the first and third chapter of
the book [PUL]. A large part of investigations of harmonic measure in the context of
hyperbolic maps depends heavily on stochastic properties (Central Limit Theorem, the
Law of Iterated Logarithm) of Gibbs states.

Let us mention finally the rigidity theory originated by D. Sullivan in [Su3]. It goes far
beyond the hyperbolic case as reader may see in Appendix 1.

§3. Parabolic rational functions. We call a continuous map 7" : X — X from a
compact metric space (X,d) into itself erpansive if there exists § > 0 such that for all
pairs of points x,y € X, x # y, there exists n > 0 such that d,,(x,y) > §. In the sequel,
any number § satisfying this property will be called an expansive constant. In [DU3]
we have proved the following topological characterization of expansive rational functions
f:J(f) = J(f) in the spirit of topological characterization of hyperbolic rational functions
given in Theorem 2.2.

Theorem 3.1. A rational function f : J(f) — J(f) is expansive if and only if the Julia
set J(f) contains no critical points of f.

One direction of this equivalence is simple. Namely, if the Julia set J(f) contains a critical
point, say ¢, then f : J(f) — J(f) is not expansive. To see this, notice that by perfectness
of J(f) we can find a sequence z,, n > 1, of points in J(f) converging to c. Since c is a
critical point of f, for each point z,, (sufficiently close to ¢) there exists a different point
Yn F# Ty such that

(3'1) f(yn) = f('rn)
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Moreover we may require that lim,,_, o ¥, = c and, in particular, that lim, oo |yn—2,| = 0.
This together with (3.1) contradict expansiveness. The other direction is more subtle and
requires a good control of the inverse branches.

It follows from Theorems 3.1 and 2.2 that each hyperbolic rational function is expansive
and that a rational function is expansive but not hyperbolic if and only if the Julia set
contains no critical points of f but intersects the w-limit set of critical points. Now, if
we have a rational function whose Julia set J(f) contains no critical points of f, then
it follows from the classification theorem of connected components of the Fatou set (the
complement of the Julia set) and from the fact that the boundaries of Siegel disks and
Herman rings intersect the w-limit set of critical points (see [Bea] and [CG] for ex.) that
if f is not hyperbolic, then there must be a parabolic point in the Julia set. On the other
hand, the existence of such a point obviously rules out hyperbolicity. Thus, we obtain the
following.

Theorem 3.2. A rational function f : J(f) — J(f) is expansive but not hyperbolic if
and only if the Julia set J(f) contains no critical points of f but contains at least one
parabolic point.

All expansive but not hyperbolic rational functions are called parabolic.

Since the Julia set of an expansive rational function f : J(f) — J(f) contains no critical
points, also in this case we may define the function

P(t) =P(f, —tlog|f']), t € IR,

which was called the pressure function in the previous section. The basic properties of this
function are collected in the following theorem. We include the statements for hyperbolic
maps known from the previous section in order to emphasize the differences between the
parabolic and hyperbolic case.

Theorem 3.3. Suppose that f: J(f) — J(f) is expansive. Then

(a) The pressure function is convex and therefore continuous.

(b) The pressure function is non-increasing.

(c) If the mapping f is hyperbolic, then the pressure function is strictly decreasing and
limyy 400 P () = —o0.

(d) If the mapping f is parabolic then there exists a number s(f) > 0 such P(¢) = 0 for
all t > s(f) and Pl s(f) is strictly decreasing.

The part (a) of this theorem is classical, the part concerning parabolic maps ((b) and (d))
has been proved in [DU3|. The proof makes an extensive use of the variational principle
and the non-negativity of Lyapunov exponents. The fact that in the parabolic case for
all t, P(t) > 0 is caused by the existence of invariant probability measures supported on
(periodic) orbits of parabolic points. In the case of hyperbolic maps we denote the only zero
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of P(t) also by s(f). The following theorem, which is classical in the hyperbolic case and
called the Bowen-Manning-McCluskey formula (see [Bol], comp. [MC]), has been proved
in the parabolic case in [DU3]. It can be considered as a strengthening of Theorem 1.11
and partial answer to the Problem 1.14. Since the function ¢ — P(t) is real-analytic on
the interval [0, s(f)) (see [By] and [Sm]), the item (d) of Theorem 3.3 implies that at the
point s(f) the real-analyticity of the pressure function breaks down. This phenomenon is
called phase transition.

Theorem 3.4. If a rational function f : J(f) — J(f) is expansive, then we have the
following equalities

DD(J(f)) = hD(J(f)) = 0(f) = s(f) = HD(J(f))-

Using Theorem 1.7 and the variational principle, it is not difficult to see that s(f) <
DD(J(f)). So, a priori, the largest number in Theorem 3.4 is HD(J(f)), the Hausdorff
dimension of the Julia set J(f). We would like to provide the sketch of the proof that
HD(J(f)) < 6(f). In order to do this and later on to be able to discuss the so called
uniform formula for conformal measure, we need the concept of hyperbolic zoom which
appeared in [U2], which was extensively used in author’s papers with M. Denker and which
got its name in [SUL].

From now on assume that the rational map f : @ — € is parabolic. As it will be seen in
the sequel, parabolic maps form the class of rational functions formally strikingly similar
to the class of geometrically finite Kleinian groups. The analogy between these two classes
of rational functions and Kleinian groups takes on the clearest and most far-reaching form
providing to our taste, one of the most beautiful chapters of Sullivan’s dictionary.

We continue with the remark that in the parabolic case the w-limit set of critical points is
contained in forward orbits of parabolic points and attracting periodic points. Therefore,
given e > 0, an expansive constant of f : J(f) — J(f), there exists a positive constant
6 > 0 such that for every z € J(f) \ B(Q,e) the ball B(z,6) is disjoint from PCV(f).
Consequently all continuous inverse branches of all iterates f™, n > 1, are well-defined

on all the balls B(z,0), where z € J(f)\ B(€2,e). It now follows from expansiveness of
[ J(f) = J(f) that if . € J(f) \ U,,50 f~"(€2), then there exists an infinite increasing
sequence n;(x), j > 1, such that for every j > 1 we have

[ (@) ¢ B(Se).

In the sequel, we let {n;(z)} denote the maximal sequence satisfying the above property.
Consequently we get the following

Theorem 3.5. If f : @ — @'is a parabolic rational function, then the set of conical points
J.(f) coincides with the set J(f)\ U,,>o0 f " ().

Exactly the same statement holds for geometrically finite Kleinian groups.
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Theorem 3.5 and a fairly complete understanding of the dynamics of f around parabolic
points provide most basic tools for the theory of parabolic maps, and play an important
role in its further development. The sequence of numbers

(3.2) rj(@) = |(f") (@)~

is called the hyperbolic zoom at the point z. Applying Koebe’s Distortion Theorem and
the conformality property, it is easy to observe that (comp. (1.2)) if m is a t-conformal
measure for f, then there exists a constant B(m) > 1 such that for all x € J.(f)

(33) sm) < M) < ),

We are now in position to provide the proof taken from [U2] (comp. [DU3]) of the following.

