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Abstract

We describe the fractal structure of expanding meromorphic maps of the
form Hoexpo(@), where H and () are rational functions whose most trans-
parent examples are among the functions of the form 2:§gg§§;ig Z’;‘;E:i f,;
with AD — BC # 0. In particular we show that depending upon whether
the Hausdorff dimension of the Julia set is greater or less than 1, the finite
non-zero geometric measure is provided by the Hausdorff or packing mea-
sure. In order to describe this fractal structure we introduce and explore in
detail Walters expanding conformal maps and jump-like conformal maps.
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1 Introduction and preliminaries

The orbits of points under iteration by a meromorphic function fall into three
categories: they may be infinite, they may become periodic and hence consist of
a finite number of distinct points or they may terminate at a pole of the function.
Points in the last category are called prepoles. It follows from Picard’s theorem
that for transcendental meromorphic functions with more than one pole, there
are infinitely many prepoles.

The Fatou set F(f) of a meromorphic function f : C — C is defined in
exactly the same manner as for rational functions; F'(f) is the set of points z € C
such that all the iterates are defined and form a normal family on a neighborhood
of z. The Julia set J(f) is the complement of F(f) in C. Thus, F(f) is
open, J(f) is closed, F(f) is completely invariant while f~1(J(f)) C J(f) and
F(JI(f)\{oo}) = J(f). For a general description of the dynamics of meromorphic
functions see e.g. (see [3]). We would however like to note that it easily follows
from Montel’s criterion of normality that if f : C — C has at least one pole
which is not an omitted value then (see [3])

J(f) = f(c0).

n>0

We consider a class of transcendental meromorphic function of the form

f(z) = Hexp(Q(2)  f(2) = exp(Q(H(2)))

where () and H are non-constant rational functions. Let Q~'(0c0) = {d; : j =
1,...,m} be the set of poles of ). Then

f(z) = H(exp(Q(2))) : C\ {dj;5 =1,... ,m} = C\ {H(0), H(c0)}

and

f(z) = exp(Q(H(2)) : C\ H *({d; : j = 1,... ,m}) = C\ {0, c0}.

We additionally assume that there is at least one pole d; of @ such that d; #
H(0), H(c0). We may assume that without loosing generality that d; = d;.
Then the set

Essoo(f):= |J F({d;j :i=1,...,m})

n=0

contains infinitely many points. Since {0,00} N H!(d;) = 0, the set

contains infinitely many points. The Fatou sets F'(f) and F(f) are defined in
the same manner as for transcendental meromorphic of the complex plane i.e.
F(f) (resp. F(f)) is the set of points z € C such that all the iterates are defined



and form a normal family on a neighborhood of z. The Julia set J(f) (resp.
J(f)) is the complement of F(f) (resp. F(f)) in C. Thus, F(f) and F(f) are

open, J(f) and J(f) are closed, F(f) and F(f) are completely invariant while
FHIf) € J(f) and f(I(f)\{d; : j = 1,...,m}) = J(f). Analogously
FHI) € I(f) and fF(J(H)\NH({dj : j = 1,...,m}) = J(f). It follows

from Montel’s criterion that

J(f) = Essoo(f) and J(f) = Essoo(f).

Let Crit(f) denote the set of critical points of f i.e.

Crit(f) ={z: f'(z) = 0}.

We also consider the general critical points of f. The point z is called a general
critical point of f, if f restricted to any neighbourhood of z is not univalent.
Thus, a general critical point is either a critical point or a multiple pole. The set
of general critical points of f (resp. f) we denote by Critg(f) (resp. Crita(f)).

The exponential map has two omitted values 0,0c0. By Iversen’s theorem
(see [5]) they are asymptotic values. Obviously exp(z) has no other asymp-
totic values. Hence f has at least one asymptotic value and maximum two if

H(0) # H(co). Let Asymp(f) := {H(0), H(c0)}, AsNymp(f) := {0, 00} denote
respectively the sets of asymptotic values of f and f. We say that f satisfies
the assumption (*), if the following conditions are satisfied:

(1) J(F)NUpZo £ (Crit(f) U Asymp(f)) = 0,
(2) if a € Crit(Q), then exp(Q(a)) is not a pole of H,

(3) if H has a multiple pole, then Q(o0) # co.

Let h denote the Hausdorff dimension of J(f). Let H" and P" denote
respectively h— dimensional Hausdorff and packing measures. The following
three theorems constitute the main results of our paper.

Theorem 1. If f satisfies the assumption (*), then:
(a) If h < 1, then P"(J(f)) >0 and P"f](f) is o-finite, while H"(J(f)) = 0.

(b) If h =1, then P"(J(f)) > 0,H"(J(f)) > 0 and both measures restricted
to J(f) are o-finite.

(c) If h > 1, then H"(J(f)) > 0 and H"‘J(f) is o-finite, while P"(J(f)) = oo,

where the Hausdorff measure and packing measure are defined by means of
Euclidean metric.

Theorem 2. If f satisfies the assumption (*), then:
(a) If h < 1, then 0 < P"(J(f)) < oo and H"(J(f)) = 0.
(b) If h =1, then 0 < PR(J(f)), H"(J(f)) < o0.



(¢) If h > 1, then 0 < H"(J(f)) < oo and P"(J(f)) = oo,

where the Hausdorff measure and packing measure are defined by means of
spherical metric.

Of course, the Hausdorff measures (resp. packing measures) defined in the
Euclidean and spherical metrics are equivalent, despite that the Radon-Nikodym
derivatives don’t have to be bounded. If the Hausdorff or packing measure is
positive and o-finite (in particular finite) we call it a geometric measure.

Theorem 3. Suppose f satisfies the condition (*). Then there ezists a unique
probabilistic invariant measure equivalent to a geometric measure.

We would like to mention that in the case when @ is the identity map, The-
orem 1 easily follows from the results stated in [2]. The idea of the interplay
between f and f and an appropriate application of the thermodynamic formal-
ism develops the approach from [2]. Our further methods are based on rigorous
application of Walters expanding maps and the development of the theory of
Walters expanding conformal maps along with jump-like conformal maps.

The paper is organized as follows. In the second section we recall (see [10]) the
concept of Walters expanding maps, we define conformal Walters expanding
maps and we prove its geometrical properties concerning the Hausdorff and
packing measures. At the end of this section we briefly mention some class of
conformal Walters expanding maps coming from meromorphic transcendental
maps.

In section 3 we consider more special conformal expanding maps. By analogy
to parabolic situation (see [4], [1], [7] and [8]) we call them jump-like conformal
maps. This section contains the proof of Theorem 3.3 establishing positivity
and finiteness of appropriate Hausdorff and packing measures.

In section 4 we show that f is a jump-like conformal map and we apply the
results of previous section in the context of f.

In section 5 using a semiconjugacy of f and f we establish our main results
namely Theorem 1, Theorem 2 and Theorem 3.

In the last section we describe examples illustrating our main theorems, in
particular we provide the examples not covered by [2].

Writing A < B (A > B) we mean that the quotient A/B is bounder from
above (resp. below) by a finite positive constant independent of an appropriate
variable under consideration.

2 Walters expanding conformal maps

We first define Walters expanding mappings and collect their selected properties
needed in the sequel. For a full account of Walters theory see [10].



So, let Xy be an open and dense subset of a compact metric space X endowed
with a metric p. We call a continuous map T : Xy — X Walters expanding
provided that the following conditions are satisfied:

(2a) The set T~!(z) is at most countable for each z € X.

(2b) There exists § > 0 such that for every z € X and every n > 0,
T-"™(B(z,2))) can be written uniquely as a disjoint union of open sets
{By(®)}yer-n(x) such that y € By(z) and T" : By(z) — B(z,2J) is a
homeomorphism from By(z) onto B(z,2). The corresponding inverse
map from B(z,20) to By(z), y € T7"(x), will be denoted by T,7".

(2c) There exists A > 1 and n > 1 such that for every x € X, every y € T~ "(z)
and all 21,22 € By(x)

d(T7(21), T" (22)) = Md(z1, )

(2d) Ve > 0,3 s >1 Ve € X T~ %(x) is e-dense in X.

Recall that a function g : Y — R, where (Y, p) is a metric space, is Holder
continuous if there exist § > 0 and L > 0 such that for all y;,y> € Y, |g(y1) —
g(y2)| < Lly1 — y2|°. The parameter 3 is called the Holder exponent of the
function ¢ and L is called its Holder constant. A function ¢ : Xg — R is
called dynamically Holder if there exists 8 > 0 and L > 0 such that for every
n > 1, every ¢ € X and every y € T~ "(z), the restriction ¢|T;n(3(w76)) is Holder
continuous with exponent # > 0 and constant L. For every n > 1 put

Suld() = 3 6o Ti(z).
=0

Using (2c), the standard argument in thermodynamic formalism shows that
there exists a constant C' > 0 such that

VaceX vy,zEB(z,J) anO Yu € T_n(x)
1Su0(T,, " () = Snd(T, "(2))] < Cd’(y, 2). (1)

The function ¢ : Xo — X is called summable if

supq Y exp(d(y)) p < oo.

