RIGIDITY OF MULTI-DIMENSIONAL CONFORMAL ITERATED
FUNCTION SYSTEMS

MARIUSZ URBANSKI

ABSTRACT. The paper starts with an appropriate version of the bounded distortion theorem.
We show that for a regular, satisfying the ”Open Set Condition”, iterated function system
of countably many conformal contractions of an open connected subset of a Euclidean space
IR? with d > 3, the Radon-Nikodym derivative du/dm has a real-analytic extension on an
open neighbourhood of the limit set of this system, where m is the conformal measure and
1 1s the unique probability invariant measure equivalent with m. Next, we explore in this
context the concept of essential affinity of iterated function systems providing its several
necessary and sufficient conditions. We prove the following rigidity result. If d > 3 and &, a
topological conjugacy between two not essentially affine systems F' and G sends the conformal
measure mp to a measure equivalent with the conformal measure m¢, then h has a conformal
extension on an open neighbourhood of the limit set of the system F'. Finally in exactly the
same way as in [MPU] we extend our rigidity result to the case of parabolic systems.

1. Introduction, Preliminaries

This paper extends the rigidity result of conformal iterated function systems in the complex
plane (see [MPU]J) to any dimension d > 3. It states the following (comp. Theorem 4.2). If
h, a topological conjugacy between two not essentially affine systems F' and (' in a dimension
d > 3, transports the conformal measure my to the equivalence class of the conformal measure
m¢, then h has a conformal extension on an open neighbourhood of the limit set of the
system F. The general approach undertaken in this paper is modeled on that in [MPU]. The
ideas and technics involved in most of the proofs are partially or entirely different from and
incomparable with their counterparts in [MPU]. One of the causes of this fact is the higher
dimensional structure of the phase space and the lack of advanced technics of the complex
function theory in the plane. On the other hand the special structure of conformal maps in
dimensions d > 3 (see (1.1) makes the presented theory slightly more elegant and clearer. The
first result of our paper, Theorem 1.1, provides the distortion tool. Then we show that for
a regular, satisfying the "Open Set Condition”, iterated function system of countably many
conformal contractions of an open connected subset of a Euclidean space IR? with d > 3, the
Radon-Nikodym derivative dp/dm has a real-analytic extension on an open neighbourhood of
the limit set of this system, where m is the conformal measure and p is the unique probability
invariant measure equivalent with m. Next, we explore in this context the concept of essential
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affinity of iterated function systems providing its several necessary and sufficient conditions.
The main result, Theorem 1.4 (comp. Theorem 4.2) concerns rigidity. At the end of the
paper we briefly discuss parabolic systems.

In [MU1] we have provided the framework to study infinite conformal iterated function
systems. We shall recall first this notion and some of its basic properties. Let [ be a countable
index set with at least two elements and let S = {¢; : X — X : ¢ € I} be a collection of
injective contractions from a compact metric space X into X for which there exists 0 < s < 1
such that p(¢i(x), di(y)) < sp(a,y) for every ¢ € I and for every pair of points =,y € X.
Thus, the system S is uniformly contractive. Any such collection S of contractions is called
an iterated function system. We are particularly interested in the properties of the limit set
defined by such a system. We can define this set as the image of the coding space under a
coding map as follows. Let I™ denote the space of words of length n, I*° the space of infinite
sequences of symbolsin I, [* = J,s; [" and forw € [", n > 1,let ¢, = ¢, 0Py, 0 -0y, If
w € [*UT*® and n > 1 does not exceed the length of w, we denote by w|, the word wyws ... w,.
Since given w € I, the diameters of the compact sets ¢, (X), n > 1, converge to zero and
since they form a decreasing family, the set

) 6o (X)

is a singleton and therefore, denoting its only element by 7(w), defines the coding map = :
I — X. The main object of our interest will be the limit set

J=x(I7)= J [ dum(X),
wel>® n=1
Observe that J satisfies the natural invariance equality, J = U;e; ¢:(J). Notice that if [ is
finite, then J is compact and this property fails for infinite systems.

An iterated function system S is said to be conformal if X C IR? for some d > 1, X is
connected and the following conditions are satisfied.

(1a): Open Set Condition (OSC). ¢;(IntX) N ¢;(IntX) = @ for every pair i,j € I, i # j.

(1b): There exists an open connected set V' such that X C V C IR? such that all maps
¢i, 1 € 1, extend to C'' conformal diffeomorphisms of V into V. (Note that for d = 1
this just means that all the maps ¢;, 1 € I, are C'! monotone diffeomorphisms, for d > 2
the words conformal mean holomorphic or anti-holomorphic, and for d > 3, the maps
@i, 1 € I are Mobius transformations. The proof of the last statement can be found in
[BP] and [Va] for example, where it is called Liouville’s theorem )

(1c): There exist v,/ > 0 such that for every x € X C IR? there exists an open cone
Con(z,v,l) C Int(X) with vertex x, central angle of Lebesgue measure v, and altitude
[.

(1d): Bounded Distortion Property(BDP). There exists K > 1 such that

6L (y)] < Ko, (x)]
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for every w € I* and every pair of points x,y € V, where |¢/ (2)| means the norm of the
derivative.

In fact throughout the whole paper we will need one more condition which (comp. [MU1])
can be considered as a strengthening of (BDP).