Theorem 3.6. If H; is the t-dimensional Hausdorff measure on J(f) and m is a t-conformal
measure for f : J(f) — J(f), then H; is absolutely continuous with respect to m such that
the Radon-Nikodym derivative is bounded from above. Consequently, ¢ > HD(J(f)) and
there is no ¢-conformal measure for ¢ < HD(J(f)).

Proof. Let F' C J(f) be any Borel set. Put E = J.(f)NF = F\U,—, f"(Q). Since
the set Jo—,T~™(Q) is at most countable, H;(E) = Hy(F). Fix v,e > 0. Since m is
regular we can find a countable cover {B(z;,r(x;))}:2, of E of multiplicity bounded by a
universal constant C' > 1 (coming from the Besicovic covering theorem) such that x; € F,
0 < r(z;) <~ is of the form r;(z;) for every i =1,2,... (defined in (3.2)) and such that

oo

m(| ) Blai r(z:)) \ E) <e

i=1
Hence, applying (3.3) to the measure m, we obtain

oo

> r(z;)t < B(m Zm (zi,r(z:))) < B(m)Cm(| ) B(wi,r(:))) < CB(m)(e + m(E))

1=1 i=1

Letting € N\, 0 and then v ~\, 0, we get Hy(F) = Hy(E) < CB(m)m(E) < CB(m)m(F).
The proof is complete. B

As already announced, it follows immediately from this theorem that HD(J(f)) < d(f).
Thus the proof of Theorem 3.4 is complete.

Theorem 3.4 implies in particular that there are no t-conformal measures with exponents
t < HD(J(f)). The following theorem describes the structure of all conformal measures
which has the same form as in the case of Kleinian groups.

Theorem 3.7. If f: @ — 'is a parabolic map, then the following three statements hold:
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(a) There is no t-conformal measure with ¢ < HD(J(f)).
(b) There exists exactly one HD(J(f))-conformal measure. This measure is atomless.

c) For every t > HD(J there are t-conformal measures. Each such measure is a
Yy
convex combination of purely atomic measures supported on (J,,~, f~" ().

Thus, the structure of the set of all conformal measures in this, in a sense closest to the
hyperbolic, case is substantially much more complex than in the hyperbolic case. As was
already mentioned, item (a) of this theorem is already contained in Theorem 3.4. The ex-
istence of HD(.J(f))-conformal measures is also given by Theorem 3.4. The existence of an
atomless HD(.J(f))-conformal measure is proved in Theorem 8.7 of [ADU] and its unique-
ness is demonstrated in Theorem 4.6 of [DU4]. Finally, item (c) is proved in Theorem 13
of [DU3].

Recently (see Section 3 and especially Section 5) there has been very strong interest in the
Hausdorff dimension of various Julia sets. Particularly popular is the problem of whether
the Hausdorff dimension of a Julia set is equal to 2 or less than 2. Up to our knowledge
the first result in this direction which goes beyond the hyperbolic case has been obtained
in [ADU], where the following theorem has been proved.

Theorem 3.8. If f : @ — {'is a parabolic map, then HD(J(f)) < 2.

Below we provide the proof of this theorem. We give this proof (comp. the proof of
Theorem 2.5) since the method employed there has turned out to be applicable also in
other settings.

Proof of Theorem 3.8. First, using the concept of hyperbolic zooms, the distortion
property on the balls B(z,7;(x)) and Lebesgue’s density theorem, one demonstrates as in
[Lyl] and [DH1] (cf. also [DU3]) that the (2-dimensional) Lebesgue measure of the Julia
set J(f) is equal to 0. We now follow the proof of Theorem 8.8 in [ADU]. Suppose on the
contrary that HD(J(f)) = 2 and let m be a 2-conformal measure existing by Theorem 3.4.
For every = € J.(f) let {r;(z)};2; be the hyperbolic zoom at the point x introduced by
(3.2). Fix ¢ > 0 and denote by A the (2-dimensional) Lebesgue measure on €. Since
A(J(f)) = 0 and since lim;_, o, 7j(z) = 0, for every = € J.. there exists a radius r(x) being
of the form r;(x) such that
A( U B(z,r(z))) <e.
zeJ,

Now by the Besicovic covering theorem (see [Gu|, comp. [PU1]) we can choose a count-
able subcover {B(z;,7(z;))}52; of the cover {B(z,r(x))}zes.(s) of Je(f), of multiplicity
bounded by some universal constant C' > 1. Therefore, using (3.3) with ¢ = 2, we obtain

m(Je) < Zm(B(ﬂﬁi’T(iUi))) < B(m) ZT(%’)Z = Br~! ZA(B(%T(%)))

< Bﬂ'_lC)\([j B(z;,r(z;))) < BCr™ e

=1
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Thus, letting e — 0, we obtain m(.J.) = 0. Since, by Theorem 3.7(b), m is atomless, it
implies that m(J(f)) = 0. This contradiction finishes the proof. B

There is another nice way, not using conformal measures, to show that HD(J(f)) < 2 for
parabolic maps, which shows even more, that the upper box-counting dimension of these
Julia sets is less than 2. Namely, a bounded subset X of a Euclidean space is said to be
porous if there exists a positive constant ¢ > 0 such that each open ball centered at a point
of X and of an arbitrary radius 0 < r» < 1 contains an open ball of radius ¢r disjoint from
X. The notion of porosity has appeared in several contexts and for a short survey and
some bibliographical references the reader may see the paper [YR]. By a simple counting
argument it is straightforward to prove the following.

Theorem 3.9. If X is a porous subset of R%, then BD(X) < d.

Since L. Geyer has proved in [Ge] that

Theorem 3.10. The Julia set of a parabolic rational function is porous.
These two latter theorems imply the following.

Theorem 3.11. The upper box-counting dimension of the Julia set of a parabolic rational
function is less than 2.

Notice however that in [DUS5], using the jump transformation (see below), we have proved
the following.

Theorem 3.12. If f is a parabolic mapping, then BD(J(f)) = HD(J(f)).

To our surprise the proof of this theorem, similarly as its counterpart in the theory of
Kleinian groups (see [SU3]) is much more involved than in the hyperbolic case (see Theo-
rem 2.4).

In particular combining this theorem and Theorem 3.8, we get Theorem 3.11.

For parabolic maps our interests went deeper to study the finer the structure of Julia sets.
We were interested in which cases Hausdorff and packing measures are finite and positive.
The complete answer is given by the the following theorem, proven in [DU6].

Theorem 3.13. If f is a parabolic mapping and h := HD(J(f)), then
(a) Hu(J(f)) < oo and Mu(J(f)) > 0.

(b) Hp(J(f)) =0 if and only if h < 1.

(¢) Mp(J(T)) = ¢ if and only if h > 1.

It is really striking that the same result is true for Kleinian groups.
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The proof of this theorem makes extensive use of the h-conformal measure m. The fact
Hy,(J(f)) < oo follows immediately from the first part of Theorem 3.6; the fact II, (J(f)) >
0 can be proved similarly. The results Hy, (J(f)) =0if h < 1 and II,(J(T)) = o0 if h > 1
are not too difficult and their proofs use closer and closer visits of forward iterates of
points from J. to Q. The hardest parts are to prove that Hy(J(f)) > 0 if h > 1 and
I, (J(f)) < oo if h < 1. To see this we need to have a closer look at the ratio %,
where m is the unique h-conformal measure. The first rather implicit description of this
ratio has been made in [DUG6], more explicit and extensive in [DU5] and eventually in
[SU1] it took on the following final form closely resembling its counterpart in the theory
of geometrically finite Kleinian groups.