*€X \ver-1(w)
As an immediate consequence of (1) we get the following.

Proposition 2.1. If T : Xg —» X is a Walters expanding map and ¢ : Xg — R
is a dynamically Holder function, then the following conditions are equivalent.

(a) The function ¢ : Xo — X is summable.



(b) There ezists a finite §-net W of X such that

max Z exp(d(y)) p < 0.

zeW
yeT - (z)

(¢) For every d-net W of X we have

sip 4 S ep(6(y) p < oo

zeW yeT—1(z)
(d) For every x € X we have

> exp(é(y)) < 0.

yeT 1 (z)
For every n > 1 and every € X let

Zoda)= 3 exp(Sudly)).

yeT—"(z)
We will need the following key fact.

Lemma 2.2. If T : Xo — X is a Walters expanding map and ¢ : Xg = R is a
dynamically Holder function, then

3le qup anl vm,yeX ElC’m,y>0Zn(¢)7 CE) S Cm,yZn-i-q (¢7 y)

Proof: Let p > 1 be the number provided by condition (2d) with e = § and fix
g > p. This condition implies then that there exists z € B(z,d) N T~ 9(y). By
(1) we then get

Zn(¢7 le) < eM eXp(_Sq¢(Z))Zn+q(¢v y)

and we are done. ®m

Given z € X we set

Po(¢) =limsup—log 3 exp(Su(d(x))-

n
n—o00 yeT—"(a)

As an immediate consequence of Lemma 2.2 and Proposition 2.1, we immedi-
ately get the following two remarkable statements.

Proposition 2.3. If T : Xg —» X is a Walters expanding map and ¢ : Xg — R
is a dynamically Holder function then for all z,y € X, P,(¢) = Py(¢). This
common value is called the topological pressure of ¢ with respect to T and will
be denoted by P(¢).



and

Proposition 2.4. If T : Xo — X is a Walters expanding map and ¢ : Xg = R
is a dynamically Holder function then P(¢) < oo if and only if ¢ is summable.

From the results of P.Walters in [10] one can extract the following:

Theorem 2.5. If T : Xg — X is a Walters expanding map and ¢ : Xg — X
is a dynamically Hélder summable function, then there exist my and pg, Borel
probability measures on X such that

(a) Vn>1, Vz € X, Yy € T~"(z) and for every Borel set A C T,”"(B(z,))

mo(T(4)) = [ P05 Om,

(b) we is T-invariant which means that py o T— = pg, ergodic and equiva-
lent with with my Radon-Nikodym derivative bounded away from zero and
infinity.

The reader may notice that the property (a) means that the measure p4 is
an egeinmeasure with eigenvalue e?’(#) of the corresponding Perron-Frobenius
operator. Many additional stochastic properties of the dynamical systems can
be found in [10].

A Walters expanding map F' : Xg — X is called conformal if X C C
and if for every x € X, every n > 1 and every y € F~"(z) the inverse map
F;™ : Bx(%,20) — Xo has a (unique) holomorphic extension to the ball
Bc(x,2d). This extension will be denoted by the same symbol F, ™. From
now and throghout this entire section we assume that F' is a Walters ex-
panding conformal map. Of special importance will be the following functions
gt : Xo = X,t > 0 given by the formula:

gi(z) = —tlog |F'(z)].

It immediately follows from Koebe’s distortion theorem that each function g; is
dynamically Holder with the Holder exponent 1/3. Following [6] we define 0
to be the infinum of all £ > 0 for which the function g; is summable. Due to
Proposition 2.4, 8p = inf{t > 0 : P(g;) < co}. The following proposition is a
straightforward standard consequence of the definition of pressure and property

(2¢).

Proposition 2.6. The function P : (6F,00) — R is convex, continuous, strictly
decreasing and lim;_, o, P(t) = —oo.

We define
hp =h =inf{t: P(t) < 0}.

Obviously hp > 6(F'). Following the terminology of [6] and [9] we call the map F
regular if P(h) = 0, strongly regular if there exists ¢ > 0 such that 0 < P(t) < oo



and hereditarily regular if P(fr) = oo. In view of Proposition 2.6 each strongly
regular map is regular and each hereditarily regular map is strongly regular.
If F' is regular, then m = my, is called the h-conformal measure for F'. Its
F-invariant version will be denoted by u. Let

Xoo = ) F(Xo).
n>0

Denote by HD(Y") the Hausdorff dimension of a metric space Y. The first and
most important fact concerning geometry of Walters expanding conformal maps
is provided by the following.

Theorem 2.7. If F' : Xo — X is a Walters expanding conformal map, then
HD(X ) < h. If in addition, F' is strongly regular, then HD(X) = h and, in
particular, HD(X ) > 6.

Proof: Fix t > h. Then, by Proposition 2.6, P(t) < 0. Let W C X be a finite
d-net of X (i.e. U e B(w,6) = X). Since W is finite, there exists & > 1 such
that for every n > k and every x € W,

> <o (F20) ®

yeF—(x)

Since in addition for every n > 1, J,cw UyEF*"(m) F~"(B(z,0)) D Xo,
since diam(F, ™ (B(x,6)) < K6|(F")'(y)|~" where K is the Koebe distortion
constant associated with the scale  and since 1 P(t) < 0, we conclude from (2)
that H!(X) = 0. Consequently HD(X,,) < ¢t. Hence HD(X) < h and the
first part of our theorem is proved.

In order to cope with the other, harder part of this theorem we shall first

prove the following.
Claim: If F' is strongly regular, then 0 < [log|F"|dp < co.

Proof of the claim. The inequality [log|F'|du > 0 follows immediately from
(2¢), Koebe Distortion Theorem and invariance of p. We shall show the finite-
ness of the integral of log | F'|. Since F is strongly regular, there exists ¢t > 0 such
that 0 < P(t) < co. By Proposition 2.6, h >t > 6. In view of Proposition 2.4
and Proposition 2.1 there exists a constant M > 0 such that for every z € X

Yo IE )T <M (3)

yeF—1(z)

Let now W C X be a finite d-net of X. Since for every T' > 0 the set |J, .y {y €
F~'(z) : |F'(y)| < T} is finite, we conclude that the set |J, .y {y € F~'(x) :
log |F'(y)| > |F'(y)|*~t} is finite. Therefore, using Theorem 2.5(a) and (b)



along with equality P(h) = 0, bounded distortion property and (3), we get that
[ 1og1#1du <

<> >/ log | F'|dy

€W yeF—1(x) FyH(B(2,0))

< consty + Z Z / |F' )" ~tdp
Fy ' (B(x,8))

zEW yeF—1(z)

< consty + consty Z Z |F'(y)|" " u(F, ™ (B(x,0)))

z€W yeF—1(z)

< consty + constsy Z Z |F ()"~ |F ()| "

zEW yeF—1(z)
< consty + consty Z Z |F' ()| "
z€W yeF—1(x)
< consty + consta M < oo.
The proof of the claim is finished.
Fix now € > 0 . Since u(Xs) = 1, and since (see Theorem 2.5(b)) p is F-
invariant and ergodic, it follows from Birkhoff’s ergodic theorem and Jegorov’s

theorem that there exist a Borel set Y C X, and the integer £ > 1 such that
w(Y) > % and for every x € Y and every n > k

" og | (F"Y' ()] - x| < ()

where x = [log|F'|du. Put v = py. Given z € Y and 0 < 7 < d let n > 0 be
the largest integer such that

B(z,r) C F, "(B(F"(x),0)). ()

Then B(z,r) is not contained in F, (vt (B(F"*'(z),5)) and applying Koebe’s
distortion theorem we get

r> K7|(F ()7 (6)

Taking r > 0 sufficiently small, we may assume that n > k. Combining now
(5), Theorem 2.5(a), (b) along with P(h) = 0, Koebe Distortion Theorem and
(6), we obtain

. " . Fn+1 e h
(B(a.r) < u(F, " (BF(@).00) = |(F Y @) =

Employing now (4), we thus get

w(B(z,r)) < rhtextantle=(x=an ~ phe2en 7)



But we deduce from (4) and (6) that r = e~ (x*+9(+1) and therefore e >
r~xic. This and (7) imply that v(B(z,r)) < u(B(z,r)) =< r"~%%c. Conse-
quently HD(X,,) > HD(v) > h — X%; and letting ¢ — 0 we finally obtain
HD(X ) > h. We are done.; m

Our next goal is to provide a formula for the upper ball-counting dimension
(occasionally also called box-counting or Minkowski dimension). We denote by
N,.(A) the minimal number of balls with centers at the set A and of radii r > 0
needed to cover A. The upper ball-counting dimension of A is defined to be

BD(A) = limsup M.
r—0 - lOg r

We will need the following three auxiliary lemmas first.