(1e): There are two constants L > 1 and « > 0 such that

[l61()] = 16()]| < Ll ]y — =]
for every ¢ € I and every pair of points z,y € V.
As we have already mentioned in the item (1b), it is known (see [BP] and [Va]) that in every

dimension d > 3 each C' conformal homeomorphism ¢ defined on an open connected subset
of IR? extends to the entire space IR? and takes on the form

¢=AAois, +b, (1.1)

where 0 < A € R is a positive scalar, A is a linear isometry in IR?, i, is either the inversion
with respect to some sphere centered at a point a and with radius r, or the identity map,
and b € IR?. In the sequel A will be called the scalar factor and a = ¢~(o0) - the center of
inversion. If A is the identity map, ¢ will be called a conformal affine homeomorphism. From
now on we assume that d > 3. We would first of all like to demonstrate that in this case the
Bounded distortion Property (1d) and the property (le) are satisfied automatically. Namely,
we have the following.

Theorem 1.1. If {¢;}icr is a collection of maps satisfying condition (1b), then the conditions
(1d) and (1e) are also satisfied, perhaps with a smaller set V. The property (1le) takes on the
following stronger form

oL (y) — 8L ()] < KlSLIly — ]| (1.2)
forallwe I*, all x,y € V and some K sufficiently large.

Proof. Let U = B(X, +dist(X,dV)). Then U is an open neighbourhood of X and U is
connected since X is. Fix w € I*. In view of (1.1) there exist A, > 0, a linear isometry A,, an
inversion (or the identity map) i, = 4,4, and a vector b, € IR? such that ¢, = A\, A, 00, +b,.
In case when 1, is the identity map the statement of our theorem is obvious. So, we may
assume that 7, is an inversion. Then for every z € IR?

Apt?
|9, (2)] =
|z = au|f?
Hence, for all x,y € IR?

L) [l = aul?
@)y = aul®

(1.3)
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Since ¢, (V) C V, a, ¢ V. Therefore for all z,y € U

||z — a]| < |z = yll + |ly — a.]| - ||z — y|
ly — aul| ly — aull ly — aul|
diam(U) diam(U)
< _ <14 —
S G o) S T @, oo

Thus

Sl (), diam(t) \*
@l S\ Eswany)

The proof of the first part of our theorem is complete. In order to prove the second part we

may assume without loosing generality that |¢/ ()| < |¢/,(y)|. Using (1.3) and (1.4) we then

get
16 w)] = L@l < 116 ('W)' _ 1) ~ i (u _ 1)

() ly =P
(Il ) (L=l )
-t (= -1) (= +1

dist(X,0U) ) [ly — a.|
diam(U) 1 /
< JE—
- (2+ dist(X. 6U)) st oy 19alllly =l

The proof is complete with V' replaced by U. B

As was demonstrated in [MUI], conformal iterated function systems naturally break into
two main classes, irregular and regular. This dichotomy can be determined from either the
existence of a zero of a natural pressure function or, equivalently, the existence of a conformal
measure. Let us explore this latter option since conformal measures and not topological
pressure will be used in the sequel. So, recall that a Borel probability measure m is said to
be t-conformal provided m(.J) = 1 and for every Borel set A C X and every: € [

m(gi(4)) = [ 16/l dm

and

m($i(X) N ¢;(X)) =0,
for every pair ¢, € I, i # j. It has been proved in [MU1] that if a {-conformal measure
exists, then = §, the Hausdorff dimension of the limit set Jg of S and this measure is unique.
The system S is called regular if a conformal measure exists and from now on we assume that
the system S is regular unless stated otherwise. We define the associated Perron-Frobenius
operator acting on C'(X) as follows

L(f)(x) =3 |ol(@) F(i(x)).

el
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Notice that the norm of £ is equal to ||[L(1)|| < (d) and the nth iterate of £ is given by the

formula
L)) = 3 1L (@) f(du(2)).

|w|=n

In [MU1] we have proved that for every n > 1
171 = 32 lleLll" < K° (1.5)

|w|=n
Theorem 1.2 below explains what we really need the Perron-Frobenius operator for in this
paper. The conformal measure m is a fixed point of the operator conjugate to £. We recall
also (see [MU1, Theorem 3.8]) that there exists a Borel probability measure g, invariant in
the sense that for every measurable set A,
p(U @i(A4)) = n(A),
€]

and in addition p is equivalent with m with the Radon-Nikodym derivative du/dm bounded
away from zero and infinity. In Sections 4 and 2 we will need more knowledge about this
derivative and in particular we will need to know how it is computed. The appropriate
information is contained in the following (see [MU3]).

Theorem 1.2. The Radon-Nikodym derivative du/dm has a version which continuously ex-
tends to a function p : X — (0,00) and which is a unique fized point of the Perron-Frobenius
operator L whose integral with respect to the conformal measure m is equal to 1. Moreover
the iterates L™(11) converge uniformly on X to p.

We call two iterated function systems F' = {f;: X > X iel}and G={¢;: Y = Y, i € I}
topologically conjugate if and only if there exists a homeomorphism h : Jp — Jg such that
hofi=gioh

for all © € I. Then by induction we easily get that Ao f, = g, o h for every finite word w.
The Section 2 of the paper [HU] (see also Appendix 1 of [MPU]) contains the proof of the
following.

Theorem 1.3. Suppose that F={f;: X - X,i €l) and G ={g; : Y = Y,i € I} are two
topologically conjugate conformal iterated function systems not necessarily reqular. Then the
following four conditions are equivalent.
(1): IC>1Vwe I
C—l < dlam(gw(Y))
~ diam(f,(X))
(2): 19.(yo)| = |fL(2n)| for all w € I*, where x, and y, are the only fired points of
fo: X =X and g, : Y — Y respectively.
(3): dE > 1Vwe I*

<C.

Et <
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(4): For every finite subset T of I, HD(Jg 1) = HD(Jpr) and the conformal measures

mear and mp o h™! are equivalent.

Suppose additionally that both systems F' and G are regular. Then the following condition is
also equivalent to the four conditions above.

