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ABSTRACT. We study parabolic iterated function systems (IFS) with overlaps on the real
line and measures associated with them. A Borel probability measure p on the coding space
projects into a measure v on the limit set of the IFS. We consider families of IFS satisfying
a transversality condition. In [SSU2] sufficient conditions were found for the measure v to
be absolutely continuous for Lebesgue-a.e. parameter value. Here we investigate when v has
a density in LI(R) for ¢ > 1. A necessary condition is that the g-dimension of u (computed
with respect to a certain metric associated with the IFS) is greater or equal to one. We prove
that this is sharp for 1 < ¢ < 2 in the following sense: if u is a Gibbs measure with a Holder
continuous potential, then v has a density in LI(R) for Lebesgue-a.e. parameter value such
that the g-dimension of p is greater than one. This result is applied to a family of random
continued fractions studied by R. Lyons.

1. INTRODUCTION

We continue to study parabolic iterated function systems (IFS) with overlaps on the real
line. In our joint work with K. Simon [SSU1] we investigated the Hausdorfl dimension of
the limit set. The paper [SSU2| focused on the properties of invariant measures. An ergodic
shift-invariant measure p with positive entropy h, on the coding space induces an invariant
(stationary) measure v on the limit set of the iterated function system. The Hausdorff dimen-
sion of v equals the ratio of entropy over Lyapunov exponent if the IF'S has no “overlaps”.
[SSU2| investigated families of parabolic IF'S which do have overlaps but satisfy a transver-
sality condition. It was proved that for almost every (with respect to the Lebesgue measure)
member of such a family, if the entropy exceeds the Lyapunov exponent, then the invariant
measure is absolutely continuous, otherwise the above-mentioned formula for dimension still
holds. We recall the set-up and the main result of [SSU2| in Section 2.

In this paper we explore the case when the projected measure v is absolutely continuous
and investigate when it has a density in L?(R). A similar question for linear IFS was studied
in [PSo2], and we use some of the methods from [PSo2| here. It turns out that the crucial

role is played by the g-dimension of the measure p computed with respect to a natural
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metric associated with the IF'S. If the g-dimension of p is less than one, then v cannot have
an Li-density, for any ¢ > 1. Our main result is that, under some additional conditions, if
q € (1,2] and the g-dimension of p is greater than one, then typically the projected measure
does have a density in L?(R). The precise formulation is given in Section 3 (see Corollary
3.8). One of the conditions is transversality for the family of IF'S and another one is that y is
a Gibbs measure with a Holder continuous potential. Section 3 contains other results as well,
which are not as sharp, but require only that ;1 be an atomless Borel probability measure (it
need not even be invariant). In the case of a hyperbolic IFS these difficulties disappear, and

we obtain a sharp result for a general measure (see Theorem 3.9).

In Section 4 our results are applied to an interesting family of measures considered by
R. Lyons [L]. These measures (depending on a parameter) correspond to a class of random
continued fractions. Lyons [L] found a threshold parameter above which the measures cannot
have a density in L?(R). We prove that this threshold is sharp by showing that the measures
are absolutely continuous with a density in L?(R) for almost every parameter value in some
interval just below the threshold. We also prove that there is a similar threshold for the

existence of Li-density for any ¢ € (1,2].

2. FAMILIES OF PARABOLIC ITERATED FUNCTION SYSTEMS

Here we recall the set-up and the main result of [SSU2].

Let X C R be a closed interval and 6 € (0,1]. A C'* map ¢ : X — X is hyperbolic if
0 < |¢'(x)] < 1forall z € X. We say that a C'*? map ¢ : X — X is parabolic if the

following requirements are fulfilled:

e there is only one point v € X such that ¢(v) = v;
o [¢/(v)]=1and 0 < |¢'(z)| <1forall z € X\ {v}.
e There exists C; > 1 and 3 = (¢) < 8/(1 —0) (= 00 if § = 1) such that

! -1 ! -1
1 < timing @I 1)~ 1

< (. 2.1
v |z —v|f oo Jz—v]f =1 (2.1)

We will need the following basic lemma on iteration of a single parabolic function. For the

proof see [U, Lemmas 2.2,2.3].

Lemma 2.1. For every neighborhood V' of v there exists a constant L(V') > 1 such that for
allz € X\V and alln > 1,

LV)™ < |¢"(x) — o] - (n +1)7 < L(V); (2.2)
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LV < @Y @) (1) 5 < L(V). (2.3)
Now, following [SSU1, SSU2|, we define the class of parabolic IF'S under investigation.

Definition 2.2. Let ® = {¢1,..., ¢} be a collection of C'*? functions on a closed interval
X C R such that ¢y is parabolic with the fized point v and the other functions are hyperbolic.
We write ® € ' x(0) if, in addition, ¢;(X) C Int(X) \ {v} for alli <k — 1.

