INVARIANT MEASURES FOR PARABOLIC IFS WITH OVERLAPS
AND RANDOM CONTINUED FRACTIONS
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ABSTRACT. We study parabolic iterated function systems (IFS) with overlaps on the real
line. An ergodic shift-invariant measure with positive entropy on the symbolic space induces
an invariant measure on the limit set of the IFS. The Hausdorff dimension of this measure
equals the ratio of entropy over Lyapunov exponent if the IFS has no “overlaps”. We focus on
the overlapping case and consider parameterized families of IFS, satisfying a transversality
condition. Our main result is that the invariant measure is absolutely continuous for a.e.
parameter such that the entropy is greater than the Lyapunov exponent. If the entropy
does not exceed the Lyapunov exponent, then their ratio gives the Hausdorff dimension of
the invariant measure for a.e. parameter value, and moreover, the local dimension of the
exceptional set of parameters can be estimated. These results are applied to a family of
random continued fractions studied by R. Lyons. He proved singularity above a certain
threshold; we show that this threshold is sharp and establish absolute continuity for a.e.
parameter in some interval below the threshold.

1. INTRODUCTION

Let
1
lay,ag,as,...] = i
a + ——1—
ay + ———
as + ...
Motivated by a problem in Ergodic Theory on Galton-Watson trees, R. Lyons [Ly] considered
the distribution v, of the random continued fraction [1,Y7,1,Y5,1,Y5,...] where Y; are i.i.d.
and Y; = 0 or o with probabilities (%, %) Here o > 0 is a parameter. Equivalently, v, can be
defined as the stationary measure of the random matrix product
1 Y, 1 Y
(1 1+Yn>"'<1 1+Y1>’ (1.1)
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see [BL]. It is of interest to determine whether v,, for a given «, is singular or absolutely
continuous (it is not hard to see that the distribution cannot be of mixed type). It turns out
that v, is supported on a Cantor set of zero Lebesgue measure for o > 0.5, hence v, is singular.
However, for a € (0,0.5] the support of v, is the interval X, := [0, 1(—a + Va2 + 4a)], so
the question becomes more delicate. Let X, be the top Lyapunov exponent of the random
matrix product (1.1). Lyons [Ly] proved that v, is singular for all @ € (a, 0.5] where «, €
(0.2688,0.2689) is the only positive number satisfying log2 = 2x,,. Absolute continuity was
not proved for any value of a;, but Lyons conjectured that v, is absolutely continuous for all

« sufficiently close to zero.

We make progress on this conjecture and show that the threshold a, is sharp. In fact,
we prove that v, is absolutely continuous for a.e. @ € (g, @), for some «py. (The value of
ap = 0.215, that we obtain, has no special significance; we still don’t know if the result holds
for ag = 0.)

This problem can be recast in the framework of iterated function systems (IFS). The mea-
sure v, is an invariant measure for the IFS ®* = {¢, o} 1= {73297,
V. is supported on the limit set of the IF'S, defined as the unique non-empty compact set
satisfying J, = @9(Ja) U ¢2(Js). For a € (0,0.5] we have J, = X,, an interval, and for
a € (0,0.5) the intersection ¢§(J,) Nda(J,) is itself a non-empty interval (see Figure 1 for the

€T
—47}- The measure

case o = i) Thus, we say that this [F'S has an overlap. Another complication is that this
[FS is parabolic (therefore, not strictly contracting), because ¢, has a neutral fixed point at
xz = 0.

Our approach is to consider ®* as a family of IFS depending on parameter and establish
results for a.e. parameter value. Earlier work in this framework revealed the importance of
a transversality condition in the parameter dependence, see [PoS, Sol, PSol, PSo2, So2,
SSo, SSU]. We consider more general parabolic IFS; they are defined precisely in the next
section. Projecting an ergodic shift-invariant measure p from the symbolic space to the limit
set, we obtain an invariant measure v = v(®, u) for the IFS. One can consider the entropy
h, and the Lyapunov exponent x, for the IFS. The Hausdorff dimension of v, is defined by
dim; v = inf{dim, (Y) : v,(R\Y) = 0}. Our main result says, roughly speaking, that if a
family of TF'S satisfies the transversality condition, then the following holds for a.e. parameter

value:

dimy v = min{1, h,/x,}, and v is absolutely continuous if h,/x, > 1.

We should note that the formula “dimension = entropy/Lyapunov exponent” has been

established in many settings, but usually in the cases when there is no overlap, see, e.g.,
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FIGURE 1. The iterated function system {

[Eg, KP, Mn, Y, Ma, MU]. Stationary measures for 2 x 2 random matrices (of which v, is
an example), and their dimension properties, have been investigated by Ledrappier [L] (see
also [BL]). Before [Ly], Pincus [Pi] studied Bernoulli random matrices and their stationary
measures using the IF'S approach; he found some sufficient conditions for singularity in the

overlapping case.

The paper is organized as follows. The next section contains definitions and the statement
of main result. Section 3 is devoted to preliminaries and proof of the upper estimate. In
Section 4 the main theorem is proved. In Section 5 we estimate the local dimension of the
exceptional set of parameters in our main theorem. In Section 6 we prove the results on
random continued fractions; the main difficulty is checking transversality. Section 7 contains
concluding remarks; in particular, we present the (much easier) hyperbolic analog of our main

theorem.

A preliminary version of this paper was circulated as a preprint [SSU2].
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2. DEFINITIONS AND STATEMENT OF MAIN RESULT

Let X C R be a closed interval and 6 € (0,1]. A C**? map ¢ : X — X is hyperbolic
if 0 < |¢'(z)] < 1 forall z € X. We say that a C'*? map ¢ : X — X is parabolic if the

following requirements are fulfilled:

e there is only one point v € X such that ¢(v) = v;
o [¢(v)]=1and 0 < |¢'(z)| <1forall z € X\ {v}.
e There exists L, > 1 and = 3(¢) < 0/(1 —0) (= oo if # = 1) such that

/ _1 / _1

< L.
w0 |z —v|f v |r—vf

Now, following [SSU], we define the class of parabolic iterated function systems (IFS) under
investigation. The interior of a set Y is denoted by Int(Y").