Lemma 2.8. If F is a reqular Walters expanding conformal map, then

BD(X) = max{HD(X), sg;l) sgg{BD(F*”(w))}}

Proof: Since inequality ”>” is obvious we only need to show the opposite one.
Fix W, a finite d-net of X. Fix t > M, the right-hand side of the formula
appearing in Lemma 2.8. By Theorem 2.7, P(t) < 0. Therefore, there exists
u > 1 such that if ¢ > u, and x € W, then

Za)= Y Y W) < SEE) ®)
yeFr—i(z)
In view of (2¢) we may in addition assume that |(F?)'(z)| > 4K for all ¢ > u
and all z € ﬂ;’.;é F~I(X). Fix ¢ > u. Since t > BD(F~4(x)), there exists A > 0
such that N, (F~%(z)) < Ar~t for all z € W and all 0 < r < 26. Choose now
B > 2 x 4t A#W such that if 1 <r < 2§, then N,.(X) < Br~t.
We shall show by induction that for each n > 1, if 1/n < r < 24, then

N,.(X) < Br~t. By the definition of B this inequality holds for n = 1. Suppose
that it holds for some n > 1 and fix n+_1 <r<1/n. Let

Crs1 = {y € FI(W) : diam (F, “(B(F*(y),9))) < 2(n71+1)} '

Since

XoC |J FUB(FU(y),0)) U U F4(B(F(y),0))
y€Cn+1 YEF~9(W)\Crt1

and since X, = X, we get

<N U FBFEY),) | + N_1 (F,(B(F"(y),9))) .

n+l
yECh 41 YyEF~1(W)\Cny1

10



Now, for every y € F~9(W) \ Cy4+1 we have
N#l (FJQ(B(FQ(?J):‘S))) < N‘(Iff)ﬂfly))‘ (XN B(F(y),d)) < Nyray ) (X).

TR t1)
(10)
Since |(F)'(y)| > 4K and j < 550y, we get
1_EY W)
n = 2K(n+1)"
Since 1
3 —q q < ay/ -1
Sy < i (BP0, 6)) < 265 ()]
we obtain Py
EYGL s
2K (n + 1)
So, by inductive hypothesis and (10), we get
- (P (y)
1 q ? < —_ .
N, EE W) < B (g0 1)

Next, we claim that

N#l( U Fy_q(B(Fq(y)ﬁ))) SN_ _(F7I(W)). (12)

3n+1)
YyECnH 41

. ) 1 . . .-
To see this let {B (zJ, —2("+1))}jev be a collection of balls with radii
covering F~7(W). Take y € Cy 41 and £ € F, 9(B(F(y),d)). Then
<1
~2n+1)

1
2(n+1)

¢ —y| < diam (F, /(B(F"(y),0)))

Since in addition |y — z;| < m for some j € V, we conclude that the
balls {B (Zj, n+r1) }jeV cover the set J,cc. ., Fy “(B(F(y),9)). Our claim is
therefore proven.

Combining now (9), (12) and (11) we obtain

w02 E w8 o(HE)

yECn 41 YyEF=4(W)\Chn 41

Since, r < 1/n, we have n +1 < 2/r, and using (8) along with the definitions of
A and B, we may continue the above inequality as follows

No(X) S#WAQRn+1))" + BRE) (n+1)" Y Y [(F) 'y~

weW yeF~1(w)
< 4t (A#W +BK" )" Zq(t,w)> Pt

weWw
< 4" (A#W +27'B47Y) < Brt.

11



The inductive proof is thus finished and therefore BD(X) < ¢. We complete the
proof of our lemma by letting ¢t \, M. =

Lemma 2.9. If F is a regular Walters expanding conformal map, then for
adl w e X, all x,y € B(w,d) and for all n > 0, we have BD(F~"(x)) =
BD(F™"(y)).

Proof: Fixn > 0. In view of the expanding property (2c) and Koebe’s distortion
theorem, a straightforward geometrical argument shows that
Au>1Vr>0VexVoex

#{§ € F7"(2) : B(v,r) N F; "(B(2,0))) # 0
and
diam(F;"(B(2,0))) > r/2} < M. (13)

In order to prove the lemma it suffices to demonstrate that BD(F~"(z)) <
BD(F~"(y)). So, take 0 < r < ¢ and put

I, ={{ € F"(w) : diam(F; "(B(w,d)) <r/2}.

Then Nr({Fg”(y) 1 & e I}) < Nr/2({Fg”(:n) : £ € I,}). Obviously
N, ({F{”(z) £ € F(w) \ I}) < #(F~"(w) \ I,,) for all z € B(w,r). On the
other hand, by (13), for the same z we have NT({Fg”(z) £ € FM(w)\L}) >
#(F~"(w) \ I,)/M. Hence
N (F () < Nopo((Fe (@) - € € LY) + N ({Fo"(0) : € € F"(w) \ I,})
< Npjo(F7 (@) + MN, ({F " (2) : € € F7"(w) \ I1})
< (14 M)N, )2 (F"(x)).

Therefore

log N.(F—™ log N.(F—™
BD(F~"(y)) = limsup log Ny (F7"(y)) < lim sup log Ny (F~"(z)) = BD(F " (x)).
r—0 —logr r—=0 —logr

The proof is complete. m

Proposition 2.10. If F is a reqular Walters expanding conformal map, and
W is a finite §-net of X, then BD(F~Y(W)) > 6p for all z € X.

Proof: Fix first an arbitrary z € W. Fix then ¢t > BD(F~}(W)) > BD(F!(z))
and u > 0 so small that ¢ — u > BD(F~!(z)). For every ¢ > 0 consider the set

Ie)={ye F'(z): Ked ' <|F'(y)| ' <2e5'}.

Since by Koebe’s distortion theorem the balls {B(y,e) : y € I(e)} are mu-
tually disjoint, N.(F~!(z)) > #I(e). Since also for all ¢ > 0 small enough,

12



N (F~'(z)) < e =% the following estimate hold for all k¢ large enough

YooY It < Y @R 2RI

k>ko yeI(2-%) k>ko
< (2K5T) Y 27N, (B (@)
k>ko
S (2K671)t Z 27kt2kt27ku
k>ko
1
_ —1y\t —ku —1yt
= (K5 )Y 27 < (2K57Y) e
k>ko

In view of Proposition 2.1 the function g; is thus summable and we are done. m

Lemma 2.11. If F is a reqular Walters expanding conformal map and if W is
a finite d-net of X, then for all n > 0,

BD(F " () < BD(F~'()) = max {BD(F " (w))}.
we
Proof: Fix t > BD(F~*(W)). We shall show by induction that for every n > 1
there exists 0 < 4,, < oo such that
N.(F"(W)) < Aprt (14)

for all 0 < r < 20. And indeed, the existence of A; is immediate since ¢t >
BD(F~1(W)). So, fix n > 1 and suppose that A, satisfying (14) exists. In
order to demonstrate the existence of A,,11 put

I={ye F™(W):diam(F, " (B(F"(y),9))) <r/2}.

Then

N, (U Fy”(Fl(W))) = Ny (U M (B(F™(y),0) ﬁFl(W)))

yel yel

yel

<N, (U Fy"<B<F”<y>,6>>)

< Nppo(I) < Nppp(F-(W)) < 20 A
If y € F=*(W) \ I, then
N (" (71 (W) < Nigsigomy e (F (W) < A (K EY )) 7'~

where the second inequality holds since

E7E™ (y)lr < KH(F™) (y)|2diam (F, " (B(F™(y),9)))
<S2KTH(F™) (y) | KS|(F™)' ()|~ = 24
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Now, by Proposition 2.10, ¢ > 6p which implies that the series
EyeF,n(W) [(F™)'(y)|~t converges. Therefore the following estimates complete
our inductive proof.

NAF~D W) < 204, + (A0 ST [(FY ()]
yeF—m(W\I

< (2An+ (MK YT FEY W) )

yeF—(W)\I
]

Combining Lemma 2.8, Lemma 2.11 and Lemma 2.9, we immediately obtain
the following.

Theorem 2.12. If F' is a reqular Walters expanding conformal map and if W
is a finite §-net of X, then

BD(X) = max{HD(X,,),BD(F*(W))}
= max{HD(X..), max{BD(F~(w)) : w € W}}.
Our next geometrical results concern Hausdorff and packing measures. We start
with the following.

Theorem 2.13. If F is a reqular Walters expanding conformal map, then
H'(X o) < 0 and P"(Xoo) > 0. In addition H* < m and % < 00.

Proof: Let W C X be a finite d-net of X. Let A C X, be a closed subset in
the topology relative to X,. For every n > 1 put

In={y € F7"(W) : F, " (B(F™(y),6)) N A # 0}.