Let A= {1,...,k}. We define the natural projection map 73 : A>* — R by setting

{ma(w)} =[] du, (X)

n>1
where w|, = w; ... wy, and ¢y|, = ¢y, 0---00,,. If ® € I'x(f) then the map 7 is well-defined
and continuous (see [SSU1, Lemma 5.6]). We have

7o (W) = Py, (Te(0"w)) forallwe A* and n > 1,
where o is the left shift on A*°. The limit set, or attractor, of the IFS ® is defined by
J@ = T¢ (Aoo)

It is easy to see that .Jo is the unique non-empty compact set such that Jo = {J,., #i(Js).
Let U C R? be an open set. Consider a family of parabolic IFS

Ot ={pt, ... p b} €Tx(0), teU. (2.4)

Although the parabolic function does not depend on the parameter, it is sometimes convenient
to write ¢f = ¢y for t € U. Let 7 : A — R be the natural projection associated with ®*

and denote J; = Jet. Two conditions which control the dependence on t will be needed.

CONTINUITY: the maps
t > ¢ are continuous from U to C'(X) for i <k — 1. (2.5)
TRANSVERSALITY CONDITION: there exists a constant Cy such that for all w and 7 in A>
with W1 7£ T1,
Lo{t e U: |m(w) —me(r)] <71} < Cyr forall r>0 (2.6)

where £, for the Lebesgue measure in R?.

A mild additional condition on the parabolic map ¢, will be needed in our theorems.
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Definition 2.3. Let us say that a parabolic function ¢ on X with the fixed point v is well-
behaved on a connected open neighborhood V' of v if x = v is the only local extremum for
|¢'(z)] on V NX.

Clearly, any real-analytic parabolic function is well-behaved on some neighborhood of the

parabolic point.

For ¢ € C*(X) we write

16'llo = sup{|¢'(z) = ' ()] - lw —y| "+ z,y € X},
and [|®'||g := max{||¢}||g : i € A} for an IFS & = {¢;}ic4. We denote by || - || the supremum
norm on X. Given two IFS ® = {¢,... , ¢} and ¥ = {¢)1,... Y}, we write

— = p—yr | = Ay
1@ — ¥l = max [lg; — ] and |7 — ¥} = max [l¢; — vl
Following [SSU1, SSU2] we introduce additional notation useful for families of IF'S. We write
O eTx(0,V,,u, M)

for ® € T'x(0) if V is a connected open neighborhood of the parabolic point v such that

VN L_J 0i(X) =10, (2.7)
max{[|(¢;)']| : 1 <k -1} <7y € (0,1), (2.8)
min{|¢i(x)|: v € X, i <k} >ue(0,1), (2.9)

and ||®'||p < M. By Definition 2.2, every ® € I'x () belongs to I'x(0,V,~,u, M) for some
V,v,u and M. Given a finite word w € A*, let h(w) denote the number of all hyperbolic
letters (i.e. # k) appearing in w. By (2.8),

oLl < A" forall we A*. (2.10)

We will need three technical lemmas from [SSU1, SSU2|. The first of them is a basic
result on distortion for parabolic IFS; the second one says that if ¢, is well-behaved, then
the derivative of a map ¢, cannot be too small near the parabolic point, and the third one

compares the derivatives at a single point but for two distinct IF'S.

Lemma 2.4. (see [SSUL, Lemma 5.8]). There exists a constant C3 = C5(X,0,V,v,u, M) > 1
such that for every ® € T'x(0,V,y,u, M), allw € A>® and alln > 1,

10, ()]
c;l < EME] <Cy  forall ;yeX\V. (2.11)
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Lemma 2.5. (see [SSU2, Lemma 4.3]). There ezists a constant Cy = Cy(X,0,V,v,u, M) > 1
such that for any parabolic IFS ® € T'x(0,V,~,u, M) with the property that ¢y is well-behaved
on 'V, the following holds: For all w € A* and all n € N,

9 (v )|§C4 forall € X and ye X\ V.

|04, ()]
Lemma 2.6. (see [SSUL, Cor. 6.3]). There ezists a constant C5 = C5(X,0,V,y,u, M) > 0
such that for any two IFS ® = {¢1,... ,¢r} and ¥ ={y,... W}, in Cx(0,V,v,u, M), with
Or = Yy, for allw € A* and oll x € X,

|60 ()|
|5 ()]

The following was the main result of [SSU2|. Recall that the Hausdorff dimension of a
measure v on R is defined by dim v = inf{dim, (F) : v(R\ F) = 0}.

< exp (Csh(w) (J|@ — | + (|2 — ¥'))) - (2.12)

Theorem 2.7. (see [SSU2, Th. 2.3]). Suppose that {®*}, 17 is a family of parabolic IFS (2.4)
satisfying (2.5) and (2.6), such that ¢y, is well-behaved on some neighborhood of v. Let p be
a shift-invariant ergodic Borel probability measure on A> with positive entropy h, and let

=pon;'. Then
(i) for Lebesgue-a.e. t € U,

h
di = mi £ 1
M e = {xu@t) 1

where x,(®%) = — [ .. log|¢l, (me(ow))| du(w) is the Lyapunov exponent of the IFS;

(ii) the measure vy is absolutely continuous for a.e. t in {t € U : > 1}.

hﬂ
X (9*)

It is therefore tempting to ask about the properties of the Radon-Nikodym derivative of
the measure 14 with respect to the Lebesgue measure in the case when the former measure is

absolutely continuous. The next section is devoted to this problem.