(5): HD(J&) = HD(JF) and the conformal measures mg and mp o k™' are equivalent.

As we already mentioned, our main goal in this paper is to prove the rigidity theorem saying
that the conditions (1)-(5) imply that the conjugacy has a conformal extension. For finite
systems arising from inverse branches of a holomorphic expanding map on a mixing repeller
contained in a complex plane (' a sufficient condition for this implication is that the systems
are non-linear (not essentially affine in the terminology of the present paper), (see [Su], [Pr]).
This condition is also sufficient for infinite 1-dimensional real-analytic systems (see [HU]) and
infinite 2-dimensional holomorphic systems (see [MPU]). Here we shall prove this rigidity for
infinite C''-conformal systems in the dimension d > 3.

The main result of this paper is the following.

Theorem 1.4. If two Open Set Condition conformal regular iterated function systems {f; :
X > X:ielyand{g,: Y = Y 10 € I} are not essentially affine and conjugate by a
homeomorphism h : Jp — Jg, then the following conditions are equivalent.
(1): The conjugacy between the systems {fi : X — X i € l} and{g;: Y =Y : 1 € [}
extends in a conformal fashion to an open neighbourhood of X .
(i1): The measures mg and mp o h™' are equivalent.

The concept of essentially affine systems is introduced in Section 3 and the full extended
version for of Theorem 1.4 is stated and proven in Section 4 as Theorem 4.2. In Section 2
we prove an important technical result which is interesting itself, namely the real analyticity
of the Radon-Nikodym derivative du/dm of invariant measure p with respect to conformal
measure m. In Section 3 we deal with various conditions equivalent with essential affinity
and, as we already mentioned, we prove in Section 4 our main result, Theorem 1.4 which is
presented there in its extended version enumerated as Theorem 4.2. In Section 5 we extend
the results of Section 4 to the case of parabolic iterated function systems.

We would like to conclude this introduction by emphasizing that although the undertaken to
the subjects are by nature different, there exists however a close ideological analogy between
our main result Theorem 1.4 and celebrated Mostow’s rigidity theorem whose furthest going
generalizations and and a fairly comlete list of relevant literature can be found in [Tu].

2. The Radon-Nikodym derivative p is real-analytic

From now on throughout the whole paper we assume that d > 3 and {¢;} is an Open Set
Condition conformal regular iterated function system.

Our main goal in this section is to prove the following.
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Theorem 2.1. The Radon-Nikodym derivative p has a real-analytic extension on an open
connected neighbourhood U of X in V.

Proof. In view of (1.1), there exist A, > 0, a linear isometry A,, an inversion (or the
identity map) iy, = i4, -, and a vector b, € IR? such that ¢, = A\, A, 04, + b,. Then

A2
|6(2)] = “

|z — au|l?

ifi, # Id
and
|0/ ()] = A, ifi, = 1d
Since ¢, (V) C V, we get a, ¢ V. Fix £ € X and consider the function p, : ¢ — @ given by
the formula
1€ — au||?

S (25— (aw);)
We shall show that there exist a constant B > 0 and a neighbourhood U of X in ¢ such that
pu(2)] < B (2.1)

pul2) =

s or p,(z)=11if ¢, = Id.

for every w € I* and every z € U. Indeed, otherwise there exist sequences w(™ € I* and
2 ¢ @, n > 1, such that lim, . dist(20, X) = 0 and |p ()| > n for every n > 1.
Passing to a subsequence we may assume that the limit w = lim,_., 2™ exists. Then
w € X C IR? and for every n > 1 we have

S~ (agm)) = () = ) + (w0 — (aum)y) =

i=1 i=1

(7 =+ 20" = w) s = (aum);) +

1

(w05 = (aym);)% (22

1

d
J =
Now, since a,m ¢ V and w € X, we get

d
> (Wi = (aym);)* = lJw — a,m][* > dist*(X, 0V) (2.3)

J=1
Fix now ¢ > 1 so large that for every n > ¢

d
ST — P < S dist?(X, V) (2.4)
7=1

el B

and

S (1 |
]Z:;|Z]( )—wj| < mm{8—ddlst2(X, 6V),8—d}. (2.5)

So, if |w] - (aw("))]| < 1, then by (25)

J

20 = wjlw; = (am)j| < dist*(X,9V) (2:6)
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and if |w; — (aym );| <1, then by the other part of(2.5)

n n 1
205" = wjlfuw; — (aym)i] < 2" = wjlleo; = (aum)i < lwj = (g )il

< jw = ayom | (2.7)
Applying now (2.3) along with (2.3), (2.4), (2.6), and (2.7), we get for every n > ¢

S (A = (aum)s) | 2 Do = (e Ch —wm—zzv = wylw; = ()]

Jj=1 7=1
1 1 1
2 [ = @y = 71w = @y = d o= llw = agm |” = S llw = aym [
And therefore, using also Theorem 1.1(property (le)) and (1.3) we get
— 2 _ 2
n < |,0w(n)(2(n))| _ ||§ aw(")“ <2 ||§ || < 2K.

d n 2 _ 2
S (27 = (aum);) Il = ol
This contradiction finishes the proof of (2.2). Decreasing U if necessary, we may assume that
this set is connected. Now, for every n > 1 define the function b, : U — ' by setting

= > ol (=)L)

|wl=n

Notice that the power pd () (strictly speaking any of its branches) is well defined and analytic
since p,(z) is defined on the simply connected set @". Since each term of this series is an
analytic function and since, by (refl.pf) and (2.1)