Then the family {F,"(B(F"(y),0))}yer, covers A and its multiplicity is
bounded above by W, the cardinality of W. In addition by the expanding
property, for every € > 0 there exists n > 1 such that

U M (B(FE™(y),0)) € B(A,e).

yEln

Since this union is open and A is closed, this implies that

lim m( | ] F,™(B(F"(y),0))) = m(A) (15)

n—oo
yEln

Now,

> diam"(F, "(B(x,0))) = > |(F™)(y)] "(20)= Y |(F™)'

yEln yEln yel,

= Y m(F,"(B(x,9))
<tWm | Y m(F,"(B(z,9))
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Thus using (15) , we conclude that H"(A4) < m(A). Since X, is a separable
metric space, and m is regular, this inequality extends to all Borel subsets of X .

This implies that H"(X+) < m and % < 00 and consequently H*(X ) < oo.
Fix now z € X,. Then for every n > 1

F7"(B(F"(x),6)) > Bz, K~H(F")' (x)|7"4)
and therefore
m(B(z, K H(F™) ()| ~")8) < K"|(F™)'(x)|"m(B(F"(z),9)))
< KK H(F (@) "
Thus P"(X4) > 0. The proof is complete. m

We shall now provide a sufficient condition for the h-dimensional Hausdorff
measure to be positive and for the packing measure to be finite.

Theorem 2.14. Suppose that F is a reqular Walters expanding conformal map.
Assume that there exist v > 1 and 0 < € < § such that for every x € X, and
for every r satisfying the condition ydiam(F_(B(F(x),6))) < r < &, we have
m(B(z,r)) > Lr". Then P"(X..) < oo.

Proof: Fix z € Xp and r satisfying ydiam(F_ *(B(F(x),d))) < r < & Let
n > 0 be the maximal integer such that B(z,r) C F,"(B(F"™(z),d)). Then
F{(HH)(B(F"(JJ),&)) does not contain the ball B(z,r) and consequently r >
SK=Y(FH1) (z)|~t. Hence

B(z,r) D B(z, 6K H|(F") ()| ) > F, ")(B(F™™ (), 6K %))
and thus m(B(z,r)) > M (6K ~2)|(F") (z)| " K~", where
M(B) = inf{m(B(z,8)) : z€ X} >0

since supp(p) = X. If |[(F*1) (z)] < r~1yK?2§, then

m(B(z,r)) > K 3" MK =)y~ hg=hrh, (16)
So, suppose that

(") (2)] > ™1y K?S (17)

By the Koebe distortion theorem

F7(B(F"(z), K~Y(F™) (2)|r) € Bz, ).
Now, in view of (17)

EH(F™) (@)|r = K=H@E™) (@) |r[F/(F"(2))] 7 > yK8|F'(F" (2))| !

> ydiam(Fy o (B(F(F" (x)), 9))-

15



Therefore, by our assumption and conformality of m

m(B(z,r)) > K~"|(F")'(2)|""m(B(F" (), K |(F")'(z)|r))
> KM(F™) (@) (ETHE (@)ln)" = K200

Combining this and (16) completes the proof. m

Theorem 2.15. Suppose F' is a reqular Walters expanding conformal map. As-
sume there exist v > 1 and L > 0 such that for every x € Xo and for every r sat-
isfying the condition r > ydiam(F7'(B(F(x),4))), we have m(B(z),r)) < Lr*.
Then H"(X5) > 0.

Proof: Fix x € Xo and § > r > ~ydiam(F7!(B(F(x),d))). Let n > 0 be the
maximal integer such that

B(z, K?r) C F;"(B(F"™(z),6)) (18)

Then B(x,K?r) is not contained in the set F{(nﬂ)(B(F""‘l(a:),&)), and
s Fy "T™(B(F(2),5)) D B(z, K~'8|(F™')(z)|~!), we conclude that
K?r > K=%|(F™+Y) (2)]~'. Hence yK'r|(F")'(z)] > yKO|F'(F™(2))|™! >
fydiam(F;nl(x) (B(F(F"(x),6)) and therefore, by our assumptions

m(B(F" (), K*r|(F")'(z)])) < LE*"r"|(F")' ()[* (19)

By (18) K?%r < K4|(F™)'(z)|™! or equivalently Kr|(F")'(z)] < 6. Hence
B(z,r) C F,™(B(F"(x), Kr|(F™)'(z)|) and using (19) we get that
m(B(z,r)) < K"(F")'(z)

< K"(F")'(2)

“tm(B(F" (), Kr|(F") (2)]))
“'m(B(F"(x), K'r|(F")'(z)]) < LE°"r".

The proof is complete. m

Theorem 2.16. Suppose F is a regular Walters expanding conformal map. Let
h =HD(X) and let m be the corresponding conformal measure. If there exist
a sequence of points z; € X,j > 1, and a sequence of positive reals {r;}2 such
that r; < 4/2 and

m(B(zj,7;))
;

lim; o0 = 00,

then H"(X) = 0.

Proof: Let X; be the set of transitive points of F. Since u, the F-invariant
version of m is ergodic and positive on non-empty sets of X, it follows from
Birkhoff’s ergodic theorem that m(X;) = 1. Fix € X; and then € > 0. By our
assumptions there exists j > 1 such that m(B(Zj,Tj))T;h > e~ 1. Since z € Xy,
there exists n > 0 such that F"(z) € B(z;,r;). It implies that

x € F"(B(zj,75)) C B(E;"(25), KI(F;™) (25)rj)-

16



Hence |z — F, "(2;)| < K|(F, ™)' (zj)|r; and therefore
B(z,2K|(F, ") (2j)Irj) D B(F, ™(2;),r; K|(F, ™)' (2;)]) D F, "(B(z,75))-
Hence

m(B(z,2r; K|(F; ™)' (z)]) 2 m(F;"(B(z, 7“])))

Letting € N\, 0, we conclude that

— B
T, ME@) _
r
and consequently #"(X;) = 0. Since m(X\X;) = 0 it follows from Theorem 2.13
that H"(X \ X¢) = 0. We are done. m

Theorem 2.17. Suppose F is a regular Walters expanding conformal map. Let
h =HD(Xo) and let m be the corresponding conformal measure. If there exists
sequence of points z; € X,j > 1 and a sequence of positive reals {r;}> such
that B

lim, .. m( (Zhj,rj))

Tj

=0,

then P"(X o) = .

Proof: Let, similarly as in Theorem 2.16, X; be the set of transitive points of
F. Fix ¢ € X; and then € > 0. By the assumptions there exists j > 1 such that
m(B(zj,15)) < er?. Since z is a transitive point, there exists n > 1 such that
F"(z) € B(zj,7;/2). Therefore

m(B(z, K~H(F") (2)|"r;/2)) < m(F;"(B(F"(x),7;/2)))
< K"|(F™) (@)| "m(B(F"(x),7;/2)) < K"|(F")'(x)| "m(B(z,7))
< K"(F™)' ()| ~her) = (2K2) e(1/2K7H(F™)' (2) " ry)".
Thus letting € — 0 we see that
li—mr—>0
Since m(X;) = 1 this implies that P*(X,) > P*(X;) = cc. m
If v is a Borel measure on a metric space Y, then v is said to be locally finite at

a point y € Y if there exists an open set U C Y such that y € U and v(U) < oc.
As a supplement to the last theorem we shall prove the following.
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Proposition 2.18. If F is a Walters expanding conformal map and P"(X ) <
oo, then P"|x_. is locally finite at every point of X.

Proof: Suppose that P"|x_ is locally finite at some point y € X,,. It means
that there exists € > 0 such that P"(B(y,2¢)) < oo. Fix an arbitrary point
z € Xoo. In view of (2¢) and (2d) there exists an integer n > 1 such that
B(y,e)NF~"(z) # 0 and if z is in this intersection, then diam (F"(B(z,4))) <
e. Employing conformality of the packing measure P"* and Koebe’s distortion
theorem, we get the following.

PM(B(z,0)) < K"|(F") (2)|"P"(F-"(B(x,9)))

z

< KM(F™) (2)[*P"(B(y, 2€)) < oo.

Thus, covering X, by finitely many balls with radii d, we conclude that
P"(Xo) < 0o. The proof is finished. m

Remark. We would like to mention that if f : C — C is a meromorphic
mapping for which

J(f)yn | f(Crita(f) L Asymp(f)) = 0,
n=0

where J(f) is the Julia set of f, then it is not difficult to prove (see the proof
of Theorem 4.7 for more details than we need here) that if M : C — C is a
MGobius transformation such that M (oo) ¢ J(f), then the Julia set of the map
f:M1tofoM:C\M () — Cis a compact subset of C and f restricted
to its Julia set is a conformal Walters expanding map. In particular all the
theorems proven in this section apply to f .