Notation. We write Bj(tg) for the open ball of radius § centered at ty and L4 for the
Lebesgue measure in R?. If i is a measure we often write uF without parentheses. Recall
that A = {1,...,k}. For a finite word w € A™ the corresponding cylinder set in A> is
denoted by [w]. For w and 7 in A% we denote by w A 7 their common initial segment, so that
w,T € [wAT] and wy 41 # Tpy1 for n = |w AT|. The symbol < means that the inequality holds

up to an absolute multiplicative constant, and < means that both < and > are true.
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3. L7 DENSITIES

In this section we explore the problem of when the projection measures v are absolutely
continuous with L? densities. It is related to the notion of ¢-dimension of a probability

measure on a metric Space.

Definition 3.1. Suppose that (X, 0) is a metric space, | is a Borel probability measure on
X, and q > 1. The q-dimension of . with respect to the metric o is defined by

D,(p) =sup{t >0: I ,(p) < o0} (3.1)

where Iy (1) is the (t, q)-energy of the measure p, given by the formula

= (] 20" e

Remark. Hunt and Kaloshin [HK, Prop. 2.1] showed that D,(u) equals the lower L9-
dimension of p defined as liminf,_,o(logr) *log [(uB,(x))? ' dp (the upper L7-dimension

is obtained by taking limsup). The upper and lower L?-dimensions are usually denoted
D, (p) and D (), and the L9-dimension is said to exist if D_ (1) = D (). In this paper we

“_»

suppress the sign, since in what follows we only need the definition (3.1); this does not
mean to imply that the L?-dimension of p exists. We note also that in the important case

when ¢ = 2, the L?-dimension of a measure is called its correlation dimension.

The following elementary lemma and its corollary are known; we include a short proof for

completeness.

Lemma 3.2. Let X be a compact interval on the real line and consider the space L1(X) with
respect to the Lebesgue measure. If ¢ > 1 and h € LY(X), then

/X (/X % dy) o h(z)dr < oo forall s <1. (3.3)

Proof. Fix s < 1. Since k(y) = |z — y|~* € L'(X), the convolution (h * k)(z) = [ UC) Ry

lz—yl®

is in L9(X), and hence (h k)7 ' € L71(X). But the latter space is the dual of L¢(X), and
(3.3) follows. O

Corollary 3.3. Let v be a compactly supported Borel probability measure on the real line. If
v is absolutely continuous with a density in LY(R), then D,(v) > 1, where the q-dimension is

computed with respect to the Euclidean metric.
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This is immediate from Definition 3.1 and Lemma 3.2.

Now consider a parabolic iterated function system ® € I'x(0,V,~,u,M). For w € A*
denote

Xu = 0u(X) and X, = ¢u(X \ V).
We equip the coding space A> with two metrics d; and ds given by the formulas (for w # 7):

di(w,7) = | Xonr| and  do(w, ) = [Xons|,

where | - | denotes the Lebesgue measure on R. Notice that Lemma 2.4 implies the existence
of a constant Cg > 0 such that if x € {w, 7} satisfies (¢/“""Ik); # k, then
Cs | Gonr (w0 R))| < | Xuinr| < Col@un (m (o). (34)

Therefore, the metric ds is equivalent to another metric given by the formula

do(w, ) = max {|¢],, (1(“ W), ¢ p, (w (@ I0))[}

Clearly, the ¢-dimension depends only on the Lipschitz equivalence class of the metric; thus,
the q—dimension corresponding to d, is independent of the set V. Let us denote by [,5(2 ()
and Déz)(u), i = 1,2, respectively the (¢, g)-energy and the g-dimension of yu computed with

respect to the metric d;. It is immediate from the definition that
DM () = DP ().

Of course, the metrics d; and ¢-dimensions D(i)( ), i = 1,2, depend on the iterated function
system under consideration, so dealing with families of IFS we will write |X | I it) ( ) and

D{" () to indicate the parameter.
We begin with the proof of the following.

Theorem 3.4. Let p1 be a Borel probability measure on A® and q > 1. If v = pon ! is

absolutely continuous with a density in L1(R), then Dél)(u) > 1.

Proof. Since |7r(w) — 7(7)| < di(w, 7) for all w,7 € A®, we have I, ,(por ') > It(’lq)(,u) for all
t > 0, and hence D (o) < Dél)(u). Now the statement follows from Corollary 3.3. O

Now we are in a position to prove the first new result of this paper. Its proof combines the
methods of [PSo2, Th.4.1] and [SSU2].