Theorem 3.14. Let f be a parabolic rational map with Julia set J(T') of Hausdorff
dimension h. Let m denote the associated h-conformal measure supported on J(7'). Then
there exists a function ¢ : J(f) x IRT — IRT such that for each z € J(f) and for every
positive r < diam(J(f)) we have that

m(B(z,r)) < rh. d(z,r).

The function ¢ is called the conformal fluctuation function. For r < diam(J(f)), the values
of ¢ are determined as follows. For z € J.(f), assume that r relates to the hyperbolic
zoom at z such that r;j11(z) < r < rj(z) and such that f¥(2) € B(w,e), for all k €
(nj(2),nj41(2)] and for some w € Q. In this situation we have that

(T) (h—1)p(w) for r > r;(2) (@) 1/(14p(w))

7 (2)

¢(z,7) <

(%) (h=1) for r < r;(z) (%é?) 1/(1+p(w))

If z € J,, then for every r > 0 small enough
d(z,7) < rh=DpW),

Let
Pmax = Max{p(w) : w € Q}.

From now on till the end of this section we would like to present several further results
specific for the parabolic case. They have no counterparts in the theory of hyperbolic
systems and their proofs are by no means modifications of the proofs in the hyperbolic
case. They are specific for parabolic maps also because passing to the next class (NCP
maps) most of these results (Theorems 3.15-3.21) are not known yet (most likely do not
hold in such a complete form as in the parabolic case) and other have only partial analogs
in the class of NCP maps. The third reason we include Theorems 3.15-3.21 in our survey
is that they have exact counterparts in the theory of geometrically finite Kleinian groups
([St1], [St2], [SU6]) and definitively demonstrate that both classes: parabolic rational
functions and geometrically finite Kleinian groups corresponds one to each other.
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A finer analysis of the conformal fluctuation function ¢ done in [SU1]| leads to the
following theorem proven in [SU1]| as Corollary 4.4.

Theorem 3.15. For the conformal fluctuation function ¢ of the h-conformal measure m
associated to a parabolic rational map f the following holds.

(a) If h =1, then for all z € J.(f) and all 0 < r < diam(J(T"))
d(z,r) < 1.
(b) If h < 1, then for m-almost every z € J(f)

li IOg QS(Z, T) o (1 - h/)pmax
im sup = = )
r—0 loglog = h+ (h — 1)pmax

(c) If h > 1, then for m-almost every z € J(f)

log ¢(z,1) _ (1 = h)Ppmax
r—0 log log % h + (h - l)pmax .

The main ingredient in the proof of this result was so called Khintchin Limit Law for
parabolic rational maps proven in [SU1| (Theorem 4.3) with the help of the jump transfor-
mation and invariant measures absolutely continuous with respect to conformal measure
which will be discussed more extensively later in this section. This Khintchin law reads as
follows.

Theorem 3.16. (The Khintchin Limit Law for parabolic rational maps) The hyperbolic
zoom at m-almost every z € J(f) has the property that

o DB /151(2) | 1t
o0 log log el h+ (h — 1)pmax

Note that this Khintchin law is the analog of the logarithmic law of geodesics for limit sets
of Kleinian groups (see [SV]). Given p € IR let

1) (14+p)(1—h)pmax/ (h+(h—1)pmax)

Po(r) i=1r" <log .

be a gauge function and let Hy, and IIy, be the corresponding Hausdorff and packing
measure. As an immediate consequence of our finer analysis of the conformal fluctuation
function (Theorem 3.15) we get the following result proven in [SU1] (Corollary 4.5).

Theorem 3.17. Let f be a parabolic rational map with Julia set J(f) of Hausdorff
dimension A and with h-conformal measure m. We then have

(a) If p>0and h <1, then m << Hy, and Hy, (J(f)) = o0
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(b) If p > 0 and h > 1, then there exists a Borel set E, such that m(E,) = 1 and

Iy, (E,) =0
(c) If p <0 and h < 1, then then there exists a Borel set F, such that m(F,) = 1 and
Hd}p(Fp) =0

(d) If p<0and h > 1, then m << Ily, and ITy, (J(f)) = oc.

We would like to remark that for A < 1 similar results were obtained by different methods
in [DR].

Another direction of exploring finer fractal structure of parabolic Julia sets is motivated
by multifractal analysis and Diophantine approximation (see [Bes] and [Ja]) of irrational
numbers and the limit sets of Kleinian groups (see an extended discussion of this motivation
in [SU2]). In order to define briefly the setting let us consider an expansive rational function
f:J(f) = J(f) and a Holder potential g : J(f) — IR satisfying g > log |f'|. Fix x € J(f).
Following [HV] we then define the set

Tg,2(f) = {z € J(f):z € B(y,exp(— Zg o f”(y))) for infinitely many pairs (y, n)

such that f"(y) = x}

In [HV] Hill and Velani have proved the following.

Theorem 3.18. If f : € — @ is a hyperbolic rational function, then for every z € J(f),
HD(J,,.(f)) = s(g), where s(g) is the only zero of the pressure function ¢t — P(—tg).

It turns out that in the parabolic case the situation is much more complicated. In [SU2] we
have considered the function g = (1+0)log|f’|, (¢ > 0) and we have proved the following,

where J7 (f) = J(1+40)10g 1,2 (f)-

Theorem 3.19. Suppose that f : @ — €'is a parabolic rational function. Fix an element
r e f71(Q)\ Q. Then

(a) If b < 1, then HD(JZ (f)) = 1.

(b) If h > 1, then

H—Lo‘ foro>h-—1
m for o < h—1.

Thus in the case when h > 1 we observe again the phenomenon of a phase transition.

Given w € Q, y € f(fHw) \ {w}) for some n > 1 and o > 0 we define r(y) =
1(f™) (y)|~F and 7y 4 = ot/ AFP@)y(y)P@)/A+2@)) - Our approach heavily relied on the
following Dirichlet cover type result and developed the methods worked out originally to
tackle similar problems in the theory of Kleinian groups (see for example [St1] and [St2]).
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Theorem 3.20. Suppose that f : @ — @'is a parabolic rational function. Fix an element
w € €. Then there exist universal constants r., Kp, a9 > 0, depending only on f, such that
for each w € €2 and for each 0 < & < a the following holds.

(a) The family {B(y, kpry,«) : 7(y) > a} provides a packing of J(f).

(b) The family {B(y, kcry,o) : 7(y) > a} provides a covering of J(f).

A simplified and clarified proof of Theorem 3.19 not using Theorem 3.20 was given in [SU4]
in the context of finite parabolic iterated function systems.

We would like to draw reader’s attention especially to the case h > 1 and ¢ < h — 1
in Theorem 3.19, since it shows that the situation in the parabolic setting is much more
complex than in the hyperbolic case and the most natural extension of Theorem 3.18
(requiring now s(g) to be the least zero of the pressure function P(—tg)) to the parabolic
case fails since, due to Theorem 3.4, s((1+ o) log|f'|) = H—Lcr
The last part of this section is devoted to a discussion of the ergodic theory of an h-
conformal measure m. This theory has been developed in [DU4] and [ADU]. Recall (see
[Ru, 7.29, p.146]) that a family ® = {Ry,..., Rs} is said to be a Markov partition for a
continuous map 7' : X — X of a compact metric space X if the following conditions are
satisfied: (Int(A) will denote the interior of the set A)

R; = Int(R;) for every R; € R.
If i # j then Int(R;) N Int(R;) = 0.
Each set T'(R;) is a union of sets R; € R.

