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Abstract

In this paper we derive a Diophantine analysis for Julia sets of parabolic
rational maps. We generalise two theorems of Dirichlet and Jarnik in number
theory to the theory of iterations of these maps. On the basis of these results,
we then derive a ‘weak multifractal analysis’ of the conformal measure naturally
associated with a parabolic rational map. The results in this paper contribute
to a further development of Sullivan’s famous dictionary translating between
the theory of Kleinian groups and the theory of rational maps.

1 Statement of main results

In this paper we derive a Diophantine analysis for Julia sets J(7T') of parabolic ra-
tional maps T : C — C. We generalise two classical number theoretical theorems of
Dirichlet and Jarnik to the theory of iterations of rational maps. We then show that
these results embed in the concept of conformal measures, where they admit a ‘weak
multifractal analysis’ of the dimg(.J(7"))-conformal measure which is naturally as-
sociated with the dynamical system (J(T'),T). Also, a combination of the results
in this paper with those for Kleinian groups which we obtained in [18], [21] and [23]
adds another interesting chapter to Sullivan’s famous ‘Julia-Klein dictionary’ [24]
(see also [13], [22]).

Recall that for parabolic rational maps it is well-known that J(T') = J.(T)UJ,(T),
i.e. the Julia set J(7T') admits a disjoint decomposition into the radial Julia set
J.(T') and the countable set of pre-parabolic points J,(T') := U,ecq Unen 77" (w) ,
where © denotes the set of rationally indifferent periodic points ([26], [22]). For each
w € Q, we fix a standard neighbourhood B(w,r,) and consider, roughly speaking,
all its holomorphic, inverse iterates B(c(w),rc(.)). We call these balls canonical
balls (see section 2, for the precise definition).

A major aim of this paper will be the fractal analysis of the Jarnik-Julia sets. For
w € Q and o > 0, these sets are ‘lim sup sets” which are defined by

JEm = U Belw),rlfy) and  7,(1) = 72D

neN Tc(w)<1/n we
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We call J,(T') the o-Jarnik-Julia set and J#(T') the (o,w)-Jarnik-Julia set.

The following theorem is our first main result. The theorem is the natural gener-
alisation to Julia sets of Jarnik’s Theorem in number theory ([12]) concerning the
Hausdorff dimension of well-approximable irrational numbers (see section 5). (Note,

analogous results for limit sets of geometrically finite Kleinian groups with parabolic
elements are obtained in [18],[21],[10].)

Theorem 1

Let T be a parabolic rational map with Julia set of Hausdorff dimension h. For
w € Q and o > 0, the Hausdorff dimension (dimg) of the o -Jarnik-Julia set and
the (o,w) -Jarnik-Julia set are determined by the following, where p(w) denotes the
number of attracting petals associated to w, and py, := min,eq p(n) .

o If h <1, then dimp(J,(T)) = 25

for o>h—1

o If h>1, then dimy(J¥(T { h—l—crp il— for o< h—1

1—|—cr 1—|—p

and hence, we have in particular that

dimp (7, (T)) { H_LU for oc>h-1
IMglJe = h+0Pmin
71+U(1ipmm) for o< h—-1.

An essential ingredient in the proof of this theorem is to show that, much as for
Kleinian groups ([23]), for parabolic rational maps there exists a generalisation of
Dirichlet’s Theorem in number theory (see section 3). Roughly speaking, this result
shows that the Julia set admits economical, arbitrarily fine coverings and packings
by finitely many canonical balls whose radii are diminished in a ‘dynamically con-
trolled” way. In fact, this generalisation implicitly reveals the ‘hidden 3-dimensional
dynamics’ of the rational map. For the explicit statement of this result we refer to
section 3, Theorem 3.

In our final result we apply Theorem 1 and derive some interesting insight into
the multifractal nature of the associated h-conformal measures m. It is well-
known that the scaling behaviour of m fluctuates between two extreme power laws,
namely on the one hand the ‘hyperbolic law’ which is realised with the power h on
a sequence of shrinking balls around elements in J,(7"), and on the other hand the
‘parabolic law’ which for each w € Q is eventually realised uniformly with the power
h+p(w)(h—1) around the backward orbits of w. Now, our weak multifractal analysis
shows that these two extreme scaling behaviours of m are in fact partial aspects of
certain continuous spectra of this measure. In order to state this application more
precisely, we recall from [21] the following notion of the weak singularity spectra of
a measure.

Definition
Let v denote a Borel probability measure on R™. For 6 > 0, we define the following
sels.



7%(v) := {¢ € supp(v) : liminf,_g % <6} ;

IOgV(B(gvT)) > 0}

Zo(v) :==A{€ € supp(v) : liminf, o =722 >

§0(v) := {& € supp(v) : limsup, _, E4BLEI) < gy

So(v) = {€ € supp(v) : limsup, _, 24BED) > g}
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The collections of Hausdorff dimensions of these sets, for 8 > 0, are referred to as
the weak singularity spectra of v .

The following theorem will be the final result in this paper. The theorem gives a
complete discription of the weak singularity spectra of the h-conformal measure
associated with a parabolic rational map. (Note that for limit sets of geometrically
finite Kleinian groups with parabolic elements the weak singularity spectra of the
Patterson measure was derived in [21] (see also [19]).)

Theorem 2

The weak singularity spectra of the h -conformal measure m of a parabolic rational
map with Julia set of Hausdorff dimension h are determined by the following, where
we have set ppq, = Max,eq p(w) .

o If h =1, then the weak singularity spectra of m are trivial. Namely, in this
case we have for all £ € J(T) that

i 28mBE)

r—0 log T

o Ifh<1, then

0 fOT 0<0§h‘|’(h_1)pmaac
dimy (Z°(m) = § HEGER R for bt (h— Dpmar <8 < h
h for 8>h

. h or 0<8<h
o Ifh>1, then
dimp (Sp(m)) =

h for 0<8<h

(W)t (=lpmas) _ fhpmaz for < < ML pmes) (A= L)pmas
A om0y A U= Upmas < g <y (1)

(h_l)pma.r
0 for 0>h+(h—1)Pmae.