Theorem 3.5. Suppose that {®*}, i is a family of parabolic IFS inTx(0,V,~,u, M) satisfy-
ing (2.4), (2.5) and (2.6), such that ¢y is well-behaved on some neighborhood of the parabolic

point v. Suppose that i is a Borel atomless probability measure on A* and that Déz’t‘))(u) > 1
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for some q € (1,2] and to € U. Then there exists 6 > 0 such that for L4-a.e. t € Bs(to) the

measure vy = pom, - is absolutely continuous with a density in LI(R).

Proof. Let b =log(1/7y). Fix 1 < s < D,(Iz’to)(,u) and € = b(s — 1). In view of Lemma 2.6,
there exists § > 0 so small that for all w € A* and all x € X,

[CRIG . (35)

It —ty] <0 — w1 <

|(63)' (@) —

We are going to show that

_ / / D, 2)" " du(z) dt < oo, (3.6)
Bg(to) R

D(vg, x) = lim inf wle = o+ 7]
\0 2r

where

is the lower density of the measure 14 at the point . Then by [Mat, 2.12], the measure 14
is absolutely continuous for a.e. t € Bs(ty). For such t we have D(1,z) = %, so (3.6) will
imply that 2% € LI(R) for a.e. t € Bj(to).
First we apply Fatou’s Lemma and then make a change of variable to get
-1

— o+
7 < lim 1nf/ / ke — 1,0 +1])° dve(x) dt
Bt (2r)a—t
5 0

\0
-1 (3.7)
.. VtB 7Tt ))
= lim inf : du(w) dt.
r\,0 BS tO o 27" q-

Next we reverse the order of integration and use Holder’s inequality (recall that 1 < ¢ < 2)

to obtain

\0

7 < lim inf(2r)'~ / ) ( /B . utBr(wt(w))dt)ql dp(w). (3.8)

Denoting by 1 the characteristic function of a set E, we have

/ l/tB,«(ﬂ't (w)) dt = / / ]-Br(m(w)) th dt
Bg(to) Bg(to) R

N / / L{reaoeiim(w)-me(r)|<r} dpi(T) dt
Bs(to) J A

- /.. La{t € Bs(to) : |me(w) — me(7)| < 7} dp(r)

= / ﬁd{t € B(s(to) |7Tt( ) - 7Tt(7-)| < 7“} d,u(T).
A*\{w}

(3.9)
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We could write the last equality since p is atomless. Now take an arbitrary 7 € A® \ {w}
and denote p = w A 7. Then we have for some ¢ € [r(co?lw), m¢(c1°17)] using the Mean Value
Theorem and (3.5):

[me(w) = (1) = |(6})'(0)] - [me(017w) — me(0'7)|
> (0F) ()| - my(0lw) — m(0?'7)].

Since wyp 1 # Tp+1, at least for one element k € {w, 7} we have k|p+, # k. Since (olk); # k,
we have 7(c”lk) & V by (2.7). Therefore, by Lemma 2.5 and (3.4),

|76 (w) — e (7)] > O H(00) (w(0¥1k)) | - e P2 |y (01Plw) — mo(0lPl7))|

_ (3.10)
> (C4Co) X - e M2 (oPlw) — 7y (a¥l7)].

It follows that
Ls{t € Bs(to) : |me(w) — me(7)] <71}

< ColiCe" - | X[
by the transversality condition (2.6). Substituting this into (3.9) we obtain from (3.8)

1 [ ([ RO ) )
o \J A>\{w}

= /AOO (Z eh(w|n)6|)?£ﬁz)|_1 /L([W|n] \ [W|n+1])> dp(w).

In view of (3.4) and (2.10), we can continue our estimate of Z as follows, using that v = e~
and € = b(s — 1),

<[ z M2 G R ([w|n1\[w|n+1]>) )
<[ Ze@ e R o |n]\[w|n+l1)> ()
<[ Z|Xwﬁz |]\[w|n+1]>) duw)

- [ (& ) ) = 18 < o

Xomle

(3.11)

b

(2,'30)(

since Dy @) > s by the choice of s. The proof is complete. O
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Next we prove a result which uses the g-dimension calculated with respect to the metric

d;. Recall that § > 0 appears in the definition of a parabolic map (2.1).

Theorem 3.6. Suppose that {®*}, 7 is a family of parabolic IFS in T'x(0,V,~,u, M) satis-
fying (2.4), (2.5) and (2.6), such that ¢y is well-behaved on some neighborhood of the par-
abolic point v. Suppose that p is a Borel atomless probability measure on A> such that

D((Il,to)(u) > 1+ 3 for some q € (1,2] and to € U. Then there exists § > 0 such that for

Lq-a.e. t € Bs(to) the measure vy = pom, ' is absolutely continuous with a density in L4(R).

