ON TRANSFER OPERATORS FOR CONTINUED
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ABSTRACT. For 7 C N, let Az denote those numbers in the unit
interval whose continued fraction digits all lie in Z. Define the cor-

2
responding transfer operator L7 5f(2) = > 1 (n#ﬂ) ’ f (niz)
for Re(8) > max(0,6z), where Re(f) = 01 is the abscissa of con-
vergence of the series ) n—28

When acting on a certain Hilbert space Hz g, we show that the
operator L7 g is conjugate to an integral operator Kz g. If further-
more f3 is real, then Kz g is selfadjoint, so that Lz 3 : Hz 3 = Hz g
has purely real spectrum. It is proved that £z g also has purely
real spectrum when acting on various Hilbert or Banach spaces of
holomorphic functions, on the nuclear space C¥[0,1], and on the
Fréchet space C*°[0, 1].

The analytic properties of the map 5 — Lz g are investigated.
For certain alphabets Z of an arithmetic nature (eg. Z = {primes},
7 = {squares}, Z an arithmetic progression, Z the set of sums
of two squares) it is shown that § — L7 3 admits an analytic
continuation beyond the half-plane Re(8) > 07.

1. INTRODUCTION
For a non-empty subset Z C N, let Az denote the set of real numbers
x € [0, 1] for which the infinite continued fraction expansion
1

1
a1+ o5

T =

has each partial quotient a; belonging to the alphabet Z. Let T :
[0,1] — [0,1] be the continued fraction (or Gauss) map, given by
T(z) =1 (mod 1). The set Az is invariant under 7.
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When the alphabet Z is finite, the irrationals in Az are all badly
approzimable by rationals (cf. [45]). The arithmetic properties of such
Az have therefore been widely studied, with particular emphasis on
the set Ey, corresponding to the choice Z = {1,2} (cf. [17], [8], [22]).
The Hausdorff dimension of sets such as FEy yields insight into vari-
ous problems in Diophantine approximation, particularly in connection
with the Markoff and Lagrange spectra (cf. [8], [13], [25]). Further geo-
metric measure-theoretic properties have been studied by Mauldin &
Urbanski [32], who extended this investigation to the case of infinite
alphabets Z, as part of a wider analysis of infinite conformal iterated
function systems [31].

A powerful approach to these problems is provided by the thermody-
namic formalism of Ruelle [40]. To a continuous function g : [0,1] — R,
we associate the Ruelle transfer operator Lz 4, defined by the formula

1 1
Laof @) = e o (55 ) |7 (75) 0
whenever this sum is convergent.

nel
The choice g(z) = gg(z) = —Blog|T"(x)| = loga?’, for a real pa-
rameter (3, is of particular importance, leading to the formula

bt =1t =% () (o) @

nel

where again if Z is infinite then care is needed in the choice of [
and f to ensure convergence of the sum. Specifically, we suppose
Re(p) > 0z, where Re(f) = 07 is the abscissa of convergence of the
series ». ,n"?? and that f € C°[0,1]. In what follows, we will con-
sider this operator acting on functions f that are at least C'™°, and this
will additionally ensure that it has countable spectrum (see §3).

One of the reasons for the importance of L7 g is its relation to Haus-
dorff dimension. Under appropriate hypotheses on Z (see §2) there is a
unique real value of 8 for which L7 g has leading eigenvalue equal to 1,
and this value is precisely the Hausdorff dimension of Az (see [7], [31]).
This characterisation has been used to approximate the Hausdorff di-
mension of Ay oy (see [8], [22], [25]). The eigenfunction of this leading
eigenvalue is, suitably normalised, the density function for the natu-
ral geometric T-invariant probability measure supported on Az. For
7 = N this density is @Hﬁ, corresponding to the well-known Gauss
measure. The second eigenvalue of L7 g determines the rate of correla-
tion decay for the dynamical system 7T : Az — Az with respect to the
geometric invariant measure; for Z = N this corresponds to Wirsing’s
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constant (cf. [14], [35], [52]). It can also be related to the efficiency of
numerical algorithms for approximating the Hausdorff dimension of A
(cf. [24]). The lower-lying eigenvalues (the so-called Ruelle resonances,
cf. [41], [42]) determine finer mixing properties of T : Az — Ar.

It is conjectured that the full C*° spectrum of various Ruelle trans-
fer operators associated to expanding dynamical systems (including,
for example, the linearised Feigenbaum renormalisation operator [11])
is real. Empirical evidence supports these conjectures, although a sat-
isfactory explanation for the phenomenon is lacking. If the underlying
expanding map is piecewise linear, then it is easily proved that the
spectrum is real. For nonlinear expanding maps where one branch
dominates the other in a certain sense, Rugh [44] has shown that the
spectrum of certain associated transfer operators is indeed real. How-
ever, reality of the spectrum is not ubiquitous, as demonstrated by
Levin [30].

A remarkable analysis of Babenko [3] established the reality of the
spectrum of Ly,;, the Perron-Frobenius operator for the Gauss map on
[0,1]. His method is very different from the perturbative approach of
Rugh, hinging instead on an algebraization of the problem by means of
an integral transform. This analysis of the Perron-Frobenius operator
was further elaborated by Mayer & Roepstorff [35, 36], while a signifi-
cant generalisation of Babenko’s theorem to the family Lyg, 8 > 1/2,
was given by Mayer [33]. The main purpose of our article is to further
develop this algebraization program. It will be shown that the trans-
fer operators L7 g associated to general invariant sets Az may also be
transformed in such a way that the reality of their spectra is readily
apparent. These operators will act primarily on canonical spaces such
as C*°[0, 1] and C¥[0,1]. For example we prove:

Theorem. Suppose T is a non-empty subset of N, and 5 > max(0, 67).
Then the operator Lz : C*[0,1] — C*[0,1] has real spectrum. This
spectrum 1s a sequence of real numbers union its accumulation point at
zero.

This result will follow from Theorems 2 and 3, in sections 5 and
6 respectively, where identical spectral properties are proved for L7z
acting on the nuclear space C*[0, 1] and on various spaces of holomor-
phic functions. The scheme of proof is as follows. To each alpha-
bet Z we will associate a theta function ¥z(s) = ) e, a Stielt-
jes measure dmgz(s) = vz(s)ds, and an integral transform given by
Trpe(z) = [° s°71%e7%p(s) dmz(s). The transfer operator will be
shown to preserve a Hilbert space Hz s = Tz 5(L*(mz)) of holomorphic
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functions, on which its action is similar to a selfadjoint integral opera-
tor on L*(mz). It follows that Lz : Hr s — Hr s has real spectrum.
Since it can be shown (Lemma 6) that #z g is densely and continuously
embedded in C*°[0, 1], a recent intertwining theorem of Bandtlow [4]
implies that the spectrum of Lz g on these two spaces is the same, thus
establishing the above theorem. In the same way it will be shown that
the non-essential spectrum of £z g acting on Holder function spaces, or
on spaces of C* functions, is also real.

In the second part of this article we consider the analytic dependence
of L7 on the parameter 3. If § € C, with Re(3) > 6z, then L4 is
clearly well-defined. For such /3 it can again be shown (Theorem 1)
that L7 s is similar to an (in general nonselfadjoint) integral operator.
(If 7 is finite, so that (2) is convergent for all § € C, this result requires
the assumption Re(f) > 0).