S b leL©) < B" Y. |6 < B'K?,

|wl=n |wl=n

we conclude that all the functions b, : U — (' are analytic and ||b,||o. < BK?® for everyn > 1.
Hence, inview of Montel’s theorem, we can choose a subsequence {b,, }72, converging on a
connected neighbourhood U, of X (with closure U, contained in U) to an analytic function
b: U, — @ Since for every n > 1 and every z € X, b(2) = Xpujzn |9L(2 W= L£r(1), it
therefore follows from Theorem 1.2 that b|xy = p = 5—7*2. Hence, putting U = Pr(;), where
Pr: ¢ — IR? is the orthogonal projection from ¢ to IR?, completes the proof. W

For every w € I denote by Dy, = d“w“’ the Jacobian of the map ¢, : J — J with respect to
the measure . As an immediate Consequence of Theorem 2.1, the following computation
dpoo, duod, dmog, dm  (du L5 dm
di  dmod, dm '%‘(%O “’)w S

and the observation that |¢/|° is real-analytic on V, we get the following.

Corollary 2.2. For every 1 € I the Jacobian Dy, has a real-analylic extension D@. on the
neighbourhood U of X produced in Theorem 2.1.
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3. Essentially Affine Systems
We begin this section with the following.

Lemma 3.1. Suppose that ¢ : IR® — IR, d > 3, is a conformal diffeomorphism that has an
attracting fived point a (d(a) = a, |¢'(a)| < 1). If M is an open connected C'-submanifold
of IR such that (M) C M and a € M, then M is either a subset of a ¢-invariant affine
subspace of the same dimension as M, or a subset of a ¢-invariant geometric sphere of the
same dimenston as M

Proof. Since a is an attracting fixed point of ¢, there exists a radius r > 0 so small
that ¢_4 (Ed \ B(a, T)) c R \ B(a,r), where R is the Alexandrov compactification of IR?
obtained by adding the point at infinity. Since R \ B(a,r) is a closd topological disk, in view

of Brower’s fixed point theorem there exists a fixed point b of ¢~1 in R \ B(a,r). Hence b is
also a fixed point of ¢ and b # a. Then the map

Y = ip,1 O ¢o b1
(151 equals identity if b = oo) fixes oo which means that this map is affine, and w = iy1(a)
is an attracting fixed point of ¢. In addition L/J(M) C M, where M = (M), w € M, and
Y IRT — IR?, as an affince map, can be written in the form AA 4 ¢, where A > 0 and A is an
orthogonal matrix. Since L/J(M) C M, and since 1 is a diffeomorphism, ;/)’(Z)(TZM) = T¢(Z)M.
In particular ¢'(w)E = F, where £ = T,,M. Without loosing generality we may assume that
M is contained in the basin of immediate attraction to w. We shall show that

T.M=E
for every z € M. And indeed, take an arbitrary point point z € M. Since YP'(x) = AA for all
z € IR? and since A\A is conformal, we get for all n > 0 that
L(T.M,E) = L(AY(T.M), A"E) = (") (2)T.M), E) = Z(Tyn(-)M, E),
where / denotes the angle between linear hyperspaces. Since lim,,_ . T¢n(Z)M =T,M = E,
we conclude that Z(TZM, FE) =0, or equivalently T.M = E. Since the only integral manifolds
of a constant field of linear subspaces are affine subspaces, we conclude that M is contained

in an affine subspace. Since M is its open subset, this affine subspace is ¢-invariant. Since
M =i,1(M), we are done. B

We call the system S = {¢; }ic; at most g-dimensional, 1 < ¢ < d, if there exists Mg, either a
g-dimensional liear subspace of IR? or a ¢g-dimensional geometric sphere contained in IR? such
that J C Mg and ¢;(Ms) = Mg for all i € [. We call the system S = {¢;}ie; g-dimensional

if ¢ is the minimal number with this property.

Lemma 3.2. If a non-empty open subset of J is contained in a q-dimensional real-analytic
submanifold, then the system S is at most g-dimensional.
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Proof. The assumptions of the lemma state that there exists a point x € J, an open ball
B(x) centered at x and M, a p-dimensional open connected real-analytic submanifold M
containing J N B(z), where 1 < p < ¢ is the minimal integer with this property. Fix now
an arbitrary auxiliary point z € J. Since € J, there exists w € [* such that ¢,(z) €
J N B(x), moreover ¢, (V) C B(x). Then the set ¢, (V)N M contains ¢,(V) N J, an open
neighbourhood of ¢,(z) in J and consists of countably many connected p-dimensional real-
analytic submanifolds. Taking the length of w large enough we may assume that this countable
family is just a one manifold. Then N = ¢ ' (¢, (V)N M) is a connected p-dimensional real-
analytic submanifold (there are no branching points since ¢! is 1-to-1) containing J and
contained in V). Fix an arbitrary ¢ € I. Since lim, ., ¢?(N) = x;, the only attracting fixed
point of ¢, and since the connected component of ¢?(N) N N containing x; is a manifold
containing an open neighbourhood of z; in the space J, recalling the definition of p, we
conclude that for every n > 1 large enough, ¢*(N) C N. Hence, in view of Lemma 3.1
applied with ¢ = ¢, we gain that N is an open subset of a p-dimensional set Mg, either an
affine subset or a geometric sphere contained in IR? invariant under ¢?. Now, for every j € I,
o5(Ms)N Mg # 0 since J C Ms. Since in addition ¢;(Ms)N Mg is either an affine subset or a
geometric sphere contained in IR?, we conclude from the minimality of p that ¢;(Ms) = Ms.
We are done. B

Definition 3.3. We say that the system S is essentially affine if S is conjugate by a conformal
homeomorphism with a system consisting of conformal affine contractions (AA + b)) only.

The main goal of this section is to prove the following.