Proof. As in the proof of Theorem 3.5, we let b = log(1/7). Fix s so that f+1 < s < Dél’t‘))(u)
and let ¢ = b(s — 1). Then we repeat the proof of Theorem 3.5 until (3.11) almost word by
word. However, we use only the first line of (3.10), keeping |(¢E°)’(7r(a‘p‘/<;))| instead of |)?£t°)|

and obtain

< [ ([ A ) e

Write p = akP(?)| where the last letter of « is different from k. Since (oPlk); # k, we have
m(ollk) ¢ V. Therefore, applying Lemma 2.1 and Lemma 2.4, we get

X = )1+ 1)7F and () (rlo )| < | (65| (plp) + 1)

[ I bl + 1) F ) e
A°°\{w}

[ ol 1 D) I 60 + 10 dun)) duto)
A°°\{w}

(
(
/Am </Am\{w} PO () 4 1) 25 )| du(T)>q‘1 (o)
(
to)

q—1
<[ (f tMSW(Q dn(w) < 19 () < oo
Ao A\ {w}

since D > s by the choice of s. Above, when passmg from the second to the third displayed
line we used that ||(¢0)']] < 4@ = AP = e=4r)  After that we used that ¢ = b(s — 1) and
B+1— 5 < 0. The proof is complete. O]

Next we show that for certain shift-invariant measures Theorem 3.5 is in a sense optimal.
We call a Borel probability measure 1 on A* well-mixing if p[i| < 1 for every i € A and if
there exist constants C7 > 0 and ¢ > 1 such that if a,n,( € A%, and |n| > ¢, then

plan¢] < Crplalpc].
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Every Bernoulli measure is obviously well-mixing and, more generally, every Gibbs (equilib-
rium) state of a Holder continuous potential is well-mixing, see [Bo]. An easy induction shows
that if p is well-mixing then there exist constants C's > 0 and 0 < A < 1 such that for every
n >0, every a € A* and every n € A"

plam) < Cs X" plal. (3.12)

Proposition 3.7. If y is a well-mizing measure on A>, then D,(ZI)(/L) = D,(f)(,u) for every
qg>1.

Proof. Since Dél)(u) > D§2)(u), we are only left to show that Dél)(u) < DY (n). Fix
w, T € A%, w # 7, and write p ;= w AT = akP(?) where the last letter of @ = a(p) is different
from k. By (2.3), |¢,(x(cV?lk))| < [|6L]l(p(p) + 1)_%, where k € {w, 7} is that element for

which (0”lk); # k. Therefore, using (3.4), we can estimate for any s > 0:

00 = [ (20N e
). (o)
<[ ([ 1o+ 0 ) e
<[ (] 1w 0 o)

Given w € A> we define the sequence {k,(w)},>o to be the increasing enumeration of all
elements 7 > 1 such that w; # k, with the convention kg(w) = 0. Then fix an arbitrary ¢ > 1
such that Cg\’ < 1 and define

ln(w) = min{k, (w) + €, kyi1(w)} (3.14)

(3.13)

and
Cy = Cs/(1 — Cg\"). (3.15)
Note that both w — k,(w) and w + [,(w) are Borel measurable functions. Further,
D@k @)ti) = P(Wlka@)k') =1 for 0 <i <kppa(w) = ka(w) =1,
so we can continue (3.13) as follows

n+1(w)—kn(w)—1

k
s ) B+l
B [ (XXl X )T (e \ ) | i)

n>0 i=0
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We claim that

plwliried = mlwlergrd < CoN (ulwl] — plwlrie)) (3.17)
for every k£ > 1 and every j > 0. And indeed, applying (3.12), we get

plwlkijel + CoN plwlre < plwle]CsN + CoN plw]k]Cs A
plw]]Cs A (MUY Cy A"
< pw]k]Cs N (1 + CoA’) = CoN plwle],

which obviously implies (3.17). In the last displayed line we used (3.15).

Now fix n > 0. There are two possibilities for [,,(w) in (3.14). First suppose that [, (w) =
kn(w) + €. We are going to estimate the inner sum in (3.16) by writing >, < > °>° =
S SOV )E Thus, in view of (3.17),

i=jL

B
(i 4+ 1) 7 ([Whn (i) \ [Wha(w)+i+1])
=0
>\ B,
< Y (14 1) 7 (plwky @i — Wy @)rin])
=0
= . B4, (3.18)
< Y (GH+DE+1) 5 (nwk @il — plwraw)+i+ne)
=0
=, B4l
= (Z(J+1) s AJ) (1w k)] = 2w k() e])
=0

= /’L[w|kn(UJ)] - :U'[w|ln(w)]'
The second possibility is that [,,(w) = kpy1(w). Then ki1 (w) — kp(w) < £ and we get

knt1(w)—kn(w)—1

> D (] \ e o]
i= s kn+t1(w)—kn(w)—1
< (kg1 (w) — ky(w)) e (o] = Ml longorsia])
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In both cases the estimate ends with the same expression which we can substitute into (3.16)

to obtain

15 < /A i (meS(quwn —u([wlzn(w)])> du(w)

n>0
du(r) \"
wu(r
<[] ) dntw)
- (Z (Wl (@) \@lty ()] |XW/\T| )
q—1
o A |Xw/\7'|s ’

n>0
This implies that D,(]l)(u) > D,(f) (1), and the proof of the proposition is complete. O

Corollary 3.8. Suppose that {®*}, i is a family of parabolic IFS (2.4) satisfying (2.5) and
(2.6), such that ¢ is well-behaved on some neighborhood of v. Suppose that p is a well-
mizing atomless Borel probability measure on A> (in particular, a Bernoulli measure or,
more generally, a Gibbs state of a Hélder continuous potential), such that Dél’to)(u) > 1 for
some q € (1,2] and to € U Then there exists § > 0 such that for Lq4-a.e. t € Bs(to), the

measure vy = Lo, " is absolutely continuous with a density in L(R).