Definition 2.1. Let ® = {¢1,..., ¢} be a collection of C'*? functions on a closed interval
X C R such that ¢y, is parabolic with the fized point v and the other functions are hyperbolic.
We write ® € U'x(0) if, in addition,

6i(X) CInt(X)\ {v} forall i <k—1. (2.1)

Let A= {1,...,k}. We define the natural projection map 74 : A>* — R by setting

{me(w)} = [ duy, (X)

n>1
where w|, = w; ...w, and ¢y, = ¢y, 0+ -0¢,,. If & € I'x(f) then the map 7 is well-defined
and continuous (see [U] and [SSU, Lemma 4.6]). We have

To(w) = Pu, (Te(0"w)) forallw e A* and n>1 (2.2)
where o is the left shift on A*°. The limit set, or attractor, of the IFS ® is defined by
Jp = mg(A™).
It is easy to see that .Jg is the unique non-empty compact set such that Jo = U;<x ¢i(Ja).

Given an ergodic shift-invariant measure ;o on A* with positive entropy h,, we consider

the “push-down” measure on the limit set:

v(®,p) = pomyt.
It is called the invariant measure for the IFS (corresponding to p). We are going to study

the following questions:

(a) When is the measure v(®, 1) singular? absolutely continuous?
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(b) Estimate or compute the Hausdorff dimension of the measure v(®, 11), defined for an

arbitrary positive measure v on the real line by
dim, v = inf{dim (V) : v(R\Y) =0} (2.3)
Clearly, the questions are related since an absolutely continuous measure has Hausdorff

dimension equal to one. A standard argument shows that v(®, ) has pure type since pu is

ergodic. Positivity of h, and ergodicity of p imply that v(®, 1) is non-atomic.
The Lyapunov exponent of the IF'S ® corresponding to the measure p is
xu(®) = = [ 106l (ra(0w))| dp(w) (24)

In the important special case when g is Bernoulli, the Lyapunov exponent can be rewritten

as follows:
k
p= )" = (@) = = i [ log |6l dv(®, p). (25)
i=1
It is known [MU] that
h
dim, v(®, u) < E__. 2.6
aV() < (2:6)

and this inequality becomes equality if v(®, 11)(¢i(Js) N ¢j(Je)) = 0 for all i # j. In the next

section we provide a short proof of the estimate (2.6) for the reader’s convenience.

In this paper we are interested in the “overlapping” case. What do we mean by that?
Strictly speaking, an IFS has an overlap if the Open Set Condition (OSC) is not satisfied
(the OSC is said to hold if there exists an open set U such that ¢;(U) C U for all i < m and
¢i(U) N ¢;(U) = 0 for all i # j). Since this is not always easy to check, sometimes the word
“overlap” is used more loosely to include cases when ¢;(X) N ¢;(X) is a non-empty interval
for some ¢ # j. This property certainly depends on X and does not guarantee that the OSC
fails. However, if we know, in addition, that X = Jg, then there is an overlap in the strict

sense.
To deal with the overlapping case, we consider families of IF'S and obtain results for a

typical member of the family. The following set-up is taken from [SSU]J.

Let U C R? be an open set. Consider a family of parabolic IFS
Ot ={¢},...,dp_1, o} €x(0), t€U. (2.7)

Although the parabolic function does not depend on the parameter, it is sometimes convenient

to write ¢ = ¢ for t € U. We let m, : A™ — R be the natural projection associated with

®t and denote J; = Jpt. Two conditions which control the dependence on t will be needed.
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CONTINUITY: the maps

t — ¢! are continuous from U to C'*?(X) for i <k — 1. (2.8)

TRANSVERSALITY CONDITION: there exists a constant C; such that for all w and 7 in A>

with w1 7£ T1,

Lo{t € U: |m(w) —me(r)] <71} <Cyr forall r>0. (2.9)

A mild additional condition on the parabolic map ¢, will be required in our main theorem.

Definition 2.2. Say that a parabolic function ¢ on X with the fized point v is well-behaved
on a connected open neighborhood V- of v if x = v is the only local extremum for |¢'(z)| on
VnX.

Clearly, any real-analytic parabolic function is well-behaved on a neighborhood of the par-

abolic point. Now we can state the main result of the paper.

Theorem 2.3. Suppose that {®*}, 7 is a family of parabolic IFS (2.7) satisfying (2.8) and
(2.9), such that ¢y is well-behaved on some neighborhood of v. Let y be a shift-invariant

ergodic Borel probability measure on A>® with positive entropy and let vy = pomy . Then

(i) for Lebesgue-a.e. t € U,

h
dim . 4 = min L ,1}; (2.10)
e {Xu(q)t)
(ii) the measure vy is absolutely continuous for a.e. t in {t € U : % > 1}.