We consider L7 as an element of the complex Banach space of
bounded linear operators on a suitable Hilbert space. This ensures a
canonical notion of analyticity for the map 8 — Lz 3, equivalent to
complex differentiability. The analyticity of this map in the half-plane
Re() > 01 suggests the possibility of an analytic continuation to a
wider domain in the S-plane. The original result in this direction is due
to Mayer [33], who analysed the case Z = N. Using a somewhat weaker
notion of analyticity, he proved that 3 — Lyg has a meromorphic
continuation to the whole [-plane, the only poles being simple ones at
5 = (]_ - k)/2, k S ZZO'

The situation for general alphabets Z is rather more recondite. The
simplest situation is when Z is finite; in this case 7 = —oo, and the
analytic continuation, in this case to the entire S-plane, is immediate.
When 7 is infinite then § = 7 is a non-removable singularity, and in
general there is no analytic continuation past this point. However for
certain infinite alphabets Z a meromorphic continuation does exist, as
described in Theorem 5. For example if Z is an arithmetic progres-
sion {a + bn}, a monomial sequence {n’}, or a geometric progression
{b™}, then there is a meromorphic continuation to the whole complex
[B-plane. If 7 is either the set of all prime numbers, or the set of num-
bers which are the sum of two squares, then #7 = 1/2. In both these
cases an analytic continuation past 8 = 7 is possible, but there is no
meromorphic extension to the whole plane. If Z is a sequence of super-
exponential growth, then f7 = 0, and the line Re(f) = 0 is a natural
boundary, so that no analytic continuation is possible.

The article is organised as follows. In §2 we introduce the fundamen-
tal objects necessary for our analysis. The action of L7 on various
function spaces is discussed in §3. In §4 we develop the basic properties
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of the integral operator and the integral transform. The conjugacy of
Lz with the integral operator is established in §5, as is the reality of
the spectrum for 8 real. In §6 this spectral property is extended to
various other function spaces. In §7 we consider the analytic proper-
ties of the map f +— Lz3. This is related (Theorem 4) to the analytic
properties of a certain Hurwitz zeta function, which then yields precise
results (Theorem 5) for certain alphabets Z of an arithmetic nature.

2. THE FUNDAMENTAL OBJECTS

A nonempty subset Z of N will be called an alphabet. We associate
to Z the following objects.

e The limit set Az, defined as the set of real numbers in [0, 1] whose
continued fraction partial quotients all belong to Z.
e The Hausdorff dimension d7 of the limit set Az.
e The finiteness parameter 0z, defined as the infimum of those real
numbers 6 for which
1
> = (3)

nel

converges for all § € C with Re(53) > 6.

If T = N then Az is the set of irrationals in [0, 1], and in general when
7 is infinite Az is homeomorphic to the irrationals (in particular it is
not compact). If Z is finite with cardinality greater than one, then Az
is a Cantor subset of [0, 1]. Moreover, we have 0 < dz < 1 unless Z = N
(when the dimension is 1) or Z is a singleton (when the dimension is
Z€ro).

If 7 is finite then clearly 7 = —oo. If 7 is infinite then 67 € [0,1/2],
and the series (3) has a singularity at 8 = 61 since it is a Dirichlet
series all of whose coefficients are non-negative (cf. [2], Thm. 11.13).

To the alphabet Z we further associate the following objects:

e N7:=minZ.

e The zeta function (z(s) =),y n~°, defined initially for Re(s) >
207, but in some cases admitting an analytic continuation to a
larger domain in the s-plane.

e The Hurwitz zeta function (z(s,z) =Y, 7(n+ 2)~°, defined ini-
tially for z € C\ (—oo, —Nz|, Re(s) > 260z, but in some cases
admitting an analytic continuation to a larger domain in the s-
plane.

e The theta function ¥7(t) =3, e ™, defined for t € R*.

e The theta measure mz on RY, defined by dmz(t) = 97(t) dt.

e The right half-plane Rz = {z € C: Re(z) > —Nz/2}.
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The nomenclature is motivated by that used in classical analytic
number theory, in spectral geometry (eg. [9], [10], [50]), and in recent
generalisations of Jorgenson & Lang (eg. see [26, 27]). For example if

T = N then (7 is Riemann’s zeta function', and the theta function is

simply 07(t) = .

For any 3 € C, the kernel function Gg : R" x Rt — C is defined by

> (_l)k(st)k+ﬁfl/2
Golst) = kz_; KIT(k+28)
In fact this kernel function is related to a Bessel function of the first
kind (cf. [51], p. 40) by Gg(s,t) = Fap_1(2v/ts). The most important
property of G is that if § € R then Gg(s,t) = Gs(t, s), so that any
associated integral operator is selfadjoint.
For Re(f) > 7 we associate to the pair (Z, 5) the following objects.

o The integral transform Tz s defined by
Tasole) = [ 72l dmas). (@
0

e The space of integral transforms Hz s = Tz,s(L*(mz)). This is a
Hilbert space, its inner product inherited from L?(mz) via the map
Tz 5, which is easily seen to be injective and which we declare to
be an isometry. It will be shown that each f € Hz g is a function
analytic in the right half-plane Rz.

e The integral operator Kz 3 defined by

Krsolt) = / " G5 )p(s) dma(s).

e The transfer operator L1z defined by

cot =3 () 1 (). )

nel

The main focus of our attention is the transfer operator L7 5. As
mentioned in §1, one of the reasons for this interest is its relation with
Hausdorff dimension d7. If (7(fr) = oo (in which case we say that
T is regular, as in [31, 32], where examples of irregular sets can also
be found) then there is a unique real value of S for which L7 43 has
spectral radius 1, and this value is precisely o7 (see [7], [31]). The
transfer operator will be studied by means of the various auxiliary
objects we have introduced. The integral transform 773 resembles a

!Note, however, that the classical Hurwitz zeta function is defined by a summa-

tion over all non-negative (rather than positive) integers (cf. [6], p. 502). In this
way our convention differs from the classical one.
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Laplace-Mellin transform (cf. [26], p. 9), although the exponent §—1/2
is carefully chosen for our purposes (cf. Remark 3). The reason for the
choice of kernel function Gg will become apparent in §5.

3. TRACE CLASS TRANSFER OPERATORS

As is well known, the spectral properties of the transfer operator
Lz s depend strongly upon the space on which it acts. In fact it will
be convenient for L7 4 to act on several different spaces, which we now
specify.

For 0 < o < 1, let C*[0,1] denote the space of complex-valued a-
Holder functions on [0, 1], equipped with its Banach norm. For real
f > max(0,0z), the operator Lz5 : C*[0,1] — C*[0,1] enjoys vari-
ous Perron-Frobenius type properties. In particular it has an essential
spectral radius strictly smaller than its spectral radius (see [43]).

Since z — (2 +n) %’ extends as a C* function to the unit interval,
the operator L7 4 in fact preserves various subspaces of C'*[0, 1], no-
tably the Banach spaces C*[0,1] for k € N, the Fréchet space C*°[0, 1],
and the nuclear space C*[0,1]. When acting on C*[0,1], L7 is again
quasicompact, although its essential spectral radius shrinks to zero as
k — oo (see [43]). In Proposition 2 it will be shown that the spectrum
of L7 on both C*[0, 1] and C¥[0, 1] is a countable set accumulating
at zero.

