
Jarn��k and Julia�

a Diophantine analysis for parabolic rational maps

B�O� Stratmann� M� Urba�nski �

Abstract

In this paper we derive a Diophantine analysis for Julia sets of parabolic

rational maps� We generalise two theorems of Dirichlet and Jarn��k in number

theory to the theory of iterations of these maps� On the basis of these results�

we then derive a �weak multifractal analysis� of the conformalmeasure naturally

associated with a parabolic rational map� The results in this paper contribute

to a further development of Sullivan�s famous dictionary translating between

the theory of Kleinian groups and the theory of rational maps�

� Statement of main results

In this paper we derive a Diophantine analysis for Julia sets J�T � of parabolic ra�
tional maps T � �C � �C � We generalise two classical number theoretical theorems of
Dirichlet and Jarn�	k to the theory of iterations of rational maps� We then show that
these results embed in the concept of conformal measures
 where they admit a �weak
multifractal analysis� of the dimH�J�T �� �conformal measure which is naturally as�
sociated with the dynamical system �J�T �� T � � Also
 a combination of the results
in this paper with those for Kleinian groups which we obtained in ���
 ��� and ���
adds another interesting chapter to Sullivan�s famous �Julia�Klein dictionary� ���
�see also ���
 �����
Recall that for parabolic rational maps it is well�known that J�T � � Jr�T ��Jp�T � 

i�e� the Julia set J�T � admits a disjoint decomposition into the radial Julia set
Jr�T � and the countable set of pre�parabolic points Jp�T � ��

S
���

S
n�N T�n��� 


where � denotes the set of rationally indi�erent periodic points ����
 ����� For each
� � � 
 we �x a standard neighbourhood B��� r�� and consider
 roughly speaking

all its holomorphic
 inverse iterates B�c���� rc���� � We call these balls canonical
balls �see section �
 for the precise de�nition��
A major aim of this paper will be the fractal analysis of the Jarn��k�Julia sets� For
� � � and � � � 
 these sets are � lim sup sets� which are de�ned by

J �
� �T � ��

�
n�N

�
rc������n

B
�
c���� r���c���

�
and J��T � ��

�
���

J �
� �T ��
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We call J��T � the � �Jarn��k�Julia set and J �
� �T � the ��� �� �Jarn��k�Julia set�

The following theorem is our �rst main result� The theorem is the natural gener�
alisation to Julia sets of Jarn�	k�s Theorem in number theory ����� concerning the
Hausdor� dimension of well�approximable irrational numbers �see section ��� �Note

analogous results for limit sets of geometrically �nite Kleinian groups with parabolic
elements are obtained in ���
���
�����

Theorem �

Let T be a parabolic rational map with Julia set of Hausdor� dimension h � For
� � � and � � � � the Hausdor� dimension �dimH� of the � �Jarn��k�Julia set and
the ��� �� �Jarn��k�Julia set are determined by the following� where p��� denotes the
number of attracting petals associated to � � and pmin �� min��� p��� �

� If h � � � then dimH�J��T �� �
h

��� �

� If h � � � then dimH�J �
� �T �� �

�
h

��� for � � h� �
h��p���

������p���� for � � h� ��

and hence� we have in particular that

dimH�J��T �� �

�
h

��� for � � h� �
h��pmin

������pmin�
for � � h� ��

An essential ingredient in the proof of this theorem is to show that
 much as for
Kleinian groups �����
 for parabolic rational maps there exists a generalisation of
Dirichlet�s Theorem in number theory �see section ��� Roughly speaking
 this result
shows that the Julia set admits economical
 arbitrarily �ne coverings and packings
by �nitely many canonical balls whose radii are diminished in a �dynamically con�
trolled� way� In fact
 this generalisation implicitly reveals the �hidden ��dimensional
dynamics� of the rational map� For the explicit statement of this result we refer to
section �
 Theorem ��
In our �nal result we apply Theorem � and derive some interesting insight into
the multifractal nature of the associated h �conformal measures m � It is well�
known that the scaling behaviour of m �uctuates between two extreme power laws

namely on the one hand the �hyperbolic law� which is realised with the power h on
a sequence of shrinking balls around elements in Jr�T � 
 and on the other hand the
�parabolic law� which for each � � � is eventually realised uniformly with the power
h�p����h��� around the backward orbits of � � Now
 our weakmultifractal analysis
shows that these two extreme scaling behaviours of m are in fact partial aspects of
certain continuous spectra of this measure� In order to state this application more
precisely
 we recall from ��� the following notion of the weak singularity spectra of
a measure�

De�nition

Let 	 denote a Borel probability measure on R
n � For 
 � � � we de�ne the following

sets�

�



I��	� �� f� � supp�	� � lim inf r��
log��B�	
r��

log r � 
g �

I��	� �� f� � supp�	� � lim inf r��
log��B�	
r��

log r � 
g �

S��	� �� f� � supp�	� � lim supr��
log��B�	
r��

log r � 
g �

S��	� �� f� � supp�	� � lim supr��
log��B�	
r��

log r � 
g �

The collections of Hausdor� dimensions of these sets� for 
 � � � are referred to as
the weak singularity spectra of 	 �

The following theorem will be the �nal result in this paper� The theorem gives a
complete discription of the weak singularity spectra of the h �conformal measure
associated with a parabolic rational map� �Note that for limit sets of geometrically
�nite Kleinian groups with parabolic elements the weak singularity spectra of the
Patterson measure was derived in ��� �see also ������

Theorem �
The weak singularity spectra of the h �conformal measure m of a parabolic rational
map with Julia set of Hausdor� dimension h are determined by the following� where
we have set pmax �� max��� p��� �

� If h � � � then the weak singularity spectra of m are trivial� Namely� in this
case we have for all � � J�T � that

lim
r��

logm�B��� r��

log r
� h�

� If h � � � then

dimH�I
��m�� �

��	
�


� for � � 
 � h� �h� ��pmax
h����h��h���pmax��

���h�pmax
for h� �h� ��pmax � 
 � h

h for 
 � h

dimH�S��m�� �

�
h for � � 
 � h
� for 
 � h�

� If h � � � then

dimH�S��m�� �

�����	
����


h for � � 
 � h
�h����h��h���pmax�

�����pmax
� h�pmax

pmax
for h � 
 � h�h��h���pmax���h���pmax

h
h�h��h���pmax���

�h���pmax
for h�h��h���pmax���h���pmax

h � 
 � h� �h� ��pmax

� for 
 � h � �h� ��pmax�

dimH�I��m�� �

�
� for � � 
 � h
h for 
 � h�
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Figure �� The most interesting spectra for pmax � �

� For h � � and h � � � we have that

dimH�I��m�� �

�
h for � � 
 � h

� for 
 � h�

dimH�S
��m�� �

�
� for � � 
 � h
h for 
 � h�

Remark	 At the current state non of the existing general formalism in Fractal
Geometry and Dynamical Systems allows to deduce the results which we obtain in
this paper� For instance
 if for h �� � we combine our estimates of the weak sin�
gularity spectra and the fact that m has a �at R�enyi dimension spectrum equal
to h �cf� ����
 then we see that m can not be analysed by the currently exist�
ing multifractal formalism� Furthermore
 for hyperbolic rational maps T one can
de�ne � �Jarn�	k�Julia sets J hyp

� �T � in a similar way as we did in this paper� Of
course
 in this expanding case the canonical balls are centred at elements of the
uniformly�radial Julia set�� In this purely hyperbolic case we always have that
dimH�J hyp

� �T �� � h��� � �� 
 and in terms of the thermodynamical formalism this
solution represents the �only� zero of the associated pressure function �cf� ���� Now

one might suspect that the most natural extension of this thermodynamical inter�
pretation to the parabolic case is that dimH�J��T �� is equal to the in�mum of the
set of all zeros of the pressure function� But
 the results in this paper show that

�see section 	
 and in particular the footnotes in there�

�



this certainly can not be the right extension� Namely
 for h � � and � � h � � 

Theorem � implies that if � �� �� � �� log jT �j then dimH�J��T �� is strictly less
than the least zero of the pressure function P ��� �

� Preliminaries

Julia sets revisited��

As already mentioned in the introduction
 throughout the paper J�T � denotes the
Julia set of a parabolic rational map T � For an introduction into the basic theory
of iteration of rational maps we refer to ��
��
 ���� Without loss of generality
 we
may assume that J�T � is a compact subset of C � Let ��T � denote the non�empty

�nite set of rationally indi�erent periodic points �parabolic points�� If ���T � ��
f� � � � T ��� � �� T ���� � �g 
 then �since J�Tn� � J�T � for every n � N � we may
assume without loss of generality that ���T � � ��T � �
Recall that for each � � � we can �nd a ball B��� r�� with centre � and su�ciently
small radius r� 
 such that on B��� r�� there exists a unique holomorphic inverse
branch T��� of T with the property that T��� ��� � � � For the iterates of this
branch on B��� r�� 	 J�T � n f�g 
 the following two facts are obtained in ��
  ��

�LBP� 
�local behaviour around parabolic �xed points��
For � � B��� r��	 J�T � n f�g and n � N we have that

� j� � T�n� ���j 
 ��n��p����

� j�T�n� �����j 
 ��n���p�����p����

where the �comparability constants are dependent on the distance of the chosen
point � from the parabolic point � �

Recall that the set of pre�parabolic points Jp�T � is given by Jp�T � ��
S�
k�� T

�k���T �� 

and that for parabolic rational maps the radial Julia set Jr�T � is equal to J�T � n
Jp�T � �cf� ���
 ��
 ����� Also
 here there exists a constant � � � such that to each
� � Jr�T � we can associate a unique maximal sequence of integers nj��� such that

the inverse branches T
�nj�	�
	 are well de�ned on B�Tnj�	����� �� � Then
 if we de�ne

rj��� �� j�Tnj�	������j�� 
 the sequence of �radii� �rj����j�N is called the hyperbolic
zoom at � � Similarly
 to each � � Jp�T � we may associate its terminating hyperbolic
zoom �rj����j��
���
l�	� �cf� �����
Furthermore
 in the following
 the concept �canonical ball� will be crucial� For � �
� 
 let I��� �� T���f�g�nf�g � Then
 for each integer n � � and � � � 
 we de�ne
the canonical radius r	 at � � T�n�I���� by

r	 �� j�Tn�����j���

and call the ball B��� r	� the canonical ball at � � Note that the canonical radius
at � is comparable to the last element in the terminating hyperbolic zoom at � �

�



Conformal measures revisited��

Recall from ��
 �� and �� that for a parabolic rational map T there exists a unique
h �conformal measure m supported on J�T � �where h denotes the Hausdor� di�
mension of J�T � �
 i�e� a probability measure with the property that for each Borel
set F � J�T � on which T is injective
 we have that

m�T �F �� �

Z
F
jT ����jh dm����

In ��� we derived the following �geometric formula� for the h �conformal measure

which describes the decay of the measure uniformly around arbitrary points in J�T � �

�GF� 
�geometric formula for the h �conformal measure��
With the notation above� there exists a function  � J�T � � R

� � R
� such

that for each � � J�T � and for every positive r � diam�J�T �� we have that

m�B��� r�� 
 rh  ��� r� �

The values of the conformal �uctuation function  are determined� for positive
r � diam�J�T �� � by the following�

� If � � Jr�T � � and r relates to the hyperbolic zoom at � such that
rj����� � r � rj��� and such that T k��� � B��� r�� � for all k �
�nj���� nj������ and for some � � ��T � � then

��� r� 


��	
�

�

r
rj�	�

��h���p���
for r � rj���

�
rj���	�
rj�	�

������p����
�
rj���	�

r

��h���
for r � rj���

�
rj���	�
rj�	�

������p���� �

� If � � Jp�T � and r exceeds the canonical radius r	 � then ��� r� is
determined as above in the radial case by means of the terminating hy�
perbolic zoom at � � Otherwise� if r � r	 and � is a pre�image of � � � �
then

��� r� 


�
r

r	

��h���p���

�

� The Julia set in the spirit of Dirichlet

In this section we give for parabolic rational maps a generalisation of a classical
theorem in the theory of Diophantine approximation due to Dirichlet� This result
will provide us with economical
 �nite coverings and packings of the Julia set which
are closely connected to the �hidden � �dimensional dynamics� of the rational map�
In order to motivate our generalisation
 we �rst recall the classical Dirichlet theorem�

Dirichlet�s Theorem� There exists a universal constant � � � such that for
each su�ciently small � � � the following holds� For every x � R

� there
exist p� q � N co�prime with ��q� � � � such thatx� p

q

 � �
q
��q��

�



We now generalise this theorem to the situation of a parabolic rational map T � The
reader is asked to recall the notion of a canonical ball given in the previous section�
For any small number � � � 
 we associate to each canonical ball B�c���� rc���� 
 for
which rc��� � � its � �canonical Dirichlet ball B�c���� rc���
�� 
 which is determined
by

rc���
� �� ������p���� r
p�������p����
c��� �

Using this notation
 we now state our generalisation of the Dirichlet theorem� �Note
that this result has already been announced in ���
 and also that for geometrically
�nite groups a similar generalisation of the Dirichlet Theorem was derived in �����

Theorem 	 Let T be a parabolic rational map� There exist universal constants
�c� �p� �� � � � depending only on T � such that for each � � � and for each
� � � � �� the following holds�


i� The family
n
B�c���� �p rc���
�� � rc��� � �

o
provides a packing of J�T � �


ii� The family
n
B�c���� �c rc���
�� � rc��� � �

o
provides a covering of J�T � �

Proof�
Proof of 
i�	� For this it is su�cient to show that for all � � � and for su�ciently
small �� � � � the family

F��� �� ��� fB��� r�
��g

provides a packing of J�T � � Here we have set

F��� �� �� �� fB�c���� �rc���
�� � c��� �
�
n��

T�n�I����� rc��� � �g�

For the following we shall assume that � � � is chosen su�ciently small such
that B��� �� 	 B��� �� � � 
 for all distinct �� � � � � Also
 recall that for each
y � J�T � n B��� �� 
 n � � and x � T�n�y� there exists a holomorphic inverse
branch T�nx � B�y� �
� � �C of Tn such that T�nx �y� � x � Let us �x � � � and
� � � 
 where � will get adjusted throughout the construction� For convenience we
write p � p��� � Suppose that F��� �� �� is not a packing� Then we have
 for some
positive k � n and for some x � T�k�I���� and y � T�n�I���� 
 that there exists

z � B
�
x� �������p�j�T k���x�j�p����p�

�
	B

�
y� �������p�j�Tn���y�j�p����p�

�
���

with the property that j�T k���x�j�� and j�Tn���y�j�� both exceed � � Hence
 our
aim will be to show the coincidence of the two balls

B
�
x� �������p�j�T k���x�j�p����p�

�
and B

�
y� �������p�j�Tn���y�j�p����p�

�
�

 



Using Koebe�s ��� �distortion theorem �cf� ����
 we have that

T�kx �B�T k�x�� 
�� � B

�
x�




�
j�T k���x�j��

�

� B

�
x�




�
j�T k���x�j������p�j�T k���x�j�p����p�

�

� B

�
x�




�
������p�j�T k���x�j�p����p�

�

� B
�
x� �������p�j�T k���x�j�p����p�

�
� ���

where in the last inclusion we assumed that � � 
�� � If k � n then we have either
that the two balls in ��� coincide �in the case when x � y � and we are done
 or that
they are disjoint �when x �� y �
 which contradicts the fact that z belongs to both
of these balls
 and hence we are done as well� Thus
 we may assume that k � n �
Using ��� and applying Koebe�s distortion theorem
 we get
 with K the positive
constant originating from this theorem for the �scale ��� � �����
 that

jT k�z�� T k�x�j � K�������p�j�T k���x�j�p����p�j�T k���x�j

� K�������p�j�T k���x�j�����p��

Hence
 we have that

jT k���z�� �j � jT �T k�z��� T �T k�x��j � K jjT �jj � �� j�T k���x�j������p�� ���

Since ��� is obviously true with k replaced by n 
 an application of Koebe�s distor�
tion theorem gives that

j�Tn���y�j�� � K j�Tn���z�j�� � K j�Tn�k���T k�z��j��  j�T k���z�j��

� K� j�Tn�k���T k�z��j��  j�T k���x�j��

� K� jjT �jj  j�Tn�k�����T k���z��j�� j�T k���x�j��� ���

It follows from ��� and ��� applied with k replaced by n that Tn�k���T k���z�� �
Tn�z� � B�Tn�y�� 
� � Since Tn�y� � I��� 
 assuming that 
 and � are taken small
enough
 we may therefore conclude that Tn�k���T k���z�� �� B��� �� � Hence there
exists a least l with � � l � n � k � � such that T l�T k���z�� �� B��� �� � Since
T l�T k���z�� and Tn�k���l�T k���l�z�� � Tn�z� are not in B��� �� 
 there exists an
integer t � � such that Tn�k���l�T k���l�z�� � T �t�T k���l�z�� 
 where T � denotes
the jump transformation de�ned in �� �also
 cf� ��
 ��� and ����� By ��
 the map
T � is expanding
 which means that there exist constants C � � and � � � such
that j�T �s���v�j � C �s 
 for all s � N and v � Jr�T � � Hence
 we have that

j�Tn�k�����T k���z��j � j�T l���T k���z��j  j�Tn�k���l���T k���l�z��j

� j�T l���T k���z��j  j�T �t���T k���l�z��j

� C�tj�T l���T k���z��j � Cj�T l���T k���z��j�

�



Using ��� and �LBP�
 it now follows
 for some universal constant C� � � 
 that

j�Tn�k�����T k���z��j � C C� jT
k���z�� �j����p�

� C C� �K jjT �jj ������p� ��� j�T k���x�j���

Combining this estimate and ���
 we obtain with D �� Kp�	jjT �jjp���CC��
�� that

� � j�Tn���y�j�� � K�jjT �jj  j�T k���x�j���CC��
���KjjT �jj����p�j�T k���x�j

� D���p� � ��

where in the last inequality we assumed that � � D������p� � This contradiction
shows that the family F��� �� �� is a packing� In order to complete the proof
 assume
that for some q � � and for some x � T�q�I���� such that j�T q���x�j�� � � 
 we
have that