Remark. The statement of the theorem cannot be true for all (rather than almost all) IF'S
in every family considered in the theorem. Indeed, the formula may break down at t, for a
trivial reason, when ¢%° and (]5;0 are identically equal for some ¢ # j. More generally, exceptions
may occur if two maps corresponding to distinct words over A are identical. However, such
trivial exceptions are rare (there are none in many families), and we do not know of other
exceptional cases. The local dimension of the exceptional set of parameters in Theorem 2.3
(i) is estimated from above in Section 5, assuming a slightly stronger transversality condition.
Analogous estimates in part (ii) are much harder, but one might be able to obtain them using
the methods of [PSc].
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3. PRELIMINARIES AND ESTIMATE ABOVE

Notation. We denote by Bj(ty) the open ball of radius 0 centered at to and L, denotes
the Lebesgue measure on R?. Recall that A = {1,... ,k}. For a finite word w € A" the
corresponding cylinder set in A% is denoted by [w]. For w and 7 in A* we denote by w A 7

their common initial segment, so that w,7 € [w A 7] and wy+1 # Tpy1 for n = |w A 7|. For
¢ € C1(X) we write

I'¢" lo=sup{|¢'(x) = &'(y)| - |z —y|™"+ @,y € X},
and || @' ||g:= max{|| ¢} ||o: i € A} for an IFS & = {¢p;};c4. We denote by || - || the supremum
norm on X. Given two IFS ® = {¢;, ..., ¢r} and ¥ = {9y, ... Y },we write

— = YR g ||l= —y
| ®— W = max | = || and @ — 9 |]= max | ¢ - v |

Next we recall several classical results. By the Shannon-McMillan-Breiman Theorem,
1
— —log plwl|n] = hy,  for prae w (3.1)
n

if 1 is a shift-invariant ergodic probability measure on A.

Let ® € I'x(A) be an IFS and let me the natural projection map. Let
f(w) = log|¢,, (me(ow))].
Then o
> fo'w) = 0g ol (ra(0"0)|.
and in view of (2.4), Birkhoff ’;ﬁglrgodic Theorem implies
- %10g|¢;|n(7r¢(a”w))| (@) for prae w (3.2)

Recall Billingsley’s Theorem (see [F'3, p.171]): for any Borel measure v on R,

] _
dim v = v-esssup ¢ lim inf ogulr — 1w+ 1] (3.3)
H r™\0 log(2r)
By Frostman’s Theorem, see [F1, Theorem 4.13],
d d
dim_ v > sup a>0:// M<oo (3.4)
" R2 |z —yle

(the expression in the right-hand side is the correlation dimension of the measure v).

Following [SSU], we introduce notation useful for families of IFS: we write

S FX(ea‘/a/y:Ua M) (35)
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for ® € T'x(#) if V is a connected open neighborhood of the parabolic point v such that

Vol e =0 )
max{[| ()" ||l i <k -1} <v€(0,1), (3.7)
min{|¢}(z)|: z € X, i <k} >ue(0,1), (3.8)
and
| @ [[p< M. (3.9)

By Definition 2.1, every ® € I"x(6) belongs to I'x (6, V,~y, u, M) for some V,~,u and M. Next

we state a basic distortion result for parabolic IFS.

Lemma 3.1. (see [U] and [SSU, Lemma 4.8]). There ezxists a constant
Ly = Ly(X,0,V,y,u, M) > 1 such that for every ® € I'x(0,V,v,u, M), all w € A, and all
n>1,

|04, (W)

_ |
LQISWSLQ fOT' all fL',yGX\V (310)

Now we give a proof of the upper estimate (2.6) for the reader’s convenience. A more

general result is contained in [MU].

Proof of (2.6). Let m = e and v = v(®, ). If z is in the support of vg then z = 7(w)
for some w € A>*. We are going to use (3.3) so we can take x from an arbitrary set of full

1

v-measure. Since ¥ = pom , we can assume that w lies in any given set of full y-measure.

Thus, we can assume that (3.1) and (3.2) hold for w, and also
#{n: w, # k} = oo, (3.11)
since p has positive entropy. By (2.2) and the Mean Value Theorem,
diam (7 ([wln]) <[l ¢, || diam(X).
Let r, =|| ¢}, || diam(X); observe that lim, ., = 0. We have
v =,z 4] = p{r: |n(r) = m(w)] <7t 2 plwla]- (3.12)

Fix a neighborhood V' of v and u > 0 so that (3.6) and (3.8) hold. Then we have for every n
such that w, # k and all y € X by Lemma 3.1,

9, W1 10, (P (1) |9, ()]

1
6, (0"0)] [0y, Gun (o)) 100, (r(oma))] =

U .
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Therefore,
I ¢y, 1< Lou™ @), (0"w)],
and we can estimate by (3.12) for all n such that w, # &k and 2r,, < 1:

logv[z — rp, @ + 1) log pu[w|,]
log(2ry,) ~ log|¢l,, (0"w)| + log(2diam(X)) + log(Lou~") -

Recall that (3.1) and (3.2) hold for w so, in view of (3.11),

hminflogl/[x—r,x—i—r] gliminflogy[x_rn’x—i_%] _ ’
™0 log(2r) n—00 log(2ry,) Xu(P)
and the proof is finished applying (3.3). O

4. PROOF OF THEOREM 2.3

We begin with several lemmas which may be of independent interest. Denote x; := x,(®*).

Lemma 4.1. Suppose that {®*}, 7 is a family of parabolic IFS (2.7) satisfying (2.8). Then

the function t — x¢ s continuous on U.