Theorem 3.4. Suppose that the system S = {¢;}ier is reqular and denote the corresponding
conformal measure by m. Then the following conditions are equivalent.

(a): For each i € I the extended Jacobian Dy, : U — IR is constant, where U is the
neighbourhood of X produced in Corollary 2.3.
(b): There exist a continuous function v : X — IR and constants ¢; € IR, 1 € I, such that

log || = u —uo ¢; + ¢

for all 1 € 1. B
(c): There exist a continuous function w: J — IR and constants ¢; € IR, 1 € I, such that

log |¢}| = u —uwo ¢; + ¢

for all 1 € 1.
(d): The system S is essentially affine.
(er): There exist a real-analytic function v :V — Lis(d) such that

Teor |§f| T =hi € LC(d)
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for every i € I, where Lis(d) is the group of all linear isometries on IR* and LC(d) is the
group of all linear conformal (of the form AA) homeomorphisms of IR®. The composition
of linear maps we denote here and in the sequel either by - or we put no sign.

(ec): The same as (er) but v is required to be continuous only.

(g): If S is not q-dimensional, then the vectors

(Vqul o qbw(ﬂ)(z));:l

are linearly dependent for all z € J, all 1 € I and all sequnces (w(j))?zl e (1),
(f): If S is g-dimensional, 1 < q < d, then either S is essentially affine or there exists a
field of linear subspaces in T'Ms of dimension and co-dimension greater than or equal to
1 defined on a neighbourhood of J in Ms and invariant under the action of derivatives
of all maps ¢;, 1 € I.
Proof. We shall prove the following implications (a)=-(b)=(c)=(d)=(a), (d) = (er) =
(ec) = (d) and (a)=(g)=(f)=(d).

a)=(b). Since for every 1 € I, Dy, = (p o ¢;) - |/]° - p~, we have
(a)=( yi€l, Dy =(p it
) = log(lp| o ¢:) + dlog || —log |p.

Thus to finish the proof of the implication (a)=-(b) it suffices to set ¢; = %log(b@.) and
u = ;log|pl.
)

10g(|D¢i

The implication (b)=(c) is obvious.

(c)=(d). If all the maps ¢;, ¢ € I, are linear, there is nothing to prove. So, we may assume
that there exists j € [ such that the map &; is not affine. For every n > 1 let al™ be
the inversion center of ¢?. We shall prove that the sequnce {a™}>2, does not converge
to oo. Indeed, suppose on the contrary that this sequence converges to inffinity. Since
al = ¢l (o0) = (qb]_l)”(oo), we therefore get

]n

co = lim "™V = lim ¢;((¢;1)") = ¢;( lim (6;1)") = ¢;( lim ™)) = ;(c0)

n—0oo n—0oo n—0oo n—0oo

which means that ¢; is affine. This contradiction shows that there exists a subsequence
{k,}°2, such that at*") — q for some a € IR?. Fixv € J, the unique fixed point of ¢; : V — V.
[terating equation (c) n times, we get for every z € J that

u(z) — u(v) = log |¢jn(2)] = log |¢fn (v)] 4+ u(@jn(2)) — u(djn(v))
= —2log]Jz — || + 2og v — a®|] + u(dsn(2)) - u(v).
Since ¢jn(z) converges to v and since the function w is continuous, passing to the limit along

the subsequence {k,}°,, we get u(z) = u(v) — 2log ||z — a|| + 2log ||v — al||. Define the

n=1?

conformal map G : IR — IR? by setting

G(2) = "o — a|%iq1.
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Then log |G'(2)| = u(v) 4 2log ||v — a|| — 2log ||z — a|| = u(z). Therefore, using (c) again, we
get for every i € [ that log |¢)| = log |G'| — log |G’ 0 ¢;| + ¢;, or equivalently that

(G odio G (2)] = e (3.1)

for all z € G(J). Suppose that Gop;0 G~ is not affine and let w and A > denote respectively
its inversion center and the scalar coefficient. Then (3.1) takes on the form A||z — w||™? = %

on G(J) or
||z — w||* = Ae™* on G(J).

So,G(J) is contained in the sphere S(w,v/Ae~<) centered at w and of radius v/Ae=<. Since
for every n > 0, Go¢? o G7HG(J)) = Go¢*(J) C G(J), we conclude that all the descending
sets Glo @ o G~Y(G(J)) are contained in the sphere S(a, vVAe=%). Let H C S(w, Vv e™%) be a
minimal sphere (in the sense of inclusion) containing at least one of the sets Gog? o G=HG(J)),

n > 0. Thus there exists & > 0 such that G o ¢f o G=Y(G(J)). Then
Godf™ oG HG(T)) C HN (G o¢; 0 GTH(H)). (3.2)

Since (i o ¢; o G™'(H) is either a sphere or an affine subspace of IR? and since G o ¢! o
G~HG(J)) contains at least three points (is uncountable in fact), the intersection H N (G o
¢ioGTY(H)) is a sphere (at least 1-dimensional) again. Therefore by the minimality of H and
by (3.2) we conclude that HN(Gog;0G™'(H)) D H, which means that Gog;0G™'(H) D H.
Therefore, since dim(G o ¢; o G™'(H)) = dim(H ), we conclude that

Gog;ioGTHH)=H (3.3)

Let z; be the unique fixed point of the map ¢; : V. — V. Since G o ¢ 0 G7(2) — G(x;)
uniformly on G(V') C G(J), it follows from (3.1) that ¢; > 0. So, for every z € S(w, v Ae™%) D
H

Y

(G060 GY(2)] = Alle — ][ = AATles = e

This implies that G o ¢; 0 G™! is a uniform contraction on H and therefore G o ¢ o G7!(z) —
G/(x;) uniformly on H. This however contradicts (3.3) and finishes the proof of the implication
(c)=(d).