3 Jump-like conformal maps
Let (X, d) be a compact metric space. For every A, B C X we define
dist(A4, B) :=inf{d(a,b) : a € A, b € B}

Dist(A, B) := sup{d(a,b) : a € A, b € B}

We call a Walters expanding conformal map F : Xo — X jump-like if the
following requirements are met. There exists C' > 1,p > 1,4 > 2,b; € X and
gj > 1 for every j = 1,...,p such that the following conditions are satisfied:

(3a) {b1,... by} NF~1(X) =0

(3b) For every z € X, the set F~!(z) can be uniquely represented as {z;q,» :
nEZ,lS]Sp,lgagq]}

(3c) max;<j<p MaXi<a<q; SUP, e x {1imy o0 Dist(b;, F;j_la,n (B(z,0)))}=0

18



(3d) Vaex, Vi<j<ps Vi<a<a; Ynez, |n|>A

q;+1 q;+1

C7ln| % <|F'(2jan)] < Cln| %
(3e) Vyzex, Vicj<p Yape(t,....q;1 Venez, |ki=|nl[>A, [n|>A, [k>A
1

dist(Fy;, (B(y,0)), F5} (B(,0))) > C7 |67 = ||

Zj,b,n

(3f) Vy-exs Vicji<p, Vae{t,...q;} Vhnez, kn>0, [[kl—|nl|>A, |n|>A, |k|>A

Dist(Fy,",, (B(y,9)), F5,! (B(2,8) < C|Ik|™% — |n|”%|.

Yj,a,k Zj,a,n
J 7

As an immediate consequence of (3d), with a bigger constant C' perhaps, we get
the following Veex, Vi<j<p, Vi<a<q;r Ynez, nj>4
a;+1 qj+1

Cnl” % < diam(F, ) (B(x,6)) < Cln|” % . (20)

Letting k — o0, it immediately follows from (3c), (3e) and (3f) that
Vlgjgp; VzEX: Vlgagqja V|n‘22A

Ol < dist(by, Fi'. (B(x,6))| < Dist(b;, FL _(B(x,6))| < Cln|™ % (21)

Our first result concerning geometry of jump-like conformal maps is the follow-
ing.

Proposition 3.1. Suppose that F : Xqg — X is a jump-like conformal map
and let ¢ = max{q; : 1 < j < p}. Then the map F is hereditarily regular and

— _4q
Proof: Fix ¢ € X, > 0 and consider the series
Sz) =Y |F'(y)|™"
yEF ()
In order to complete the proof of this proposition it suffices to show that

Sq% (z) = oo and that for all ¢ > q-% there exists M; > 0 such that for all

x € X we have Si(z) < M. And indeed, putting
A-1 p 4
Sita)y= Y DY WEL ) @)
n=—A+1 j=1 a=1
in view of (3d) we get

St(flf) = ZZZ |(F$_j,1a,n)l(x)|t = El(t,ﬂ?) + Z ZZ |n|—%t

nez j=1 a=1 [n|>A j=1 a=1

p 9
=Si(ta)+ Y Y alnl 5T

In|>A j=1

(22)
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Since for every t > 0, sup{X;(¢,7) : € X} < oo and since the series ) -, n~
converges if and only if s > 1, our proof is completed by applying (22) m

Since it is easy to see that if F' is a jump-like conformal map, then for every

r € X, BD(F}(X)) = —7» where ¢ = max{g; : 1 < j < p}, as an immediate

consequence of Proposition 3.1 and Theorem 2.12 we get the following.
Theorem 3.2. If F': Xg — X is a jump-like conformal map, then
BD(X) =HD(X).

The main result of this section is the following.
Theorem 3.3. Suppose that F : Xg — X is a jump-like conformal map. Then

(a) If h < 1, then 0 < P"(Xs) < 00 and H*(X ) = 0.

(b) If h =1, then 0 < P"(X), H'"(X o) < 00.

(¢) If h > 1, then 0 < H"(X ) < 0o and P"(X ) = oo.

The proof of this theorem will be contained in the following four lemmas.

Lemma 3.4. Suppose that F : Xo — X is a jump-like conformal map. If
h =HD(X,) < 1, then H"(X) = 0.

Proof: Let1 <i<p l1<a<gandze X. Fix0<r< (%)% Then
F.' (B(x,9)) C B(b;,r)) iff Dist(b;, F,.;", (B(z,0))) < r. By (21) this is true
if C’|n|7‘%i < r. Thus

rhm(Boim) >rh S m(FL (B, )
In|>(Cr=1)

Since we provide estimates from below it is enough for us to consider only
positive values of n. We continue

rT'm(B(bi,r)) > Y rTPETM(ES ) (@0)"'m(B(x,0))
In|>(Cr—1)4

a;+1 a;+1
_ _4itp _ _ 1-LT ) g
=ty TS Sl (o (e
n>(Cr—1)%

= pti(h=1) _y

Thus the assumption of Theorem 2.16 are satisfied putting z; = b; for all 7 > 1.
Consequently H*(X,) =0. =

Lemma 3.5. Suppose that F : Xo — X is a jump-like conformal map. If
h =HD(X,) <1 then P"(Xy) < co.
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Proof: FixneZ, 1<i<p,1<a<gq.Forze Xlety = Fx’lan(a:) Since we
want to apply Theorem 2.14 we may disregard finitely many branches of F~! and

in particular, we may assume that |n| > 2A4. Take r > diamF, ' (B(z,6)) <
aitl _gitl
n % x(n—A) % . Since the considerations in the case n < 0 are analogous

to those with n > 0 with obvious modification, we assume throughout this proof
1 1

that n > 0. Take A < k <n — A and such that C(k™ % —n"~ %) < r. Then, by

(3f) B(y,r) D F,;' , (B(z,0)). Hence

n—A
m(B(y,r)) > > m(F,"  (B(z,9))
k:E((C—1r+n’q%‘)fqi)+1
n—A
> KEMES  (0)|"m(B(x,4))
k:E((c—1r+n‘%)ﬂu)+1
n—A

g;i+1
Yo

1
R=E((C~tr4n” 9)=9)41

1Y

1Y

1 _gitl,

(C—lr+(n_A)_qi)—Qi(l_Qiq-:lh) —(n—A)l - )

1Y

< ((Oflr +(n— A)*q%)(qﬂrl)hfqi —((n - A)*q%)(qiﬂ)hfqi)

By the Mean Value Theorem there exists (n — A)fq% <n<Clr+(n-— A)’q%-
such that

((Cflr +(n— A)*q%)(qﬂrl)hfqi —((n— A)*éh)(l]i#’l)hfqi) -

< O7'r((gi + 1)h — g)p( @m0t
Since by our assumptions r > diam(F,;! (B(z,d))) and by (20)

Li,a,n

_gi+1 _gq;+1

diam(FaU:}a‘n (B(z,0)) <xn 4 x(n—A4) % |

we can estimate m(B(y,r)) as follows

(g + )h — g)C~ (@t D=1

(i + Dh —g)r(C™'r + (n — A)_q%)(qiﬂ)(h—l)
> r(CLr + Oy rart )@+ D(h=1)

L (h—1)(g;+1 —
< prartBD@GHD bl b

m(B(y,r)) =

=

Thus, by Theorem 2.14, P*(X,.) < co. m

Lemma 3.6. Suppose that F : Xo — X is a jump-like conformal map. If
h =HD(X,) > 1, then P"(X,) = co.
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Proof: Fix1<i<pandr >0. Let W be a §-net of X. Then

B(b;,1)) Z Z Zm i (B(x,0))),

zeW 1<a<g; n

where the summation is taken over all triples (i, a,n) such that F, ! (B(z,d))N

Ti,a,n

B(b;,r) # 0. If r > 0 is taken sufficiently small, then it follows from (3c¢) that
1
|n| > A. Then by (21) we have C~t|n| @ < dist(b;, F,.t (B(wx,r))) <r. Thus

Tia,n

B(bi,r)) ZZ Y IEL) @)"m(B(z,d))

z€W a=1 |n|>(Cr)~ %
qi
a;+1
— 2 h
<> > W
zeW a=1 |n|>(Cr)—

< #Wq;(Cr)

—q;+(gi+1)h

Thus
m(B:Zi,T)) < i@t Dhy—h _ pai(h=1)

This implies that

m(B(bi,r))

=0.
rh

limr~>0

So by Theorem 2.17, P*(X,,) = co. m

Lemma 3.7. Suppose that F : Xog — X is a jump-like conformal map. If
h =HD(X,) > 1, then H"(X,) > 0.