Proof. Recall that x¢ = — [4e log |(¢}, )/ (m¢(ow))| dpp(w) by (2.4). By the continuity condition
(2.8), we can choose a connected neighborhood V of v and v,u € (0,1), M > 0 so that
Ot € T'x(0,V,~v,u, M) for all t € U. The desired statement will immediately follow from (2.8)

once we prove the following

Sublemma. Let ® = {¢1,..., 0k 1,0k} and ¥ = {,... Y, 1,0} be two IFS in
Cx(0,V,v,u, M), with ¢, = 1. Then for all w € A,

by (T2 (W)

1 0 . —0 T4
|| S (e v =)t e v,

log

Proof of Sublemma. First we show that

[me(w) — mo (W) <@ =T || (1—7) " (4.1)
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Indeed, let w = k™7 where n > 0,7 # k and 7 € A (in the exceptional case when w = £k

(
we have 7 (w) = Ty (w) = v since ¢ = ¥,). Then by (2.2) and the Mean Value Theorem,
(

me (w) — mu ()| =|dkdi(e (1)) — ditbi(mu(T))]
= [(¢1)' ()] |¢i(ma (7)) — ti(mw(T))]
< [pi(ma (7)) — Yi(mu (7))
< [@i(ma (7)) = Yi(ma(7))] + [¥i(Ta (7)) — ti(me(7))]
< Q= || +ylme(r) — mu(T)],

and repeating this inductively we obtain (4.1).
2=yl __in view of (3.8) and (4.1),

min{|zl,|y|}’
log b (Te(w)) < |90, (e (w)) — ¥, (me (w))|
oy (Tw (W) u
1
< = ([0 (ra(@)) = 6L, (mu (@) + oL, (mo (@) — L, (o (w))])
< % (112" flo Ima(w) — T (w)|’+ | @ =" |)
1 0 —0 ! !
< E(MH‘I)—‘I’II (1= "+ | =3 .
The sublemma is proved and Lemma 4.1 follows. O

Lemma 4.2. (see [SSU, Corollary 6.3]) There ezists a positive constant
Ly = L3(X,0,V,v,u, M) such that for any ® = {¢1,... ,¢x} and ¥ = {ty,... P}, two
parabolic IFS in T x (0, V,~v,u, M) with ¢ = 1y, for allw € A>®, alln >0, and oll z € X,

| ! !
W%(ngp@mw@—wW+n®—wn».

Lemma 4.3. There exists a positive constant Ly = Ly(X,0,V,~v,u, M) such that for any
parabolic IFS ® = {¢1,... ,0x} € Tx(0,V,7v,u, M), with ¢y, well-behaved on V', the following
property holds:

For all w € A*® and all n € N,

124, W) _

<Ly foral x€X and ye X \V.
0%, (2)]

Note that here, in contrast with Lemma 3.1, there is no symmetry between z and y.



PARABOLIC ITERATED FUNCTION SYSTEMS 11

Proof of Lemma 4.3. Let p = w|,. Suppose p = wik! where [ > 0 and i # k. Then
¢y (X) € X \ 'V and hence, by Lemma 3.1,

[ _ [ (G 164k () (w)
[0,(x)] |1 (Gt ()] 05(Sh(2))] (1) ()

If p = k' then

||§L2'

S

[, _ @) W)l _ 0
6p(x) (k) (@)

so in both cases it remains to estimate () from above.

If # = v, then we are done, since |(¢%)'(v)| = 1 and |(¢%)'(y)| < 1. Suppose that ¢y, is
increasing and x > v. Let V N [v,4+00) = [v,v + J1); we can assume that v + 6, € X. If
r € (v,v+ d;) then

(%ﬂ@=i¥%wﬂ@ﬁzQ¢Nﬁw+&n=%%ﬂv+&)

where we used that ¢y is increasing and ¢}, is decreasing on [v, v + ;] by Definition 2.2, and
also that ¢i([v,v + d81]) C [v,v + &;]. Thus we may assume that z > v + §;. But then the

desired estimate follows from Lemma 3.1 (see also [U, Lemma 2.3]).

The case when ¢y, is increasing and = < v is considered similarly. If ¢ is decreasing, which
is only possible when v € Int(X), the proof follows by passing to the second iterate ¢?, which

is an increasing well-behaved parabolic function in a neighborhood of v. O

Lemma 4.4. Suppose that the family {®*}, ¢ satisfies (2.9). Then for every 0 < a < 1
there exists Cy = Cy(a) > 0 such that for all w, 7 € A with wy # T,

dt
Jy T =R <G

Proof is elementary, writing the integral in terms of the cumulative distribution function; see
[SSU, Lemma 3.3] for details. O

Now we are ready for the proof of the main theorem. It combines the methods of [PoS,
PSo2, SSo, SSU] but also uses a new idea which is related to Lemma 4.3.

Proof of Theorem 2.3. (i) Since dimy vy < h,/x; for all t € U by (2.6), we only need to
establish the estimate from below (for a.e. t € U). We are going to prove that

Vtg € U, Ye >0, 3n > 0: dimy vy > min{h,/xt,, 1} —€  for Ls-a.e. t € By(to)
(4.2)
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This will imply the desired statement: indeed, if dim vy < h,/xt on a set of positive measure,
taking to to be a Lebesgue density point leads to a contradiction with (4.2) by Lemma 4.1.
(A similar argument is worked out in detail at the end of [SSU, Section 3].)

Thus, we begin the proof of (4.2) by fixing t, € U and ¢ > 0. It is convenient to let
® =% 71 =m,, and x = xt,- By Lemma 4.2 and (2.8), there exists > 0 such that for all
weA® n>1,and x € X,

|90, (@)
|(65,)" ()]

By Egorov’s Theorem, choose a set {2 C A> such that () > 0 and convergence in (3.1) and
(3.2) is uniform on 2. Let

b —to] <np = < edmx (4.3)

fi=plg and Dy=jpom "

It is clear from (2.3) that dimy 7 < dim 14 so it suffices to estimate dim 7 from below.

Let s := min{1, h,/x}. The inequality (4.2) will follow if we prove

dv(z) di,
S = / // dn@) dnly) 40 o (4.4)
By(to) J/R2 |2 — y|5 €

see (3.4). For a finite (possibly empty) word p over the alphabet A we denote
Ay ={(w, 7)€ wAT=)p}.