Denote by 0A the boundary of the set A. It was shown in Theorem 2.2 of [DU4] that each
continuous expansive mapping of a compact metric space admits a metric compatible with
the topology with respect to which this mapping is expanding. Since each open continuous
expanding map admits Markov partitions of arbitrarily small diameters (see Theorem 2.4
and Lemma 2.3 from [DU4], comp. [Ru] and [Bo2]) with boundaries of measure zero for a
fixed atomless probability measure, we obtain the following.

Theorem 3.21. If f : J(f) — J(f) is a parabolic rational map and if p is an atom-
less probability measure on J(f), then f : J(f) — J(f) admits Markov partitions R =
{R1, ..., Rs} of arbitrarily small diameters such that u(0R; U...UdR,) = 0.

Having a Markov partition R with a sufficiently small diameter define the associated jump
transformation as follows. Denote by R(2) the union of all elements of R that have non-
empty intersection with  and given z € J(f)\ Q we define n(z) > 0 to be the least integer
n > 0 such that f™(z) ¢ R(2). Define then the jump transformation f* : J(f)\ Q — J(f)
(depending on the Markov partition) by setting

*(2) = [rOF(z).

The idea of the jump transformation is taken from [Scl] (cf. also [Sc2]). Using this mapping
and adapting the Schweiger formalism developed in [Scl] to our context, we proved in [DU4]
the following two theorems.
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Theorem 3.22. If f : J(f) — J(f) is a parabolic rational map and m is the only h-
conformal measure, then for every jump transformation f* there exists a unique probability
f*-invariant measure p* absolutely continuous with respect to m. Moreover p* is ergodic
and equivalent to m.

A o-finite f-invariant measure v is called conservative if for every set A of positive measure

v({z: Z I4(T™(z)) < 00}) =0.

n>0
Of course each finite f-invariant measure, is conservative.

Theorem 3.23. If f : J(f) — J(f) is a parabolic rational map and m is the only h-
conformal measure, then there exists a, unique up to a multiplicative constant, o-finite
f-invariant measure p absolutely continuous with respect to m. Moreover p is ergodic,
conservative and equivalent to m.

The concept of Schweiger’s was developed formalism further in [ADU] under the name of
Markov fibered systems. We also heavily relied on Theorem 3.22 and additional properties
of the jump transformation in [Scl].

Definition 3.24. Suppose that p is a o-finite measure on a metric space X. Wecall x € X
a point of infinite condensation of p if and only if u(U) = oo for every open neighbourhood
of . Otherwise we call x a point of finite condensation.

In order to see at least one point of infinite condensation look at a sphere considered as the
one-point (Alexandrov) compactification of a Euclidean space. This added point, usually
denoted by oo, is a point of infinite condensation of the Euclidean Lebesgue measure on
this sphere.

In [DU4] we prove as Theorem 4.9 the following.
Theorem 3.25. If f: J(f) — J(f) is a parabolic rational map, then the set of points of
infinite condensation of the invariant measure p produced in Theorem 3.23 is contained in

Q.

In [ADU] we have dealt with the problem of when the o-finite invariant measure p is finite.
We gave there in Theorem 9.8 the following complete answer to this question.

Theorem 3.26. If f : J(f) — J(f) is a parabolic rational map, then the o-finite invariant
measure g is finite if and only if

h = HD(J(f)) > 2max{ﬂ}.
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More precisely, we have the following.

Theorem 3.27. If f: J(f) — J(f) is a parabolic rational map and w € €, then p is of
2p(w)

infinite condensation at w if and only if h < .
p(w)+1

Of course these last two theorems have no counterparts in the context of hyperbolic sys-
tems. As an immediate consequence of Theorem 3.26 we get the following.

Corollary 3.28. If h = HD(J(f)) < 1, then the measure p is infinite.
Corollary 3.29. If h > 1 and p(w) = 1 for every w € Q, then p is finite.

Observe that if B : @ — € is a Blaschke product, then J(B) C S!. So, as an immediate
consequence of Corollary 3.28 we get the following.

Corollary 3.30. If B : @ — ('is a parabolic Blaschke product, then the o-finite invariant
measure j is infinite.

Since it is proven (see [U2] and [Zd]) that the Hausdorff dimension of the Julia set of the
quadratic polynomial z ~— 22 + 1/4 is greater than 1, as an immediate consequence of
Corollary 3.29 we get the following.

Corollary 3.31. The o-finite invariant measure p for the quadratic polynomial z —
2% 4+ 1/4 is finite.

Using the concept of equilibrium states for topological pressure (see Section 2) it turns out
that Theorem 3.26 can be completed as follows.

Theorem 3.32. If f : J(f) — J(f) is a parabolic rational map, then the o-finite invariant
measure g is finite if and only if one of the following two condition holds.

(a) The potential g = —hlog |f’| has at least one atomless equilibrium state.

(b) The topological pressure function ¢ — P(¢) is not differentiable at the point ¢ = h.

Thus, if the o-finite measure y is finite, then the pressure function has at the point t = h
a “stronger” phase transition than that observed in Theorem 3.3(b).

We would like to conclude this section with the remark that recently parabolic bifurcations
have been extensively investigated and lots of interesting dimension results have been
obtained (see for ex. [BZ], [Mcl], [Sh], [DSZ], [HS], [UZ1], [UZ2], [Zil] and [Zi2)).

§4. Non-recurrent rational functions (allowing parabolic points). We recall that
if T': X — X is a continuous map of a topological space X, then for every point x € X, the
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w-limit set of x denoted by w(x) is defined to be the set of all limit points of the sequence
{T™(x)}n>0. We call a point = recurrent if z € w(z); otherwise z is called non-recurrent.

Definition 4.1. A rational function f : @ — 'is called a non-recurrent (NCP) map if all
critical points of f contained in the Julia set J(f) are non-recurrent.

The class of NCP maps obviously contains all expanding as well as parabolic maps. It also
comprises the important class of so called subexpanding maps which are defined by the
requirement that fl, cris(£))ns(f) is expanding and the class of geometrically finite maps
defined by the property that the forward trajectory of each critical point contained in the
Julia set is finite and disjoint from 2. The class of subexpanding maps was explored in
[DU7] from the point of view of the fractal properties of the Julia set. We have dealt
with NCP maps in [U3] and [U4] exploring their fractal and ergodic properties. Their
geometric properties have been studied in [CJY] and the rigidity type results have been
obtained in [PU2]. In [Mcl] the reader may find some properties of geometrically finite
maps proven earlier in [U3] for NCP maps. The paper [Ha| contains some ergodic properties
of geometrically finite maps.