B
�
�� �������p�

�
	 B

�
x� �������p�j�T q���x�j�p����p�

�
�� ��

This assumption implies that for every y � I��� it holds that

B
�
y� ���������p�

�
	 B

�
T��y �x�� ���������p�j�T q�����x�j�p����p�

�
�� ��

as well as that j�T q�����x�j�� � �� � Here we have put �� �� �jjT �jj�� and ��

denotes some constant multiple of � � For su�ciently small � this non�empty inter�
section clearly contradicts the fact that the family F��� ��� ��� is a packing� Hence

the statement �i� of the theorem follows�

Proof of 
ii�	� For this it is su�cient to show that there exist �c and �� � � such
that for any � � �c and � � �� the family F��� �� �� provides a covering of
J�T � 
 for each � � � � Hence
 let us now �x � � � and � � � 
 where � will get
adjusted throughout the construction� Complementary to the previous discussion in
�i�
 we now assume that � is chosen su�ciently small such that jT ��z�j � � for every
z � J�T �	B��� �� � Furthermore
 let � and 
 be so small that all inverse branches
T�n� are well�de�ned on 
 �neighbourhoods of points in J�T �	

S
���B��� jjT �jj��
� �

Now
 since T � J�T � � J�T � is topologically exact
 we have for su�ciently large
q � � that the family fB�x� 
� � � � n � q� x � T�n�T���I����	 �J�T � nB��� ���g
forms a covering of J�T � nB��� �� � We de�ne

u �� inffjT ��v�j � v � J�T �g and C �� �KjjT �jjq���minf�� ug�

By the choice of � � � 
 we have that after some number of forward iterates each
point in B��� ��nf�g eventually escapes from B��� �� � For a �xed z � J�T �nf�g 

we de�ne

� k�z� �� minfn � � � j�Tn���z�j � C���g�

� l�z� �� minfn � � � Tn�z� �� B��� ��g�

� j�z� �� minfk�z�� �� l�z�g�

�



Since l�z� is �nite
 we have in particular that j�z� is �nite� Now
 let us assume
�rst that j�z� � l�z� � l � In this case l�z� � k�z�� � 
 which implies that k�z� � �
�note that here we assume � � CjjT �jj�� �� Hence
 by our choice of q 
 there exist
� � s � q and y � T�s�I���� n B��� �� such that T l�z� � B�y� 
� � If we let
x �� T s�y� 
 then Koebe�s distortion theorem implies that

z � B�T�lz �y�� K
j�T�lz ���y�j�

� B�T��l�s�z �x�� K
j�T��l�s�z ���x�j  j�T s���y�j�

� B�T��l�s�z �x�� �j�T��l�s�z ���x�j��

where we have assumed that � � K
jjT �jjq � K
jjT �jjs 
 and where T�lz � B�y� �
��
�C and T

��l�s�
z � B�y� �
�� �C denote the holomorphic inverse branches of T l and

T l�s respectively
 which respectively send T l�z� and T l�s�z� to z � By choice of
the constant C and using Koebe�s distortion theorem
 we have that

j�T��l�s�z ���x�j � K��j�T��l�s�z ���z�j � K��j�T l���z�j��j�T s���T l�z��j��

� K��C���jjT �jj�s � �KjjT �jjs�����C��� � ��

Hence
 the proof for the case j�z� � l�z� is complete�
We now consider the case j�z� � k�z� � � � For simplicity
 let us write k instead
of k�z� and l instead of l�z� � Here we have that j�T k�����z�j � C��� 
 that
j�T k���z�j � C��� 
 that all points z� T �z��    � T k���z��    � T l���z� are contained
in B��� �� 
 and that T l�z� �� B��� �� � If we write as before p � p��� 
 then
 using
�LBP�
 we have
 for universal constants C� � � and C� � � 
 that

C��� l���p � jz � �j � C�l
���p� ���

C��� l����p��p � j�T l���z�j�� � C� l
����p��p� ���

Hence
 by our choice of k and l 
 since j�T l���z�j � j�T l�k���T k�z��j  j�T k���z�j �
j�T k���z�j and assuming that � � �C��C��C����p��� 
 it follows that

jz � �j � C�l
���p � C�C

�����p�
� j�T l���z�j������p� � �

� C�

�
C� C

�� �
������p�

� ��� � ������p�� ���

If we let n � � denote the largest integer such that

C�n
���p��p � jjT �jj�q���� ���

then we have in particular that n � � �for � � C��� jjT �jj�q �
 and that

n�p����p � ���p����p�n� ���p����p � ���p����pC��� jjT �jj�q���� ����

Our choice of q implies the existence of s with � � s � q and v � T�s�T���B��� �jjT �jj�

�nf�g�nB��� ��� 
 such that for x � T�n� �v� � T��n�s��I���� �using ��� and �LBP�

and recalling that x � T s�y� � we have

j�T s�n���x�j � j�Tn���x�j  j�T s���v�j � C� n
�p����pjjT �jjq � ���� ����

��



On the other hand
 if we combine ���� and �LBP�
 we have that

jx� �j � C� n
���p � C� �

��pC
��p
� jjT �jjq��p�������p��� � ��� � ������p�� ����

where we assumed that � � C�C
��p
� ����p��p jjT �jjq��p��� � Combining this inequality

and ���
 we get that jz � xj � �������p� 
 which of course
 as follows from ����
 is
true in particular for z � � � This completes the proof of the statement 
ii� in the
theorem�

�

� Counting canonical balls

In this section we derive an estimate for the number of equally sized canonical balls
contained in a small neighbourhood around a pre�parabolic point� More precisely

for �xed �� � � � and for � � � we estimate the cardinality of the set of roughly
equally sized canonical balls of the kind B�c���� rc���� which are contained in a � �

reduced canonical ball B�c���� r���c���� � We show that this cardinality is governed
by the quotient of the conformal measure of these two balls� This estimate will be
crucial in the following section�
We introduce the following notation� For � � � � � 
 n � N and �� � � � 
 we
de�ne