L1 s also preserves various spaces of holomorphic functions, and there
is considerable freedom in selecting such spaces. For example, suppose
D is a complex domain satisfying

(i) D does not intersect —Z,
(i) D C int (NyezSn(D)), where S,(2) :== 1 —n,
(iii) D is bounded and simply connected.

There is an abundance of such domains D. For example D = {z €
C:|z—1] < 3} (cf. [33]) satisfies (i)—(iii) for any Z C N. In certain
applications it may be advantageous to choose larger domains, and
the main restriction on this is the value Nz = minZ. If Z were the
set of all prime numbers larger than one hundred, say, then the disc
D = {z € C:|z| < 100} also satisfies (i)—(iii).

In general, if f is holomorphic on a complex domain D satisfying
(i)—(iil), then L7 f is holomorphic on some open neighbourhood of D.
A suitably chosen space of functions holomorphic on D, and satisfying
some prescribed condition on the boundary of D, will then be invari-
ant under L7 5. Ruelle [39] worked with the disc algebra A, (D) of
holomorphic functions which extend continuously to the boundary of
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D, equipped with the supremum norm. This space has since been the
most common choice, although Bergman, Dirichlet, or Hardy spaces
(see [12]) are also invariant under Lz g, as are various more exotic (in
general non-normable) spaces (cf. [38], Ch. VIII, §2,3). However, for
many reasons it is preferable to work with a Hilbert space. If D is a
disc of radius r, centred at ¢, and in addition satisfying (i),(ii) above,
then a convenient choice is the Hardy space H?(D) of those functions
holomorphic on D and such that sup,, 5 L2 (e + oe™)|?dt < oo
Note that any function holomorphic on an open neighbourhood of D
is automatically in H?(D). The inner product on H?(D) is defined by

(f,9) =& 02” fle+re®)g(c+ ret) dt, which is well-defined since any
element of H%(D) extends as an L? function of dD.

The very freedom in choosing these holomorphic function spaces
means that none of them are canonical. By contrast C*°[0,1] and
C“[0,1] are both canonical, although neither of these is normable.
Therefore the holomorphic function spaces may usefully be considered
as intermediate spaces, on which certain properties of the transfer oper-
ator L7 g are more readily apparent. The intermediate nature of these
spaces means we do not strive for the utmost generality in our choice of
the domain D. For simplicity we will only consider the Hilbert space
H?(D) and the Banach space A, (D), where D is a disc satisfying
conditions (i) and (ii). When acting on either of these spaces, it will
be seen that the operator Lz is trace class (and hence compact), a
concept we now briefly review.

Given a compact operator L : H — H on a Hilbert space H, define
the n'™ approzimation number (or n'* singular value) to be s,(L) =
min{||L — F|| : F is a linear operator of rank < n — 1}. Then L has
a norm convergent expansion L = ) s,(L)(¢y, )1y for orthonormal
sets {¢n}, {¢n} (cf. [46], Thm. 1.4). For p > 0, the Schatten-von
Neumann ideal S,(H) is the collection of those operators for which
Y sn(L)? < co. The case p =1 is of particular importance; L is said
to be trace class if ) sn,(L) < oo, in which case its trace tr(L) =
> Sn(L)(¢n, y) is well-defined. Lidskii’s theorem then asserts that
tr(L) = >, Au(L), where A\,(L) are the non-zero eigenvalues of L,
counted with multiplicity. The Fredholm determinant for L is an entire
function of z defined as exp [tr (log(I — zL))] for small z, and then by
analytic continuation. Its zeros are precisely the reciprocals of the
non-zero eigenvalues of L, the order of any zero being the algebraic
multiplicity of the corresponding eigenvalue.

Grothendieck [19, 20] generalised the notion of trace class opera-
tors to Banach spaces B. If L : B — B can be written as L(f) =
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Y onln(f) fn, for some I, € B, f,, € B satistying > ||l,||s||ful|5 < o0,
then L is said to be nuclear. If > (||| || fullB)? < oo, then L is
called nuclear of order p. If L is nuclear of order p for every p > 0
then it is said to be nuclear of order 0. The class of nuclear oper-
ators of order 2/3 (the Grothendieck trace class) is of particular im-
portance, for in that case the trace tr(L) = ) 1,(f,) is well-defined,
and independent of the sequences [, f,. Moreover, for such operators
Grothendieck [19] proved that the analogue of Lidskii’s theorem holds,
namely tr(L) =) A,(L). The Fredholm determinant can also be de-
fined for such operators L, in the same way as for trace class operators
on Hilbert space, and its zeros are related to the eigenvalues of L as
above.

If [|la|l || fullB = O(3™) for some 0 < v < 1, we will say that L is
exponentially nuclear (such operators are clearly nuclear of order zero).
Moreover we have the tail estimate Y o\ ||ln||5 || fallz = O(YY), so
that sy (L) = O(¥"), and hence Y, s,(L) < oo. Therefore an expo-
nentially nuclear operator on a Hilbert space is of trace class.

Proposition 1. Suppose T C N is non-empty, and Re(8) > 0. Let
D C C be a disc satisfying conditions (i) and (ii).

(a) Lz : H*(D) — H?*(D) belongs to every Schatten-von Neumann
ideal S,(H?*(D)), p > 0, and in particular is trace-class.

(b) L1p: A(D) = Ax(D) is nuclear of order 0, and in particular is
a Grothendieck trace class operator.

Proof. The assumptions on D guarantee that if f is holomorphic on
D then Lzpgf is holomorphic on an open neighbourhood of D. In
particular we may choose an open disc D', concentric with D, and
with strictly larger radius, such that £z gf is holomorphic on D'. Let
r (resp. r') denote the radius of D (resp. D'), and let ¢ denote their
common centre. We have the Taylor series

Lrsf(2) =D welHor(2),
where
) (¢
Yk(f) = Lz5/)7() ge(2) = (2 — )",

k! ’
Now ¢ (f) = O((r') %), since Lz f is holomorphic on D',
In particular, if £ denotes either H*(D) or Ay (D) then Lz5f € E,

and moreover ||¢x]|z = O((r')~*). Clearly also g, € E, and ||gx||r =
r¥. Therefore ||gi||£||¢k||z = O ((r/r")*), so that Lz 5 is exponentially
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nuclear. The discussion preceding this proposition then implies that
Lz s is (Grothendieck) trace class. O

We now consider the action of L7 3 on the spaces C'*°[0,1] and
C“[0,1]. These are not Banach spaces, so care is needed in the defi-
nition of its spectrum, which we will always understand in the sense
of Allan [1] (see also §A.1 of [4]). The spectrum of a linear operator
L : E — E on a topological vector space FE will be denoted by o(L|E).

Proposition 2. Suppose T C N is non-empty, and Re(5) > 6r. Both
Lrz:C®0,1] — C*®[0,1] and Lz : C¥[0,1] — C¥[0,1] have count-
able spectrum, the only accumulation point being at zero.