Since, usually devastating behavior of critical points, is in the NCP case relatively mild,
the class of NCP maps shares lots of properties with the class of hyperbolic maps (if
Q(F) = 0) and with the class of parabolic maps (if Q(f) # (). Due to the lack of the
existence of Markov partitions and the lack of a good analogue of the jump transformation,
another method must be employed in order to explore NCP maps. The main points of this
method consist of Marco Martens’ approach to the problem of of the existence of o-finite
invariant measures (see Theorem 4.13), of the fact (see Proposition 6.1 in [U3]) that all
the points in J(f) \ U, f~"(Crit(f)) are conical and of an appropriate partial ordering
of critical points of f along with an appropriate stratification of the Julia set (see [U3]).
This last point plays an important role in the proof of the harder part of Theorem 4.6
(Hu(J(f)) > 0,II,(J(f)) < c0). We would like to add that it is not clear whether there
exists a satisfactory subclass of Kleinian groups analogous to the class of NCP maps.

Let us start our description of fractal and ergodic properties of NCP maps with the fol-
lowing characterization of conical points obtained in [U3] as Proposition 6.1.

Theorem 4.2. If f: @ — €'is an NCP map, then

To(f) = @\ | f7 (@) v Cris(J(£))).

n>0

As a sort of complementary result to this theorem we would like to state the following rather
straightforward consequence of topological exactness of all rational functions restricted to
their Julia sets which was stated in [U3] (Lemma 5.2).

Theorem 4.3. The set w(Crit(J(f))) is nowhere dense in J(f).

Let, as before, h = HD(J(f)) be the Hausdorff dimension of the Julia set J(f). We proved
in [U3] that there exists an h-conformal measure m and we provided an incorrect argument
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that this measure is atomless (remaining essentially in the circle of methods worked out
in [U3] it can be proved though that m is atomless if A > 1). This affected some other
statements included in [U3] and [U4]. Here we provide correct formulations. As Lemma 7.3
in [U3] we have proved there the following.

Theorem 4.4. If the h-conformal measure m is atomless, then m is a unique h-conformal
measure on J(f) and and m is supported on the set of transitive points, i.e. those points
whose w-limit set is the whole Julia set. If m is not atomless, then it is supported on

Unso £ (Crit(J(£)))-

In Proposition 7.4 of [U3] it is shown that Theorem 3.6 remains true for NCP maps. This,
the existence of an h-conformal measure, and Theorem 11 immediately imply the following
partial answer to the Problem 1.14.

Theorem 4.5. If f : J(f) — J(f) is an NCP rational function, then we have the following
equalities

DD(J(f)) = hD(J(f)) = 0(f) = s(f) = HD(J(f))-

Concerning geometric measures on the Julia sets of NCP maps, we have the following.

Theorem 4.6. Suppose that f : @ — € is an NCP rational function. Then

Hy,(J(f)) < oo and if the h-conformal measure m is atomless, then I, (J(f)) > 0.
If h > 1, then Hy,(J(f)) > 0. In particular the h-conformal measure m is atomless.
If h <1 and Q(f) # 0, then Hy(J(f)) = 0.

If h <1 and the h-conformal measure m is atomless, then I, (J(f)) < oco.

If h > 1 and Q(f) # 0, then I, (J(f)) = co.

(a

(b
(¢
(d
(e

Since it is straightforward to check that both Hausdorff and packing measures appearing
in the above theorem are conformal when finite and positive, it follows from this theorem
and uniqueness of h-conformal measure that the conformal measure m has the geometrical
characterization as a normalized Hausdorff measure if h > 1 or (if atomless) as a normalized
packing measure if A < 1. Dealing still with geometry let me add the following two results.

\_/\_/\_/vv

Theorem 4.7. If f : @ — @ is an NCP rational function, then either J(f) = @ or
HD(J(f)) < 2.

Theorem 4.8. If f : @ — @ is an NCP rational function such that J(f) # @, then the
Julia set J(f) is porous and consequently the upper box dimension BD(J(f)) < 2

The first of these two theorems has been stated in [U3] and the second one is proved in
[PU3|. Let me add that in [U4] we have provided a number of sufficient conditions for
HD(J(f)) = BD(J(f)), one of them is that HD(J(f)) < 1. The proof of Theorem 4.8
relies on the following three results which besides the tools mentioned in the beginning of
this section, belong to the basic toolbox for the class of NCP maps and Collet-Eckmann
type maps (see Definition 5.6).
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Theorem 4.9. There exist § > 0 and M > 0 such that for every z € J(f)\ B(,9), every
integer n > 0, and every connected component V' of f~"(B(z,0)) is simply connected and
the restriction f™|y has at most M critical points (counted with multiplicities).

Theorem 4.10. For each ¢ > 0 and D < oo there are constants C; and C5 such that
the following holds for all rational maps F : @ — @, all # € @, all 1/2 < r < 1 and all
0<~y<1/2:

Assume that V (resp. V') is a simply connected component of F~(B(z,v)) (resp.
F~Y(B(z,37v)) with V. > V'. Assume further that €'\ V has diameter at least ¢ and
F has at most D critical points (counted with multiplicity) in V. Then

(a) |F' (y)|diam(V') < Cy(1 —r)~“25

for all y € V'. Furthermore, if r = 1/2 and 0 < 7 < 1/2, let B” = B(z,7v) be any disk
contained in B(z,v/2) and let V" be a component of F~(B") contained in V'. Then

(b) diam(V") < Czdiam(V")

with C3 = C3(7,¢, D) and lim,_,o C5(7,e, D) = 0, and

(c) V" contains a disk of radius greater than or equal to Cydiam(V")
around every preimage of F'~!(2) that is contained in V. Here Cy = Cy(7,¢, D) > 0.

Theorem 4.11. If f : @ — 'is a rational function and if Q # () then for every p > 0 there
exists ¢ = c¢(p) > 0 such that for each x € J(f) and each r such that pdist(z,Q) <r <1
there exists an open ball B C B(z,r) \ J(f) with radius cr.

Theorem 4.9 follows from [Ma2, Theorem II]. See also [CJY, Theorem 2.1] or [U3, Lemma
2.12 and Lemma 5.1] where this theorem or its variants have been proved and substantially
used. A crucial step in the proof of Theorem 4.9 is that given an arbitrary € > 0 there exists
0 so that the diameters of all the above components are less than €. Theorem 4.10 is a part
of the "bounded distortion” lemma that has been proved in [Pr3] and [PR1, Lemma 2.1].
Finally Theorem 4.11 is a straightforward consequence of Fatou’s flower theorem.

We would like to start now a discussion of ergodic theory of NCP maps. It will be based
on [U4] and [Ha|. The starting point is the following result proved in [U4] as Theorem 4.2.

Theorem 4.12. If f : @ — € is an NCP rational function and the h-conformal measure
m is atomless (in particular if A > 1), then up to a multiplicative constant there exists ex-
actly one f-invariant o-finite measure p absolutely continuous with respect to h-conformal
measure m. Moreover p is equivalent to m, conservative and ergodic.
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Since NCP maps lack Markov partitions and a good jump transformation, the idea of the
proof of Theorem 4.12 is to apply a general sufficient condition for the existence of o-
finite absolutely continuous invariant measure proven in [Mar]. In order to formulate this
condition suppose that X is a o-compact metric space, m is a Borel probability measure on
X, positive on open sets, and that a measurable map 7" : X — X is given with respect to
which measure m is quasi-invariant, i.e. moT ~! << m. Moreover we assume the existence
of a countable partition @ = {4,, : n > 0} of subsets of X which are all o-compact and
of positive measure m. We also assume that m(X \ J,,>, An) = 0. If in addition, for all
m,n > 1 there exists & > 0 such that B

m(T*(A,,)NA,) > 0,

then the partition « is called irreducible. Martens’ result comprising Proposition 2.7 and
Theorem 2.2 of [Mar| reads as follows.