. 0 for 0<fd<h
dimr (Z°(m)) :{ h o for 0> h.

pmax



dim | .
H( ) d'mH(Se)

2h-1 h 0 h 2h-1
2h-1-(h-1)/h

Figure 1: The most interesting spectra for ppe. = 1

o For h<1 and h>1, we have that

. h for 0<d<h
dimp (Zs(m)) = { 0 for 6 > h.

. 0 or 0<b8<h
dimpr(8°(m)) = { h }Cor 0> h.

Remark: At the current state non of the existing general formalism in Fractal
Geometry and Dynamical Systems allows to deduce the results which we obtain in
this paper. For instance, if for h # 1 we combine our estimates of the weak sin-
gularity spectra and the fact that m has a flat Rényi dimension spectrum equal
to h (cf. [22]), then we see that m can not be analysed by the currently exist-
ing multifractal formalism. Furthermore, for hyperbolic rational maps T one can
define o-Jarnik-Julia sets J/vP (T') in a similar way as we did in this paper. Of
course, in this expanding case the canonical balls are centred at elements of the
uniformly-radial Julia set!. In this purely hyperbolic case we always have that
dim g (J/v"(T)) = h/(14 o), and in terms of the thermodynamical formalism this
solution represents the (only) zero of the associated pressure function (cf. [9]). Now,
one might suspect that the most natural extension of this thermodynamical inter-
pretation to the parabolic case is that dimy(J,(T)) is equal to the infimum of the
set of all zeros of the pressure function. But, the results in this paper show that

lsee section 6, and in particular the footnotes in there.



this certainly can not be the right extension. Namely, for o > 1 and ¢ < h — 1,
Theorem 1 implies that if ¢, := (14 o) log|T’| then dimgy (7, (T)) is strictly less
than the least zero of the pressure function P(¢,) .

2 Preliminaries

Julia sets revisited:-

As already mentioned in the introduction, throughout the paper J(7') denotes the
Julia set of a parabolic rational map 7. For an introduction into the basic theory
of iteration of rational maps we refer to [3],[4], [14]. Without loss of generality, we
may assume that J(7') is a compact subset of C. Let Q(T) denote the non-empty,
finite set of rationally indifferent periodic points (parabolic points). If Qu(7) :=
{£eQ:T(&) =¢(T'(€) =1}, then (since J(T™) = J(T) for every n € N) we may
assume without loss of generality that Qo (7") = Q(T) .

Recall that for each w € Q we can find a ball B(w,r,) with centre w and sufficiently
small radius r, , such that on B(w,r,) there exists a unique holomorphic inverse
branch T;! of T with the property that T;!(w) = w. For the iterates of this
branch on B(w,r,) N J(T) \ {w}, the following two facts are obtained in [2], [7].

(LBP) (‘local behaviour around parabolic fixed points’)
For £ € Bw,r,)NJ(T)\ {w} and n € N we have that

o |w—T5"(€)] = 1/n!/P);
o [(T7)(O)] = 1/ntHrD/rl),

where the ‘comparability constants’ are dependent on the distance of the chosen
point £ from the parabolic point w .

Recall that the set of pre-parabolic points J,(T) is given by J,(T) = UiZo T~ (Q(T)),
and that for parabolic rational maps the radial Julia set J.(T) is equal to J(T) \
Jo(T) (cf. [26], [5], [22]). Also, here there exists a constant p > 0 such that to each
€ € J.(I') we can associate a unique maximal sequence of integers n;(§) such that
the inverse branches Tgnﬂ ©) are well defined on B(T™®)(£), p). Then, if we define
(&) i= [(TO)Y(€)|~, the sequence of ‘radii’ (r; (€));en is called the hyperbolic
zoom at €. Similarly, to each £ € J,(T') we may associate its terminating hyperbolic

zoom (rj(f))j:17...7l(£) (cf. [22]).

Furthermore, in the following, the concept ‘canonical ball’ will be crucial. For w €
Q,let I(w):=T71({w})\{w}. Then, for each integer n > 0 and w € Q, we define
the canonical radius r¢ at £ € T7"(I(w)) by

re = (T (O

and call the ball B(&,r¢) the canonical ball at £ . Note that the canonical radius
at & is comparable to the last element in the terminating hyperbolic zoom at £.



Conformal measures revisited:-

Recall from [2], [5] and [6] that for a parabolic rational map 7' there exists a unique
h-conformal measure m supported on J(T') (where h denotes the Hausdorff di-
mension of J(7')), i.e. a probability measure with the property that for each Borel
set £ C J(T) on which T is injective, we have that

m(T(F) = [ 1T dm @)

In [22] we derived the following ‘geometric formula’ for the h-conformal measure,
which describes the decay of the measure uniformly around arbitrary pointsin J(7') .

(GF) (‘geometric formula for the h-conformal measure’)
With the notation above, there exists a function ¢ : J(T) x RT — RT such
that for each £ € J(T) and for every positive r < diam(J(1T")) we have that

m(B(£,r)) < rh ~p(E,T)

The values of the conformal fluctuation function ¢ are determined, for positive
r < diam(J(T")), by the following.

o If £ € J.(T), and r relates to the hyperbolic zoom at & such that
ri1(6) < 7 < r;(€) and such that T*(&) € B(w,r,), for all k €
(nj(&),n;41(&)] and for some w € Q(T), then

r (AP () (rixal®)
$(E,r) = (7%) Jor > i) (Mt

(T”Tl(g))(h_l) Jor < ri(6) (%ﬁf))l/(up(u}))

o If £ € J,(I') and r exceeds the canonical radius rg, then ¢(&,r) is
determined as above in the radial case by means of the terminating hy-
perbolic zoom at & . Otherwise, if 7 < r¢ and £ is a pre-image of w € (2,

then
, (h=1)p(w)
¢(£7T) = (_)

e

)1/(1+p(W))

3 The Julia set in the spirit of Dirichlet

In this section we give for parabolic rational maps a generalisation of a classical
theorem in the theory of Diophantine approximation due to Dirichlet. This result
will provide us with economical, finite coverings and packings of the Julia set which
are closely connected to the ‘hidden 3-dimensional dynamics’ of the rational map.
In order to motivate our generalisation, we first recall the classical Dirichlet theorem.