We also let ps = p x u. Changing variables, reversing the order of integration, and decom-

posing Q% = U,>¢ Upean A, We obtain

&= /Q /B (t) |7 (@) —djrt(T)p—e dyiz(,7)

(4.5)

dt

2 2 . Voo =) e

Let |p| = n and (w,7) € A,. Then we have for some ¢ € [my(0"w), m(0™7)] using (4.3):
[m(w) = me(7)] = [(85,) ()] - Ime(0™w) = me(0™T)| > |8, ()€™ " N|me(0"w) — me(077)) -

Now observe that w,i1 # 7,41, and therefore, both cannot be equal to k. Suppose that
wnt1 # k (the other case is completely similar). Then 7(c"w) € ¢, (X) C X \ V, and we
have by Lemma 4.3:

me(w) — e (7)] = Lyt |6, (w(0™w)) e 1" X|me (0" w) — me(0™7)]. (4.6)
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Since wy 11 # Tpy1 and s —e < 1, we can apply Lemma 4.4 to obtain a constant Cy = Cs(s—¢€)
such that

dt
< Ch. (4.7)

/Bn(tO) |mi(0"w) = me(omT)[P=e

Now we estimate the expression in (4.5) with the help of (4.6) and (4.7) to get
—€_tnex(s—e n —(s—€
ST Y GLy e g, (r(0w)) CIpa(A,). (1)
n>0 peAn

Recall that convergence in (3.1) and (3.2) is uniform on 2, so we can find N € N such that
forallwe Qand n > N,

plwls] < e 190 (4.9)
and
|8, (7 (0"w))| > e "OxFae) (4.10)

We have ps(A,) < plp]?. If pis a restriction of some w € Q we have u[p] = plwl,] < =g ex)

by (4.9). Otherwise, A, = (), so in any case,
pa(A,) < plple™ w590

To prove that the series in (4.8) converges we estimate the truncated series for n > N as
follows:

> < CoLi“explinex(s — €) +n(x + ex)(s — €) — n(h, — 1€x)]

n>N
taking into account (4.10) and that >, 4 p[p] = 1. But s = min{1,h,/x}, and a simple
computation shows that the exponential term above is less than e~ "X, So & < oo, (4.4) is

proved, and the proof of Theorem 2.3(i) is concluded.

Proof of (ii). Let U' = {t € U : h,/x¢ > 1}. This is an open set by Lemma 4.1; assume it
is non-empty, otherwise there is nothing to prove. Fix an arbitrary to € U’. It is enough to
show that 14 is absolutely continuous with respect to the Lebesgue measure for Ls-a.e. t in
some neighborhood of ty. Let ® = &% 7 =, and x = xt,. Since to € U’ we can fix e > 0
such that

X < h, — 3e.
Then by Lemma 4.2 and (2.8), there exists > 0 such that for allw € A*°, n > 1, and z € X,

(ARG
o8, @] =

it —to] <n = (4.11)



14 K. SIMON, B. SOLOMYAK, AND M. URBANSKI
By Egorov’s Theorem, for any ¢ > 0 there exists Q C A such that u(Q) > 1 — ¢ and
convergence in (3.1) and (3.2) is uniform on Q. Let
fi=plg and Dy=fiom "
If we show that 7y is absolutely continuous with respect to the Lebesgue measure for a.e.

t € B, (to), then letting ¢ — 0 along a countable set we will be able to conclude that vy is

absolutely continuous for a.e. t € B, (tg). To this end we are going to show that

1:/ /Q(ﬂt,x) A, dt < o0
Bn(tO) R

where ~
Uglx —r x4 1]

D(tn, ) = hgl\lonf o
is the lower density of the measure 74 at the point . This will be sufficient since then for
a.e. t € B,(ty) we will have D(74,x) < oo for Dg-a.e. x and [Mat, Th. 2.12] will imply
that 7 is absolutely continuous. (Actually, this will imply that 74 has a density in L? for

a.e. t € B,(to); this property, however, may disappear as we let ¢ — 0.)

The argument below follows the scheme of | PSO2] First we apply Fatou’s Lemma to get

7 < lim 1nf/ / Blr o] dr, dt. (4.12)
B7I to

r\0
Next we use the definition of 74 to change the Varlable, write T4[x — r, x + 7] as an integral of
the indicator function, and change the variable once again to obtain
/Rﬁt [z —r,x+r|dy = / 0 1{weq: [my(w)—me(r)|<r} A2 (W, T).

Substituting this into (4.12) and exchanging the order of integration leads to
T <liminf(2r)"! / / La{t € By(ty) : |me(w) — ()] < 1} dpta(w, 7)

= liminf(2r) 'Y ¥ // La{t € By(to) : |me(w) — me(r)| < v} dps(w,7) - (4.13)
n>0 peA™
Here we again denote A, = {(w,7) € Q* : w AT = p} for a finite (possibly empty) word p
over the alphabet A.
The next step is almost the same as in the proof of part (i). Let (w,7) € A,. Then we have

for some ¢ € [my(0"w), m(0"7)] using (4.11):

[me(w) — me(7)] = [(80,) ()] - [me(0"w) — e (0" 7)| = |, (c)le " |me(0"w) — me(0™7)] -
Since wy11 # Tpi1, We can assume, without loss of generality, that w,,1 # k. Then we have

by Lemma 4.3:
Ime(w) = me(7)] > Ly ', (m(0"w))|e ™ |me(0"w) — me(0™7)] .
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It follows that
Li{t € By(to) : |me(w) — me(7)| < 1}
Lae™r

|0, (m(0"w))|
by the transversality condition (2.9). Substituting this into (4.13) gives

I<ioL Y e S / /A,, 6, (m(0"w) |~ dpsa(w, 7). (4.14)

n>0 pEA"