Theorem 4.13. Suppose that o = {4,, : n > 0} is an irreducible partition for T: X — X.
Suppose that T is conservative and ergodic with respect to the measure m. If for every
n > 1 there exists K,, > 1 such that for all £ > 0 and all Borel subsets A of A,

m(4) _ m(T~*(A4))
m(An) = m(T~*(An))

m(A)
m(A,) ’

(4.1) K1t <K,

then T has a o-finite T-invariant measure p absolutely continuous with respect to m. Ad-
ditionally p is equivalent to m, conservative and ergodic, and unique up to a multiplicative
constant.

Proof of Theorem 4.12. Let us first sketch the proof of Theorem 4.13 given in [Mar]
and then, as its consequence, a short proof of Theorem 4.12 taken from [U4]. One fixes an
element A € a = {A,, : n > 0} and then one considers the following sequences of measures

Sk(m

k—1
Sk(m) = Zmof‘i and Qr(m) = W)()A)

1=0

It is proven in [Mar] that each weak limit u of the sequence Qx(m) (a sequence {vy : k > 1}
of measures on X is said to converge weakly if for all n > 1 the measures v, converge weakly
on all compact subsets of A,) is a required invariant measure and

p(F) = lim Qx(m)(F)

for every Borel set F' C X.

In order to complete the proof of Theorem 4.11 we only need to construct an irreducible
partition o with property (4.1). Indeed, set Y = J(f)\(PCVUQ). For every y € Y consider
a ball B(y, r(y)) such that r(y) > 0, m(0B(y,r(y))) = 0, and r(y) < (1/2)dist(y, PCVUQ).
The balls B(y,r(y)), y € Y, cover Y and since Y is a metric separable space, one can
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choose a countable cover, say {fln : n > 0}, from them. We may additionally require
that the family {4, : n > 0} is locally finite, that is that each point # € Y has an open

neighborhood intersecting only finitely many balls A,, n > 0. We now define the family
a ={A, :n >0} inductively setting

Ao = z‘Io and An+1 = An—i—l \ U A~—n
k=1

(and throwing away empty sets). Obviously « is a disjoint family and

U Ao 7(nH\(ecvuo)\ (o4,

n>1 n>0

whence in view of [U3, Corollary 7.2], m(UJ,,so An) = 1. The distortion condition (4.1)
follows now from Koebe’s distortion theorem with all constants K,, = K, the constant
corresponding to the scale 1/2 in this theorem and irreducibility of the partition « follows
from openness of the sets A,, and topological exactness of the map f: J(f) — J(f).

Assuming that the conformal measure m is atomless (for instance assuming that h > 1)
the following results describing the structure of the invariant measure p have been proved
in [U4]. These are not so complete as in the parabolic (and hyperbolic) case.

Theorem 4.14. If Q = (), then there exists an f-invariant probability measure p equivalent
to m.

Theorem 4.15. If w(Crit(f)) N Q2 = 0, then the set of points of infinite condensation of
4 is contained in €.

Theorem 4.16. If h = HD(J(f)) > 1, then the set of points of infinite condensation of x
is contained in the set of parabolic points.

Theorem 4.17. If w € Q\ PCV, then p is of infinite condensation at w if and only if

2p(w)
h < p(w)+1"

Theorem 4.18. If w € Q and h < pz(fj()ujl—)17 then p has infinite condensation at w.

Theorem 4.19. If ¢ € J(f) is a critical point of f of order ¢, w = f(c) € , and

2gp(w)
h < p(w)+1°

then w is of infinite condensation of measure p.

We would like to conclude this section with the result which is a combined consequence of
Theorem 4.15 and Theorem 4.17 and which has been later proved as Theorem 1.2 in [Ha).

Theorem 4.20. If f : @ — € is geometrically finite then the invariant measure p is finite

if and only if A > 21’nax{p€5‘)"ll tw e Q).
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§5. Other maps. The celebrated result of Bishop and Jones (see [BJ]) saying that the
Hausdorff dimension of the limit set of a finitely generated but not geometrically finite
Kleinian group is 2 has stimulated an extensive activity aiming to explain the situation
for rational functions of the Riemann sphere @. Tt has been known (see Theorem 3.8 and
Theorem 4.7) that the Hausdorff dimension of Julia sets (# @) of parabolic and NCP maps
is less than 2. To the other pole of the spectrum belongs the following result of Shishikura
[Sh] (see also [HS], [Zi], and [Mc1]).

Theorem 5.1. sup{HD(J(f.))} = 2, where the supremum is taken over all parameters
¢ such that the quadratic map f.(z) = 22 + ¢ is parabolic. The set of parameters c such
that HD(J(f.)) = 2 is dense in the boundary of the Mandelbrot set.

The first result in the opposite direction, going beyond NCP maps, was due to F. Przytycki
who proved in [Pr4] the following.

Theorem 5.2. There exists a set £ C IR of positive Lebesgue measure such that
HD(J(f.)) <2 for all c € E.

Since then a number of similar results have been obtained. Let us list some of them below.

Theorem 5.3. ([Mc2]) If f(z) = 2™z + 22, where 0 is a badly approximable irrational
number (of bounded type) (so, f has a Siegel disk) then the Julia set J(f) is porous and
consequently HD(J(f)) < BD(J(f)) < 2.

A quadratic map f.(2) = 22 + ¢ is a Fibonacci map if, loosely speaking, the closest
returns of the critical point 0 occur precisely at the moments given by Fibonacci sequence
Sp = Sn—1+ Sn—2 and Sy = S; = 2. Graczyk and Smirnov proved in [GS1] the following.

Theorem 5.4. If f. : @ — T'is areal (c € IR) quadratic Fibonacci map, then HD(J(f.)) <
2.

A simply connected domain A C @'is called a Holder domain (with exponent « € (0, 1]) if
the Riemann mapping R : D' — A (D! = {z € €: |z] < 1}) can be extended in a Holder
continuous fashion (with exponent a) to the closed disk DI. P. Jones and N. Makarov
proved in [JM] the following.

Theorem 5.5. There exists a constant ¢ > 0 such that for every o € (0,1] and every
Holder domain with exponent o, HD(0A) < 2 — cau.

Definition 5.6. A rational function f : @ — € is called Collet-Eckmann if there are

constants C' > 0 and A > 1 such that for every critical point in J(f) whose forward orbit
does not contain any other critical point, and every n > 1

(5.1) [(F™) (f ()] = CA™.
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Graczyk and Smirnov proved in [GS2] the following.

Theorem 5.7. The basin of attraction to oo of any Collet-Eckmann polynomial is a
Holder domain. In particular, due to Theorem 5.5 the Hausdorff dimension of its Julia set
is strictly less than 2.