Proof. This is an immediate consequence of Theorem 3.5 and Proposition 3.7. O

Since for hyperbolic systems the two metrics d; and dy are equal, the proof of Theorem 3.5
(simplified by the observation that in hyperbolic case h(p) = |p|) demonstrates also the

following.

Theorem 3.9. Let U C R? be an open set. Suppose that ®* = {¢%, ..., ¢t} is a family
of hyperbolic IFS such that the mappings t — ¢t are continuous from U to C**(X) for all
1 < k and the transversality condition holds. Suppose that p is a Borel atomless probability
measure on A such that D,(Il’to)(,u) > 1 for some q € (1,2] and to € U. Then there exists

d > 0 such that for Lq4-a.e. t € Bs(to) the measure o ﬂ{l 15 absolutely continuous with a
density in L1(R).

4. EXAMPLE: A CLASS OF RANDOM CONTINUED FRACTIONS

r+o x
rz+a+1’ z+1

parameters is 0 < a < 0.5, when the limit set of ®* is the interval [0, 3(—a + Va? + 4a)]

and the IF'S has an overlap, see [L]. The function ¢,(z) = ;%7 has a parabolic fixed point at

Here we apply our results to the family ®® := {

}. The interesting interval of
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x = 0. It is easy to see that ®* € I'yg;j(1) for all @ > 0 and the family {®*},¢ satisfies the

continuity condition (2.5).
Let o = (3, 5)" be the Bernoulli measure on the coding space A and let v, be its projection
on the real line corresponding to the IF'S ®*. The connection with continued fractions is as

follows: denote

1
[a1,as,a3,...] = i

a; +
02+

1
as + ...
Then v, is the distribution of the random continued fraction [1,Y7,1,Y5,1,Y3,...] where ¥;
are independent and take the values in {0, &} with probabilities (3, 3). Lyons [L, Thm. 1.1]
proved that there is a “critical value” «a, € (0.2688,0.2689) such that v, is singular with

respect to the Lebesgue measure and is concentrated on a set of Hausdorff dimension less
than 1 for all @ > a,. He also proved in [L, Prop. 3.1] that if v, has a density in L*(R),
then o < @ — 1. In our joint work with K. Simon [SSU2|, we showed that v, is absolutely
continuous for a.e. @ € (0.215, cr¢). Our proof was based on Theorem 2.7 and on the following

lemma.

Lemma 4.1. (see [SSU2, Lemma 6.2]). The family {®*} satisfies the transversality condition
(2.6) for a € (0.215,0.5).

Now we can state the new result.

Theorem 4.2. For any 1 < g < 2 there exists oy € [? — 1, o] such that

(1) If v, is absolutely continuous with a density in LY(R) then o < ay;

(ii) For Lebesgue-a.e. a € (0.215, o), the measure v, is absolutely continuous with a density
in LY(R);

(iii) ap = X0 — 1 =0.22474. ..

Remarks. 1. Although we restrict ourselves to the specific family {®%}, many of the
arguments below apply in a more general setting.

2. Since L7[0,1] D L%[0,1] for ¢; < g9, it is immediate from parts (i) and (ii) that the
function ¢ — « is non-increasing. We believe that it is actually strictly decreasing but we

have not verified this. It also seems plausible that lim,_,; oy = .

3. Besides the explicit value of s, following [L] one can show that aze = 3v2 —4 =
0.24264 ... We do not know any other explicit values for «,. Lyons [L, Prop. 3.2] also gave a
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necessary condition for v, to have a density in 1 ., L?(R), but our methods do not extend
to g > 2.

The proof of the theorem will require some preparation. First we need the following simple
lemma; its proof essentially repeats the argument from [L, Prop. 3.1]. Whenever we write

summation over w it is understood that w € A*. Recall that X,, = ¢, (X).