Dirichlet’s Theorem: There exists a universal constant k > 0 such that for
each sufficiently small o > 0 the following holds. For every z € RT there
exist p,q €N co-prime with 1/¢*> > «, such that

p‘ [ 2
r— =| < R\Ja/q¢.
q




We now generalise this theorem to the situation of a parabolic rational map 7. The
reader is asked to recall the notion of a canonical ball given in the previous section.
For any small number o > 0, we associate to each canonical ball B(c(w),rqy) , for
which r.,) > a its a -canonical Dirichlet ball B(c(w),T¢(u),o) , Which is determined
by
, — o 1/(4p(w)) L p@)/(+p(w)
e(w),or == c(w) :
Using this notation, we now state our generalisation of the Dirichlet theorem. (Note
that this result has already been announced in [18], and also that for geometrically
finite groups a similar generalisation of the Dirichlet Theorem was derived in [23].)

Theorem 3 Let T be a parabolic rational map. There exist universal constants
Koy Kp, g > 0, depending only on T, such that for each w € Q and for each
0 < a < ag the following holds.

(i) The family {B(C(w),/@p Te(w)a) * Te(w) = a} provides a packing of J(T).
(ii) The family {B(C(w), Ke Te(w)ya) * Te(w) = a} provides a covering of J(T) .

Proof:
Proof of (i):- For this it is sufficient to show that for all w € Q and for sufficiently
small a,x > 0 the family

Flw,oa, k) U{B(w,ru.0)}
provides a packing of J(1'). Here we have set

Flw,a, k) = {B(c(w), kTew),a)  c(w) € U T7"(I(w)), Te(w) > af-

For the following we shall assume that 6 > 0 is chosen sufficiently small such
that B(w,8) N B(n,6) = 0, for all distinct w,n € Q. Also, recall that for each
y € JI)\ B(Q,6), n >0 and 2 € T7"(y) there exists a holomorphic inverse
branch 77" : B(y,20) — C of T™ such that T;"(y) = . Let us fix w € Q and
a >0, where a will get adjusted throughout the construction. For convenience we
write p = p(w). Suppose that F(w,, k) is not a packing. Then we have, for some
positive k£ < n and for some x € T7%(I(w)) and y € T7"(I(w)), that there exists

2 € B (a0, 50O (TH (@) 1040) 0 B (y, sl |17y ()| O) )

with the property that |(T%)/(2z)|™' and [(T™)(y)|~' both exceed a. Hence, our
aim will be to show the coincidence of the two balls

B (x,I{Ozl/(1+p)|(Tk)/($)|_p/(1+p)) and B (%Hal/(1+p)|(Tn)/(y)|—p/(1+p)) .



Using Koebe’s 1/4-distortion theorem (cf. [11]), we have that

T-HB(T*(z),0)) > B(

:B(

5 B <$7 T al/(1+p)|(Tk)/($)|—p/(1+p))

(T4

(T4 ) |y ()] 21040

%%I%%I%

> B (,ma DT ky (o) [T (40)) 2)

where in the last inclusion we assumed that x < 6/4. If k£ = n then we have either
that the two balls in (1) coincide (in the case when 2 = y) and we are done, or that
they are disjoint (when x # y), which contradicts the fact that z belongs to both
of these balls, and hence we are done as well. Thus, we may assume that & < n.
Using (1) and applying Koebe’s distortion theorem, we get, with K the positive
constant originating from this theorem for the ‘scale 1/27 ([11]), that

[TH(z) = TH@)| < Kra /U0 ()| =2/ O+ (10 ()]
= Kral/OF)|(Tk) ()1/0F),

Hence, we have that
TH(2) = w] = [T(T(2) = T(T*a)] < K (T s (o (75 (@)D (3)

Since (2) is obviously true with & replaced by n, an application of Koebe’s distor-
tion theorem gives that

(T ()™ < KT ()7 = K@) (T ()7
< K2 (@)
< KPR @ )T ()] 7 (4)

It follows from (1) and (2) applied with k replaced by n that T7F=1(TF+1(z)) =
T"(z) € B(T"(y),0). Since T"(y) € I(w), assuming that # and § are taken small
enough, we may therefore conclude that T7~*=1(T*+1(2)) ¢ B(,6). Hence there
exists a least [ with 0 <1 < n —k — 1 such that TH(T*t'(2)) ¢ B(Q,6). Since
THT* 1 (2)) and T F=1=H(TkH1H(2)) = T7(2) are not in B(R,6), there exists an
integer ¢ > 0 such that T7=F=1=l(Tk+1+(2)) = T (Th+1+1 (%)) where T* denotes
the jump transformation defined in [6] (also, cf. [2], [22] and [16]). By [6], the map
T* is expanding, which means that there exist constants €' > 0 and v > 1 such
that |(7%°)'(v)| > C' 4*®, for all s €N and v € J.(T). Hence, we have that

(@) = (Y )R ()|
(Y41 () (T (T4 (2)))

Cf (T (TH ()| > CHTY (T (=),

v



Using (3) and (LBP), it now follows, for some universal constant C7 > 0, that

(I )] > OO T (z) — w0
> €y (KT Ry~ 0 a7t (74 (@) .

Combining this estimate and (4), we obtain with D := K?2||T’||P*2(CCy)~! that

«

IN

(@) ()|~ < K2T|| - (TR (@) |7HCC) T E T |R) HPal (TF) ()]
= Dr'TPa < a,

where in the last inequality we assumed that x < D~Y(+P)  This contradiction
shows that the family F(w, @, k) is a packing. In order to complete the proof, assume
that for some ¢ > 0 and for some x € T~9(I(w)) such that |[(T9)'(z)]™! > a, we
have that

B (w,mal/(l‘i'p)) nB (w,Hal/(1+p)|(Tq)’(ac)|_p/(1+p)) # 0.
This assumption implies that for every y € I(w) it holds that
B (yv,{/all/(lﬂﬁ)) N B (Ty_l(w),I{/all/(1+p)|(Tq+1)/(x)|_p/(1+p)) £,

as well as that [(T97Y/(2)|7" > o/. Here we have put o' := «of|T’||7! and &/
denotes some constant multiple of . For sufficiently small s this non-empty inter-
section clearly contradicts the fact that the family F(w,a’,x’) is a packing. Hence,
the statement (i) of the theorem follows.

