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Abstract� It is proved that the Julia set of a rational function on the Riemann sphere
whose all critical points contained in the Julia set are non	recurrent �but parabolic periodic
points are allowed� is porous� Next� new classes of rational functions� parabolic Collet	
Eckmann and topological parabolic Collet	Eckmann are introduced and mean porosity of
Julia sets for functions in these classes is proved� This implies that the upper box	counting
dimension of the Julia set is less than ��
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x�� Introduction� A bounded subset X of a Euclidean space �or Reimann sphere� is said
to be porous if there exists a positive constant c � � such that each open ball B centered
at a point of X and of an arbitrary radius � � r � � contains an open ball of radius cr
disjoint from X�

If only balls B centered at a �xed point x � X are discussed above� X is called
porous at x�

X as above is said to be mean porous if there exist P� c � � such that for every x � X
there exists an increasing sequence of integers nj and a sequence of points xj such that
nj � Pj� dist�x� xj� � ��nj and B�xj� c�

�nj � �X � ��

In this paper we deal with f � CI � CI� a rational function of the Riemann sphere of degree
� �� In x� we consider functions whose all critical points contained in the Julia set are
non	recurrent� Recall that a point is non	recurrent if it is not a member of its �	limit set�
We call all the maps de�ned above� NCP maps �abbreviation for non�recurrent critical

points�� We prove the following�

Theorem ���� The Julia set of each NCP map� if di�erent from CI� is porous�

In x� we introduce two classes of rational functions� parabolic Collet	Eckmann maps �abbr�
PCE� and topological parabolic Collet	Eckmann maps �abbr� TPCE�� Recall from �P��
that f is called Collet	Eckmann �abbr� CE� if there exist � � �� C � � such that for every
f 	critical point c � J�f� whose forward trajectory does not contain any other critical point
and every positive integer n

����� j�fn���f�c��j � C�n

This notion was introduced for the �rst time for unimodal maps of interval in �CE��� �CE���

In presence of parabolic points a weaker de�nition seems appropriate� Instead of n at the
right hand side of ����� we put smaller integers� which we call rescaled times� Namely when
the forward trajectory of c passes close to parabolic points� instead of iterating by f we
iterate by fa� � fa� � ��� so that the derivatives j�fai��j are about �� Analogously with the use
of the rescaled time we generalize from �P�� and �PR�� the notion of topological Collet	
Eckmann maps to TPCE maps� This class is larger than NCP� We prove the following

Theorem ���� The Julia set of each PCE or TPCE map� if di�erent from CI� is mean
porous�

As an immediate consequence of this result we get due to �KR� the following�

Corollary ���� The upper box	counting dimension of the Julia set of each NCP� PCE or
TPCE map is less than � �BD�J�f�� � ���

The notions of porosity and mean porosity have appeared in several contexts and for a short
survey and some bibliographical references the reader may see the paper �KR�� Koskela�
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Rohde�s theorem implying Corollary ��� says that if X is mean porous then BD�X� � ��
In fact� instead of referring to �KR�� we could prove the so	called box mean porosity as in
�PR�� and then refer to the easy theorem saying that the box mean porosity of X implies
that BD�X� � �� whose simple proof �by Michal Rams� was provided in �PR���

For rational functions expanding on Julia set the proof of porosity is easy �it was
folklore since a long time�� Just pull	back large scale holes to all small scales by iteration of
inverse branches of f � For NCP maps without parabolic periodic points the proof is similar�
One pulls back large disks� meeting critical points only �nite number of times �bounded by
the number of critical points in J�f��� hence resulting small disks are boundedly distorted�
The same goes through for CE maps� for every z � J�f�� Namely for positive lower density
set of positive good integers n one can pull a large disk B with the origin at fn�z� back
to a neighbourhood of z� meeting critical points only uniformly bounded number of times
�the bound depending only on f�� This is called topological Collet	Eckmann property
�abbr� TCE�� Therefore� for every z � J�f�� in most scales around z� one �nds boundedly
distorted holes� that yields mean porosity �PR���

In presence of parabolic periodic points but in absence of critical points in J�f� poros	
ity was proved by Lucas Geyer �G�� The idea was to use additionally porosity at points
close to parabolic � in scales comparable to the distance from �� true since the Julia set
close to � is con�ned in cusp	like channels�

Here� in x� we prove Theorem ��� combining this idea with �nite criticality while
pulling back� as for non	parabolic NCP� In x� we introduce PCE and TPCE properties
and prove that TPCE is topologically invariant�

In x� we apply the ideas of x� to prove Theorem ���� The hardest point is to prove
that PCE implies TPCE� the latter is a version of TCE in presence of parabolic points�
with good integers considered with respect to the rescaled time�

Some technical di�culties appear� We need to improve the estimate of an average
distance of any trajectory from critical points from �DPU�� applied in �PR��� This is
done in Appendix A� We need also to prove that diameters of components of preimages
under iterates of f of any small disk are uniformly small �backward Lyapunov stability� to
know that the rescaled times along blocks of a trajectory and shadowing critical trajectory
coincide� This was sketched in �P�� in non	parabolic case under so called summability
condition� weaker than CE� Here we provide a precise proof� in Appendix B�

Rational PCE functions and TPCE functions are introduced here for the �rst time�
Similarly to TCE the TPCE property is topologically invariant� In x� we continue sketching
a theory analogous to the theory of CE and TCE in �PR��� �PR��� P���

Historical remarks on dimension� The class of NCP maps forms a joint extension
of parabolic and semihyperbolic maps �the former without critical points in J�f�� the
latter without parabolic points�� For parabolic maps Corollary ��� follows from the results
obtained in �ADU� and �DU�� It has been mentioned in �U�� that the Hausdor� dimension of
the Julia set of each NCPmap is less than � and in �U�� some number of su�cient conditions
was provided for the Hausdor� dimension and the upper box	counting dimension of the
Julia set of an NCP map to coincide� This therefore gave a partial contribution towards
the inequality BD�J�f�� � � �denote it by ��� � for NCP maps� ��� was proved for CE

�



maps with only one critical point in the Julia set in �P�� and �P��� This was the �rst class
of rational maps containing reccurrent critical points� for which this property was veri�ed�
The proofs used ergodic theory� Later� as we already mentioned� ��� was proved in �PR��
for all CE maps� without using ergodic theory�

Independently a di�erent class was provided by C� McMullen �McM�� A large class of
maps satisfying ���� including CE� was provided recently by J� Graczyk and S� Smirnov
�GS���

Acknowledgement We thank Lucas Geyer for a discussion on the topics of the paper in
Berlin� August �

�� and careful reading on Sections � and ��

x�� Preliminaries on distortion� parabolic points and non�recurrent dynamics�
If h � D � CI is an analytic map� z � CI� and r � �� then by Comp�z� h� r� we denote the
connected component of h���B�h�z�� r�� that contains z� Fix now f � CI � CI� a rational
function� Denote by �� or ��f�� the set of all periodic parabolic points for f � where
� � J�f� is called parabolic if there exists q � � such that fq��� � � and �fq����� � ��
Passing to a su�ciently high iterate does not change the Julia set� so we may assume that
for every � � �� f��� � � and f ���� � �� Assume that the spherical metric on CI is scaled
so that diam�CI� � �� All diameters and absolute values of derivatives are considered with
respect to this spherical metric� However we assume that � � CI and close to � we use the
euclidean distance jx	 yj�
Fix for the rest of the paper a number � � � so small that for each � � �� B��� ��� �
Crit�f� � � �where by Crit�f� we denote the set of all f 	critical points� i�e� points where
f � � ��� f� �B���� ��� � B���� �� � � for �� 
� �� and 	 � �� �� f jB����� is injective and
jf �j jB����� � �� We also require � � � to be so small that there exists a unique holomorphic
inverse branch f��� � B��� ���� CI of f mapping � to �� This inverse branch is contracting
when restricted to J�f�� We may even require for an arbitrary � � 
 � � that � � � is so
small that the following is true �see �DU� for example��

Lemma ���� For every x � B��� ���J�f� and every n � � there exists the inverse branch
f�n� � B � B�x� 
jx	 �j�� B��� ��� Moreover �f��

�n�B� � B�f�n� �x�� 
jf�n� �x�	 �j�

Other restrictions on � will appear in the course of the paper� By the Fatou �ower theorem
and the classi�cation theorem of connected components of the Fatou set� we may �nd also
Const� � � � ��� such that for all x � J�f� nB��� ��� the ball B�x� �� is disjoint from the
forward orbit of all critical points contained in the Fatou set�

Finally we assume � � ��f� to be small enough to satisfy the following�

Lemma ���� For every NCP function f there exist � � � and M � � such that for
every x � J�f� n B��� �� every integer n � �� every component V of f�n�B�x� ��� is
simply connected and the restriction fnjV has at most M critical points �counted with
multiplicities��
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Proof� This Lemma follows from �Ma� Theorem II�� See also �CJY� Theorem ���� or �U��
Lemma ���� and Lemma ����� A crucial step in the proof of Lemma ��� is that given an
arbitrary 
 � � there exists � so that the diameters of all the above components are less
than 
� The latter property is called ��Le�� backward Lyapunov stability�

Remark ���� If � is small enough the assertion of Lemma ��� holds also for x � B��� �� if
V is any component of f��n����W � for W any component of f���B�x� ��� di�erent from
f��� �B�x� ����

In the sequel we shall apply this to B as in Lemma ��� so we assume that 
 is small
enough to satisfy �
� � �� Assume moreover �needed later at one place�� 
�jjf �jj � ��
wher jjf �jj �� supz�CI jf

��z�j�

A step in proving Lemma ��� is the following lemma by Ricardo Ma n�e �Ma� �see also �P��
Lemma ����� true for any rational function f �

Lemma ��	� For every integer M � � and � � r � � the following holds�
�� For every 
 � � there exists � � � such that for every x � J�f� n B��� �� every

integer n � � and every component V of f�n�B�x� ��� such that the restriction fnjV
has at most M critical points �counted with multiplicities�� for every component V � of
f�n�B�x� r��� one has diam�V �� � 
�

�� diam�V ��� � for n�� uniformly �i�e� independently of x and V ���

The following result is a part of the !bounded distortion! lemma that has been proved in
�P�� Lemma ���� and �PR�� Lemma �����

Lemma ��
� For each 
 � � and D � � there are constants C� and C� such that the
following holds for all rational maps F � CI � CI� all x � CI� all ��� � r � � and all
� � � � ����

Assume that V �resp� V �� is a simply connected component of F���B�x� ��� �resp�
F���B�x� r���� with V � V �� Assume further that CI n V has diameter at least 
 and F
has at most D critical points �counted with multiplicity� in V � Then

�a� jF ��y�jdiam�V �� � C���	 r��C��

for all y � V �� Furthermore� if r � ��� and � � 	 � ���� let B�� � B�z� 	�� be any disk
contained in B�x� ���� and let V �� be a component of F���B��� contained in V �� Then

�b� diam�V ��� � C�diam�V ��

with C� � C��	� 
�D� and lim���C��	� 
�D� � �� and

�c� V �� contains a disk of radius � C�diam�V ��

around every preimage of F���z� that is contained in V ��� Here C� � C��	� 
�D� � ��
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In x� to consider NCP maps we will only need part �c� of this lemma� �a� and �b� will be
needed in x�� In applications we will skip the dependence of constants on 
�

The last fact stated in this section follows for points x close to � from the Fatou �ower
theorem� see Fig���

INSERT FIG��

Figure �� A !�ower! for !rabbit!� f�z� � z� 	 ���� " ����i�

Lemma ���� If � 
� � then for every � � � there exists c � c��� � � such that for each
x � J�f� and each r� �dist�x��� � r � �� there exists an open ball B � B�x� r� n J�f�
with radius cr�

x�� The proof of Theorem ���� Fix z � J�f� and de�ne

T �z� � fn � � � fn�z� �� B��� ��g

and
S�z� � fn � � � n	 � � T �z� if n � � and fn�z� � B��� ��g�

Given m � S�z� we �nd a unique � � � such that fm�z� � B��� �� and then we de�ne

Rm�z� � fk � � � ��k� � 
jfm�z�	 �jg

and
Sm�z� � fn � m � n � minfT �z� n ���m	 ��gg�

We �rst equip all the sets T �z�� Rm�z� and Sm�z�� m � S�z�� with the natural order
inherited from the set of non	negative integers and then we further order the disjoint
union

W �z� � T �z�
M M

m�S�z�

�Rm

M
Sm�

by declaring that for each m � S�z� the element m 	 � of T �z� precedes all the elements
of Rm� the last element of Rm �if it exists� i�e� if fm�z� �� �� precedes the �rst element
of Sm and the last element of Sm precedes the �rst element of T �z� n ���m 	 ��� In this
way we have equipped W �z� with a linear order isomorphic to the natural order of positive
integers� For each t �W �z� we write n�t� �� n if t �  Rn�z� or  Sm�z� or  T �z�� and k�t� �� k
if t �  Rn�z�� Here the tilde means the appropriate set is considered as embedded in W �z��
We set k�t� � � for t ��  Rn� Note that if for m � S�z�� fm�z� � �� then Rm�z� is in�nite
and there are no elements of W �z� after  Rm� We do not treat t�s as integers here� we need
only the order in W �z�� See Fig���
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INSERT FIG��

Figure �� Order t and coordinates k� n in W �z��

Now� to each t �W �z� we ascribe a number r�z� t� � � as follows�

�a� r�z� t� � diam
�
Comp�z� fn�t�� ����

�
if t �  T �z��

�b� r�z� t� � diam
�
Comp�z� fn�t�� ���k�t������

�
if t �  Rn�t��z��

�c� r�z� t� � diam
�
Comp�z� fn�t�� �� jf

n�t��z�	 �j
�
if t �  Sm�z� for some m � S�z��

Each of the connected components appearing in the de�nition of r�z� t�� with ���� ���k�����
�
� in �a�� �b�� �c� respectively replaced by numbers twice larger� will be denoted by Vt�z��

Our next goal is to prove the following�

Lemma ���� There exists a constant C � � such that for all z � J�f� and all t �W �z�

r�z� t�

r�z� t�
� C�

where t is the successor of t in the order introduced in W �z��

Proof� Suppose �rst that t �  T �z�� Then for n � n�t�

Comp
�
fn�z�� f� ���

�
� B

�
fn�z��

�

�jjf �jj

�

and therefore it follows from Lemma ��� and Lemma ����c� applied with � � �� 	 �
����jjf �jj� and D � M that

r�z� t� � diam

�
Comp

�
z� fn�

�

�jjf �jj

��

� C����jjf
�jj����M�diam

�
Comp

�
z� fn�

�

�

��
� C����jjf

�jj����M�r�z� t��

Suppose in turn that t �  Rn�z� for some n � S�z�� Then using Remark ��� and
Lemma ����c� applied with � � ��k� and 	 � ���� if also t �  Rn�z�� we obtain

r�z� t� � diam
�
Comp

�
z� fn� ���k����

��
� C������M�diam

�
Comp

�
z� fn� ���k����

��
� C������M�r�z� t��
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If t �  Sn�z�� then the �rst equality is replaced by the inequality ��
Finally suppose that t �  Sm�z� for some m � S�z�� Then for n � n�t�

Comp
�
fn�z�� f�




�
jfn���z�	 �j

�
� B

�
fn�z��




�jjf �jj
jfn���z�	 �j

�

� B

�
fn�z��




�jjf �jj
jfn�z�	 �j

�
�

Hence� as 
� � �� using again Lemma ��� and Remark ���� it follows from Lemma ����c�
applied with � � 
jfn�z�	 �j and 	 � ����jjf �jj� that

r�z� t� � diam

�
Comp

�
z� fn�




�jjf �jj
jfn�z�	 �j

��
� C����jjf

�jj����M�r�z� t��

provided t �  Sm�z�� If t �  T �z�� we obtain the same inequality since � � 
jjf �jj� �

jfn���z�	 �j� So� the proof is complete by setting C � C����jjf

�jj����M��

Since z � J�f� and J�f� contains only non	recurrent critical points� it follows from Lemma
���� Lemma ��� and from the local behaviour around parabolic points that

Lemma ���� For every z � J�f�

lim
t��

r�z� t� � ��

Proof� If t � � implies n�t� � � then for t �  T �z�� i�e fn�t��z� �� B��� ��� we can use
Lemma ��� and Lemma ��� with r � ���� To cope with t �  Sm we use Lemma ��� which
allows to consider only s preceding #t �  Rm� k�#t� � �� hence refer to the previous case� since
fs�z� �� B��� ���

If n�t� 
� �� then fm�z� � � � � for some m � m�t�� so that #t �  Rm for all #t � t�
Then for #t��� k�#t���� Hence r�z� #t� � diamComp�z� fm� ���k�	t������� ��

We now want to do the last step in the proof of Theorem ���� So� �x z � J�f� and consider
an arbitrary radius � � r � ���� Note that r�z� �� � ���� where � is the least element of
W �z�� It follows from Lemma ��� that there exists a maximal element t �W �z� such that
r � r�z� t�� Using Lemma ��� we then conclude that for #t� the successor of t�

r�z� t� � r � r�z� t� � C��r�z� t��

Combining now Lemma ����c�� Lemma ���� Remark ��� and the de�nition of the numbers
r�z� t� we conclude that there exists a constant � � � independent of z and t and a ball
B � B�z� r�z� t�� n J�f� � B�z� r� n J�f� with radius � �r�z� t� � �Cr� This ball is in the
pullback of a ball existing by Lemma ����

In the case � � �� due to the assumption J�f� 
� CI implying that J�f� is closed
nowhere dense� there exists c � � such that for each x � J�f� there exists a ball B �
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B�x� ���� n J�f� with radius c� This ermark plays the role of Lemma ��� for x far from �
in the former case�

x	� Parabolic Collet�Eckmann maps� Collet	Eckmann property for rational maps was
introduced in �P� as follows� There exist � � �� C � � such that for every f 	critical point
c � J�f� whose forward trajectory does not contain any other critical point �we call later
on such a critical point exposed� and every positive integer n

j�fn���f�c��j � C�n

In presence of parabolic periodic points we shall consider an adequate weaker property�
parabolic Collet�Eckmann� First let us introduce an adequate rescaled time� Consider an
arbitrary z � J�f� as in the previous sections� Suppose that � � i � j are such integers
that for all i � 	 � j we have f� �z� � B��� ��� Suppose

����� f�x� � x" a��x	 ��p�� " ���

for a� 
� � and an integer p � p� � �� in a neighbourhood of �� Then de�ne

����� n�i� j� � E
�
�p" �� log��jf

j�z�	 �j�jf i�z�	 �j�
�
" �

E stands for the Entier� i�e� E�x� is the least integer not exceeding x� We have n�i� j� � �
since � is !weakly! repelling in the cusp	like sectors containing J�f� � B��� ��� see Fig���
It is rigorously visible in the Fatou coordinates �DH� Expos�e IX� I��� � By inequality
jf �j � ��� in B��� �� true for every � � � small enough� we have on the other hand
n�i� j� � j 	 i� This is so since

����� �n�i�j� � � 

jf j�z�	 �jp��

jf i�z�	 �jp��
� �

jf j���z�	 f j�z�j

jf i���z�	 f i�z�j
� �j�f j�i���f i�z��j � � 
 �����j�i�

The similarity symbol � means the equality up to a factor close to �� The �rst similar	
ity follows directly from ������ The second similarity follows for example from Koebe�s

distortion lemma estimate for f
��j�i�
� on B�f j�z�� 
jf j�z� 	 �j�� see Lemma ���� Since

jf j���z�	 f j�z�j is much smaller than 
jf j�z�	 �j for � small� the map f��j�i� is almost
conformal a�ne on B�f j�z�� jf j�z�	 f j���z�j��

Given n � � let � � is � n be consecutive integers for s � �� �� ��� such that f is�z� �
B��� �� for a point �s � � and is � � or f is���z� �� B��� �� in the case is � �� In the
terminology of x�� is are consecutive integers in S�z�� For each s denote the point � � �
such that f is�z� � B��� ��� by �s� Let js � is � js � n be the largest integer such that
f� �z� � B��s� �� for all is � 	 � js� We de�ne the rescaled time ��n� � ��n� z� by

����� ��n� ��
X

s
is�n

n�is� js� " n	
X

s
is�n

�js 	 is��






Sometimes we denote ��n� by $n or $n�z�� or use the notation $n for integers in the range of
� �i�e� interpreted as the rescaled time��

De�nition 	��� We call a rational map f parabolic Collet�Eckmann �abbr� PCE� if there
exist � � �� C � � such that for every exposed f 	critical point c � J�f� for z � f�c� and
for every positive integer n

j�fn���z�j � C��n�z��

Note that this property does not depend on the base of logarithm in the de�nition of ��i� j�
�and ��n� � $n�� Indeed such a change of the base would multiply $n by a bounded factor�
so it would change only � in De�nition ���

Analogously to �PR�� Lemma ���� �uniform density of good times property�� �P�� and
�PR�� �topological Collet�Eckmann� we shall de�ne topological parabolic Collet�Eckmann

property�
First we introduce more notation� Similarly to � we shall de�ne the rescaled parameter

% on W �z�� see x� for the de�nition of W �z�� We shall consider this linearly ordered set
as the set of non	negative integers �equiped with the arithmetic operations�� Then de�ne

%�t� �
X

s
is�n

n�is� js� " t	
X

s
is�n

�js 	 is��

Given � � � and � � � denote for t �W �z� similarly as in x� �with � � 
� the sets

�����a� Comp�z� fn�t�� ��� for t �  T �z�

�����b� Comp�z� fn�t�� ��k�t��� for t �  Rn�t�

�����c� Comp�z� fn�t�� �jfn�t��z�	 �j� for t �  Sm

by Vt�z��
Again we denote sometimes %�t� by $t or use the notation $t for integers in the range

of %� We denote a right inverse of % by &� let us choose for example as &�$t� the least t
such that %�t� � $t�

Write �nally $V�t�z� �� V���t��z�� Given $t we sometimes write t for &�$t�� Vt�z� for $V�t�z�
etc�

Given z � J�f�� � � �� � � � and M � � we call $t a good hat�integer and denote the

set of good hat	integers by G�z�� if fn����t�� has at most M critical points �counted with
multiplicity� in $V�t�z��

��



De�nition 	�� We call f topological parabolic Collet�Eckmann �abbr� TPCE� if there
exist �� � � �� � � � � � and M � � such that for every z � J�f� the lower density of
G�z� in IN is at least ��

����� inf
�t

'�G�z� � ��� $t��

$t
� ��

Remark 	��� a� One can call t a good integer if fn�t� has at most M critical points
�counted with multiplicity� in Vt�z�� Then TPCE means that if we divide ��� t�� into
blocks of %	preimages of points $t � %�t�� then at least � proportion of blocks contains
good integers� Note that if an integer t � %���$t� is good then all s � t� s � %���$t� are
good� since for � small� f��� �B�fn�s��z�� �jfn�s��z�	�j�� � B�fn�s����z�� �jfn�s����z�	�j�
by Lemma ����

In fact� by the same argument� all s � t � s � s�t� for s�t� the last element of  Sm�z�
where m is de�ned by t �  Tm �  Sm� are good�

Note that the inclusions in Lemma ��� �
 � �� hold for adequate �� �� Indeed� �rst
shrink the original � in the de�nition of TPCE to some �� so that these inclusions hold�
Unfortunately t good may become not good if fn�t� �� B��� ��� since � � �jfn�t��z� 	 �j�
We avoid this trouble by setting any new �� � ���� Then t is good�

Finally �nd for this �� a new ��� so that the inclusions hold� In case fn�t� � B��� ��� n
B��� ����� by the inclusions for � in Lemma ���� s�t� found for �� is good� hence s�t� " ��
for �� � ������ is good� Though t can be not good for ���� �� it is accompanied by good
s�t� " �� Thus the property PTCE is preserved� with maybe di�erent � resulted from not
accounting to good the elements of blocks of length log���

������ preceding good elements�
b� For each z and good t we can assume that all f j�Vt�z��� j � �� ���� n�t� have small

diameters if � is small enough� This follows from the bounded criticality for � replaced by�
say� ��� see Lemma ���� For fn�t� � B��� �� use Lemma ���� compare Proof of Lemma ����
In particular all f j�Vt�z�� are topological discs�

c� � in De�nition ��� can be arbitrary at the cost of M � see �PR�� x��� The idea of the
proof is that each gap between two consecutive good $t and $t� can be in � proportion �lled
with good hat	integers for G�fn����t���z��� This gives in De�nition ��� the proportion of
non	good hat	integers �	� decreased to ��	���� M is replaced by �M � We can continue
this procedure� The proof uses the observation made in �b��

The name topological preceding Collet	Eckmann is explained by the following�

Proposition 	�	� Topological Collet	Eckmann is a topological property� namely if there
exists h � U�f�� U�g� a homeomorphism between neighbourhoods of J�f� and J�g� that
conjugates f to g on U�f�� i�e� hf � gh and g is TPCE then f is also TPCE�

�This Proposition is placed here to explain the de�nition� it is not needed in the
further course of x���

Proof� Suppose there exists h � U�f� � U�g� a conjugating homeomorphism as above�
First notice that h is bilipschtz at �� h��� in Julia set� Namely

����� log� jx	 �j 	 C � log� jh�x�	 h���j � log� jx	 �j" C

��



for a constant C and every x � J�f�� Moreover ����� holds for x � Q where Q �� fx �
B��� �� � ��j � ��f j�x� �� B��� ��g� To prove this� note �rst that p� the number of petals
at �� is preserved by h� Use next Fatou�s coordinates w � w�z� � ���z	��p� �DH� Expos�e
IX� I��� ��� In these coordinates f takes the form F �w� � w 	 pa� " o��� for jwj � �
and g takes the form G�w� � w 	 pah��� " o���� with a�� ah��� de�ned in ������ Let n be

the least positive integer so that fn�x� �� B��� ��� Then write h�x� � g�nh���hf
n�x�� If � is

small enough� then jhfn�x�	h���j � �� for an arbitrarily small ��� hence indeed hfn�x� is
in the domain of the branch g�nh���� We obtain in the Fatou coordinates jF �w�	 Fn�w�j �

pa�n " o�n� and jG�v� 	 Gn�v�j � pah���n " o�n� for w � w�x� and v � w�h�x��� If
�� �� are small enough we can assume o�n� � pminfa�� ah���g� This yields in the original

coordinates jx 	 �j�jh�x� 	 h���j � �� a�
ah���

���p� Analogously we estimate from above

jh�x�	 h���j�jx	 �j�

Let g be TPCE with constants �g� �g� M and ��
By the continuity of h there exists � � � such that for every x � J�f� one has