(d)=(a). Let G : IR* — IR be a conformal homeomorphism providing conjugacy of S with
a system consisting only of conformal affine contractions. Then for every ¢ € [

=|(GodioGT) ()]
is a number independent of z € G(V'). By the chain rule we have for every z € V the following

Z |¢w Z |G/ | |G/ wa | Sngl

|wl=n |wl=n
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Fix now j € I. Then for every n > 1 and all z € V we get
Lr(1)(6;(2)) Sluten |G (0:(2))I°1G"(0u(i(2)) ° T 00, 5 NI (b (2115
o) S [ GNP Ty g, 1 L)
_ 2wz iny |G (du(2))° ;
Ylwlen [Ty 1G' (Du(@i(2)) P77

Since ||pu(x) — x,|| < const s, where x,, is the only fixed point of ¢, : V — V, we conclude

that
£r(1)(64(2) :
1)) |55(2)]° = g

uniformly on V. Hence applying Theorem 1.2, we conclude that

Dy, = s Npllé (o) = Jim Sl gy = of

[ () =

on X. Since D(b] is real-analytic on U, we conclude that D(b] = ¢% on U. The proof of the

implication (d)=-(a) is complete. '
(d)=(er). Define
el
et
Since for every i € I, Gog;0G™" is affine, we conclude that G'og;0G™-¢lo G- (G') Lo G =

k; € LC(d). Hence
el &, G\ ks
0 ;- A oG =
(Q@J i Q@J Q@J ) ]

and it suffices to take v = % Thus the proof of the implication (d)=-(er) is complete.

The implication (er)=(ec) is obvious.

(ec)=-(d). If all the maps ¢;, ¢ € [ are affine, there is nothing to prove. So, assume that
there is j € I such that ¢; is not affine. Then no iterate ¢;n is affine and let (™ denote the
inversion center of ¢;». Fix v € J. By (ec) the following holds for every z € V and every
n>1,

(4 (0)3(2) = (¢<”J4 (o) "85 o) (212)

n(0) ERB]
(v) 6
Q@A@J @O%”))(”q”<DQ@AaJ

= (T,(0) " (1 0 dn(0)) " (70 80 (2)) Tul2),
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where T),(w) = Id — 2Q(w — a!™) and in the canonical coordinates @ is given by the matrix

Qa) =

el

We shall now prove that the sequnce {a™}°2 does not converge to co. Indeed, suppose on

the contrary that lim,_. ¢(™ = oo. Since a(®) = qb]_nl(oo) = (qb]_l)”(oo), we therefore get

oo = lim a"™V = lim ¢;((¢7")") = ¢;( lim (¢71)") = ¢;( lim a™) = ¢;(c0)
which means that ¢; is affine. This contradiction shows that there exists a subsequence

{k,}°2 | such that a) — g for some a € IR?. Then for every n > 1,
—1
(4(0) () = (T, ()7 (7 0 e (1)) (7 0 djme () T, (2),
and taking limit when n — oo, we obtain (y(v))™'v(2) = (Id —2Q(v— a))_l (Id —2Q(z— a))

or, equivalently,

¥(z) = ~(v) (Id —2Q(v — a))_l (Id —2Q(z — a)).

Define B
G = ’y(v)(Id —2Q(v — a)) 0ig1.
Then |
G'(z) = y(v)(1d = 2Q(v — a)) m(ld —2Q(z — a)).
Hence

é& — 3(0)(1d = 2Q(v —a)) " (14— 2Q(z — a)) = 7(2)

Therefore for every i € I, (ec) takes on the form
Cosi) d (GO,
|G7 o gi(2)] [oi(2)] \|G"(2)] Z

Suppose that G o ¢; o G~ is not affine. Then for y, the inversion center of G o ¢; 0 G71, we
get in canonical coordinates that

(zm = Ym) (20 = Yn)
[
for all z € V and all m,n € {1,2,...,d}, where § denotes the Kronecker symbol here. But

this is impossible and we conclude that G o ¢; o G~! is affine. The proof of the implication
(ec)=-(d) is complete.

The implication (a)=-(g) follows from the implication (a)=(d).

(g)=(f). Conjugating the system S by a conformal diffeomorphism we may assume that
Ms = IR?. Given 1 € [ and (w(j))?zl € (1)1 let

A= (i,w(l), . w(q))
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and let H4 : IR? — IR? be the map defined by the formula
Ha(z) = (Dy, 0 by (2),-. . Dy, 0 60 (2)).

Suppose first that for every ¢ € I there exists A such that H’, = 0 on J. Since S is not
(¢ — 1)-dimensional, this implies that H’, = 0 on a neighbourhood of J in IR?. But then
D@. is constant on an open subset of JR? having a non-empty intersection with J. Since by
Corollary 2.2, D@. is real-analytic, it is therefore constant on the appropriate set U, produced
in this corollary. Hence, in view of already proven implication (a)=-(d), the system {¢; :
IR? — IR? is conjugate by a conformal diffeomorphism p : R? — [R? with an affine system.
Since p extends to a conformal diffeomorphism from IR? to IR? and since an extension of an
affine map in IR? to an affince map in IR? is also affine (if ¢ < 1 we need to be certain that
these extensions are of the form AA + b), we are done in this case.