In [PR] and [PU3| some extensions of the last part of this theorem have been proved. In
fact a weaker form of porosity has been established there sufficient to conclude that the
upper box counting dimension is less than 2.

Definition 5.8. A set X C IR, d > 1, is called mean porous if there are constant p; < oo
and py > 0 such that for each z € E there exist an increasing sequence n; of positive
integers and a sequence of points z; € IR? with ||z — z;|| < 27" such that n; < p1j and
and dist(z;, X) > pa27".

In [KR] the following extension of Theorem 3.9 has been proved.

Theorem 5.9. If X is a mean porous subset of a Euclidean space R?, then BD(X) < d.
The main result of [PR] reads as follows.

Theorem 5.10. The Julia set of a Collet-Eckmann rational function with no parabolic
points is mean porous. In particular, due to Theorem 5.9, its upper box-counting dimension
is strictly less than 2.

In [PU3] an appropriate definition of Collet-Eckmann rational functions with parabolic
points is provided (loosely speaking one requires (5.1) to take form |(f™)'(f(c))| > CA¢("™)
for an appropriately changed time ¢(n) < n) and the following theorem has been proved.
Theorem 5.11. The Julia set of a Collet-Eckmann rational function with parabolic points
is mean porous. In particular, due to Theorem 5.9, its upper box-counting dimension is

strictly less than 2.

Another direction of recent activity has been stimulated by Problem 1.14 (see also Theo-
rem 1.11). In [Pr3] F. Przytycki has proved the following.

Theorem 5.12. If f : @ — @ is a Collet-Eckmann map (in fact it suffices here to
assume that |(f™)'(f(c))| > Ce?V™), then DD(J(f)) = HD(J(f)). If additionally f has no
parabolic points, then HD(J(f)) = BD(J(f)).

and

Theorem 5.12. If f(z) = 22 + ¢ is a non-renormalizable quadratic polynomial with ¢ in
the complement of the main cardioid in the Mandelbrot set, then DD(J(f)) = HD(J(f)).

36



We would like to conclude this section with the remark that in the papers [Pr3], [Pr4],
[PR] and [PU3] so called Rule II (see [DPU]) has been used extensively. Its formulation
and the context surrounding it the reader may find in Appendix 2.

Appendix 1; Tame functions. Unless stated otherwise all the results formulated in this
appendix are taken from [PU2]. As in the previous sections let f : @' — € be a rational
function of the Riemann sphere €. By T(f) we denote the set of all points in J(f) for
which

limsup dist(f"(z), PCV(f)) > 0.

n— 00

Definition A1.1. We say that a rational function f : @ — 'is tame if PCV(f) N J(f) is
nowhere dense in J(f) and there exists a t-conformal measure m (sometimes to be more
specific denoted by my) such that m(T'(f)) = 1.

Remark A1.2. The set T'(f) was already considered in [GPS] (called there the transverse
limit set). In fact its origin goes back to [Ly].

Remark A1.3. Notice that if the singular set PCV(f) of an arbitrary rational function
[ is nowhere dense in J(f), then T'(f) contains the set of all transitive points of f (i.e.
points with dense forward orbit). Therefore for such a function to be tame it is sufficient
to have a conformal measure m supported on the set of transitive points.

Clearly T'(f) is a subset of the set of conical points of f and therefore as an immediate
consequence of Theorem 1.13 we get the following.

Theorem Al.4. If f : @ — @ is tame, then there exists at most one value t for which
a t-conformal measure exists and is supported on T'(f). Additionally, for such a t there
exists exactly one t-conformal measure supported on T'(f) and this measure is ergodic.

Thus the measure m = m; and the exponent ¢ = ¢, are determined uniquely. It is easy to
see that m is non-atomic. We can say something more about the exponent ¢t = t;. Indeed,
with considerations similar to those in the proof of Theorem 3.6, we can demonstrate the
following.

Theorem Al.5. If a rational function f : @ — € is tame, then the t p-dimensional
Hausdorff measure of T'(f) is finite. In particular t; > HD(T'(f)).

Employing the method introduced by M. Martens in [Mar] and proceeding in the same way
as in the proof of Theorem 4.2 in [U2] (see Theorem 4.11 and the discussion surrounding
it), we can demonstrate the following.
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Theorem A1.6. If a rational function f : @ — € is tame, then up to a multiplicative
constant there exists exactly one f-invariant o-finite measure o = py absolutely continuous
with respect to m. Moreover, i is equivalent to m, conservative and ergodic.

Examples of tame functions are provided for instance by NCP maps. Indeed, Theorem 4.2
and Theorem 4.4 of this paper along with the paragraph preceding it, imply the following.

Theorem A1.7. Each NCP rational function f is tame and ¢ty = HD(J(f)). Moreover,
the ¢ s-conformal measure is supported on the set of transitive points.

The main result of the paper [PU2] is the following.

Theorem A1.8. Suppose that f and g are two tame rational maps. Let h be an invertible
map from a full measure my subset of J(f) onto a full measure m, subset of J(g), preserving
the algebras of measurable sets for m; and mg, and conjugating f to g, namely ho f = goh.
Then the following conditions (1)-(6) are equivalent.

(1) h extends to a Mobius conjugacy between f: @ — € and g : @ — .

(2) h extends to a conformal homeomorphism conjugating f and g on neighborhoods of
J(f) and J(g) in € .

(3) h extends to a real-analytic diffeomorphism conjugating f and g on neighborhoods of
J(f) and J(g) in € .

(4) h extends to a homeomorphism from J(f) to J(g) such that h and h~1 are Lipschitz
continuous.

(5) h extends to a homeomorphism from J(f) to J(g) such that for every periodic point
x of f, say of period p, [(f7)(x)] = [(¢7)' (h(x))].
(6) The measure class of my is transported under h to the measure class of my.

Here for the implication (6) = (2), f and ¢ are assumed not to be critically finite with
parabolic orbifold (see [Th, Ch.13], [DH2, §9] or [Zd] for the definition) for which J(f) =
J(g) = @. We call such maps exceptional.

Remark A1.9. The implication (5) = (2) was in fact proved by E. Prado in [Pra] for
all rational maps. The only missing point, the non-linearity (see [PU2] for the definition)
caused by parabolic points turns out to be easy. Prado’s proof of the only hard part
(5) = (2) was done by approximating J(f) by forward invariant expanding repellers inside
J(f), where h extends conformally, see [Su3], [Pr5]. Our proof of the implication (5) = (2)
is different and goes via (6). This requires the assumptions that f is tame. Thus the main
new result in our paper is the implication (6) = (2) which extends Sullivan’s result for non-
linear repellers, see [Su3] and [Pr5]); we use the same scheme of proof. This implication is
called rigidity. Note that the implication (2) = (1) is straightforward. This holds even in
a general, not just tame, situation. Any conformal conjugacy on neighborhoods of Julia
sets for any two rational functions extends to a conformal conjugacy (M6bius map) to the
whole sphere. In particular by Theorem A1.9 the measure theoretic conjugacy class of a
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tame map coincides with its conformal conjugacy class. In other words one cannot perturb
a tame map inside the measure theoretic conjugacy class changing its conformal conjugacy
class. Equivalence classes of measures classify tame maps.