Proof. First we consider the operator Lz 3 acting on the space C*[0, 1].
Let A; be a decreasing sequence of open rectangles with N;A; = [0, 1],
such that A; C int (N,ezS,(A)) and —Z N A; = (. For definiteness we
could choose A; to be centred at a; = % + %, of height 1/5 and length
14 £4/(2a; + 3)(2a; — 1).

By Riemann’s mapping theorem there is a holomorphic diffeomor-
phism ®; : int (N,ezS5,(4;)) — D(0,1) sending the simply connected
Jordan domain int (N,ez5,(4;)) onto the open unit disc D(0, 1). There
is some 0 < p; < 1 such that ®(A;) C (0, o), the open disc of radius
o;j centred at 0. Let C; denote the composition operator C; f = f o ®;.
The Riemann mapping ®; extends to a boundary homeomorphism
0 (NnerSn(4A;)) — S* (see [23], Thm. 17.5.3). This ensures that C;
is a continuous operator A (D(0,1)) = A (int (NpezrSn(4;))), with
unit norm. The operator C’j_1 is also continuous, for the same reason.

By an argument analogous to that of Proposition 1 we see that
CjoLzpgo C’j_1 is exponentially nuclear when acting on the space
As(®(4;)). From the continuity of C; and C; ' we deduce that Lz :
A(Aj) = Ax(4) is also exponentially nuclear. It follows that the
non-zero eigenvalues of L7 : A(Aj) = Ax(4,), counted with al-
gebraic multiplicity, are precisely the reciprocals of the zeros, again
counted with multiplicity, of the Fredholm determinant D7 z(z) of Lz 4.
But by Ruelle [39], the Fredholm determinant for a transfer operator
can be expressed in terms of the periodic points of the underlying dy-
namical system as

[Tic (T'2)*
TX; L= (-1 L5 (Tix)?

TzEAT

X n
VA
Dzp(2) = exp — E .
n=1
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an expression which is manifestly independent of the particular domain
Aj;. Thus the spectrum of L7531 Aso(A;) = Ax(4;) is independent of
Aj. Let {\;i}ien U {0} denote this common spectrum.

Now C¥[0,1] is topologised as the inductive limit of the injective
inductive system of Banach spaces E; := A (4;). Each L5 : E; —
E; is nuclear, hence compact, and these operators all have identical
spectrum {\; };en U {0}. A result of Bandtlow ([4], Cor. A.7.11) then
allows us to deduce that the spectrum of L7 5 : C¥[0,1] — C¥[0,1] is
also {\;}ien U {0}.

To treat the operator Lz5: C*°[0,1] — C*°[0, 1], we first note that
C*|0,1] is the projective limit of the countable injective projective
system of Banach spaces C*[0,1]. This means, by Prop. A.7.20 of [4],
that the spectrum o (L7,3|C*°[0,1]) is the intersection of the spectra
o (Lz,5|C*[0,1]), k € N.

We claim that L7 : C*[0,1] — C¥[0,1] is quasicompact, and that
its essential spectral radius shrinks to zero as k£ — oo. This will es-
sentially follow from Ruelle [43]. Since Re(/3) > 67 then condition (i)
on p. 176 of [43] is satisfied for the operator L7 4, and also for L%,B'

Now L7 4 is a transfer operator for the infinite iterated function system
ﬁa
z+n
(m,n) € Z*. Since [T}, ,(2)| < 1/4 for all (m,n) € I?, z € [0,1],
the results of [43] can be applied to L7 4 (the subtlety here is that if
1 € Z then Ruelle’s results would not apply verbatim to Lz g, since

T1(2) = 17 is not a strict contraction). By Theorem 1.3 of [43] we see

that ﬁ%ﬂ : C*[0,1] — C*¥[0,1] is quasicompact, with essential spectral

determined by the collection of strict contractions T, ,(2) =

radius bounded by ¢ (i)k, where ¢ > 0 is independent of k. If we con-
sider both L7 5 and ‘C%,,B as acting on the Calkin algebra (i.e. bounded
operators modulo compact ones), then an application of the spectral
mapping theorem shows that Lz : C*[0,1] — C*[0,1] is also quasi-
compact, with essential spectral radius bounded by /¢ (%)]~C

In particular, the essential spectral radius of L7 s does tend to zero as
k — 00, so that o (Lz,5/C>[0,1]) = N2, 0 (Lz7,5/C*¥[0, 1]) is countable,
its only accumulation point being at zero. O

Remark 1. In the course of the above proof it was shown that the
spectrum of L7 3 on C*¥[0, 1] coincides with that on A, (D), for suitable
domains D. In fact it can be proved that the spectrum of L7 g on each
of the spaces C*°[0, 1], C*[0,1], H*(D), Ax (D) is identical. The proof
of this is postponed until Theorem 3, when the Hilbert space Hz g will
also intervene.



12 O. JENKINSON, L.F. GONZALEZ, AND M. URBANSKI
4. THE INTEGRAL OPERATOR AND INTEGRAL TRANSFORM

The following lemma is elementary, and its proof is left as an exercise.

Lemma 1. (Properties of the theta function ¥z1)
Suppose T C N is non-empty. Let U7(t) = >, e ™ be the corre-
sponding theta function. Then
(a) 97 : R" — R is monotone decreasing, with lim;_,, 97 (t) = 0,
(b) limy o Vz(t) = oo if and only if T is infinite,
(¢) eNet < Y7(t) < (1 —e) e Nt forall t > 1.

The following lemma is a standard tool in Mellin transform theory,
and will be used several times. Its proof follows from the simple change
of variable u = at.

Lemma 2. (Mellin transform trick)

oo 1 oo
/ t*"tg(at) dt = — / w'g(u) du
0 a® Jo

for Re(s) > 0,a > 0, and any locally integrable function g for which
either side of the equality is finite.

An immediate application is to the following.

Lemma 3. Suppose T C N is non-empty. If Re(s) > max(0,20z) then

1 [oe]
tS*l 7th t .
oy ), e me

Proof. Since Re(s) > 0 we have

(z(s,2)T(s) = Z ﬁ /000 u e " du.

nezl

(z(s,2) =

Applying Lemma 2, then interchanging integration and summation
(which is justified since both are absolutely convergent) gives

CI(S, Z)F(S) = Z/Ooo ts—le—t(z—l—n)dt

nezl

00
— / Ztsflefzt Z eftndt
0

nel

= / t* e tdmz(t).
0
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Remark 2. The case z = 0 in Lemma 3 yields the following integral
expression for the zeta function (z(s):

Gl) = 75 /0 e dm (1),

valid for Re(s) > max(0, 267).

Lemma 4. Suppose T C N is non-empty, and Re(3) > max(0,07). If
¢ € L*(mz) then Tzz(p) is holomorphic in the right half plane Ry =
{z € C:Re(z) > —Nz/2}.

Proof. Suppose ¢ € L*(mz). By Lemma 1.1 of [26] it suffices to show
that Tz,s¢(2) = [;° sP712e752p(s) dmz(s) = [;° s°71/2e=%p(s)07(s) ds
is uniformly convergent in z, on any compact subset of Rz. To do this
we will split the range of integration, considering separately the inte-

grals [* and fol.