Proof of (ii):- For this it is sufficient to show that there exist k. and ag > 0 such
that for any k > k. and a < ag the family F(w,a,x) provides a covering of
J(T), for each w € Q. Hence, let us now fix w € Q and a > 0, where o will get
adjusted throughout the construction. Complementary to the previous discussion in
(i), we now assume that ¢ is chosen sufficiently small such that |77(z)| > 1 for every
z€ J(T)NB(,06). Furthermore, let § and # be so small that all inverse branches
T;™ are well-defined on 6 -neighbourhoods of points in J(T)NU,ecq B(w, ||T7]|6+86) .
Now, since T : J(T') — J(T) is topologically exact, we have for sufficiently large
q > 0 that the family {B(z,0):1<n<gq¢2eT " (T"'({I(w)NJ(T)\ B(w,8))}
forms a covering of J(T') \ B(w,¢). We define

w = inf{|T"(v)] : v € J(T)} and C := (K||T||*)~" min{1, u}.

By the choice of 6 > 0, we have that after some number of forward iterates each
point in B(w,d)\{w} eventually escapes from B(w,¢). For a fixed z € J(T)\{w},
we define

o k(z):=min{n >0:|(T")(z)| > Ca~l},
o [(z):=min{n >0:7"(z) ¢ B(w,0)},

o j(z):=min{k(z) — 1,I(2)}.



Since [(z) is finite, we have in particular that j(z) is finite. Now, let us assume
first that j(z) =I(z) = (. In this case {(z) < k(z) — 1, which implies that k(z) > 1
(note that here we assume a < C||T’||~1). Hence, by our choice of ¢, there exist
0<s<gqand y€ T75(I(w))\ B(w,é) such that T!(z) € B(y,0). If we let
z:=T?°(y), then Koebe’s distortion theorem implies that

: € B(IZ'(y), KO (y))
= B (@), KO|(TZ ) (2)] - 1(T°) ()

C BT (@), s|(TZ0H)) (@),

z

where we have assumed that x > K6||T'||¢ > K||T'||*, and where T': B(y,20) —

C and TZ_(H_S) : B(y,20) — € denote the holomorphic inverse branches of T* and
T™ respectively, which respectively send T'(z) and T!**(z) to z. By choice of
the constant €' and using Koebe’s distortion theorem, we have that

(TN @) > KT () = KT )T (T )
> K'C |7 = (K||T'|)FPH 7 a > a.

Hence, the proof for the case j(z) =1I(z) is complete.

We now consider the case j(z) = k(z) — 1. For simplicity, let us write & instead
of k(z) and [ instead of [(2). Here we have that |[(T*~')/(z)] < Ca™', that
[(T*)(2)] > Ca~!, that all points 2,7(z),---,T*(z),---,T!71(2) are contained
in B(w,6), and that T'(z) ¢ B(w,é). If we write as before p = p(w), then, using
(LBP), we have, for universal constants C7; > 1 and C3 > 1, that

[

CTHTYP < |z —w| < €Y7, (
02—1 l—(l-l-p)/p < |(Tl)/(2)|—1 < Y l—(1—|—p)/p‘ (

(@p)
T

Hence, by our choice of k and [, since |[(T")(2)| = |[(T'"=F)(T*(2))| - |(T*)'(2)| >
|(T*)'(2)| and assuming that x > 201(02/0)1/(?7"'1), it follows that

|z —w|] < Cll—l/p < ClC%/(H'p) |(Tl)/(z)|_1/(1+p) (7)
< (e era) ™M

< 27! g !/ 0FP), (8)

If we let n > 0 denote the largest integer such that
Con PP < ||| 7007, (9)
then we have in particular that n > 1 (for @ < C5!|T7||7%), and that
pPAD/2 > 9=t e 4 1) (EA1/p > o= (AN /p O 177|700, (10)

Our choice of ¢ implies the existence of s with 0 < s < ¢ and v € T=5(T~1(B(w, §||T'||+
)\ {w})\ B(w,8)), such that for = = T;"(v) € T~("+9)(I(w)) (using (9) and (LBP),
and recalling that z = T°(y) ) we have

(T ()] = [T (@] [T ()] € Co aDP|Tr <™l (1)

10



On the other hand, if we combine (10) and (LBP), we have that
|2 —w| < Oy n~ P < 0y VPP || T [ (D ) < 971 g 1/OFR), (19)

where we assumed that k > ClC%/p 2(1+p)/p || 77| |9/ (+1) | Combining this inequality
and (8), we get that |7 — 2| < ka'/0+?) which of course, as follows from (12), is
true in particular for z = w. This completes the proof of the statement (i) in the
theorem.

a

4 Counting canonical balls

In this section we derive an estimate for the number of equally sized canonical balls
contained in a small neighbourhood around a pre-parabolic point. More precisely,
for fixed w,n € Q and for ¢ > 0 we estimate the cardinality of the set of roughly
equally sized canonical balls of the kind B(c(n),rc(;) which are contained in a o-
reduced canonical ball B(C(“)vri(tf;)' We show that this cardinality is governed
by the quotient of the conformal measure of these two balls. This estimate will be
crucial in the following section.

We introduce the following notation. For 0 < p < 1, n € N and w,n € Q, we
define

Mo n(p) = {e(w) € Jp(T) : p" 1 < re) < ",
Spale(w),0,p) = {e(n) € Wyn(p) : Ble(n),rem) C Blew),ri )} -

Proposition 1

There exist A, cq,cq1,co > 0 and an increasing function ¢ : N — R with the follow-
ing property. For any w,n € Q and c(w) € I, ,(A) for some n > ¢o, we have for
m > u(n) that

1 /\h(n—m)-l—crn(h-l—(h—l)p(w)) < CaI’d(Emm(C(w),O’, /\)) < ¢y /\h(n—m)-l—crn(h-l—(h—l)p(w))

Note: This estimate of card (X, ,,(¢c(w),o,A)) does not depend on 7 € Q.

Proof:

Since our proof follows closely the proof of the corresponding result for geometrically
finite groups, we here give only the crucial estimates. For further details we refer to
[18] (Proposition 3).