Proof: FixneZ, 1<i<p, 1<u<g;. Since the considerations in the case
n < 0 are analogous to those with n > 0 with obvious modification, we assume
throughout this proof that n > 0. For x € X let y = F,* (). Since we want
to apply Theorem 2.15 we may disregard finitely many branches of F~! and
in particular, we may assume that n > 2A. Take r > 2diame_l_‘1u‘n (B(z,9)) <
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gi+1 ql+1

n~ = (n— A)”

. We have

qi n+A
Yo=Y > mE,, (Bw,d)
weEW a=1k=n—A
q: —n+A
+3 Y Y mE,, (Bwd)
weW a=1k=—n—A
qi n+A
<33 > IESL ) ) m(B(w, )
weW a=1k=n—A
qi —n+A

+ Z Z Z wzak )|hm(B(w)6))

weW a=1k=—n—A

¢ nt+A qi —n+A
=DID I IR DI DD DI
weW a=1k=n—A weW a=1k=—n—A
< EWgiA(n — A)~ 5"

2;+1

n i h _qi+1h
= noa
n—A

< (2% diam(F, | (B(,0)" < 7"

and

qi
>, = Z 2 > m(F,., , (B(w,9)))
WO ki 35 (k] 3 <Oy (K> A I [k]|> A
Let
() l=E(ns —Cr) %)+ 1if Cr<n %
(ii) I = oo otherwise
In the case (i) we have

14

Y AYY Y mEL, Bwe)+mEL L (Bw)

weW a=1 =1
k=E((n % +Cr)~%)+1

l

qi
=Y > > ((FL D) @) + [(FL, ) w)]")
YW O BT 4o ai)

! ql+1h

< 211qu Z k™ T
k:E((n;_il +Cr)=ai ) +1

((CT+n a)~aH@HDh (g _C'r)*lIi+(lIi+1)h)
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By the Mean Value Theorem there exists n € (nfqi —-Cr, n + C'r) such that
((Cr e R e IR N (i C’r)—Qi+(Qi+1)h)
= G @HDA=L (@) (1) < (T3 4 o) (@D (D)
But the relation nfq%' = diamﬁ < r‘h‘ilﬂ then nfq%' < rﬁ implies that
22 < r(rﬁ)(qlJrl)(h*l) =prh=l =k,

In the case (ii) | = co we get
(o) _‘Ii_‘!'lh
>, 3 2Wa Z T
k=E((n'% +Cr)=%)+1

-1 . _ s +1
< (Cr+nw) %0 )

< pleith—a _ Lhipgi(h=1) < rh.

Now we mnotice that if F,! (B(w,d) n B(y,r) # 0, then
dist(F,;'! (B(z,0)),F;' ,(B(w,d))) < r. Therefore using (3e) we con-
clude that for r > 0 small enough the sets Fu?fa,k (B(w,9)) involved in >, and
> cover B(y,r). Hence m(B(y,r)) < >, +>.,. By Theorem 2.15 this gives

that H"(Xw) > 0. =

Theorem 3.3 follows now from Lemma 3.4, Lemma 3.5, Lemma 3.6 and
Lemma 3.7.

4 Geometry of f

The goal of this section is to introduce the map f derived from f and to prove
that the restriction of this map to its Julia set J(f) is a jump-like conformal
map.

We recall that f(z) = H(exp(Q(z))) while f(z) = exp(Q o H(z)) where
H,(Q are non-constant rational functions. We additionally assume that there
is at least one pole d of @ diffrent than H(0) and H(oco). Let Ess(R) denote
the set of essential singularities of a meromorphic function R. Then Ess(f)
is the set of poles of Q and Ess(f) is the set of poles of Q o H. We have
H~'(Ess(f)) = Ess(f). The following lemma follows from a straightforward
calculation.

Lemma 4.1. The maps H and exp(Q) are semiconjugacies of f and fie.

foH()=Hof(z) =z¢ Ess(f)
exp(Q)o f = foexp(Q) = ¢ Ess(f)
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Proof: Since fo H(z) = H(exp(Q(H(z))) and H o f = H(exp(Q(H(2))), we
get the first equality appearing in our lemma. Analogously,

exp(Q) o f(2) = exp(Q(H (exp(Q(2)))) = [ 0 exp(Q(2))-

]
As an immediate consequence of Lemma 4.1 we get the following.

Corollary 4.2. For evry n > 1 we have f i.e.
froH(z)=Hof™z) =g Bss(f") (23)

exp(Q) o f" = floexp(Q)  z ¢ Ess(f") (24)
We recall from the Section 1 that
Esseo(f) = U Ess(f") and Esseo(f) = U Ess(f™).

n>1 n>1
Let us prove the following.

Proposition 4.3. We have

H ™ (Essco(f)) = Essoo(f)and Esseo(f) D (expoQ) ™' (Esseo (f))-

Proof: The equality H™'(Esss(f)) = Esseo(f) follows immediately from
Corollary 4.2 and the remark that H is defined everywhere in C. In order
to prove the inclusion (exp oQ) ™' (Esso(f)) C Essso(f) consider an arbitrary
point z € (expoQ) 1 (Esse(f)). This means that expoQ(z) € Essoo(f). It
now follows from Corollary 4.2 that either z € Esso(f) or z ¢ Esseo(f) and
f™(z) is a pole of @ for some n > 1. In the former case we are done immediately
and in the latter one we conclude from the definition of f that z is an essential
singularity of H o (expo@) o f* = f"+!'. This means that z € Ess(f"*!') C
Essoo(f) which is a contradiction and we are done. ®

Theorem 4.4. Suppose f satisfies the assumption (*). Then there exists
0 < kK < 0o such that ~
I Clzre® <ol <en)

Proof: By Proposition 4.3 Esse(f) C exp(Q(Esss(f))). First we show that
there exists a constant 0 < k < co such that for every z € J(f)

RQ(2)| < a (25)

Suppose there exists a sequence y, € J(f),n € N such that |RQ(y,)| = oo.
Since f is not defined in a finite set of points, we may assume that f is defined
at yn. Then f(y,) € J(f) and f(yn) = H(exp(Q(yn))) tends either to H(oo)
or to H(0) depending on whether RQ(yn,) — +oo or RQ(yn,) — —oo. It
implies that at least one of the asymptotic values of f (i.e. either H(0) or
H(00)) belongs to J(f), what contradicts our assumptions. Let z € Essq(f).
By Proposition 4.3 there exists w € FEsss(f) such that z = exp(Q(w)). It
follows from (25) that z = exp(Q(w)) satisfies e " < |exp(Q(z))| < e®. But

J(f) = Esseo(f), so we obtain that J(f) C{z:e7" < |z| <e"}. m
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Proposition 4.5. H(J(f)) = J(f)

Proof: Tt follows from the proof of Theorem 4.4 Essoo(f) C {z : e @ <
|z| < e%}. Since Essoo(f) is a compact subset of C and H is continuous

H(Essx(f)) = Essco(f). But J(f) = Esse(f) and J(f) = Essoo(f) we
obtain that H(J(f)) = J(f). m

Theorem 4.6. Suppose f satisfies the assumption (*). Then

() J(Fyn U Fr (Crita(f) 0 Asymp(F)) =0

n=0

Proof: Let a be an asymptotic value of f and suppose that there are a sequence
ng — oo and = € J(f) such that f*(a) — z. Then H(f™(a)) — H(z).
Since for every n > 1, f?(H/(«)) is defined, then by Corollary 4.2 f*(H(«)) =
H(f"(a)). Thus H(f™(a)) = f™(H(a)) — H(z) € J(f). But H() is an
asymptotic value of f. This implies that f™ (H(a)) — J(f) and contradicts
the condition (1) of assumption (¥*).

Let ¢ € Critg(f). Then either ¢ is a multiple pole or a critical point of f.
Since f has no poles and (exp)’(z) never vanishes, we conclude that ¢ must be
a general critical point of () o H. This leads to the following cases:

(i) H'(c) =0
(i) Q'(H(c)) =0
(iii) ¢ is a multiple pole of H and Q(o0) # oo

In the case (i) we can assume that ¢ # 0, 00 since 0,00 € Asymp(f). Thus
there exists u such that ¢ = exp(Q(u)) and f(u) = H(exp(Q(u))) = H(c). Then
f'(w) = H'(c) exp(Q(u))Q'(u) = 0. Hence u € Crit(f). If there is a sequence
ne of non-negative integers (possibly bounded) such that f™(c) — = € J(f),
then H(f™(c)) = f™(H(c)) = H(x) € J(f). But f™(H(c) = f™+' (u), so
fretl(u) — H(x) € J(f). Since u is a critical point of f, we again obtain a
contradiction with condition (1) of assumption (*).

In the case (ii) we have two possibilities. Either exp(Q(H (c))) is a pole of
H, what is excluded by the condition (2), or else exp(Q(H(c))) is not a pole
of H. In the latter case there exists f'(H(c)) is well-defined and f'(H(c)) =
H'(exp(Q(H(c)) exp(Q(H (c))Q'(H(c)) = 0. It implies that H(c) is a critical
point of f, so repeating the arguments from (i) we can show that the f-forward
trajectory of ¢ stays away from J(f)

The case (iii) is excluded by the assumption (3). Thus condition (**) is
satisfied by f. m

Let
{bj:j=1,...,p} =(QoH) " (c0).
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Theorem 4.7. f : J(f) \{b; :j=1,...,p} = J(f) is a Walters expanding
conformal map.

Proof: Since @) o H is a rational function, the set {b; : j = 1,...,p} is finite.

We take X = J(f) and Xo = X\ {b; : j = 1,...,p}. By Theorem 4.6 and

Theorem 4.4 there exists 8 > 0 such that for every z € J(f) and every n > 1
there exists a unique holomorphic inverse branch f, " : B(f"(z),28) — C of f"
sending f"(z) to x. Since, by Theorem 4.4, the set J(f) is bounded and since

F7YJ(f)) C J(f), it follows from Koebe’s distortion theorem combined with
the standard area argument that

Tim_sup{|(f;"())'] 1y € f"(x), 2 € B(x, )} = 0.