We will first show that [ |s?=1/2e=%2(s)[9z(s) ds < oo, uniformly
on any compact subset of Rr.

Since p € L*(mz) then [° [p(s)[*9z(s) ds < oo, and so [¢(s)[*0z(s) —
0 as s — oo. By Lemma 1 (c) we deduce that |o(s)] < e*N2/2 for all
sufficiently large s. Consequently there exists K > 0 such that

/ |S’B_1/2€_82g0(8)| 191(8) ds < K/ 86—1/26—3(Re(z)+N1/2) dS,
1

1

and this integral is convergent for Re(z) > —Nz/2. The convergence
is uniform on any compact subset of Rz (indeed on any half-plane
Re(z) > —=Nz/2 + 6, for § > 0).

We now consider the integral [ |s*~'/2¢=5*¢(s)|dmz(s). We first
claim that s — ¢(5)s°1/2 is in L'(mz). To prove this it suffices to
show, by the Cauchy-Schwarz inequality, that s°~'/2 € L?(mz). An
application of Remark 2 gives

/Ooo |36—1/2|2 dmz(s) = /Uoo SQRe(ﬁ)_ldmI(S)
= (z(2Re(B))T'(2Re(f)) < o0

for Re(8) > max(0, f7), as required.
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For Re(z) > —Nz/2 we have

1 1
/ 1512657 () dma(s) < V72 / SR 112 (5)| dimg ()
0 0

< Mol / SRGI2] o) dimg (s)
0
< 0

since ¢(s)s"1/2 € L'(mz). Indeed the convergence of this integral is
uniform on all of Rz.

We have checked that the integral [;° s~ '/2e~**¢(s) dmz(s) is ab-
solutely convergent, uniformly on any compact subset of Rz, so we are
done. O

The integral operator Kz g will always act on the space L?(mz),
which we now show it leaves invariant.

Lemma 5. Suppose T C N is non-empty, and Re(f) > max(0, f7).
The integral operator Kz g

(a) preserves the space L*(mz),

(b) is trace class when acting on L*(mz),

(c) is selfadjoint in the case where [ is real.

Proof. Part (a) will follow from part (b), which we now prove.
The straightforward expansion

00 (_1)ktk+ﬁ71/2 o bB1/2
kg Rk +25) /0 S ls) dmafs)

is in fact not a nuclear representation. However, the Bessel function can

be expanded (cf. [48], p. 8) in terms of Laguerre polynomials L")

(which form an orthogonal basis for L*(R",ds)) as

_ e S
Ga(s,t) = Top—1(2V/st) = (st) Z T(n+283)

n=0

’CI,,BSO(t) =

This gives the representation

Kzpp = Zz ) f
where

Fule) =5 PLP ) o) = [

00 yn+B—1/2,—t

mgp(t) dmz(t).
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A calculation (cf. [35], p. 155), again using Lemma 2, reveals this to
be an exponentially nuclear representation, with the exponential de-
cay of the ||/,|| dominating the exponential growth of the ||f,||. The
discussion preceding Proposition 1 then implies that L7 g is trace class.

Part (c) is clear since Gg(s,t) = G(t, s) for f € R. O

5. THE TRANSFER OPERATOR ON THE SPACE OF INTEGRAL
TRANSFORMS.

Theorem 1. Suppose T C N is non-empty, and Re(f) > max(0, f7).
Then

(a) the transfer operator Lz 5 preserves the space Hz s = Tz s(L*(mz)),
(b) if Kz : L*(mz) — L*(mz) is the integral operator with kernel
function Gg, then

L2(mz) =224 [2(my)

Wl |

Hzp —— Hzp
L'I,B

1$ a commutative diagram.

Proof. At several points during this proof we swap order of summa-
tion, or interchange summation and integration. On each occasion
this is justified by absolute convergence, stemming from the hypothe-
sis Re(f) > max(0, 07). Now

1 \?% 1
LrsoTrap(z) =) <Z - n) Trsp (Z - n)

nel

-2 < i n>w | e e dnat) (o)
[ g ()

i dmz(s).
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Manipulating part of the integrand we have

1 \” _. 1\’ -5\
Z<z+n> ‘ Z+n:nz:<z+n> z%(zwLn) k!

nel €T k
- v
k=0 neZ z+n k

where Lemma 3 was used for the final step.
Substituting into (6) gives us

o _ (=s)* k+28—1 —zt
Lz Tz,w(Z)—/s O/to k'F(k+2B)t e~ *tdmz(t)dmz(s)

_ / 0 / 5) G(s t)tﬂ V262 dmy (t)dmz (s)

= [T [ 6ot 06s) dmets)| amatt

=Tz,50Kzs0(2).

So indeed the operators L7 3 and Kz 3 are conjugated by the integral
transform 77, and in particular £z 3 preserves the space Hrz 3. O

Remark 3. It is now clear why the exponent 5 — 1/2 was chosen in
the integral transform Tz g (z) = [;° s /2 **¢(s) dmz(s). It ensures
L1 s is conjugate to an integral operator with symmetric kernel.

Theorem 2. Let Z be a non-empty subset of N. Suppose 5 € R with
f > max(0,0z). Then the operator Lz p: Hzz — Hzp is conjugate to
a selfadjoint operator, and in particular has real spectrum.

This spectrum is a sequence of real numbers union its accumulation
point at zero.

Proof. The continuous conjugacy of Theorem 1 between the integral
operator Kz and the transfer operator L7 : Hz s — Hzp implies
that their spectra coincide.

Kz p is trace class, by Lemma 5 (b), so in particular it is compact.
Therefore the only non-discrete point in the spectrum of Kz is the
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accumulation point at zero. Kz g is selfadjoint, by Lemma 5 (c), so its
spectrum is real. O

6. THE FULL C'*° SPECTRUM OF THE TRANSFER OPERATOR

In this section it will be shown that the space Hz g is large enough
to capture the full spectrum of L7 3 acting on C*°[0, 1] (and on various
spaces of analytic functions), as well as the discrete part of the spectrum
of L1 acting on either C*[0,1] or C*[0,1]. This will follow from the
fact that Hz g is densely and continuously embedded in these various
spaces, a result we now prove.

Lemma 6. Let Z C N be non-empty, and Re(3) > max(0,607). Sup-
pose the disc D satisfies [0,1] C D C Rz. Let E denote any of the
spaces An(D), H?(D), C*[0,1], C*=[0,1], C*[0,1] (for k € N), or
C*[0,1] (for 0 < a < 1). The natural inclusion tg : Hrp — E is
continuous, and vp(Hzg) is a dense subspace of E.

Proof. Tt is easily checked that each inclusion is continuous, so we con-
centrate on proving that tx(#Hz ) is dense in E. Define f;(z) = ﬁj,
for j € Nwith j > Nz. Each f; € E, and we claim that the linear span
of {f;};j>n, is a dense subspace of E. To see this it suffices to show
that any monomial 2™ can be approximated by linear combinations of
the f;, since the space of all polynomials is certainly dense in E. If

m

plz
(z+ 14+ Ng)(z+2+ Ng)---(2+p+ Nq)

Ip,m(2) =

then clearly g, ,, approaches 2™ in E as p — oco. On the other hand,
for p > m there is a partial fractions decomposition of g, ,, into a linear
combination of elements of {f;}, thus establishing the claim.