Let c(w) € J,(T) be fixed such that 7.y is sufficiently small (i.e. more precisely,
such that r.,) < min{a, (4k,)"17} ). For 5 € Q, we define X, := {c(n) €
Jp(T) : B(c(n), Te(wy) C Ble(w), ri(tf;)} . Now, using Theorem 3 and after performing

some elementary calculations (cf. [18]), we obtain for sufficiently small a > 0 (i.e.
1o (1+p(w))

more precisely, for a < T o) /(4k.), where k. is the ‘covering-constant’ of
Theorem 3) that
m(B(C(w)v Ti(t;c;)) = m(B(C(w)v Tc(w),oz)) + Z m(B(C(n)v Tc(n),oz))‘ (13)
o(n)€Xy
Te(m) 2%

11



Using (GF), we see that for r.,) > a we have

( o )1/(1+p(77)) h ( N )1/(1+p(77)) (h=1)p(n)
TC
(n) Te(n) oo

p(m)/(L+p(n))
_ o (m) .

«

X

m(B(C(U) ) Tc(n),oz))

Using this estimate, we derive from (12) that

ot \ P@)/ (142(w)) T, p(m)/(L+p(n))
ah m(B(c(w),rg(jg))x< ;)) + 3 ( O(j)) (14)
()€
Te(n) 2

If we let a := A", for some sufficiently small A > 0, then a simple calculation (cf.
[18], p. 394) shows that (13) implies

3 1< AT (B(e(w), ).
o(n)ETy
AmHL <y <am

Now, if we choose n € N such that ¢(w) € Il, ,(A), and apply once again (GF),
then it follows that

m(Ble(w),rif5) < i prhre)

Anh—l—ncr(h—l—(h—l)p(w))

Hence, by combining the two latter estimates, it follows that

Z 1 = Ah(n—m)—l—ncr(h—l—(h—l)p(w))

(n)E3y
AL <r oy <A™

b

which gives the statement in the proposition. a

5 The Julia set in the spirit of Jarnik

In this section we give the proof of Theorem 1, i.e. we give for parabolic rational
maps a generalisation of a classical theorem in the theory of Diophantine approxi-
mation due to Jarnik [12] (which was obtained slightly later independently also by
Besicovitch [1]). In order to motivate this generalisation, we first recall this classical
result of Jarnik.

Jarnik’s Theorem: The Hausdorff dimension of the set of well-approximable
irrational numbers s determined by the following. For o > 0, we have that

dim g ({x e R:

140 1
-2 < (q_z) Sfor infinitely many reduced B}) = .
q q l+o

12



We now generalise this theorem to the situation of a parabolic rational map. The
proof follows closely the construction in [18] and [21], where we derived a similar
generalisation of Jarnik’s theorem to the theory of Kleinian groups.

Throughout, we assume that ¢ > 0 and w € Q are given, and that A > 0 is chosen
according to Proposition 1. The key for getting the lower bound of dimyg(J¥(T))
is first of all the explicit construction of a set C?(w) C J(T). Similar to a 2-
dimensional Cantor set, this set is the lim sup set of infinitely many approximations
(or generations) of the set with an increasing resolution. Here it is important that
each of these generations consists of roughly equally sized, o-reduced canonical
balls, and that the ratio of the diameters of members of ‘successive generations’
decreases to 0, whereas the number of elements of a generation which are contained
in exactly one member of the previous generation increases exponentially fast. The
task will then be to give a sufficiently good quantitative description of this set.

We start with the construction of the set C7(w). For this let {sj}ren denote a
strictly increasing sequence of positive integers such that sp is sufficiently large,
sk > t(sg—1) for all k, and further that s;* Z?:_& s; — 0 for n — oo. Now, fix
an element z € I, 5, (A) and let Co := B(z,7%"). Then define inductively the
generation Cy for k € N by:-

if Cp_1 is defined, then Cj:= {B(C(w),ri(tf;) te(w) € X5, (2,0, A)
for some =z €1Il, _ (A) suchthat B(z,7%7) € Cr_y}.

Without loss of generality, we may assume that each element in Cr_; contains ex-
actly Nj elements of Cy , where we have set Ny := 1r1r1inZeHw75k_1 (v card Xy, s, (z,0,A).
Hence, we can now define C?(w) := (>0 Ucee, € 5 and instead of C7(w) we shall
usually just write C?, where it is clear which parabolic point w is involved.

Next, we construct a probability measure on C? by renormalising the h-conformal
measure m on each Cj,i.e. for all & € N define a probability measure m, on Cy
such that for Borel sets F' C C we have

Mmep(F) = > (Ny-...- No)"'m(F 0 1) /m(1).
Iec,

(Note that we could have defined m,; also just as a ‘counting measure’, i.e. for
the purposes in this paper it is not relevant that m,; depends on m.) Using
Helly’s Theorem, we obtain a probability measure m, on C° as the weak limit of
the sequence of measures {m, }. Note that m, ;(I) = m, (), for each k € N and
IeC.

Lemma 1
For each € € C° and r such that \*1? < r < A*=1%2 for some k € N, the ball
B(&,r) intersects exactly one element in Cy_q1 and

card{C € Ct : CN B, 1) £ 0} < A~hsw m(B(, 7))

13



Proof.

Let & and r be given as stated in the lemma. Now, first note that, by Theorem
3 (i), we may assume without loss of generality that the canonical balls B(z,2r,),
which have the property that B(z,rlt7) € C_;, are pairwise disjoint. In order to
see that B(,r) intersects exactly one element of Ci_1 , note first that since £ € C7,
there exists a unique B(C(w),ri(tc;) € Cip_1 containing ¢. Now, if B(&,r) would

not be fully contained in B(c(w), 7)) , then it would follow that
r > Te(w) — Ti(t}c; > /\sk_1+1(1 B /\crsk_l) > ASk—1+27

which contradicts our assumption concerning the size of r.

For the second assertion in the lemma note that if B(C(w),ri(tf;) € Cj intersects
B(&,r), then we have that B(c(w),rcw)) C B(& 7 + rew) + ri(tf;) Using this
observation and the pairwise disjointness of the canonical balls which we mentioned
at the beginning of the proof, it follows that

card{C € C, : CN B, 7r)#0} min  m(B(z,7,))
B(Z,Ti-l-o-)eck

< max  m(B(&r+r.+1rT)
B(Z,Ti-l-o-)eck

< m(B(E, 7)),

where in the last inequality we made use of the fact that m is a doubling measure,
which is an immediate consequence of (GF). Now, since for B(z,r!T7) € C; we have
that m(B(z,7.)) < A" | the lemma follows. a

Lemma 2
For each € > 0 there exists r,(€) > 0 with the following property. For all £ € C°
and 0 <71 < r,(€) such that A < r < \*=1 for some k € N,

me(B(£,7)) < m(B(E, 1)) A=5s=1 (o Uht(h=1)p(w))+e)

Proof.
Let £ and r be given as stated in the lemma. By construction of the measure m,
and using Lemma 1, it follows that

k k
me(B(&, 7)) < H Nj_1 card{C € C, : CNB(&,7) # 0} < X" m(B(E, 7)) II Nj_1 .