<Ly {t € By(ty) : |m(0"w) — me(0"7)| < } < CiLye™r|gl,) (m(0"w))|[ ™,

where w € A,. Recall that convergence in (3.1) and (3.2) is uniform on €2, so we can find
N € N such that for allw € Q and n > N,
plwln) < e (4.15)
and
6L, (T(0"w))| = e "xH (4.16)
Similarly to the proof of part (i) we have

pa(Ap) < plple "7,
hence the truncated series in (4.14) is estimated as follows:
> < Y explnc+nly +¢) —nlh, — o).
n>N n>N

which is finite since y — h, < —3e. This concludes the proof of Theorem 2.3. O

5. EXCEPTIONAL PARAMETERS

In this section, following the scheme of Kaufman [Ka], we obtain an estimate from above
for the local Hausdorff dimension of the set of exceptional parameters in Theorem 2.3(i). As
before, we assume that {®*}, i is a family of IFS in T'x (6) satisfying (2.8), but we will need
the following stronger transversality condition. Denote by N, (F') the minimal number of balls

of radius r needed to cover the set F C R¢.
STRONG TRANSVERSALITY CONDITION: there exists a constant C'5 > 0 such that for all
w and 7 in A*® with wy # 7,

N, ({t €U : |m(w) — me(7)| < 7}) < Car'™4 (5.1)

Of course, the strong transversality condition implies the transversality condition (2.9).

The following lemma is analogous to Lemma 4.4 and [SSU, Lemma 5.1]; its proof is ele-

mentary.
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Lemma 5.1. Suppose that the family {®*}, 7 satisfies the strong transversality condition.
Let m be a Borel probability measure in R? such that m(B,(x)) < Cr® for some C, u > 0 and
all v € RY, v > 0. Then for every a < u —d + 1 and for all w,7 € A® with w, # 71, there
exists Cy = Cy(a) > 0 such that

dm(t)
Jy @) = e <G

In the sequel any measure with the properties required in Lemma 5.1 will be called a Frostman

measure with exponent u. Next we prove the analog of (4.2). We fix an ergodic shift-invariant

probability measure ;1 on A® and let vy = pom, *.

Lemma 5.2. Suppose that the family {®*}icr satisfies (2.8) and the strong transversality
condition (5.1). Then for any to € U and any € > 0 there exists n = n(to,€) > 0 such that if

m is a Frostman measure on B, (tg) with exponent u, then

dim, (v¢) > min{&,u —d+ 1} -
Xto

for m-a.e. t € B,(to).

Proof. We let s = min{u —d + 1, h,/xs,} and then repeat the proof of (4.2) almost word by

word. We define 05, () d5
o, B
BTI to R2 |S €

and prove that &' < oo using Lemma 5.1 in the place where Lemma 4.4 was used. This
finishes the proof since dim (v;) > dim, (7). O

Next we prove the main result of this section.

Theorem 5.3. Suppose that the d-parameter family of IFS {®*}, ¢ satisfies (2.8) and the
strong transversality condition (5.1). If G is an arbitrary subset of U, then for every £ > 0

we have

dim, ({t € G : dimy(v) < min{¢, h’u/Xt}}) < min{f,sgp hu/x¢} +d—1.

Proof. Denote k := min{¢, supg; h,/xt} +d — 1. By the countable stability of the Hausdorff

dimension, it is enough to prove that for all n € N,
dim, ({t € G dimy(J;) < min{&, h,/xe} — n_l}) < K.
Fix n and observe that it suffices to show that for all t, € G there exists = 1(to) such that
dim, ({t € By(to) : dimy (Jy) < min{&, h,/xe} — n_l}) <k
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(just use that any cover of G contains a countable subcover and again the countable stability
of the Hausdorff dimension). To establish our claim, suppose that it is false. Then there
exists ty € GG such that for all n > 0

dim, ({t € By(to) : dimy(J;) < min{&, h,/xe} — n_l}) > K.

Choose 1 > 0 so small that the statement of Lemma 5.2 holds with € = -~ and

2n
|};—‘: — )’:T“| < 5= for all t € B,(to) (by the continuity of x¢). Then
0

{t € By(to) : dim (1) < min{&, hy/xe} — n_l}
C{t € By(to) : dim, () < min{€, hu/xe} — (2n)1} . E,

hence dim, (E) > k. By Frostman’s Lemma (see [Mat, Th.8.8]), there is a Frostman measure

m on the set £ with exponent u = k. By Lemma 5.2, for m-a.e. t we have

dim, () > min{h,/xe, 6 —d+1} — (2n) ' = min{hu/xto, min{¢, sup hu/Xt}} —(2n) 1.
G

This is a contradiction since for all t € E we have dim, () < min{&, h,/x¢,} — (2n)" and
min{&, h, /X, } < min{hu/xto,min{f,sgp hu/Xt}}-
The proof is complete. H

Since the function t +— x¢, t € U, is continuous, as an immediate consequence of Theo-

rem 5.3 we get the following estimate for the local dimension of the exceptional set.

Corollary 5.4. For every to € U we have

lim dim, ({t € B,(to) : dimH(Vt) < min{¢, h’u/Xt}}) < min{& h,/xt,} +d—1.

r—0

6. EXAMPLE: RANDOM CONTINUED FRACTIONS

x r+o
z+1’ z+a+l

associated with the class of continued fractions considered by Lyons [Ly]. First we prove a

Here we apply our results to the family of parabolic IFS { }, with parameter «,

sufficient condition for strong transversality which extends [SSU, Proposition 7.2].
Suppose that Y C R is a closed interval and ¢ € C1*?(Y) is increasing and satisfies
|¢' ()] >u>0 forall ze€V.
Let ¢;(z) = ¢(x + a;), for i = 1,...  k, and a; € R are such that ® = {¢1,... , ¢} € T'x(0)

for some closed interval X. For w € A" denote

My, = sup{|¢,, (z)| : = € ¢pu(X)}
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(if w = wy then M, =|| ¢;,, ||). Let

q)t = {d)l(l‘ —|—t1), e ,¢k_1(1‘ —|—tk_1),¢k(l‘)} for t = (tl, e atk—l) € Rk_l.