Now f; is the Laplace transform of e 7%, so if

e I8
p.(s) = $8=17207(s)

then Tz 305, = f;. However in general (i.e. for § > 1), ¢z ; does not
belong to L*(mz), so that f; is not in Hzg.

Nevertheless, if @3, = @5, X[1/n,00) then it is readily verified that
¢pjn € L*(mg) for all > max(0, 07). Therefore fs;n := Tz,50p,n €
Hrg. Now f5in(2) = e G/ /(2 4+ 5), so that fs;, € FE (and in fact
does not depend on ). Clearly fz;, converges to f; in E as n — oc.
So the linear span of {fz;.}j>nynen is E-dense in the linear span of
{f;i}j>ny, which itself is F-dense in F, and we are done. O
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Theorem 3. Let Z C N be nonempty, and Re(3) > max(0,67). Sup-
pose the disc D satisfies [0,1] C D C Rz, and D C int(NypezSy(D)),
where S,(z) = £ —n.

(a) If E denotes any of the spaces An (D), H*(D), C*[0,1], or C*[0, 1],
then U(ﬁz,5|E) = U(£175|/HI,5).

If furthermore (3 is real, then o(Lzp|E) is real.

(b) If E denotes either of the spaces C*[0,1] (for k € N) or C[0,1]
(for 0 < o < 1), then the non-essential spectrum of Lzp: E — E is a
subset of o(Lz | Hzp)-

If furthermore (3 is real, then the non-essential spectrum of Lz : E —
E is real.

Proof. Grabiner’s intertwining theorem [18], which was initially formu-
lated in the context of Banach spaces, has been extended by Bandtlow
[4], Thm. A.6.2, to more general topological vector spaces. This exten-
sion asserts the following. Suppose E is a sequentially complete and
barrelled topological vector space, with a dense subspace F'. Suppose
F' carries a topology stronger than the one induced by F, and that F'
is itself sequentially complete and barrelled with respect to this topol-
ogy. If both E and F' are invariant under a continuous linear operator
L, then the discrete part of o(L|E) is a subset of the discrete part of
o(L|F). Moreover, if both L : E — E and L : F' — F have countable
spectrum, then these spectra coincide.

We choose L = L7 and F' = Hzg. If E is any of the spaces in the
statement of the theorem then F'is continuously and densely embedded
in £ by Lemma 6. Part (b) therefore follows from Bandtlow’s inter-
twining theorem, and from Theorem 2 when [ is real. If now F is any
of the spaces in the statement of part (a), then we recall from §3 that
o(Lzp|E) is countable. Therefore (a) follows from the intertwining
theorem as well, and from Theorem 2 when [ is real. O

In fact it is possible to say a little more about any C'* eigenfunction
of L1 corresponding to a non-zero eigenvalue, as described in the
following corollary.

Corollary 1. LetZ C N be nonempty, and Re(f) > max(0,67). Every
C* eigenfunction corresponding to a non-zero eigenvalue of L1z 1is
holomorphic in the cut plane C\ (—oo, —1].

Proof. Let A denote the restriction of £z to Hz g, and let B denote
the restriction of L7 to C*°[0,1]. By Theorem 3 we know that every
eigenvalue A of B is also an eigenvalue of A. If A # 0 then it is an
isolated element of both spectra.
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Let us suppose that the geometric multiplicity of A as an eigenvalue of
A coincides with its geometric multiplicity as an eigenvalue of B. Then
any C'* eigenfunction f corresponding to A is actually an element of
Hzp. Since A # 0, the eigenequation can be written A™' Lz 5f = f, and
iterated to give \™" L7 5 f = [ foralln > 0. But f is holomorphic in the
half plane Rz, from which we successively deduce that A™"L7 5f = f
is holomorphic in some region €2,,, where {2y C )3 C ... and U2 €2, =
C\ (—o0, —1]. Since A was an arbitrary non-zero eigenvalue, and f an
arbitrary eigenfunction, it follows that every C'*° eigenfunction for a
non-zero eigenvalue is holomorphic in the cut plane C\ (—oo, —1], as
required.

It remains to show that indeed the geometric multiplicity of A\ as an
eigenvalue of A coincides with its geometric multiplicity as an eigen-
value of B. For the following argument we are grateful to O. F. Bandt-
low, who pointed out its omission in our original proof (see also [5] for
a thorough investigation of related questions).

If o : Hzp — C*[0,1] denotes the inclusion map, then the relation
Boi=10A gives

(z—B) lor=10(z—A)" (7)

for all z belonging to the resolvent set of both A and B.

Allan’s functional calculus [1] applies to continuous linear opera-
tors L on a certain class of locally convex topological vector spaces
which includes C*[0,1]. This generalises Taylor’s functional calculus
for closed operators on Banach spaces, and asserts that, under suitable
hypotheses (see [1], Thm. 5.3), F(L) = 3= [, fEZL) dz for functions F’
holomorphic in a neighbourhood of the spectrum of L, where C' is a
suitable Cauchy domain (see [1], Defn. 5.2). Combining this with (7)

we can derive the relations

toll(N;A) =TI(\; B) ot (8)

and
toAoll(NA) =TI(\;B)o Bou, 9)

where TI(\; A), II(\; B) denote the respective spectral projections at A.
From (8) it easily follows that

¢ (R(II(A; 4))) € R(IL(A; B)) (10)

where R (II(A; A)), R (II(\; B)) are the respective generalised eigenspaces
corresponding to A\. Now Prop. A.6.5 of [4] implies that R (II(A; A)),
R (II(A\; B)) have the same dimension (i.e. the algebraic multiplicity
of A is the same for both A and B). Now Kz : L*(mz) — L*(mz)
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is trace class by Proposition 5, hence so is the operator A, by The-
orem 1 (b). In particular A is compact, so that R (II(A; A)) is finite
dimensional ([15], Thm. 7.4.5). Therefore equation (10), together with
the injectivity of ¢, implies that ¢ is an isomorphism between the finite
dimensional generalised eigenspaces R (II(\; A)) and R (I1(\; B)).

Using (9), and the fact that B commutes with II(\; B), we see that
the restrictions B|R (II(\; B)) and A|R (II(A; A)) are similar, so that
their Jordan decompositions are identical. In particular,

nullity [(A — A)|R (II(A; A))] = nullity [(A — B)|R (II(A\; B))] .

To complete the proof, we observe that since IT(\; A) and II(\; B) are
spectral projections then ker(A — A) = ker (A|R (II(\; A))) and ker(\ —
B) = ker (B|R (II(A; B))). Hence nullity (A — A) = nullity (A — B), as
required. O

Remark 4. Suppose 7 is a singleton Z = {n}, and § € C is arbitrary.
In this case L7 4 is just a weighted composition operator Lz gf(2) =
(n+2)"29f(1/(n + 2)), whose spectrum can be determined explicitly

(cf. [28], [34]). If 1

n+ o
is the fixed point of 1/(n + z), then
o (L1,5/C[0,1]) = {(=1)* 2220 k € Zxo} U {0}.