In particular there exists n, such that for every n > ng, every z € B(x,n)
and every y € f~"(z), we have |(fy_")’(z)| < 1. Since J(f) is a compact set,
there exists a finite d-net W of J(f). Let 20 < S be a Lebesgue number of
the cover {B(z,0) : x € W}. Let ng = max{n, : x € W}. Since for every
z € J(f), B(2,28) C B(z,p) for some z € W, the requirements (2a)-(2c) of
Walters expanding maps along with conformality requirement are satisfied with

A =2 and u = ng. In order to see that the condition (2d) is satisfied fix € > 0

and consider V', a finite e-net of J(f). Since J(f) = Essoo(f), it follows from
Picard’s theorem that for every x € V there exists s, > 1 such that for every
k> s, f*(B(z,€)\ Ess(f*)) contains the entire sphere C except for at most two
points which lie in the complement of J(f). In particular B(z,e) N f*(w) # 0

for all w € J(f). Putting s = max{s, : ¢ € V'} completes the proof of condition
(2d) and simultaneously the proof of our theorem. m

Frequently, in order to simplify notation we will slightly informally write fl I

for f+ J(H)\{bj:j5=1,....,p} = J(f)

Theorem 4.8. fJ jsa jump-like conformal map i.e. there exist C > 1 and
A > 2 such that the f)ollowing conditions are satisfied:

(4a) {bj:j=1,...,b,} N fHI(f) =0

(4b) For every x € J(f) the set f~'(x) can be uniquely represented as {.q.n :
nezv]-S]Sp)lSaSQJ}

(4¢) maxi<j<pMaxi<q<g; suprJ(f){limn_)oo Dist(b;, Njfaln(B(:v, 4)))} =0

(44) V.c 55, Vi<i<ps Via<a;s Ynez, |nj>a

1 q;+1 i1 gq;+1
— T — i e
c |’fL| “ S |( j,a,n) (Z)| S C|TL| %

(4€¢) Yo sea(F)r Vi<i<ps Vabe{l,...q;}» Vhnez, [[k|—|n||>A, |n|>A, [k|>A

dist(f]fal’k(B(w,6)),ﬂ*b{n(3(z’5))) > ! |k|—q%, B |n|_‘%j

)
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(4F) Ve zea(fyr Vi<i<os Yae(t, o as}s Venez, kn>0 |lkl-Inl2A, [nl>A, (k>4

- - _a o
Dist(f;, x(B(w,9)), [, (B(2,0))) < C [|k| % —|n| %

Similarly as in Section 3, as an immediate consequence of (4d), with a bigger
constant C perhaps, we get the following vaJ(f)’ Vi<ji<ps Vi<a<q;s Ynez, [n|>4

q;+1 q;+1

Clnl” % < diam(f};},(B(x,0)) < Cln| % (26)

J,a,n
Letting k — oo, it immediately follows from (4c), (4e) and (4f) that
Vlgjgp; Vze](f)f Vlgagqp V|n\Z2A

C lnl v < dist (b, f7,.(B(x,0))) < Dist(b, 7, ,(B(x,6))) < Clnl % (27)

J,a,n
Theorem 4.8 will follow by combining Proposition 4.9, Corollary 4.11 and Corol-

lary 4.13. Note that every z € J(f), each holomorphic branch of f~! defined
on the ball B(z,2d) can be expressed in the form

il (w) = (@ o H)7A (log(w) + 2rin), (28)

J,a,n

where logw is the value of the logarithm of w lying in the rectangle [—k, k] x
[0,27] and (@ o H)J_; is a local holomorphic inverse branch of () o H. For n
with sufficiently large modulus each such inverse branch can be interpreted as a
branch of Qo H defined on some vertical strip either of the form [—k, k] X [T, +00]
or [—k,k] X [-00,=T], T >> 1, depending up on whether n is positive or
negative and sending co to a pole a of Q o H. Given a, all such inverse branches
are parametrized by the numbers 1,2,... q,.

Proposition 4.9.
do1, Yyesdyr Vici<pr Vica<er Vnez, ni>a

q;+1 q;+1

CH ™5 < |(fran) ()| < Clnl™ 5

Jra,n

Proof: The inverse branch f]_aln(w) is equal to (Q o H)J_; (log(w) + 2min). For
z close to the pole b; the function ) o H has a form
P(z)

H =
@oH)(E) = =y

where P(z) is a holomorphic map such that P(b;) # 0. Since in addition

z= ;_aln(w) is arbitrarily close to b; for all n with sufficiently large moduli, we
obtain
- / -1 —p;)eit1
(fj_aln)’(w) — ((QOH) (Z)) — - (Z b])
“ w w[P'(2)(z = bj) — q; P(z)]
_ (2 —by)st = (= — by)u,

w
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where writing the last comparability sign we have applied Theorem 4.4. Apply-
ing again the facts that P(b;) # 0 and that z is arbitrarily close to b; for all n
with sufficiently large moduli, we get

P(z) P(z2) 1

=)™ = Qo) ~ logw+ 2min ~ n|

for all n with |n| > A for some universal constant A. Consequently
- 4 +1
|(fram) (@) < ]
for all n with |n| > A. =
Proposition 4.10.

do>1 Fax2 Yy eu) Vi<i<es Yase{i,.a} Vknez, |[kl=|nl|>A, |n|>A, |k|>A
~ ~ _ 1 _ 1
dist(f; 4 (), 5,5, (2) > CV ||k % —|n| %

Proof: Since (Q o H)(z) = % on some neighbourhood of b; and since
P(bj) # 0, there exists a biholomorphic function defined in a sufficiently small

neighbourhood of b; such that G(b;) = b; and

1

(29)

Put . ~
f=exp(QoHoG)=foG.

Since for all w € B(J(f),0), A]Tal’k(w) =(QoHo G)j_’i(log(w) + 2min) (comp.
formula (28) and the discussion following it) and since for all k£ with sufficiently

large moduli (29) applies with z = f] ., ! (w), we therefore get

1 1
QoHoG(fi} (w) logw+2mik

(fidpw) = b))% = (30)

In the formulae below we drop the index j i.e. b = b; and ¢ = ¢g;. In view of

(30) for all w, z € B(J(f),8) and all n, k with sufficiently large moduli and with
|n| # |k|, we can estimate as follows.

|( Ajtal,k(w) - b)q - ( A]Tsl,n(z) - b)q| <
|f ( an |Z|Jak _b|QIZ|]sn()_b|i

A A g—1—i
| fran @) = fiin(2)] Z k|~
i=0

" A n|=t — |kt
1) — F 2] <7' — '__>
nl = — |k
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So,

>
—

u.|>
D,_.

» £(@) = )1 = (F;,(2) = 0)7] (Inf 75 = |k 7%)
| Jak( ) fj,s,n(z)| Z (|1’L| 1 _ |k|,1) .

Combining this and (30) and assuming that ||k| —|n|| is large enough, we obtain

|log w + 2mik —log z — 2min|  |k||n| (| |,; B |k|7l)
(logw + 2wik)(log z + 2min)| (|k| — |n|)

(|n|—% - |k|—%)

| AJTU«IJC(w) - fAJTsl,n(Z)| > |
_ |logw —log z Z,27r(k;—n)
K] = In] |k = In]

1 _1

= |1nl =% = ki

Since f lk =Go f] alk and since G is biholomorphic, with n and k as above,
we obtaln that

~

|~.;;,k(w) an( )| = |GO ]ak( ) Go an( )| >L || AJT;,k(w)_fJTsl,n(Z”

= (175 = #177)

where L1 is a Lipschitz constant of G—1. m

Corollary 4.11.
Joz1, Faze Yy ey Vi<i<e Vase(l,qbs Yhnez, (k- |nl[>A4, n|>A, [k>A

~ _ 1 _ 1
dist(f7, 4 (B(w,0)), [, (B(2,6))) > C M|kl "% —In| % |.
Proposition 4.12.
de>1, Faz2 Vo esfy Vi<i<er Yaelt.ab Vknez, kn>o, |kl-Inl[>A, [n|>A, [k|>A

Dist(f; ) ,(w), il (2) < C k| % —|n| %

Proof: The objects G and f appearing in this proof have the same meaning as in
the proof of Proposition 4.10. In particular (30) holds. Since the considerations
in the case n < 0 are analogous to those with n > 0 with obvious modifications,
we assume troughout this proof that n > 0. In the formulae below we drop the
index j i.e. b =0; and ¢ = ¢;. We assume that k,n > Aandn —k > n+ A,
where A comes from Proposition 4.10. First we shall prove that

| fan(@) = fia,

_gt1 _at1
e <o) =0 = |f; () = bl + O™ +n7"0)
(31)

And indeed, in view of (30)

L = fi o (2) = b+ !

l\l>

= frap(w) =b+

- 1% 1
(logw + 2wik)s (logw + 2win)a
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We also choose additional points wy, z;, which belong to (Qo HoG); +(Ri) such
that |wj, — b| = |y — b| and |2], — b] = |2, — b|. Then

[ — 2] < |wg — wi| + |w), — 21| + |20 — 25, (32)

Since the points wy},, 2/, and b are collinear and since b does not lie between wj,
and zJ,, we get

wi, = 2] = || f; e (w) = b)| = |f; 0 (2) = bl - (33)

1 !