!�
n��� �� fc��� � Jp�T � � �
n�� � rc��� � �ng �

"�
n�c���� �� �� �� fc��� � !�
n��� � B�c���� rc���� � B�c���� r���c����g �

Proposition �

There exist �� c�� c�� c� � � and an increasing function � � N� R
� with the follow�

ing property� For any �� � � � and c��� � !�
n��� for some n � c� � we have for
m � ��n� that

c� �
h�n�m���n�h��h���p���� � card�"�
m�c���� �� ���� c� �

h�n�m���n�h��h���p���� �

Note	 This estimate of card�"�
m�c���� �� ��� does not depend on � � � �
Proof�

Since our proof follows closely the proof of the corresponding result for geometrically
�nite groups
 we here give only the crucial estimates� For further details we refer to
��� �Proposition ���
Let c��� � Jp�T � be �xed such that rc��� is su�ciently small �i�e� more precisely


such that rc��� � minf��� ���p�����g �� For � � � 
 we de�ne "� �� fc��� �

Jp�T � � B�c���� rc���� � B�c���� r���c����g � Now
 using Theorem � and after performing

some elementary calculations �cf� ����
 we obtain for su�ciently small � � � �i�e�

more precisely
 for � � r
������p����
c��� ����c� 
 where �c is the �covering�constant� of

Theorem �� that

m�B�c���� r���c����� 
 m�B�c���� rc���
��� �
X

c������
rc�����

m�B�c���� rc���
���� ����

��



Using �GF�
 we see that for rc��� � � we have

m�B�c���� rc���
��� 


�
�rc���

�
�

rc���

������p����
�
A
h �
�
�

�

rc���

������p����
�
A
�h���p���

� �h
�
rc���
�

�p�������p����
�

Using this estimate
 we derive from ���� that

��h m�B�c���� r���c����� 


�
rc���

�

�p�������p����
�

X
c������
rc�����

�
rc���

�

�p�������p����
� ����

If we let � �� �m 
 for some su�ciently small � � � 
 then a simple calculation �cf�
���
 p� ���� shows that ���� impliesX

c������

�m���rc�����
m

� 
 ���m��� h m�B�c���� r���c������

Now
 if we choose n � N such that c��� � !�
n��� 
 and apply once again �GF�

then it follows that

m�B�c���� r���c����� 
 r
h�����
c��� r

��h���p���
c���


 �nh�n��h��h���p����

Hence
 by combining the two latter estimates
 it follows thatX
c������

�m���rc�����
m

� 
 �h�n�m��n��h��h���p�����

which gives the statement in the proposition� �

� The Julia set in the spirit of Jarn��k

In this section we give the proof of Theorem �
 i�e� we give for parabolic rational
maps a generalisation of a classical theorem in the theory of Diophantine approxi�
mation due to Jarn�	k ��� �which was obtained slightly later independently also by
Besicovitch ���� In order to motivate this generalisation
 we �rst recall this classical
result of Jarn�	k�

Jarn
�k�s Theorem� The Hausdor� dimension of the set of well�approximable
irrational numbers is determined by the following� For � � � � we have that

dimH

��
x � R �

x� p

q

 � �q������ for in�nitely many reduced
p

q

��
�

�

� � �
�

��



We now generalise this theorem to the situation of a parabolic rational map� The
proof follows closely the construction in ��� and ���
 where we derived a similar
generalisation of Jarn�	k�s theorem to the theory of Kleinian groups�
Throughout
 we assume that � � � and � � � are given
 and that � � � is chosen
according to Proposition �� The key for getting the lower bound of dimH�J �

� �T ��
is �rst of all the explicit construction of a set C���� � J �

� �T � � Similar to a � �
dimensional Cantor set
 this set is the lim sup set of in�nitely many approximations
�or generations� of the set with an increasing resolution� Here it is important that
each of these generations consists of roughly equally sized
 � �reduced canonical
balls
 and that the ratio of the diameters of members of �successive generations�
decreases to � 
 whereas the number of elements of a generation which are contained
in exactly one member of the previous generation increases exponentially fast� The
task will then be to give a su�ciently good quantitative description of this set�
We start with the construction of the set C���� � For this let fskgk�N denote a
strictly increasing sequence of positive integers such that s� is su�ciently large

sk � ��sk��� for all k 
 and further that s��n

Pn��
j�� sj � � for n � � � Now
 �x

an element z� � !�
s���� and let C� �� B�z�� r
���
z� � � Then de�ne inductively the

generation Ck for k � N by��

if Ck�� is de�ned
 then Ck �� fB�c���� r���c���� � c��� � "�
sk�z� �� ��

for some z � !�
sk����� such that B�z� r���z � � Ck��g�

Without loss of generality
 we may assume that each element in Ck�� contains ex�
actly Nk elements of Ck 
 where we have set Nk �� minz�
��sk�� �� card"�
sk�z� �� �� �

Hence
 we can now de�ne C���� ��
T
k��

S
C�Ck

C 
 and instead of C���� we shall
usually just write C� 
 where it is clear which parabolic point � is involved�
Next
 we construct a probability measure on C� by renormalising the h �conformal
measure m on each Ck 
 i�e� for all k � N de�ne a probability measure m�
k on Ck
such that for Borel sets F � �C we have

m�
k�F � �
X
I�Ck

�N�  � � � Nk�
��m�F 	 I��m�I��

�Note that we could have de�ned m�
k also just as a �counting measure�
 i�e� for
the purposes in this paper it is not relevant that m�
k depends on m �� Using
Hellys Theorem
 we obtain a probability measure m� on C� as the weak limit of
the sequence of measures fm�
kg � Note that m�
k�I� � m��I� 
 for each k � N and
I � Ck �

Lemma �

For each � � C� and r such that �sk�� � r � �sk���� for some k � N � the ball
B��� r� intersects exactly one element in Ck�� and

cardfC � Ck � C 	 B��� r� �� �g � ��hsk m�B��� r�� �

��



Proof�
Let � and r be given as stated in the lemma� Now
 �rst note that
 by Theorem
� �i�
 we may assume without loss of generality that the canonical balls B�z� �rz� 

which have the property that B�z� r���z � � Ck�� 
 are pairwise disjoint� In order to
see that B��� r� intersects exactly one element of Ck�� 
 note �rst that since � � C� 

there exists a unique B�c���� r���c���� � Ck�� containing � � Now
 if B��� r� would

not be fully contained in B�c���� rc���� 
 then it would follow that

r � rc��� � r���c��� � �sk������� ��sk��� � �sk�����

which contradicts our assumption concerning the size of r �
For the second assertion in the lemma note that if B�c���� r���c���� � Ck intersects