Zn =

7. ANALYTIC PROPERTIES OF 3 +— L7 3

In this section we consider the analytic properties of the map [ +—
Lz, where L1 g is considered as a trace class operator on a suitable
Hardy space H?(D). In particular £z g is an element of the complex Ba-
nach space B (H?(D)) of bounded linear operators from H?(D) to itself.
The analyticity of a map from some complex domain into B (H?*(D)) is
then understood (cf. [47], p. 205) to mean the existence of a derivative
at every point.

The map 3 — Lz g is certainly holomorphic in the half-plane Re(5) >
67, and for general alphabets Z C N there is no reason to expect an
analytic continuation to a larger region. However for alphabets of an
arithmetic nature, such as those studied in [32], such continuations are
often possible, as will be described in this section. The original result in
this direction is due to Mayer [33], and asserts that 5 — Ly, extends
meromorphically to the entire plane, the only poles being simple ones
at f = 1;—’“, k € Z>y. The notion of analyticity used by Mayer is weaker
than the one we consider here; in [33] it means that § — Lzgf(2) is
analytic for every z € D, f € H*(D).
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Theorem 4. Let T C N be non-empty. Let D C C be a disc with
[0,1] € D C Rz, and such that D C int(NperSp(D)), where Sy(2) =
1 _n.

" Let Cz(s,2) = >, c7(z +n)~% denote the Hurwitz zeta function for
the alphabet T. If the map  — (z(253, z) has an analytic continuation
to a complex domain U, then:

(a) B — L1z also has an analytic continuation to U.

(b) The singularities of B — Lz are at the points (p—k)/2, k € Z>y,
where p is a singularity of s — (z(s, 2).

(¢c) If U = C, and the analytic continuation of B + (z(28,2) to U is
a meromorphic one to U = C, then 3 — Lz 5 also has a meromorphic
continuation to C, with poles of order m at the points (p — k)/2, k €
Ly, where p is a pole of order m of s — (z(s, z).

(d) If s = (z(s,2) has an algebraic (resp. logarithmic) branch singu-
larity at the point p, then B — Lz has algebraic (resp. logarithmic)
branch singularities at those points (p — k)/2, k € Zsq which lie in U.
(e) For each $ € U, Lz5: H*(D) — H*(D) is a trace class operator.

Proof. We follow Mayer [33] in expressing 3 +— Lz s as the sum of two
maps, the first of which is meromorphic with range the class of rank-
(N +1) operators, the second of which is entire and trace class-valued.
We will then let N — oo.

Define the operators m;, Py : H*(D) — H*(D) by

N
F9(0)
ka(Z) = k! Z ) PN = kz:%ﬂ—k-

Letting Qn = I — Py we write, for any N € Z,,

Ez,g = Ez,g O PN + Ez,g 9 QN. (11)

Each of the rank-one projections Lz g o m;, can be expressed as
*®) (0
Lrpmif(z) = / k'( )CI(QB +k,2)

for f € H*(D), Re(B) > (07 — k), and for z € D', some open disc
concentric with D and of strictly larger radius, as in Proposition 1.

Fix f € H*(D) and z € D’. Let P denote the set of singularities
of s — (z(s,2). Since 8 +— (7(203, z) extends analytically to U, with
singularities in 3P, then 8 — Lzgmf(2) extends to the translated
region U — k, with singularities translated to lie in the set 1(P—k)NU.
Therefore 5 +— L1 5Py f(2) extends analytically to U, with singularities
in the set {(p—k)/2:0< k< N,pe P}nU.
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Now we claim that for arbitrary fixed f € H?(D), z € D', the map
B — L739nf(2) can be extended holomorphically to the half-plane
Re(p) > w. If 7 is finite then this claim is clearly true, so suppose
7 is infinite, and write Z = {ny}3°,, where n; <mny < ....

If £ > 0 is sufficiently small, then every f € H?(D) has a power
series expansion around 0, uniformly convergent for |z| < £. It follows
from Cauchy’s theorem that there is a constant C'y > 0 such that

Qv f(2)] < Cpla™H (12)

for all |z| < &.
Since T = {n} is infinite, we may choose m € N large enough so

that |—L

!/ .
| < ¢ for any z € D' and k > m. We now write

m 1 283 1
L1sOnf(2) = kz: <z+—n) Onf <z+—n>
1 \* 1
+k_2: <z+n> QNf(z—i—n)'
=m+1

The first summation in this expression is finite, so can be extended to
an entire function of 5. Using (12) we see that the second summation
is absolutely and uniformly bounded on D' by a constant multiple

(;f %:nlez n?ReB)+N+1 " which in particular is convergent for Re(B) >
ok

g~

>— and therefore defines a holomorphic function in this half-plane.

Therefore for any fixed f € H*(D), z € D', the map 3 +— Lz f(z) =
L7 sPnf(2) + L1s9n[f(2) has an analytic extension to U N {f € C :
Re(B) > =M1} for any N € Zso. Letting N — oo shows that
f +— Lz3f(z) has an analytic extension to U. The nature of any
singularity of f +— Lz 3f(2) is clearly the same as the corresponding
singularity of s — (z(s, 2).

We now claim that 8 +— Lz g is weakly analytic on U; that is, given
any f € H?*(D) and any bounded linear functional | € H?(D)', the
map [ — [(Lzpf) has an analytic extension to U. Every functional
has a representation [ = (-, g), for some g € H?(D), so that

1

2m
= — / Lrsf(c+re®)g(c+ret)dt, (13)
2m Jo

I(Lzsf)
where ¢ denotes the centre of D, and r denotes its radius. We have
shown that for every ¢ € [0,27), the map 5+ Lz zf(c + re™) is holo-
morphic. Moreover, on any compact subset K of U, the integral (13)
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is uniformly convergent for € K. The analyticity of 8 — [(Lz5f)
then follows from Lemma 1.1 of [26].

The weak analyticity of 5 +— Lz 3 in fact implies strong analyticity
(see [47], Thm. 4.4-F); that is, for any f € H*(D) the map 3+ Lzsf
is analytic on U (as an H?(D)-valued map). But strong analyticity
in turn implies the analyticity of 3 — Lzs as a B (H?(D))-valued
map (see [47], Thm. 4.4-G), which is the result we want. Once again
the nature of any singularity of § +— Lz is clearly the same as the
corresponding singularity of s — (z(s, z).

The fact that L7 4 is trace class for each § € U follows in exactly
the same way as in Proposition 1, it being a property of the underlying
dynamics and the choice of D rather than of the analytic properties of
the weight functions in the definition of Lz g. O

Theorem 5. Let T C N be non-empty. Let D C C be a disc with
[0,1] € D C Rz, and such that D C int(NpezSn(D)), where S, (z) =
i
= —n.

Define L1 : H*(D) — H*(D) by (5) on the half-plane Re(5) >
Oz. For the following alphabets I, the map B — Lz has an analytic
continuation to the region stated, and in each case L1 is a trace class

operator for every [ in the extended region.

(i) T finite (and non-empty). B — Lz s is an entire function of j5.

(i) T = aN + b for a,b € N. B+ Lz3 extends meromorphically to C
with simple poles at f = (1 — k)/2 for k € Zx,.