J=0
Hence, using Proposition 1, it follows that

mo(B(&,1) < A hm(B(&,r))ep THNM s \mo s (et (= 1ple)

kE—2

X /\h(sk—1—50),\_U(h+(h_1)p(w)) Z]=0 %

= m(B(r))
(St (—o Ut (h=1)p(w)) =53 (soto (it (h=1)p(w)) T 12g 5+ (k=1)(logen)(log ) )

14



By our choice of the sequence {s;}, we have for each € > 0 that for sufficiently
large k it holds that

1

Sk—1

(so—l—a(h—l— Z‘SJ —1)(loger)(log A)~ )) <€

Using this inequality in the latter estimate, the lemma follows. a

Proposition 2
o If h > 1, then for each w € Q, & € C°(w) and € > 0, there exists r =
r1(€,€) > 0 such that for all 0 < r < ry we have that

ph/(1+o)—e for c>h-1
me(B(E, 7)) < { PUkop(@)/ (o (p @)= for o< h—1.

o Ifh <1 and w € Q such that p(w) = ppas, then it holds that for each
£ €C%(w) and € > 0, there exists 14 = r1(&,€) > 0 such that for all 0 < r < 1y
we have that

ma (B(E,r)) < /00

Proof.
Let £ € C?(w) be given. Without loss of generality assume that A% < r < A%-1
and that ¢ € B(e(w), ri(tf;) € Cy—1 . We then have the following.

Case 1: For each € > 0, there exist k1 = ki(&,€) such that for all k > ky the
following holds. If (\*=1)'"17 < r < A%=1 | then

Me (B(fv T)) < Th/(1+0)—e/(1_|_g) ‘

140

Proof: By construction of m, , we have that m, (B(c(w), re())) X Mo (B(c(w), To(o)

Using this observation, Lemma 2 implies that

mcr(B(fvr)) << mU(B( 77‘;(1:;;»
< m(B(ErlEg)) AT Ul rl o

o Th( )TU((h)-l'(h—l)p(W)) A~ k=1 (o (ht+(h=1)p(w))+e)

— h —€
= Tc(w) Tc(w)

- 140
~ (Tc<w>)
< ph/0+0) pmc/(i40)

/(140)

Case 2: For each € > 0, there exist ky = ka(&,€) such that for all k > ko the
following holds. If (A»=1) 70+ < o (Ask-1) 4o ypep

P/ (1to) p=e/(1+0) for oc>h—-1
(B(fvr)) { plhtap(@))/(1+o(1+p(w)) p—e for o<h-—1,

15
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where ¢ denotes some constant multiple of €.

Proof: Let r = A*=10+747) for some 0 < 7 < op(w). Also, without loss of
generality we may assume that £ € C7\ Jy 5(T), for some sufficiently small
6 > 0. For the hyperbolic zoom at ¢ we have that r;(§) = Te(w) , for some
J € N. An elementary calculation, using (LBP), gives that

Ti(-l;}()0+5)(1+p(W)) <76 < Ti(-l;}cg(l-l-p(W))‘

We first consider the case ‘h > 1°. Applying (GF), it follows that (note that,
by choosing ¢ sufficiently small, we can guarantee that we are in the situation
of ‘the second part in (GF) concerning £ € J, (1))

r

_ T (14p(w) "1
b (i N ey
m(B(&,r)) < ot (=2 PO ) —

Thus, using Lemma 2, it follows that

my(B(E,r)) < m(B(E,r)) A==t (i=1p(w))+e)

Ao (@) A1
- Th( (@) ) A=t U= T)p() 0

r

ASh—1 (1+o(14+p(w
ASk—1 (14o+7)

h—1
(et ( )))) A= k=1 (7 (o (h=1)p(w))+¢)

< Ask_l(h—l—ﬂ'—e)
e

_ T(]’L-|—T—E)/(1-|—CT-|—T)

ph/(1+o) p—¢/(1+0) for c>h—-1
< p(htop(w))/(1+o(1+p(w)) —e/(140) for o< h-1.
Hence, the statement follows in the case that A > 1. Now, for h < 1, we
similarly see that

m(B(&r) < "

(w) ’
and hence, that

my(B(E,r)) < m(B(E,r)) A==t (i=1p(w))+e)
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< Ask—l(h‘H') Ask_lﬁ(h—l)(l—l—p(w)) A\~ Sk—1€

_ T(]’L-|—T)/(1-|—CT-|—T) T—e'

< Th/(l—l—cr) 7‘_6/,

where we have set € := §(1 — h)(1 + p(w)) + €, and where the last inequality
follows since here, we trivially have that h < 1+ 0.

Case 3: For each € > 0, there exist ks = ks(£,€) such that for all k > ks and
Ak < p < (A=) IO ORPD e foliowing holds.

o If h>1, then

ph/(1+o) p—¢/(1+0) for c>h—-1
mg(B(£7T)) < { T(h—|—crp(w))/(1—|—cr(1—|—p(w)) T—e' fOT o< h— 17

where ¢ denotes some constant multiple of €.

o If h<1 and £ € C7(w) for some w € Q such that p(w) = Pmas , then
me(B(£, 7)) < phl(+e) p=c/(1+a),
Proof: We first consider the case h > 1. Here, we have that
m(B(&,r)) < 1",
and hence, using Lemma 2, that

my(B(E, 1) < " A~ k=1 (o (h+(h=1)p(w))+e)

< php (@bt (h=1)p(w))+e)/(1+o(1+p(w)))