So, suppose that there exists ¢+ € [ such that for every A with the first element equal
to i there exists x € J such that H’(z) # 0. Choose w € J and A = (1,0, ... @)
such that dim KerHy(w) is minimal, say equal to p < g — 1. By the assumptions of (g),
dim Ker H)y(w) > 1. So

1 <dimKerH), =p<qg-—1
on W, a neighbourhood of w in IR?. By the definition of the limit set J for every z € V there
exists 7 € " such that ¢.(z) € W. Then define

U(z) = (6715, (o) (Ker Hy (6-(2))).

where, changing temporarily notation, (Qb;l);sT(Z) denotes the derivative of the map ¢! eval-

uated at the point ¢,(z). We want to show first that we define in this manner a line field on
V. So, we need to show that if ¢,(z), ¢,(z) € W, then

(67 ) (U{2(2))) = (D7 )i, (1S4 (2))). (3.4)

Suppose on the contrary that (3.4) fails with some z, 7,7 as required above. Then there exists
a point « € W and v € I* (in fact for every @ € W there exists v) such that ¢,(x) is so close

to z that
(D7) 0y o) LD (5(2)))) 7 (D7) 6 () (LD D5 ()
Hence
(D73 )i, (il (D (@) # (D)5, ()l (D ()
So, either
(673 )i, (o (Dra (@) # KerHy ()

(D73 )i (@) (D () # Ker Hy ().
Without loosing generality we may assume that the first inequality holds. Since (Hy4 o

b)) = Hi(drn(2))6 (), we get Ker(Ha 0 ¢r,)(2)) = @l (x) " (KerH)(¢rq(x))) and

therefore

Ker(HA o qu)’(:zj)) #+ KerH'y(z). (3.5)



16 MARIUSZ URBANSKI

If now ¢, () is sufficiently close to z, then ¢, (z) is so close to ¢,(z) that ¢,.(x) € W. Then
dim (Ker [ (¢+(2))) = p = dim(Ker Hy(x)). (3.6)

Consider now linearly independent vectors (VquZ o ¢ k(). .. .V Do, o gbw(kt)(x)), t =
g — dim(KerH’(z)). If v € KerHj(z), then < VDg; o ¢ wp(x),v >= 0 for all j =
1,2,...,t. Suppose that each vector VDg; o Puirry(2), 7 = 1,...,q, is a linear combi-
nation of the vectors (VquZ 0 P (), ... .V Do, o gbw(kt)(x)), t = g — dim(KerH)(z)).
Then < VD¢, o by y(z)yv >= 0 for all j = 1,...,q and all v € KerH)(x). Hence
Ker((HA o qu)’) (x) D KerH/(x). Thus using (3.6) we conclude that Ker((HA o qu)’) (x) =
KerH,(x). This contradicts (3.5) and shows that there exists 1 < u < ¢ such that the vectors
(VquZ 0P (k) (:1;));:1 together with the vector VD, o by () form a linearly independent

set. Hence, if B = (i,w® 7y, w®) w0t 5 i) ((¢— (1 +1))i’s at the end), then the
rank of Hp(x) is greater than or equal to ¢t + 1. Thus KerHg(z) = ¢ — rank(Hg(z)) <
g—(t+1)=qg—q+dim(KerH,(x)) — 1 = p— 1 which is a contradiction with the definition
of p and finishes the proof of the implication (g)=-(f).

(f)=(d). In order to prove this implication suppose that there exists a field of linear sub-
spaces F, in T'Mg of dimension and co-dimension greater than or equal to 1 defined on a
neighbourhood of J in Mg and invariant under the action of derivatives of all maps ¢;, : € I.
Conjugating our system by a conformal diffeomorphism, we may assume that Mg = [R?. Fix
an element 57 € I. In the course of the proof of Lemma 3.1 we have shown that besides one
attracting fixed point z; € X, the map ¢; has a different fixed point y; € IR?. Conjugate the
system S by the inversion 4, ; (equal to identity if y; = co) and denote the resulting system
by Sy. Put ¢; =iy, 1 0¢; 01y, 1 for all v € I. The field F, = i;JJ(Ex) is defined on a neighbour-
hood W of Jg, and it is Si-invariant. Since v; : IR? — IR? is linear, in view of the appropriate
part of the proof of Lemma 3.1, the field {F} },ew is constant, say equal to F. So, the field
of affine subspaces {x + F'},cw, as the unique field of integral manifolds of the Si-invariant
field {F'} of linear subspaces, is Si-invariant, which means that ¢(x + F') = ¢;(x) + F for
every 1 € [ and every x € W. So, if ¢; is not affine for some ¢ € I, then « + F' must contain
¥ (00), the center of inversion of ¢; for every & € W. Since W is open in IR? and since
dim(F') < ¢ — 1, this is impossible and proves that ¢, is affine. The implication (f)=-(d) is
thus proven. ®

4. Rigidity.
We begin this section with the following.

Proposition 4.1. Suppose that F' = {f; : X — X}tier and G = {g; : Y — Y }ier are two
not essentially affine topologically conjugate systems. If the measures mg and mp o h™! are
equivalent, then the systems F' and GG are of the same dimension.
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Proof. Suppose on the contrary that the dimensions of ' and ' are not equal. Without
loosing generality we may assume that p = dim F' < ¢ = dim . Since (G is not essentially
affine, it follows from Theorem 3.4 that there exist y € Jg, ¢ € I, a sequence (w(j))?zl € (1)
and a neighbourhood W¢g C Mg of y such that the map

g= (Dgi 0 guts- - » Dy ngw))

is invertible on Wy. Since the measures mg and mpoh™! are equivalent, after an appropriate
normalization pup = pug o h which means that D), = % = 1. Since ho f, = g, o h for all
T € I" and since D =1,
Goh=F

on Jg, where F = (DfZ o fm,...,Dfio fw(q)). Write = h™*(y). Then h = G™' o F on
W N Jp for some open neighbourhood Wr of  in Mg such that F(Wr) C G(W¢). Since by
Corollary 2.2, the maps F and G™' are real-analytic, the image G~ o F(Wr) for an adequate
Wg small enough, is a real-analytic submanifold of dimension < ¢ and G~ o F(Wp) N Jg
contains an open neighbourhood of y in Jg. So, invoking Lemma 3.2, we conclude that G is
at most p-dimensional. This contradiction finishes the proof. B

The main result of this paper is contained in the following.