(iii)) T = {n*}°, for a € N. f+— Lz z extends meromorphically to the
complex plane with simple poles at [ = %(% — k) for k € L.

(iv) T = {(n)}2,, v € N[z] a polynomial of degree d > 1. Then
0r = 2_1(1' B — Lz extends meromorphically to C, the only poles being
simple ones among the points f = %, k € Zxy.

(v) T ={a"}32, for a € Zsy. B +— Lgp extends meromorphically to
the complez plane with poles at {=E + ﬁm : (k,m) € Lsy X L},

(vi) T = {prime numbers}. Then 07 = 1/2. There is a sequence
{8,352, with 51 = 1/2, whose set of accumulation points is the imag-
inary azis Re(B) = 0, such that f — Lz extends analytically to a
domain {8 € C: Re(8) > 0} \ U, L,, where L, = {38, —t : t > 0}.
The map has a logarithmic singularity at each point [3,.

(vii) T the set of integers which are the sum of two squares (of natural
numbers). Then 07 = 1/2, and Lz = (8 — 1/2)"Y2 Mz, where
B+ Mzyz extends analytically to a domain {8 € C : Re(8) > % —

é log (2|Tm(B)| + 2)]™"} for some A > 0. ’
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(viii) T = {ny}32, is such that there exists v > 0 with ng., > n,iﬂ for
all k. Then 07z=0, and the line Re(3) = 0 is a natural boundary for the
map B +— Lzg.

Proof. (i) is clear.

By Theorem 4, the analytic properties of 8 — Lz g are closely related
to those of s — (z(s, z). In case (ii) we can exploit this directly.

(ii) We can write (z(s,2) = Yooty (m53) = a7 G (5, 222) L 1f (s, 2) =
Yo o(z4n)~* denotes the classical Hurwitz zeta function, then we have
(s, ZTJ’(’) = ((s, ZTJ’(’) - (z%b)s Now ( (s, ZTH’) has a meromorphic ex-
tension to the entire complex plane, with a simple pole at s = 1 ([6],
p. 502), so the same is true of (y (s, ZT“’), and hence of (z(s,z). The

result then follows by Theorem 4.

In cases (iii)—(viii) it will be more convenient to relate (z(s,z) to
(z(s). The analytic properties of this latter zeta function are known
for the alphabets Z considered here.

We claim that if (z(s) has an analytic extension to a complex domain
U, with set of singularities @, then for z € D, the map s — (z(s, z) has
an analytic extension to the same domain U, and that its singularities
are contained in {¢ —k:q € Q,k € Zso} NU.

Let us prove this claim. Write Z = {n;}32,, where n; < ny < ....
We can choose m € N sufficiently large to ensure that the closure of D
is contained in the disc of radius 2 centred at 0. Define

3

o(5,2) = ( L) b =l ) — g,

. Z + ng

ES
Il

for z € D and Re(s) > 267. For fixed z € D, the map s — g(s, 2) is
clearly entire. We will consider the analytic extension of s — h(s, z).
Let J = {ng}2,, be the tail of the alphabet Z. For z € D and
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Re(s) > 267 we have

> 1 1\
o= 3 5 (1)
k=m Nk

I
b
(]2
B =
[
L[M]e

|
NCJJ
N——

|
SR
N——

where the interchange of order of summation is clearly justified, and
where (T) = % (so in particular if —s € N with —s < [
then (7°) = 0).

We will prove that the map s — >,° v (7°)(—2)'Cs(s + ) extends
analytically to U N {s € C : Re(s) > 20r — N}, for all N € N. This
will complete the proof of the claim, since it is easily seen that s —
e (77)(=2)!¢s(s + 1) extends analytically to U, with singularities
intheset {—k:qeQ,0<k<N-1}NnU.

Fix N € N and set hy(s,w) = Y2y () (—w)". By a calculation
analogous to the one above we have

l;iN <_ls> (—2)'Cr(s +1) = g n:]lcshN (s, n%) .

Let K be any compact subset of the half plane Re(s) > 207 — N. By
the Cauchy formula there is a constant A > 0 such that |hy(s,w)| <
Alw|Y for s € K and |w| < 5. Now if z € D then |z/ny| < 1/2 for all
k > m. Therefore

o0 1 . 00 1 Re(s)+N
E hnx <s, —> ‘ < Amax |z E (—) ,
ng’ N z€D Nk
k=m k=m

forallze D, se K.
The right hand side of this inequality is finite, since Re(s) > 26— N,

so indeed the map s — Y% () (=2)' ¢ (s+1) = X0, nLkshN (s i)

g
is holomorphic on Re(s) > 267 — N, and the claim is proved. The claim
will now be used to establish parts (iii)—(viii) of the theorem.
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(iii) In this case we have (z(s) = ((as), where ( is Riemann’s zeta
function, which has a meromorphic extension to all of C, with a simple
pole at s = 1. Therefore (7(s) has a meromorphic extension to the
whole plane, with a simple pole at s = % The above claim means
that (z(s,z) has a meromorphic continuation to C, with simple poles
at s = % — k, k € Z>o. (In the case p = 1 all these poles except for

k = 0 are cancelled by zeros). The result follows by Theorem 4.

(iv) ¢z(s) has a meromorphic extension to all of C, with a simple pole
at s = 1/d, and possible further simple poles at s = —k/d for k € Z>,
[37]. By the above claim, the same is true of (z(s, z), and the result
then follows by Theorem 4.

(v) Now (z(s) = Z:Zl - ms — —1_(117.3 , which extends meromorphically
to C with simple poles at s = 1207”
ga

implies that (s, z) has a meromorphic continuation to C, with simple

poles at points s = %m — k for k € Z>o, m € Z. The result then

follows by Theorem 4.

m for m € Z. The above claim

(vi) For Z = {primes}, the Dirichlet series (z(s) is holomorphic for
Re(s) > 1, has a logarithmic singularity at s = 1, and can be continued
into the half-plane Re(s) > 0 with logarithmic singularities at points
s, which accumulate on the imaginary axis and do not accumulate
elsewhere [29]. Removing suitable half-lines, for example L/ = {s, — ¢ :
t > 0}, gives a domain {s € C: Re(s) > 0} \ U2, L! on which (z(s)
has a holomorphic continuation. The Hurwitz zeta function (z(s, z) is
also holomorphic on this domain, by the above claim, and the result
follows by Theorem 4.

(vii) The Dirichlet series (z(s) is holomorphic for Re(s) > 1, and can
be written as (z(s) = (s — 1)7Y/2Z(s), where Z(s) is holomorphic in a
domain of the form Re(s) > 1 — m (see p. 61-2 of [21]). An
analogous statement is true for (z(s, z), by the above claim, and the
result then follows by Theorem 4.

(viii) Clearly 67 = 0. Write s = it, where t € R. We then have the
formal expression

Cr(it) =) glosm,
k=1

where £ = e~ Now ng,; > n,lcﬂ, so that logngq > (1 +7)logng. A
minor modification of Hadamard’s gap theorem (see §7.43 of [49]) then
implies that the circle |£| = 1 is a natural boundary for the function of
¢ defined by (7). Therefore Re(s) = 0 is a natural boundary for (z(s),
and hence for (z(s, z). The result follows by Theorem 4. O
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