B��� r� 
 then we have that B�c���� rc���� � B��� r � rc��� � r���c���� � Using this
observation and the pairwise disjointness of the canonical balls which we mentioned
at the beginning of the proof
 it follows that

cardfC � Ck � C 	B��� r� �� �g min
B�z
r���z ��Ck

m�B�z� rz��

� max
B�z
r���z ��Ck

m�B��� r� rz � r���z ��

� m�B��� r���

where in the last inequality we made use of the fact that m is a doubling measure

which is an immediate consequence of �GF�� Now
 since for B�z� r���z � � Ck we have
that m�B�z� rz�� 
 �hsk 
 the lemma follows� �

Lemma �

For each � � � there exists ro��� � � with the following property� For all � � C�

and � � r � ro��� such that �sk � r � �sk�� for some k � N �

m��B��� r��� m�B��� r�� ��sk�����h��h���p������� �

Proof�
Let � and r be given as stated in the lemma� By construction of the measure m�

and using Lemma �
 it follows that

m��B��� r�� �
kY

j��

N��
j cardfC � Ck � C	B��� r� �� �g � ��hskm�B��� r��

kY
j��

N��
j �

Hence
 using Proposition �
 it follows that

m��B��� r�� � ��skhm�B��� r��c
��k���
� �h�sk�sk������sk���h��h���p����

� �h�sk���so��
���h��h���p����

Pk��

j��
sj

� m�B��� r��

� �
sk������h��h���p�����s

��
k��

�so���h��h���p����
Pk��

j��
sj��k����log c���log����� �

��



By our choice of the sequence fskg 
 we have for each � � � that for su�ciently
large k it holds that

�

sk��

�
�so � ��h� �h� ��p����

k��X
j��

sj � �k � ���log c���log��
���

�
A � � �

Using this inequality in the latter estimate
 the lemma follows� �

Proposition �

� If h � � � then for each � � � � � � C���� and � � � � there exists r� �
r���� �� � � such that for all � � r � r� we have that

m��B��� r���

�
rh�������� for � � h� �

r�h��p������������p������� for � � h� ��

� If h � � and � � � such that p��� � pmax � then it holds that for each
� � C���� and � � � � there exists r� � r���� �� � � such that for all � � r � r�
we have that

m��B��� r��� rh���������

Proof�

Let � � C���� be given� Without loss of generality assume that �sk � r � �sk��

and that � � B�c���� r���c���� � Ck�� � We then have the following�

Case �� For each � � � � there exist k� � k���� �� such that for all k � k� the
following holds� If ��sk������ � r � �sk�� � then

m��B��� r��� rh���������������

Proof� By construction of m� 
 we have that m��B�c���� rc����� 
 m��B�c���� r���c����� �
Using this observation
 Lemma � implies that

m��B��� r�� � m��B��� r���c�����

� m�B��� r���c����� �
�sk�����h��h���p�������


 rhc��� r
��h��h���p����
c��� ��sk�����h��h���p�������


 rhc��� r
��
c���



�
r���c���

��h���������
� rh������ r���������

Case �� For each � � � � there exist k� � k���� �� such that for all k � k� the

following holds� If ��sk���������p���� � r � ��sk������ � then

m��B��� r���

�
rh������ r�������� for � � h� �

r�h��p������������p���� r��
�

for � � h� ��

��



where �� denotes some constant multiple of � �

Proof� Let r � �sk��������� for some � � � � �p��� � Also
 without loss of
generality we may assume that � � C� n J �

����T � 
 for some su�ciently small
� � � � For the hyperbolic zoom at � we have that rj��� � rc��� 
 for some
j � N � An elementary calculation
 using �LBP�
 gives that

r
����������p����
c��� � rj����� � r

������p����
c��� �

We �rst consider the case � h � � �� Applying �GF�
 it follows that �note that

by choosing � su�ciently small
 we can guarantee that we are in the situation
of �the second part in �GF� concerning � � Jr�T � ��

m�B��� r��� rh
�
rj�����

r

�h��
� rh

�
�r

������p����
c���

r

�
A

h��

�

Thus
 using Lemma �
 it follows that

m��B��� r�� � m�B��� r�� ��sk�����h��h���p�������

� rh

�
�r

������p����
c���

r

�
A
h��

��sk�����h��h���p�������

� �sk��h�������
�
�sk���������p�����

�sk���������

�h��

��sk�����h��h���p�������

� �sk���h�����

�
�
�sk���������

��h�������������
� r�h�������������

�

�
rh������ r�������� for � � h� �

r�h��p������������p���� r�������� for � � h� ��

Hence
 the statement follows in the case that h � � � Now
 for h � � 
 we
similarly see that

m�B��� r�� � rh
�
rj�����

r

�h��

� rh

�
�r

����������p����
c���

r

�
A

h��

� r  r
�h��������������p�����
c��� �

and hence
 that

m��B��� r�� � m�B��� r�� ��sk�����h��h���p�������

��



� � � �

� �sk���h��� �sk����h������p���� ��sk���

� r�h����������� r��
�

� rh������ r��
�

�

where we have set �� �� ���� h��� � p���� � � 
 and where the last inequality
follows since here
 we trivially have that h � � � � �

Case 	� For each � � � � there exist k	 � k	��� �� such that for all k � k	 and

�sk � r � ��sk���������p���� the following holds�

� If h � � � then

m��B��� r���

�
rh������ r�������� for � � h� �

r�h��p������������p���� r��
�

for � � h� ��

where �� denotes some constant multiple of � �

� If h � � and � � C���� for some � � � such that p��� � pmax � then

m��B��� r��� rh������ r���������

Proof� We �rst consider the case h � � � Here
 we have that

m�B��� r��� rh�

and hence
 using Lemma �
 that

m��B��� r�� � rh ��sk�����h��h���p�������

� rhr����h��h���p���������������p�����

� r�h��p������������p����� r����������p�����

�

�
rh������ r�������� for � � h� �

r�h��p������������p���� r��
�

for � � h� ��

which gives the proof in the case h � � �
For h � � and � � � such that p��� � pmax 
 we assume without loss of
generality that � � C���� n J����T � 
 for su�ciently small � � � � Also
 let r
be related to the hyperbolic zoom at � such that
 for some l � N 
 we have
that rl����� � r � rl��� 
 and that � � � is associated to this particular part
of the hyperbolic zoom � Using once more Lemma � and �GF�
 and the fact
that ��sk�� � r����������p���� 
 we obtain that

m��B��� r�� � rh ��� r� ��sk�����h��h���p�������

� � � �

� r�h��p������������p����� ��� r� r����������p������

� 



Before continueing this estimate
 we now �rst give an upper estimate for the
conformal �uctuation ��� r� � It is su�cient to consider the extreme case
where the �uctuation is largest� Here
 we have for su�ciently small r that

�rl����
����������p���� � rl����� � �rl����

������p���� � ����

Also
 �GF� immediately gives that
 for rl����� � r � rl��� 
 the �uctuation
��� � attains its maximal value for

r � rl���

�
rl�����

rl���

������p����
�

In the following we �x r to be equal to this value� Also
 note that
 with this
�maximal choice� of r 
 ���� and ���� imply that

�rl����
����� � r � �rl����

��� �

We can now estimate the maximal conformal �uctuation as follows�

��� r� 


�
r

rl���

��h���p���



�
rl�����

rl���

��h���p�������p����

� �rl����
������h���p���

�
�
r�������

������p����h���
�

Using the latter inequality
 we now continue the above estimate for m��B��� r�� �

Let �� �� �
������p���� � � ���h��p������ 
 then
 with an elementary argument
 we

see that

m��B��� r�� � r�h��p������������p����� r�h����p��������� r��
�

� rh������ r��
�
�

Here
 the latter inequality follows since

p��� � p��� �
p���

� � p���
�

p������ p����� p���

p������ p����

� h �
p������ p����� p���

p������ p����

�
since h �

p���

� � p���
�cf� ��

�
� p��� � �h� ���� � p���p����� �

� ��p��� � �h� ���� � p���p������ �h� ���p���� p����

�
h � �p���

� � ��� � p����
�

�p����h� ��

� � �
�

h

� � �
�

This completes the proof in the third case�

��



The statement of the proposition now follows by summing up the above three cases�
�

Proof of Theorem ��

We apply the mass distribution principle �cf� e�g� ���� For h � � 
 � � � and
� � � 
 Proposition � implies that

dimH�J �
� �T �� �

�
h

��� for � � h � �
h��p���

������p���� for � � h � ��

For h � � 
 note that dimH�J��T �� � dimH�J �
� �T �� 
 for any � � � � Hence
 in

this case
 Proposition � implies that

dimH�J��T �� �
h

� � �
�

For the upper bounds of dimH�J �
� �T �� and dimH�J��T �� 
 note that fB�z� r���z � �

z � J�p �T �g 
 where J�p �T � ��
S
n�� T

�n��� 
 provides a �natural cover� of J �
� �T � �

Using this and the convergence of
P

z�J�p �T �

�
r���z

�h������
and

P
z�Jp�T �

�
r���z

�h������



it follows that

dimH�J �
� �T �� �

h

� � �
and dimH�J��T �� �

h

� � �
�

Also
 note that the intersection of J�T � with some arbitrary B�c���� r���c���� is con�

tained in !�c���� 
 the pull�back to c��� of the Fatou �ower at � � Using �LBP�

we see that for each petal �i � !�c���� we have that the largest canonical ball
which is contained in B�c���� r���c����	 �i 
 lies at the rim of B�c���� r���c���� and is of

size comparable to r
������p����
c��� � Now
 a simple Euclidean argument gives that we

may cover B�c���� r���c����	 J�T � with Euclidean balls of the size r
������p����
c��� 
 such

that the number of these balls is comparable to r
��p���
c��� � We call this particular

cover the �associated cover� �note that the balls in the associated cover are of course
not necessarily canonical balls�� If in the above �natural cover� of J �

� �T � we replace
each of the � �reduced canonical balls by its associated cover
 then this gives an
alternative way of covering J �

� �T � � For this cover we have that

X
z�J�p �T �

r�� p���z rs�������p�����z

�	

 converges for s � h��p���

������p����

diverges for s � h��p���
������p���� �

Hence
 it follows that

dimH�J
�
� �T �� �

h� �p���

� � ��� � p����
�

For h � � 
 a combination of the above two upper bounds for dimH�J �
� �T �� 
 to�

gether with an elementary calculation
 now gives that

dimH�J �
� �T �� �

�
h

��� for � � h � �
h��p���

������p���� for � � h � ��

��



Hence
 this completes the calculation of the Hausdor� dimension for J �
� �T � � In

order to derive dimH�J
�
� �T �� 
 note that for �� � � � with p��� � p��� 
 we have

for � � h� � that
h� �p���

� � ��� � p����
�

h� �p���

� � ��� � p����
�

Hence
 it follows that

dimH�J��T �� �

�
h

��� for � � h� �
h��pmin

������pmin�
for � � h� ��

Finally
 for h � � 
 we immediately derive from the above that

dimH�J��T �� �
h

� � �
�

Thus
 the proof of Theorem � is complete�
�

� Weak singularity spectra of the h 	conformal measure

In this section we give the proof of Theorem �� We apply Theorem � in order to
derive the weak singularity spectra of the h �conformal measure m �

Proof of Theorem ��
We consider the cases � h � � �
 � h � � � and � h � � � separately�

� For h � � 
 the weak singularity spectra are trivial� This follows from �GF�
 since
in this case we have for all � � J�T � and � � r � diam�J�T �� that ��� r� 
 � 

which implies that m�B��� r�� 
 rh 
 and hence


lim
r��

logm�B��� r��

log r
� h�

� For h � � 
 we de�ne

M� ��
n
� � Jr�T � � m�B��� r���i�o� r

h r��h���pmax������
o
�

where ��i�o� � indicates that the inequality holds �in�nitely often�
 i�e� for some
decreasing sequence of radii tending to zero� An elementary calculation shows that
if
 for � � � 
 we let