A rational function f : @ — @ is said to be Julia real-analytic if its Julia set is contained
in a finite union of pairwise disjoint real-analytic curves which will be denoted by I' = T';.
Frequently in such a context one alternatively speaks about real analyticity of the Julia
set J(f). We conclude this section with two technical ingredients interesting themselves
which have been proved in [PU2| as Corollary 2.4 and Proposition 2.3 respectively; the
first being an immediate consequence of the second.

Theorem A1.10. If f : @ —  is tame, then the Jacobian of the map f : J(f) —
J(f) with respect to the measure p has a real-analytic extension on a neighbourhood of
J(f)\PCV in €. If the map f is Julia real-analytic, then the Jacobian has a real-analytic
extension on a neighbourhood of J(f)\ PCV in I

Theorem A1.11. If f : @ — @ is a tame mapping, then the Radon-Nikodym derivative
p = dp/dm has a real-analytic real-valued extension on a neighbourhood of J(f)\ PCV in
@. If f is Julia real-analytic, then p has a real-analytic extension on a neighbourhood of
J(f)\PCV inT.

Appendix 2; Equilibrium states and Perron-Frobenius operator. In this appendix
f: @ — @'is a rational function of the Riemann sphere €' (no additional assumptions im-
posed) and ¢ : J(f) — IR is a Hlder continuous function satisfying the following condition

(A2.1) P(¢) = P(¢, f) > sup(¢),

where, let us recall, P(¢) is topological pressure defined between Theorem 3.2 and Theo-
rem 3.3. We start with the following general result of Lyubich (see [Ly2]).

Theorem A2.1. If f : € — C'is a rational function then the function y — h,(f) is upper
semi-continuous and consequently each continuous potential has an equilibrium state.

In fact in [Ly2] M. Lyubich proved more, namely that each rational function is asymp-
totically h-expansive, the notion introduced by M. Misiurewicz in [Mi] in connection with
his investigations of continuous maps of an interval. Recall from [DU1] that a normalized
Borel measure v on a Borel measure space (X,F) is called g-conformal for the contin-
uous mapping 7' : X — X, where g : X — IR is a positive continuous function, if
v(T(A)) = [, gdv for every A € F such that T|A is invertible. The paper [DU1] contains
some basic facts about this notion and, in particular, sufficient conditions for the existence
of these measures. The central result of [DUS] is the following.

Theorem A2.2. Let f : @ — @ be a rational function and let ¢ : @ — IR be a Holder
continuous function satisfying (A2.1). Then:
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(a) There exists exactly one exp(c — ¢)-conformal probability measure m and necessarily

¢ = P(p).

(b) There exists exactly one equilibrium state p for ¢ and f. The measures p and m are
equivalent and p = ;—7‘7‘1 is a positive continuous function.

(¢) The dynamical system (J(f), f, 1) is metrically exact and, consequently, its natural

extension is a K-system.

Let us add that later in [Pr6] F. Przytycki proved the same results and that in the special
case of the measure of maximal entropy (¢ = 0) some partial results have been obtained
in [FLM], [Ly2], and [Ma3]. In order to formulate results concerning the Perron-Frobenius
operator (to be defined later) let us recall that a bounded linear operator A : X — X
on a complex Banach space X is called almost periodic, if for every x € X the family
{A™(x)}52, is relatively compact in the strong topology. The basic property of almost
periodic operators proven in [Ly2] is the following.

Theorem A2.3. If a bounded linear operator A : X — X on a complex Banach space X
is almost periodic then the Banach space X decomposes into a direct sum X, + X of two
closed, A-invariant subspaces X, and X such that

(a) X, is the closure of the linear span of the unitary eigenvectors of A. (An eigenvector
is called unitary, if its corresponding eigenvalue is of modulus 1.)

(b) Xo={x € X : lim,,0 A"(z) = 0}.

The Perron-Frobenius operator £ : C(J(f)) — C(J(f)) is defined by the following formula

Lg)(x)= D g(y)exp((y) — P(¢)),

yef~(z)

where every critical point y € f~!(x) is counted with its multiplicity. The main result
on spectral properties of the Perron-Frobenius operator is the following theorem proven in
[DUS8| as Theorem 35 and later in [Pr6] (see also [Ly2] for the special case ¢ = 0).

Theorem A2.4. The Perron-Frobenius operator £ : C(J(f)) — C(J(f)) is almost peri-
odic. Let p denote the Radon-Nikodym derivative of the equilibrium state p for ¢ and f
with respect to the exp(P(¢) — ¢)-conformal measure m. Then

(O = Tp and (CUI(IN)o =16+ [ ddv =0},

Moreover, if g = g, + go With g, € (C(J(f)))u and go € (C(J(f))o, then g, = ([ g dm)p.

In [DPU] we have proved the following results improving spectral properties of the Perron-
Frobenius operator and our knowledge about the Radon-Nikodym derivative du/dm.
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Theorem A2.5. Let ¢ : J(f) — IR be a Holder continuous potential. Then there are
constants L > 0 and ¢ > 0 such that

1£76) = [ ddmll < Lexp(~6)
for all n > 0.
Theorem A2.6. The Radon-Nikodym derivative of the equilibrium measure p of the
potential ¢ with respect to the exp (P (9) —QS)—conformal measure m, is a Holder continuous

function.

Using Gordin’s method (see [Go]), as an immediate consequence of Theorem A2.5, we
obtained in [DPU] the following.

Theorem A2.7. Every Hoélder continuous function g : J(f) — IR satisfies the central
limit theorem. Namely there exists ¢ > 0 such that

dn 2 [(X o) du-on
and if o2 > 0, then for any ¢t € IR
w(er0: = X 6o w0 <0) = g [ oot

We would like to notice that in [DPU] we have proved the result, called Rule II, which
played an important role there and in later activity in the field, especially in the work of
F. Przytycki (see [Pr3], [Pr4], [PR] and [PU3]). In order to state this result, define for
every ¢ € @ the function k. : @ — {0,1,2,...} U {cc} by setting

ke(z) = min{n > 0: z ¢ B(c, ae~™TY)},

and k.(z) = oo if z = c¢. Here a is an arbitrary positive number such that a < diam@. The
Rule IT is the following.

Theorem A2.8. (Rule II) There exists a constant Q > 0 such that if ¢ € J(f) is a
critical point of f, n > 1 is an integer, and if x € J(f) satisfies

ko(fi(z)) < ke(f™(x)) forevery j=1,2,..,n—1,

then
min{kc(z), ke(f"(2))} + Z ke(f7 () < Qn.
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We would like to conclude the above considerations with the remark that recently N. Haydn
has improved (see [Hay|) Theorem A2.5 substantially by demonstrating the following.

Theorem A2.9. Let ¢ : J(f) — IR be a Holder continuous potential. Then there are
constants L > 0 and 6 > 0 such that

1£7@) = p [ ddmll < Lexp(~6n)
for all n > 0.

In [Mad] R. Mann’e has proved that a power of each dynamical system (J(f), f, o) is
isomorphic to a one-sided Bernoulli shift, where pg is the measure of maximal entropy.
D. Heicklen and Ch. Hoffman have recently proved in [HH] the following improvement of
Mané’s result.

Theorem A2.10. Every dynamical system (J(f), f, o) is isomorphic to a one-sided
Bernoulli shift, where pq is the measure of maximal entropy.
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