< phtop())/(A+o(1+p(w))) —e/(1+o(1+p(w)))

ph/ (o) p—¢/(1+0) for c>h-1

S\ ptep@)/ (4o (40(@) p=¢ for g < h—1,
which gives the proof in the case h > 1.
For h < 1 and w € Q such that p(w) = ppas, Wwe assume without loss of
generality that £ € C7(w) \ Jr46(T), for sufficiently small é > 0. Also, let r
be related to the hyperbolic zoom at £ such that, for some [ € N, we have
that 741(&€) <r < (), and that n € Q is associated to this particular part
of the hyperbolic zoom . Using once more Lemma 2 and (GF), and the fact
that A~%k-1 < p~1/(040(42(«)) " we obtain that

m,(B(&, 1) < rh b(&,7) \—sk-1 (o (h+(A=1)p(w))+¢)

<L ...
< pUop(@)/ (o (140(@) (¢ ) pme/ (o (+p(),
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Before continueing this estimate, we now first give an upper estimate for the
conformal fluctuation ¢(&,r). It is sufficient to consider the extreme case
where the fluctuation is largest. Here, we have for sufficiently small » that

(@) HHOH <g (€) < ()T, (15)

Also, (GF) immediately gives that, for r41(£) < 7 < r(£), the fluctuation
¢(&,-) attains its maximal value for

B rig1(€) 1/(1+p(n))
=0 (") |

In the following we fix r to be equal to this value. Also, note that, with this
‘maximal choice’ of r, (15) and (16) imply that

(r(€)) 7 < < ()

We can now estimate the maximal conformal fluctuation as follows.

g r (h—l)p(n)v r1p1(€) (h=1)p(n)/(1+p(n))
e = (mo) l 7‘1(5))

<& (Tl(f))(cr%)(h—l)p(n)
(Tl/(l-l-g)) (e+8)p(n)(h-1)

<

Using the latter inequality, we now continue the above estimate for m, (B(&, 7)) .
Let ¢ :=
see that

1-|—cr(li|—p(w)) + 6(1_f_)l_c;p(77) , then, with an elementary argument, we

g (B(E, 1)) < rlitop@)/ (4o (4p(@)) p(h=1)op(n)/(140) =
< Th/(l—l—cr) 7‘_6/.

Here, the latter inequality follows since

p(w) p()(1+ p(w)) = plw)

Pyt = TG T Ut (@)
pn)(1+pw)) —plw) (.. plw) .
= h> NOEI) (smce h > 71—|—p(w)( f. [2])
= pw)+(h =11+ plw)p(n) >0
= o(pw)+ (h= D1+ pw)pmn)) > (h = 1)(pw) - pn))
N h+ op(w) op(n)(h—1) h
14+ 0(14 p(w)) 14+o 140

This completes the proof in the third case.
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The statement of the proposition now follows by summing up the above three cases.
O

Proof of Theorem 1:
We apply the mass distribution principle (cf. e.g. [8]). For h > 1, w € Q and
o > 0, Proposition 2 implies that

dimy (T2(T)) > { H_LU for c>h-1
IMgldys [t htop(w)
Wf_p(w)) for g < h —1.

For h < 1, note that dimy(J,(7)) > dimgy(J2(T)), for any w € Q. Hence, in
this case, Proposition 2 implies that
h
140
For the upper bounds of dimg (72 (T )) dimyg (J-(T)), note that {B(Z ritoy .

and
z € J7(T)}, where J(T) := U,»o T "(w), provides a ‘natural cover’ of J:(T).
h/(1+0) o\ h/(1+0
) (M and 3 ) ()

dimp (J5(T)) =

Using this and the convergence of Zzejw
it follows that

dimp (J;°(T)) <

9

h h
o and dimpg (7, (7)) < o
1-|—cr)

Also, note that the intersection of J(1') with some arbitrary B(e(w), To(y) 18 con-
tained in Il(c¢(w)), the pull-back to ¢(w) of the Fatou flower at w. Using (LBP),
we see that for each petal m; C Il(¢(w)) we have that the largest canonical ball
which is contained in B(c(w),r c(w)) N 7, lies at the rim of B(c¢(w), ri(tf;) and is of

size comparable to rl("'C;(l-I-p( w))

may cover B(c(w),r 1(‘"6;) NJ(T) with Euclidean balls of the size rl(-l_C;(l-I_p( “) | such
—op(w)

that the number of these balls is comparable to r o) We call this particular

. Now, a simple FEuclidean argument gives that we

cover the ‘associated cover’ (note that the balls in the associated cover are of course
not necessarily canonical balls). If in the above ‘natural cover’ of J:°(T') we replace
each of the o-reduced canonical balls by its associated cover, then this gives an
alternative way of covering J:°(T') . For this cover we have that

Z TZ_UP(W) r§(1+0(1+p(W))) { COI‘WergeS for s 2 1"‘2{37‘2%3’))
eIz (T) diverges for s< T (L 40(0))"
Hence, it follows that
h+ op(w)

dimpy (7,°(T)) < 1+ o(l+pw))

For h > 1, a combination of the above two upper bounds for dimg (7> (T)), to-
gether with an elementary calculation, now gives that

dim g (7(T)) < { _lff for c>h-1
lmH ol g ]’L-l—CT ( )
W:M for o < h —1.
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Hence, this completes the calculation of the Hausdorff dimension for J¢(7T). In
order to derive dimg (7 (7)), note that for w,n € Q@ with p(n) < p(w), we have
for ¢ < h—1 that
htopw) _ _ htop@®)
L+ o(l+pw) = 14+a(l+p(n)

Hence, it follows that

h
—= for o>h—1
Thothpmy  or o<h-L
Finally, for h < 1, we immediately derive from the above that
dimp (7,(T)) = =
imgr (7, =1ro

Thus, the proof of Theorem 1 is complete.

6 Weak singularity spectra of the /-conformal measure

In this section we give the proof of Theorem 2. We apply Theorem 1 in order to
derive the weak singularity spectra of the h-conformal measure m.