Theorem 4.2. If two Open Set Condition conformal regular iterated function systems {f; :
X > X:ielyand{g, : Y =Y 10 € I} are not essentially affine and conjugate by a
homeomorphism h : Jp — Jg, then the following conditions are equivalent.
(a): The conjugacy between the systems {fi : X = X 11 €I} and{g;: Y =Y 11 € [}
extends in a conformal fashion to an open neighbourhood of X.
(b): The conjugacy between the systems {fi : X - X i €1} and{g;: Y =Y 10 € [}
extends in a real-analytic fashion to an open neighbourhood of X.
(c): The conjugacy between the systems {f; : X = X :i €I} and{g;: Y =Y 11 €[} is
bi-Lipschitz continuous.
(d): |g.,(y)| = |f(xy)] for all w € I*, where x, and y, are the only fired points of
fo: X =X and g, : Y — Y respectively.
(e): IS>1Vwe I*
o o dam(e (V) _
~ diam(f, (X)) —

(f): IE > 1Vwe I*

ool _
— AN T
(g): HD(J&) = HD(JF) and the measures mg and mp o h™' are equivalent.
(h): The measures mg and mp o h™' are equivalent.

Proof. The implications (a)=-(b) and (b)=(c) are obvious. That (c¢)=(d) results from
the fact that (c) implies condition (1) of Theorem 1.3 which in view of this theorem is
equivalent with condition (2) of Theorem 1.3 which finally is the same as condition (d) of
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Theorem 4.2. The implications (d)=-(e)=(f)=(g) have been proved in Theorem 1.3. The
implication (g)=-(h) is again obvious. We are left to prove that (h)=-(a). We shall first
prove that (h)=(b). So, suppose that (h) holds. Then, after an appropriate normalization

ptr = pgoh which means that Dy, = % = 1. Since  is not essentially affine, it follows from

Theorem 3.4 that there exist y € Jg, 1 € I, a sequence (w(j))?zl € (I*)? and a neighbourhood
We C Mg of y such that the map

g = (Dgi 0 gytrs- - » Dgi o gww))
is invertible on Wg. Since ho f; = g, o h for all 7 € I* and since D), = 1, we have
Goh=F
on Jp, where F = (DfZ o f,... .Df; o fw(q)). Fix W, an open neighbourhood of =z =

h='(y) in Mp so small that F(W;) C G(W,). Hence G™' o F is well-defined on W; and
G~ o Flw,nsp = h. Consider now w € I* such that f,(Jr) C Wi. Since

G o F(fulJr)) = ho fulJr) = gu o M(JF) = gu(Ja) C gu(Va),

since g, (Vi) is open, since f,, and G~' o F are continuous, there exists an open neighbourhood

Vi C Vg of X such that f,(VE) C Wy and G o F(f,(VE)) C 9.(Ve). Hence, the map
g;to (G oF)of,: VE—= (T

is well-defined, by Corollary 2.2 is real-analytic, and g;' o (G o F) o f,|s, = h. Thus, the
property (b) is proved.

The last step of the proof of Theorem 4.2, that is the implication (b)=-(a) can be carried
out using ideas from the proof of Lemma 7.2.7 in [Pr] as follows. Let H be this real-analytic
extension of h on a neighbourhood of Wy of Jr in Mp. We may assume Wr to be so small
that H' is a linear isomorphism at every point of Wg. Define the function ¢ : Wr — IR by
the formula i

L5

(' (=)~

Suppose that ¢(£) = 1 for some point £ € Wg. Since for every w € [*

AN N HE©) - H© - (U Il
D = Tt ™ ntcen - e (o)1 ey~

and since {f,(£) : w € I*} D Jp, we conclude that 1 = 1 identically on Jx. Since 1 is real-
analytic and since F'is g-dimensional, using Lemma 3.2 we conclude that ©» = 1 on an open
neighbourhood of Jp. But this means that [ is conformal. So, we may assume that 1(2) # 1
for every z € Wpr. Define the field {E. }.cw, on Wg as follows.

E. = {w € R : [ (z)eol] = ||H’(Z)||} U {0}.

ool

For every z € W, the set E. is a linear subspace of IR? of dimension > 1. Its codimension is
> 1 since t(z) # 1. Obviously FE., depends continuously on z. Since the maps f; : IR? — IR?
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are conformal, f{(2)(FE.) = Ey,(.) and it thereofore follows from Theorem 3.4 that the system
F' is essentially affine. This contradiction finishes the proof. B

Finally we want to recall that in [MU2] we have introduced the class of parabolic iterated
function systems. For a brief exposition of this material done in the way suitable for the needs
of rigidity see [MPU]. In exactly the same way as it has been done in [MPU] we can show
that the canonically associate hyperbolic iterated function system is not essentially affine and
we can prov the following.

Theorem 4.3. If both topologically conjugate systems F = {f; : X — X,i € [} and G =
{g: : Y = Y i € I} are regular and at least one of them is parabolic, then the conditions
listed in Theorem 4.2 are mutually equivalent where in the items (d),(e),(f) the words w are
required to be hyperbolic.

Acknowledgment. The author wishes to thank Feliks Przytycki for providing him with the
idea of the proof of Lemma 3.1.
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