Denote by ¢ the projection map corresponding to ®¢. Below ¢; ; is the Kronecker’s symbol.

Lemma 6.1. (i) If there exists € > 0 such that

0

3_t,~7rt(w)|t:0 <l-e (6.1)
forallw € A® and 1 < i < k—1, then there exists n > 0 such that the family {®*: t € B,(0)}

satisfies the strong transversality condition (5.1).

(ii) Suppose that Z C A®, W C U2, A", and € > 0 are such that

=20 | [u] (6.2)

weW
the inequality (6.1) holds for allw € Z, and

Mw (5w1,i + Mg’w (5w2,i + -4 Mgn—lw((swn,i + 1))) S 1—¢ (63)
for allw € W. Then (6.1) holds for all w € A™.

Remark. The simplest special case of (6.2) is [i] = [i]] and Z = (). Then (6.3) becomes
M; < 1/2 which exactly corresponds to [SSU, Proposition 7.2(ii)].

Proof. Part (i) is a special case of [SSU, Proposition 7.2(i)] so we only need to prove part (ii).

We have for w € [w], with w = wy ... wy:

71"G(W) = Qu, (twl + Qu, (th + 0t Qu, (twn + ﬂ't(anw)))) )
with the convention that ¢, = 0. Thus,
0 0
gﬁt(w)h:o S Mw <6w1,i + Maw <6w2,i + e+ Manflw <6wn,i + %Wt(anw”t:O))) .

)

We are going to estimate

0
Ai = sup {gﬂ't(WHt:O TweE Aoo} .

Since || ¢} [|< 1 for all j < k, we can restrict ourselves to the case w; = 7 when estimating
A; = sup {%m(w)h:g D wE Aoo}. Taking into account (6.2), we obtain that A; satisfies

weW

Ai S max {]_ — €, Sup{Mw (511)1,1' + Mgw ((511,2’1' 4+ e+ Mgnflw (5wn,i + Az)))}} .
(6.4)

The right-hand side is the supremum of a set of linear functions in A;, each having a slope

in [0,1). By (6.3), the value of each of these functions at 1 does not exceed 1 — €. Therefore,
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A; < G(A;) where G is an increasing function on [0, +00) such that G(y) — G(z) < y — z for
all z < y and G(1) <1 — €. The desired inequality A; < 1 — € is now straightforward. O

Now we are going to apply Lemma 6.1 to the family

" = {$(2).65(x)})  where ¢5(x) = o(e) = ——

and ¢f(x) = ¢(z + ).
It is easy to see that ®* € I';g1;(1) for all o > 0.

Lemma 6.2. The family {®*} satisfies the strong transversality condition (5.1) for a €
(0.215,0.5).

Remarks. 1. We are only interested in o € (0,0.5) since for a« > 0.5 the IFS satisfies the
Open Set Condition.

2. The proof of this lemma uses Lemma 6.1(ii). The relevant result in our previous paper,
[SSU, Proposition 7.2(ii)], would only give transversality of the family {®*} on (v/2—1,0.5).

3. One can enlarge the interval where the strong transversality condition (5.1) holds by in-
creasing the amount of numerical computations. However, a computation of %WG(HO‘X’),
which can be made exact, implies that this method cannot give more than the interval

(0.17,0.5). Moreover, we believe that the transversality condition fails for small a.

Proof. We are going to apply Lemma 6.1 with £ = 2. Denote by 7, the projection map
associated with . In view of Lemma 6.1, it is enough to prove that there exists ¢ > 0 such

that

%Wa(w) <1l-—e¢ (6.5)

for all w € [1] C A* and « € (0.215,0.5). We have
[1] = {12°, 112, 1212>} U (J[112F1] U [ [1212F 1] U [ J[12F1].

k=0 k=0 k=2
Let us begin by checking the three single points listed above. We have

ma(12%) = ¢1(0) = ¢(a),
hence 27, (12%°) = (o +1)72 < 0.8 for for all & > 0.215. Next,

oo
Ta(112%) = 61(61(0)) = ¢(a + ¢()).
Since ¢ is increasing and concave down, the derivative %WQ(HZOO) is decreasing in a. We
used Mathematica for the simple numerical computations needed in this lemma and found
that 5
a—aﬁa(112°°) <1l for a>0.171.
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Similarly, we have verified that

%,
5o Ma(1212%) <1 for o> 0.15.

Next we check the cylinders. For example, if w € [1221] the inequality (6.3) becomes
M1 (1 + Magy My My -2) <1 —€
which is equivalent to
#la+¢* (@) (1+2(6" () <1-e
A numerical computation shows that this is true for « > 0.21 (for some € > 0). In a similar

way we made the following table where for each cylinder set it is shown where (6.3) is satisfied

(for some € > 0).

cylinder set | a >

111] 0.213
1121] 0.201
[11221] 0.192

[112221] | 0.186
1122221] | 0.181

1211] 0.178
12121] 0.170
[1221] 0.204
[12221] 0.184

The remaining cylinders are [112%1], k > 5, [1212%1], k > 2, and [12¥1], k > 4. They are

checked using less accurate estimates. For example, for w = 121 the inequality (6.3) becomes
¢'(a+¢" (@) - (1+ (") () <1-e
Clearly, (a + 1) = ¢(a) > ¢/(a + ¢"*(a)), and ¢"(z) = gy, so0 (61)(a) =
((k+1)a+1)"2 Thus, if
(a+1)?A+((k+Da+1)7?) <1, (6.6)

then the desired condition (6.3) holds for some € > 0. A numerical check yields that (6.6) is
true for o > 0.213 and k£ = 4, and since the left-hand side of (6.6) is monotone decreasing in
k, this implies (6.3) for all the cylinders [12%1], k& > 4. Similarly, by estimating M,, < ¢'(c)
in (6.3) which makes the expression decreasing in k, we have verified that (6.3) holds for
[112%1], & > 5, if @ > 0.215, and for [1212%1], k& > 2, if @ > 0.214 (for some € > 0).