���� ��
�pmax

p��� � ��p���� pmax�
�

then we may write
M� �

�
���

J �
�����T ��

Now
 an application of Theorem � gives that

dimH�J �
�����T �� � dimH�J�����T �� �

h ��� ��pmax � p�����p�����

� � �
�

h

� � �
�

��



Hence
 since in particular
 for � � � such that p��� � pmax 
 we have that
J �
�����T � � M� and dimH�J

�
�����T �� � dimH�J �

� �T �� � h��� � �� 
 it follows
that

dimH�M�� �
h

� � �
�

If we let 
 �� h� ��h� ��pmax���� �� 
 or what is equivalent � � �
� h���h� 
�
�h� ��pmax� 
 then it follows for h� �h� ��pmax � 
 � h that

dimH�I
��m�� �

h

��� h�pmax
�
 � �h� �h� ��pmax�� �

Furthermore
 for 
 � h we have that I��m� � Jr�T � 
 and hence that dimH�I��m�� �
h � Finally
 if 
 � h � �h � ��pmax then I��m� �

S
����p����pmax

J�p �T � 
 and if


 � h��h� ��pmax then I��m� � � � Hence
 for 
 � h��h� ��pmax we have that
dimH�I

��m�� � � �
For the remaining spectra in this case
 note that �GF� implies that for all � � J�T �
and all positive r � diam�J�T �� we have that m�B��� r�� � rh � Now
 note that
for 
 � h the inequality m�B��� r�� � r� holds r �eventually �i�e� uniformly for
arbitrary small values of r � at least for all � in the uniformly�radial Julia set
Jur�T � 
 where

�

Jur�T � �� f� � J�T � � � c � c��� � � such that
ri���

ri�����
� c � i � Ng�

For 
 � h this inequality is r �eventually never satis�ed
 for any � � J�T � � Using
the fact	 that dimH�Jur�T �� � h 
 it follows that

dimH�I��m�� �

�
h for � � 
 � h
� for 
 � h�

Also
 for 
 � h the inequality m�B��� r��� r� holds for each � � Jr�T � at least
for values of r in the hyperbolic zoom �rj����j �i�e� on a decreasing sequence of
radii�� For 
 � h there exists no such sequence which satis�es this inequality
 for
any � � J�T � � Hence
 we have that

dimH�S��m�� �

�
h for � � 
 � h
� for 
 � h�

Furthermore
 we see that for 
 � h the inequality m�B��� r�� � r� holds r �
eventually for any � � J�T � � For 
 � h this inequality is r �eventually never
satis�ed
 for any � � Jr�T � � Hence
 it follows that

dimH�S��m�� �

�
� for � � 
 � h
h for 
 � h�

�Note that Jur�T �  f� � J�T � � dist�Tn������ � � �n � Ng � Also
 note that Jur�T � is equal
to the so called hyperbolic part of J�T � �cf� e�g� ������

	which is an immediate consequence of the fact that dimH�Jur�T ��  inffs � � s �
conformal measureg for all rational maps T �cf� �����
 combined with the fact that dimH�J�T �� 
inffs � � s � conformal measureg for parabolic rational maps T �cf� ����� Alternatively
 this can
also be obtained
 using �GF� and Theorem �
 by the methods in �����

��



This gives the weak singularity spectra of m for h � � �

� For h � � 
 we consider the set

M� ��
n
� � Jr�T � � m�B��� r���i�o� r

h r��h���pmax������
o
�

For � � h� � 
 a similar argumentation as in the case � h � � � above gives that

dimH�M
�� �

h

� � �
�

Then
 if we let as before 
 �� h � ��h � ��pmax��� � �� 
 it follows for h � �h �

��pmax �
�h���pmax

h � 
 � h� �h� ��pmax that

dimH�S��m�� �
h

�h� ��pmax
�h � �h� ��pmax � 
� �

Also
 similar as before
 we see for 
 � h��h� ��pmax that dimH�S��m�� � � 
 and
that for � � 
 � h we have that dimH�S��m�� � h �

For h � 
 � h� �h� ��pmax�
�h���pmax

h 
 or what is equivalent for � � � � h� � 

we see that

M� �
�
���

J �
�����T ��

Now
 using Theorem �
 it follows
 for �� � � � such that p��� � pmax 
 that

dimH�J �
�����T �� �

h� ����p���

� � ������� p����
� � � �

�
h� �pmax � h���� pmax�p����

� � ��� � pmax�

�
h� �pmax

� � ��� � pmax�

� dimH�J �
� �T ���

Hence
 we have that

dimH�M
�� �

h� �pmax

� � ��� � pmax�
�

Expressing this equality in terms of 
 
 we deduce for h � 
 � h � �h � ��pmax �
�h���pmax

h that

dimH�S��m�� �
�h� ���h� �h� ��pmax�

�
 � ��pmax
�

h� pmax

pmax
�

For the remaining spectra in this case
 note that �GF� implies that we have
 for all
� � J�T � and positive r � diam�J�T �� 
 that m�B��� r�� � rh � Also
 note that
for h � 
 � h � �h � ��pmax the inequality m�B��� r�� � r� holds r �eventually
exclusively only for certain � � Jp�T � � For 
 � h� �h� ��pmax we even have that

��



for small values of r this inequality never holds� Using these observations
 we derive
that

dimH�I��m�� �

�
h for � � 
 � h
� for 
 � h�

Also
 for 
 � h the inequality m�B��� r��� r� holds for each � � Jr�T � at least
for r � fr����� r����� � � �g �i�e� for a decreasing sequence of radii�� For 
 � h there
exists no such sequence which satis�es this inequality
 for any � � J�T � � Hence
 we
have that

dimH�I��m�� �

�
� for � � 
 � h

h for 
 � h�

Finally
 we see that for 
 � h the inequality m�B��� r��� r� holds r �eventually
for any � � Jur�T � � For 
 � h this inequality is r �eventually never satis�ed
 for
any � � J�T � � Hence
 using once again the fact that dimH�Jur�T �� � h 
 it follows
that

dimH�S��m�� �

�
� for � � 
 � h
h for 
 � h�

This gives the weak singularity spectra of m for h � � 
 which then completes the
proof of Theorem ��

�
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