Zn=b+t ————Fandz, =b+ -, tER,
(log z + 2min)g (2mit) 4
for some t € R, and, since |z}, — b| = ||2, — b|, we have
1 1
1 1 ‘(2m't),‘§ — (log z + 2min) &

~
~

(34)

n2/q

1 1
(log z + 2min)d  (2mit)d

By the Mean Value Inequality there exists n lying in the segment joining 27it
and log z + 2min such that

1 1
‘(27rit)§ — (log z + 2min) 4

%|77|%71|27rit — (log z + 2min)|
< -

n2/q - n2/q

Since |z;, — b| = |zn, — b| and since logz € [—k, k] x [0, 27], we conclude that
|t — n| < M for some constant M and all n large enough. Therefore, we may
continue (34) as follows

0= 2 < g5 s 2 d T
|20 — 21| = n =y n=*n n
Analogously we can prove that |y —wj,| < k7« . Substituting these estimates

to (32) and employing (33), we obtain (31).
Continuing the proof of our proposition, notice that

1 (w) = b7 = £ 3 (2) = 0] =

= [|f s (@) =0 = fi0 (2 _b||Z|]ak — b () = bl
and therefore, applying (31), we obtain

17 (w) = 0|7 = £ (2) = bl1]
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,_.

q—

> (15 a(0) = ()] = COT 0= ) SO )=l 1 ()b
=0
q—1
= i) = Fd a @Y g w) = B 70 () = b=
=0
+1 1 l]*l
—OT T 40T YU ) = bl (2) = b
=0

This implies that

N

| A]Tal,k(w) - f]?a,n(z)| S
frl o (w) = b7 — —bJe a1 a1
qt{j,a:fg ) | |1]an( ) | | : —l—C(kiT +n,%)
Zi:o |fj7a’]»( )_ b|q Z| ]an( )_ b|l

(35)
We shall prove that
Cl™F +n~ ") (™7 —k70) (36)
Since k > n + A, we have
Cl™™ +n %) <0 "% (37)
Now we shall show that there exists a constant Cy > 0 such that
Con™ "¢ < (n % —k ) (38)
By the Mean Value Theorem there exists n € (n,n + 1) such that
WK 20— ()7 = (D) =
Thus (36) follows from (37) and (38). By (30)
q71|f ( )_b|qll|]an )—b|ix§ %X‘k:—nl
i=0 k™s —n"3

1§
<)

Therefore, using (30) again, we get

15 (@) = b1 = |f72 (=) = bJ7| _
EiZO | j,a,k(w)_b|q = l|fj,a,n(z)_b|i
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g 1 1 nr—k
" |llogw + 27wik| |logz + 2mwin|| n! — k!
_ ||logw + 2mik| — |log z + 2min| | kn(n™s — k")
| |logw + 2mik||log z + 2min| k—n (39)
< 21k + |logw| — 27n + |log 2| (rf% —I(%)
k—n
< (2% n 271') (n i —k %)

Substituting (36) and (39) to (35) we obtain

@) = Fan () = 1G o fi 0 (w) = Go fi0,(2)]
A - _1 1
< Lalfi ) p(w) = fran(2) 3n77 k73
where L¢ is a Lipschitz constant of G. =

Corollary 4.13.

do>1, Faze Vo eqp Vi<i<e Vae(l,,qr Vhnez, kn>0 [[kl-n|>A, n>A, [k[>A

Dist(f; Lo (B(w,8)), ;L (B(z,8)) < C| k™% —n 4],

>4 J,a,n

So, we can end this section that all the results proven in the previous section
for jump-like maps apply to the map f

5 Geometry and dynamics of f

Let v denote either the Hausdorff measure H" or the packing measure P" defined

by means of the spherical or Euclidean metric. Since H(J(f)) = J(f) and
since H is biholomorphic except for a finite number of points, the following
implications are obvious.

(a) If v(J(f)) = 0, then v(J(f)) = 0.
(b) If v(J(f)) > 0, then v(J(f)) > 0.

(c) If I/|J(f) is not locally finite at any point, then v|;(s) is locally finite at at
most finitely many points. In particular v(J(f)) = cc.

(d) If v(J(f)) < oo, then v(J(f)) is o-finite.
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Thus Theorem 1 follows from Theorem 4.8, Theorem 3.3 and Proposition 2.18.
And by the same token, in order to complete the proof of Theorem 2, we only
need to demonstrate the following.

Lemma 5.1. Let f satisfy the assumption (*). If HM(I(f)) < oo (resp.
PrI(f)) < ), then HM(J(f)) < oo (resp. PR(J(f)) < o0), where the Haus-
dorff measure and packing measure are defined by means of spherical metric.

Proof: Let, as above, v denote either the Hausdorff measure " or the packing
measure P" defined by means of the spherical depending up on which of these
two measures is finite. Since J(f) contains no critical points of H, we only need
to check that v is finite on some neighbourhood of co. Since J(f) = H(J(f)), it
therefore suffices to show that each pole of H lying in J(f) has a neighbourhood
whose image under H has a finite v measure. And indeed, fix b € H~1(00). Take
r > 0 so small that H(z) = (5 ggq for z € B(b,r), where P : B(b,r) - Cis a
holomorphic function omitting some open neighbourhood of 0. Thus H'(z) <
|z — b|~(“*t1) and in the spherical metric

H'(2)(1 + |2]*)
L+ [H(2)]?

for z € B(b,r). For every n > 0 we consider annulus

r r
A”:{Z:QTH-I S|Z—b|<2—n}

Hi(z) = < |z — b|o~T.

Thus
WHI) B = ( (U 57 mAn>> < S UHU N A)
<Y sup{(H!(2))" : 2 € J(f) N A }v(J(f) N Ap)

= i 2 @Dy (J(f)N A,)

Since H o f = f o H and since ji is f—invariant, the measure p := fio H™ ! is
f-invariant. So, Theorem 3 is proven.

6 Examples

If Q(2) = z, then f : C — C is a periodic meromorphic function and this case
is covered by Barariski’s paper [2]. We now distinguish some cases not covered
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by [2]. If Q(2) is a polynomial different than identity, we have a transcendental
meromorphic function f of the complex plane with one essential singularity at
0o. The most transparent class of examples is provided by the following.

Example 1. Let

_ Aexp(2P) + Bexp(—2P)

f2) = Cexp(zP) + D exp(—=zP)

. AD — BC #0.

Thus Crit(f) = {0}, Critg(f) = Crit(f) and Asymp(f) = {%, By oaf %, 5
00, then f is not entire. If additionally f satisfies the assumption (*) which
in this context means that only condition (1) is satisfied (note that in the case
p > 2, the function f has a non-empty set of critical points whereas there is no
critical point if p = 1), then the results stated in the introduction apply.

If Q(z) is a rational function which is not a polynomial, then f is a meromorphic
function with more than one essential singularity. We illustrate this situation
by the following.

If Q(2) is not a polynomial, then f has more than 1 essential singularity and
belongs to the class considered by Bolsch.

Example 2. Let H(z) = 2,Q(z) = % Then f:C\ {-1} —» C\ {0, 00},

7() = exp (:) .

and f = f(2). Comparing with [2], f does not belong to the class considered
there, but it has the form of functions f studied by Barariski in [2]. Since the
pole of @ is not an omitted value of f, we see that |J,_, f~"(—1) contains
infinitely many points and consequently

J(f) = F(-0.

Since f=1(S1) c S, we have f~"(—1) € S! for all n € N. Therefore J(f) C S*.
We shall prove that f satisfies the assumption (*) and its Julia set J(f) is a
topological Cantor set. Note that Critg(f) = 0 and Asymp(f) = {0,00}. One
can check that f(1) = 1 and f'(1) = 1/2, so the number = 1 is an attracting
fixed point of f. Thus J(f) is a topological Cantor set contained in the circle
S1. In order to conclude the proof it is now sufficient to demonstrate that 1
attracts both asymptotic values 0 and oo. Since f'(z) > 0 for z € R\ {—1}, the
function f is strictly increasing on (—oo, —1) and (-1, 4+00). Now, if z € (1;00),
then f(1) < f(z) < . This implies that lim,_,. f™(z) =1 for all = € (1; 00).
In particular lim,_,o f™(00) = 1 since f(oco) = e € (1;00). If 2 € (—1,1), then
x < f(z) < f(1) = 1.This implies that lim, o, f*(z) = 1 for all z € (—=1;1). In
particular lim,_,+ f™(0) = 1 since f(0) = 1/e € (=1;1). We are done.
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