Proof of Theorem 2:

We consider the cases ‘h=1",‘h < 1’ and ‘h > 1’ separately.

e For h =1, the weak singularity spectra are trivial. This follows from (GF), since
in this case we have for all £ € J(T) and 0 < r < diam(J(T)) that ¢(£,r) < 1,
which implies that m(B(&,r)) < 7", and hence,

o logm(B(E, 1)

r—0 logr

= h.

o For h < 1, we define
M, = {€ € J,(T) s m(B(&,1)) i, 't g hmDpmas/O4) |

where ‘>»;, 7 indicates that the inequality holds ‘infinitely often’, i.e. for some
decreasing sequence of radii tending to zero. An elementary calculation shows that

if, for w € Q, we let
Upmax

) = T T o (r@) — poes)

b

then we may write

Mo = | T&,(D).

wEQ
Now, an application of Theorem 1 gives that

h(l = 0(Pmar = W) /pw)) - _h
1+o0 ~— 140

dim g (T, (1)) < dimp (To(u)(T)) =
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Hence, since in particular, for n € Q such that p(n) = pmar, we have that
j:(n)(T) C M, and dimH(j:(n)(T)) = dimg(JJ(T)) = h/(1 + o), it follows

that
h

- 1+0
If welet 8 :=h+0(h—1)pmaes/(1+ o), or what is equivalent o = (0 —h)/(h— 6+
(h — 1)pimaz) , then it follows for h+ (h — 1)pmar < 0 < b that

dimg(M,)

. 0 h
dimp (Z%(m)) = = pman (0= (h+ (h = D)pnaz)) -

Furthermore, for 8 > h we have that Z%(m) = J,(T) , and hence that dim g (Z%(m)) =
h. Finally, if 8§ = h+ (h — 1)ppas then Z%(m) = Useap(w)=pmas 75 (T) , and if
0 < h+(h—1)pmas then Z%(m) = 0. Hence, for § < h+ (h—1)pya. we have that
dimy (Z%(m)) = 0.

For the remaining spectra in this case, note that (GF) implies that for all £ € J(T')
and all positive r < diam(.J(7)) we have that m(B(£,r)) > r". Now, note that
for § < h the inequality m(B(£, 7)) < r¥ holds r-eventually (i.e. uniformly for
arbitrary small values of r) at least for all £ in the uniformly-radial Julia set

Jur (T) , where ?

Jur (T) =€ J(T): T e=¢(§) >0 such that ri() <ec VieN}.
riv1(§)

For 6 > h this inequality is r-eventually never satisfied, for any £ € J(7T'). Using
the fact® that dimpg (J,(T)) = h, it follows that

h for 0<8<h

0 for 6> h.

Also, for 6 < h the inequality m(B(£,r)) < 7% holds for each & € J,(T) at least
for values of r in the hyperbolic zoom (r;(£)); (i.e. on a decreasing sequence of
radii). For 6 > h there exists no such sequence which satisfies this inequality, for
any £ € J(T'). Hence, we have that

‘ h for 0<0<h
dimg (Sg(m)) = 0 for 0 ; h._

Furthermore, we see that for # > h the inequality m(B(&,7)) > ¥ holds r-
eventually for any £ € J(T'). For 6 < h this inequality is r-eventually never
satisfied, for any £ € J,(T'). Hence, it follows that

0 for 0<@<h

h for 0> h.

dimg (Zg(m)) =

dimg (8§%(m)) =

*Note that J.(T) = {& € J(T) : dist(T™(£),Q) > 0 ¥n € N}. Also, note that Ju.(T) is equal
to the so called hyperbolic part of J(T') (cf. e.g. [17]).

®which is an immediate consequence of the fact that dimg(Jur(T)) = inf{s : I s —
conformal measure} for all rational maps T (cf. [15]), combined with the fact that dimg(J(T)) =
inf{s : 3 s — conformal measure} for parabolic rational maps T (cf. [5]). Alternatively, this can
also be obtained, using (GF) and Theorem 3, by the methods in [20].
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This gives the weak singularity spectra of m for h < 1.

e For h > 1, we consider the set
M7 = {5 € Jo(T) : m(B(£,7)) o, 1" T”(h_l)p’"”/(””)}.

For ¢ > h — 1, a similar argumentation as in the case ‘h < 1’ above gives that

B h
T 1406

dim g (M)

Then, if we let as before § := h + o(h — 1)ppmas/(1 + o), it follows for h + (h —
D) piar — P=UPms <0 < b4 (h = 1)ppge that

ke
(h - 1)pmaac
Also, similar as before, we see for 8 > h+ (h — 1)pyas that dimg(Sg(m)) =0, and
that for 0 < § < h we have that dimy(Ss(m)) =h.

For h <0 <h+ (h—1)pmaz — %, or what is equivalent for 0 <o < h—1,
we see that

dimp (Sy(m)) = (h+ (h = Dpmas — ).

M7= | T, (D).

wEQ
Now, using Theorem 1, it follows, for w,n € Q such that p(n) = ppas , that

h+a(w)p(w)
I+ a(w)(1+p(w))

dimp (T%,(T) =

h+ 0pmaz + ho (1 = pras/pw))
14014+ pmax)
h+ opmax
1+ 0(14 pras)
= dimg(TN(T)).

Hence, we have that
h —I_ Upmax

- 1‘|‘U(1‘|’pmax)

Expressing this equality in terms of 8, we deduce for h < 8 < h+ (h — 1)ppas —

(h=omes ghq¢

dim g (M)

(h — 1)(h + (h B 1)pmax) _ h — Pmaz ‘

dlmH(Sé’(m)) = (0 _ 1)pmax Pmaz

For the remaining spectra in this case, note that (GF) implies that we have, for all
€ € J(T) and positive r < diam(J(T)), that m(B(&,7)) < r". Also, note that
for h < 8 < h+ (h — 1)ppas the inequality m(B(£,7)) < ¥ holds r-eventually
exclusively only for certain £ € J,(1'). For 8 > h+ (h — 1)p,ae We even have that
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for small values of r this inequality never holds. Using these observations, we derive
that

R I A N
Also, for @ > h the inequality m(B(&,r)) > 7 holds for each ¢ € J,(T) at least
for r € {ri(§),r2(€),...} (i.e. for a decreasing sequence of radii). For 8 < h there
exists no such sequence which satisfies this inequality, for any £ € J(T') . Hence, we

have that
0 for 0<@<h
: 0 _
dimpr (27(m)) —{ ho for 0> h
Finally, we see that for 6 > & the inequality m(B(£,7)) > r? holds r-eventually
for any £ € J,,(T). For 8 < h this inequality is r-eventually never satisfied, for
any & € J(T). Hence, using once again the fact that dimg(J, (1)) = h, it follows
that
. 0 for 0<@<h
4 _
dimyr (S7(m)) —{ ho for 0> h
This gives the weak singularity spectra of m for h > 1, which then completes the
proof of Theorem 2.
O
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