Lemma 4.3. Let {¢1, 2} be an IFS on the interval X C R (parabolic or hyperbolic) and
let v be a Borel probability measure satisfying v = %(1/ o' +vop,'). Suppose that v is

absolutely continuous with a denszty € LY(R) for some ¢ > 1. Then

sup 27 > X, : (4.1)

lw|=n

dz
satisfies h(z) = 3_,_, 27" hw(z) where h, = ho ¢! has support contained in X,,. Then

||h||g:/X<Z 2R, (z dx>/ Z 2R (x) dr = Y 27 nq/ he(x)dr.  (4.2)

lw|=n lw|=n

Proof. For each n € N we have that v =3, _ 27"(vo ¢1). Thus the density h(z) = %

By the Holder’s inequality,

1/q .
1= [ hw(a:)d:c§</ hz,cr)dx) X

hence [y hi(x)dr > |X,| @Y. Substituting this into (4.2) yields (4.1). O
Proof of Theorem 4.2. Consider the family {®“} and let

ay = inf{a >0: Sup —n Z | X () } (4.3)

lw|=n

Observe that |X57| = ¢ (1) — ¢ (0).

Lemma 4.4. (a) The function o — ¢%(x) is non-decreasing for all x € [0,1] and for all
we A"

(b) The function a — |X | is non-increasing for all w € A*.

T+o
r+a+1

Proof. (a) This is an easy induction in |w|; we use that is increasing in « and all ¢2 (x)

are increasing in .

(b) Onme checks that if 0 < A < B, 0 < C < D, A< C, B<D,and B-—A >
D — C, then for any @ < a and i = 1,2, we have ¢2(B) — ¢¥(A4) > ¢*(D) — ¢3(C') and
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& (D) — ¢¢(C) > ¢¥(D) — ¢¥(C). Then the desired statement follows by induction, using
Azd)?u(o)v B:¢3;(1)7 C:¢§;(0)7 andD:d)g(l) [

It follows from Lemma 4.4(b), (4.3) and Lemma 4.3 that v, cannot have a density in LI(R)
for o > «ay, verifying the property (i) of Theorem 4.2.

Fix any a < ay; we have

sup 2~ Z |X(@) 0D < o0, (4.4)

lw|=n

The following lemma is the key step in the proof of the property (ii).

Lemma 4.5. Suppose that & and q € (1,2] are such that (4.4) holds. Then for any o < &
there exist t > 1 and £ € (0,1) such that

200 3 XD < ot €, s

(w|=n

Before proving the lemma let us show how the property (ii) of Theorem 4.2 is deduced.
With the same notation as in Lemma 4.5 we have, using (3.2) and the fact that (¢—1) € (0, 1],

00 q-1
15 (n) = /A (22‘”|X£“Z|‘t> dpu(w)
e n=0

< [ Sore X V() (4.6)
* n=0
=3 9 3 X)) < o,
n=0 |lw|=n

by (4.5). This shows that D () >t > 1, so by Corollary 3.8, in view of Lemma 4.1, v,
has a density in LI(R) for Lebesgue-a.e. v € (0.215, ). Since & can be arbitrarily close to

oy, the property (ii) of Theorem 4.2 follows. a

Proof of Lemma 4.5. We have a < a and ¢ € (1, 2] fixed. Recall that hA(w) is the number of
hyperbolic letters (just the number of 1’s in our case) in the word w. Split the sum in (4.5)

as follows:

Z|X£)a)|ft(qfl): Z | X ()| HaD) Z | X ()| ~ta—D) (4.7)

|w\:n w|=n w|=n
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Sublemma 4.6. For any ¢ > 1 there exist K > 1 such that

Z |X(@|72 < const- ¢ for all n €N,
|w|=n
h(w)<n/K
Proof. 1t is clearly enough to restrict ourselves to n sufficiently large. Write

w = 1M 1k2k  1kmobm
where all k; are positive except possibly k; and all ¢; are positive except possibly ¢,,. Let
W = W|w|—¢,- Then it follows from (2.2) that
(X2 (b +1)7YPL(V) ™ min |(65)'(x)-

z€[0,1]

Therefore, estimating from below the derivative of powers of parabolic elements by (2.3) and

the derivative of hyperbolic elements by (2.9) we obtain

(X > (b + 1) PL(V) mu ke H (6 + 1)@
(4.8)

> L(V) Tt [](6+ 1) 7000,

i=1
since Y v k; = h(w). Here u can be easily chosen independent of « (in fact, (¢%)'(z) >
(24+a)™ >1/9 for all z € [0,1] and o < 1). Assume that h(w) < n/K where K will be
chosen later. Observe that m —1 < " k; < n/K hence 2 > (1 — X)K. We can estimate

using the Geometric-Arithmetic Means Inequality:

ili(éﬂ ( zj:€+1) :( Zé) (14 n/m)™.