Combining all these estimates yields the desired result. O

Tta T : : :
S o5} The interesting interval of

parameters is 0 < o < 0.5 when the limit set of ®* is the interval [0, (—« + v/a? + 4a)] and

Now we can apply our results to the family ®* = {
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the IFS has an overlap in the strict sense. Let v, be the invariant measure corresponding to

Bernoulli p = (%, %)N. We have h, =log2. Let x, be the corresponding Lyapunov exponent.
By (2.5),
Xo = /log[(l +2)(1 + 2 + )] dva(2). (6.7)
The connection with continued fractions is as follows: denote
1
lay,as,a3,...] = i
a; +
as +
as + ...
Then v, is the distribution of the random continued fraction [1,Y7,1,Y5,1,Y3,...] where

Y; € {0,a} are i.i.d. and have the distribution of Y which equals 0 or o with probabilities

(3,3). Alternatively, v, can be viewed as the stationary measure for the random matrix

( } 1 —);Y ) . Lyons [Ly] proved that dim v, < log2/(2Xa) where X, is the top Lyapunov

exponent of the random matrix. This estimate is equivalent to (2.6) since the Lyapunov
exponent for the IFS satisfies yo, = 2X,; this can be verified directly or seen from [Ly,
(2.6)] which agrees with (6.7). Lyons estimated numerically the critical value «. for which
log2/xa. = 1 and found that a, € (0.2688,0.2689). He conjectured that v, is absolutely
continuous for sufficiently small positive .. In the next corollary we make some progress on

this conjecture; in particular, we show that the threshold a. in Lyons’ result is sharp.

Corollary 6.3. The measure v, is absolutely continuous for Lebesgue-a.e. « € (0.215, )
and has Hausdorff dimension equal to log2/xa for Lebesgue-a.e. a € (., 0.5). Moreover, for
any set G C (a.,0.5) we have

dim {a € G : dimy(va) <log2/xa} < SL(l;p log2/Xa-

Proof is immediate from Lemma 6.2, Theorem 2.3 and Theorem 5.3. U

Remarks. 1. The following questions remain open:
(a) Is there « € (0, o) such that v, is singular?
(b) Is it true that v, is absolutely continuous for a.e. o € (0,0.215)?

2. The family v, has some resemblance with the well-known family of infinite Bernoulli
convolutions which arise from the family of linear IFS {Ax — 1, Az + 1}. For Bernoulli
convolutions, a countable number of exceptions (of number-theoretic nature) is known [E].

Also, for Bernoulli convolutions the absolute continuity was recently proven for a.e. A in the
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“overlap region” (0.5,1) [Sol, PSol]. Observe that in our non-linear case v, is not an infinite

convolution.

3. Lyons [Ly] proved also that v, cannot have a density in L? for o > v/6/2—1 = 0.2247 . ..
We have recently shown that this threshold is sharp as well. This and other results on L?

densities of invariant measures for IF'S will be presented in another paper.

7. CONCLUDING REMARKS

Here we state the hyperbolic analog of Theorem 2.3.

Definition 7.1. Let X C R be a closed interval and 6 € (0,1]. We write ® = {¢1, ..., ¢} €
Ex(0) if ¢i are hyperbolic C**0-maps from X into Int(X) for all i < k.

Theorem 7.2. Let U C R? be an open set. Suppose that @ = {¢%, ..., ¢t},c7 € Ex(0) is
a family of hyperbolic IFS such that the mappings t — ¢¢ are continuous from U to C'*?(X)
for all i < k and the transversality condition (2.9) holds. Let p be a shift-invariant ergodic

Borel probability measure with positive entropy on A® and let vy = oy *. Then

. ) . h )
(i) for Lebesgue-a.e. t € U, dim v; = min {X_;L(!:I’T) , 1} ;

(ii) the measure vy is absolutely continuous for a.e. t in {t € U : % > 1}.

The proof is analogous to that of Theorem 2.3 but it is much easier, in view of the classical

bounded distortion principle for hyperbolic IF'S. O

Corollary 7.3. Suppose that ® € Zx(0) is such that || ¢} ||< 1/2 for all i < k. Consider the
family ®° = {1 (x) +t1,...,¢p(x) +ta}. Then the conclusion of Theorem 7.2 holds in some
neighborhood of 0 € RF.

Proof. Transversality of this family follows by [SSo, Lemma 3.3] so Theorem 7.2 applies. O

Remarks. 1. Hunt [H] considered C'*? families of hyperbolic IFS in any dimension. In the
one-dimensional case his result is similar to our Corollary 7.3, however, he does not address
the question of absolute continuity and confines himself to the case of Bernoulli measures
on the symbolic space. In higher dimensions Hunt [H] assumed that the largest Lyapunov
exponent is less than (1 + @) times the smallest Lyapunov exponent and showed that the
dimension of the measure (actually, the pointwise dimension almost everywhere) equals the

Lyapunov dimension.

2. It should be possible to extend the results of this paper to the case when the maps ¢;

are conformal, in any dimension R™. Also, one can handle parabolic IFS with more than
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one parabolic functions if their parabolic points are distinct. The appropriate setting for such
IFS is developed in [MU].

Acknowledgment. We are grateful to Brian Hunt and Russ Lyons for many helpful discus-
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