It follows that

H(gi +1)” B+1/8 > (14 n/m)™™ m(B+1)/8
i=1

n/4

We claim that the last expression is greater than (~™/* if K is sufficiently large. Indeed, this

is equivalent to
@ log(1 + n/m) < (n/4) log(C),
or

g

log(1+n/m) < o m

log(¢)- (4.9)
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If m = 1, then (4.9) holds for n sufficiently large, and if m > 2, then £ > (1 - L)K > &
and it is clear that (4.9) holds for K sufficiently large. We have proved that there exist K
and Ny such that

T(6+ 1)~ 6+ > ¢/t for all 5> Ny
=1

provided that K > K;. Combined with (4.8) and using that m < 1+ & this implies
Z |X1(ua)|72 < #lwe A" hw) <n/K}-L(V)*™u ~h(w)n/2
o<k (4.10)
< #{we A" : h(w) < n/K} - L(V)2H2/ Ky -2/ Ken/2,

Observe that #{w € A" : h(w) = p} = < Z ), and it is easy to deduce from Stirling’s

formula that
#{w e A" : h(w) <n/K} < const-("* forall neN,

provided that K is sufficiently large. Since also L(V)?*/Ry=2M/K < (n/* for K sufficiently
large, the sublemma follows from (4.10). O

Sublemma 4.7. Suppose that 0 < a < a. Then there exist n > 1 and C' > 0 such that
X0 > O X G
Proof. Suppose that w = p2° where p ends with the hyperbolic letter 1 (or is empty). Then
(X = (E+1)7 P (@) (V)] and XSV = (€+1)7)(65) (1))

Therefore, omitting the | - | signs (since all the elements of the IFS are increasing), we obtain

XU (02)(1) (6% (6%,(1))
Yo | oy | Pttty

— — 4.11
x® e - e, m) et
We have ¢§Z—p(1) > ¢%;,(1) by Lemma 4.4(a), and (¢.)'(-) is decreasing, hence
(0n,) (95:,(1)) _ (5,)"(¢5:,(1)) _ (¢2.)'(1)
— = > — > 4.12
(68,02, D) = (05,768, (0) = (@5, 12
The last inequality holds since EZ?,EQ (ij’r—g)Q is decreasing in x and E%;IE:’;; = 1. Now

=
/—\\/\

observe that the last expression i

4.12) is equal to 1 if w; = 2 (the parabolic letter), and is
2—|—a
0

f (4.11), this implies the sublemma, with n = 222 [0

> 1if w; = 1. In vie e

equal to

S
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Conclusion of the proof of Lemma 4.5. Fix ¢ € (1,2) and find K > 1 from Sublemma 4.6.
For any ¢ € (1,2) and ¢ € (1, 2] we have, using that |X | <1

277 Ny X <o N X2 < const - (¢/2)" (4.13)

by Sublemma 4.6, so it remains to estimate the second sum in (4.7). By Sublemma 4.7,

Z | x (@) ~ta=1) < Z | X (@)= Ha=1)py=h(w)tla=1)

lw|=n |lw|=n

h(w)>n/K h(w)>n/K
<) XD eyt i/K (4.14)
|w|=n
= 3 |X@ D @)D a1/
|w|=n

Recall that |X | > infyep [(62) (x)] > ul*l by (2.9). Then we can continue the estimate
(4.14) as follows:

Z |X1(Ua)|—t(q—1) < Z |X§U&)|‘(q‘l)u‘”(t_l)(q_l)n_"t(q_l)/K- (4.15)
w|=n lw|=n

So far, we only assumed that ¢ > 1; now we specify the condition on ¢ needed for the proof.
Suppose that

logn
2K log(1/u)

Then u"¢=Dla=D) < prta=1)/2K "and (4.15) can be continued as follows:

(@) ~t(a—1) < (@)~ (¢-1),)-ntla-1)/2K
X" <D XY :

|w|=n |lw|=n
h(w)>n/K

0<t—-1<

Since n > 1 and t > 1, this, together with (4.13), (4.4) and (4.7), implies (4.5), where we
can take £ = max{$,7~@~/2K}_ This concludes the proof of Lemma 4.5, and so the proof

of Theorem 4.2(ii) is complete as well. O

Proof of Theorem 4.2(iii). This is essentially proven by Lyons [L], but we repeat some of the

steps using our notation for the reader’s convenience. For w € A" let

A w) ) ) 1 wo
wow = (0 B0V (1 )

=1
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Then it is easy to verify by induction that

o) = O W)z + b (w)
ul®) = G @ ()
cn (w)x +dn’ (W)
Therefore,
X = ¢5(1) — 95 (0) = [d5 (w) (e (w) + di (w))]
since the determinant in (4.16) equals 1. Recall that ap = inf{a : sup, Sy = oo} where
S =27 37X = 2720 3 ) (1) (e () + ) ().
|w|=n |w|=n

Consider the product measure p1, = (3, 3)" on A"; then

S = 2B + (6]

n n

where E is the expectation with respect to 11,. Consider the tensor product M* ® M\* and
note that

0 0
a) (a « a a 0 0
(dde @@ )=(0 00 1)(MAeM) | | |
0 1

Lyons [L] observed that, by independence, E[M* @ M*] = (R®)", where

1 Wi 1 Wi
(@) . 1 1
I '_E[<1 1+w1a>®<1 l—i-wla)}'

An easy computation, see [L], yields that R has the largest eigenvalue less than 2 if and

v6 _

only if a < @ — 1. In view of the above, it follows that ay = %

1, keeping in mind that

the Perron-Frobenius eigenvector is strictly positive. O
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