����� h�B�x� ��� � B�h�x�� �g�

Moreover for x � J�f� �B��� �� for � � � and all � � k such that �k��jx	 �j � �

����� h�B�x� �k�jx	 �j� �Q� � B�h�x�� �k���gjh�x�	 h���j�

and for x � J�f� nB���f�� ��� h�x� � B���g�� �g�

���
� h�B�x� ��� � B�h�x�� �gjh�x�	 ��g�j��

The proof of ����� is similar to the proof of ����� with the use of Fatou coordinates�
The proof of ���
� makes use of the continuity of h	�� Note that k here are not the same
as in �����b��

Let t be good for h�z� and g� Then� in the case when x � fn�t��z� �� B��� ��� fn�t�

is� by ����� or ���
�� at most M 	critical on Comp�z� fn�t�� B�x� ��� since gn�t� is at most
M 	critical on Comp�h�z�� gn�t�� B�h�x�� r��� with r � �g or �gjh�x�	 ��g�j�

In the case when x � fn�t��z� � B��� �� consider B � B�x� �k�jx	�j�� with k nonzero
if t �  Rn and Then by ������ fn�t� is at most M critical on Comp�z� fn�t�� B � Q�� The
latter set is well de�ned if B � Q is connected� This is the case for all except maybe a
bounded by a constant �related to p� number of k�s� where B �and k� is so large that it
intersects more than one cusp	like sector of Q� but so small that it does not contain ��
�Omitting of the related �nite blocks of t�s do not have in�uence to TPCE property��

In the case of connected B �Q far from � the components of B nQ are disjoint from
forward trajectories of critical points in the Fatou set� see Lemma ���� Hence all branches
of f�n�t� involved in Comp�z� fn�t�� B�Q� extend to these components� so fn�t� is at most
M 	critical on Comp�z� fn�t�� B��

If t �  Rn�t��z� and k large the forward trajectory of a critical point in the Fatou set

enters B but it is irrelevant since� by the �rst composant f�� of f�n�t�� we jump out of
B��� ��� So� we do not capture the critical point� Thus the proof is the same as before

��



Note that if t is the �rst element of  Sn�t��h�z��� then for � � ��f�� ��k�t��� �

jgn�t��h�z��	h���j but it can happen that ��k�t��� � jfn�t��z�	�j� In such a case t	� �
W �h�z��� in  Rn�t�� but it is skipped in W �z�� Analogously� having reverse inequalities� it
can happen that after  Rn�t��h�z�� we need to add some elements to build  Rn�t��z�� Also

involvement of � in the de�nition of W causes the disappearance of some blocks  Rn�h�z��
inW �z�� if we choose � � �f su�ciently small compared to �g� or appearence of new  R�z��s
if �f is large compared to �f �

Let us pass now to good hat	integers� In order to simplify notation suppose that
the above complications do not happen� namely that W �z� and W �h�z�� have the same
divisions into  T �  Sm and  Rn� �The above complications have in�uence to the value of �f �
which is fortunately positive if � is close enough to �� compare Remark ����c�

Note that each block %��g �$t� �see Remark ����b�� intersects at most �C " � blocks

%��f �$t�� by ������ so $t good for g implies at least one of the �C " � blocks �hat	elements�
good for f � Hence the density in De�nition ��� for G�z� for f is bounded below by
���C " �����

x
 PCE implies TPCE and mean porosity

De�nition 
��� ��Ma�� �Le�� We say rational f � CI � CI is backward Lyapunov stable if
��
� � � ����� � �� such that for every x � J�f�nB��� �� every n � � and every component
W of f�n�B�x� ��� we have diam�W � � 
�

Recall that NCP functions satisfy this property� by Lemma ��� and Lemma ����

In Appendix B we prove Theorem B�� saying in particular that PCE implies backward
Lyapunov stability� This fact� crucial in Proofs of Theorem ��� below to deal with rescaled

time� was stated �in absence of parabolic points� in �P�� Remark �����

So we shall prove the following�

Theorem 
��� Parabolic Collet	Eckmann property implies topological parabolic Collet
Eckmann property �PCE implies TPCE��

Theorem 
��� The Julia set of each TPCE rational map is mean porous�

As we mentioned in Introduction mean porosity implies by �KR� that the upper box	
counting dimension of the Julia set is less than ��

The strategy to prove Theorems ��� and ��� will be similar to �PR��� To prove Theorem
��� we shall use the following�

Lemma 
�	� There exist C � Cf � � and P � � such that for every z � J�f� and every
integer n � �� for K�n� �� maxf��	 log�

�
P dist�fn�z��Crit�f� � J�f���g we have

�����
nX

j
�

�K�j� � $nCf �

��



�$n � ��n�� see ������� where
P

� denotes the summation taken over all but at most
��Crit�f� � J�f�� indices j�

Note that the larger P the smaller K�j��s�

This is a stronger version of an important inequality �DPU� ������ where there was n rather
than $n on the right hand side� The version with n has been used in �PR��� The proof of
Lemma ��� is a slight modi�cation of the proof from �DPU�� We provide it in Appendix A�

Proof of Theorem 
��� Step �� Shadows� Fix z � J�f�� One can consider K�n� in
Lemma ��� as a function on $n� the rescaled time� since each block of integers ����$n� longer
than � corresponds to a piece of the trajectory of z in B��� ��� where K � �� if P is large
enough�

To each vertical interval I � fxg � ��� y� � IR�� x� y � �� we associate for � � � �as
in Def� ���� its shadow� namely the closed triangle (�I� with the following vertices� the
top and bottom of I and the point �x"�y� log����� �� in IR

�
x � the non	negative part of the

�rst coordinate axis IRx in IR��
Let J�n � f$ng� ���maxfk�t� � t �  Rng� � IR� for n � S�z�� �If fn�t��z� � � then J�n is

in�nitely high�� Note that ����$n� is a singleton� so we may write n for it� Finally de�ne

X � IR�
x �

�
n�S�z�

J�n�

X � � X n f�x� �� � ��$n� $n � x� n � S�z�� �x� �� � (�J�n�g�

If P in Lemma ��� is large enough and K�$n� � �� then a critical point in J�f�� closer
to fn�z� than other critical points� is distinguished� Denote it by c�$n�� Denote then by
��$n� the multiplicity of f at c�$n�� To each $n with positive K�$n� we associate the interval
I�n � f$n" �g � ��� ��$n�K�$n��� Denote by (�$n� its shadow� In the case K�$n� � � we set
(�$n� the upper right quarter of IR� with the corner at �$n" �� ���

We shall study how much the union
S
I�n shadows X ��

First� as in �PR��� we consider shadows on IR�
x � For each $n we obtain from Lemma ���

�n��X
j
�

j(�j� � ���� $n�� f�g�j � $n�sup
j
��j��Cf�� log� �" $n��Crit�f� � J�f�� �� $nNf

�j 
 j stand for length of intervals��
Hence for

A � fx � �x� �� belongs to at most �Nf shadows (�j�g�

we conclude that for every x � �

jA � ��� x�j

x
�

�

�
�

��



where by j 
 j we denote the sum of the lengths of the intervals composing A � ��� x�� or
A��x�y� below�

Let P be the projection of IR� to IRx de�ned by P�x� y� � x " �y� log� �� For an
arbitrary �x�� y�� � X de�ne

A��x��y�� �� X � � P���A � ���P�x�� y���� � f�x� y� � IR� � x � x�g�

�We intersect with fx � x�g to cut o� J�n� $n � x�� Note that f�x� y� � x � x�� y � �g has
been already cut o� by the de�nition of X ���

By the de�nitions each point of A��x��y�� belongs to at most �Nf shadows (�j�� Note
also that

jA��x��y��j � min

	
�

�
log� �� �



jA � ���P�x�� y���j�

The number �
� log� � appears when we project by P�� to vertical intervals� the number �

for subintervals of A � ���P�x�� y�� not shadowed by any J�n� Hence� as we could assume
that log� � � ��

jA��x��y��j � �
�

�
log� �� 
 P�x�� y���

The components of A� are open intervals in IR�
x with integer right side ends �at the bottoms

of I�n�s�� or intervals in IR�
x with the right side ends at the bottoms of J�n�s followed by

vertical intervals in the respective J�n�s� Using the notation

H�$t� ��
�
$n�&�$t��� k�&�$t��

�
and for an arbitrary $t��

Ainteger
�t�

�� f$t � H�$t� � clA�
H��t��

g�

we obtain the inequality �Ainteger
�t�

� �
� jA

�
H��t��

j� Hence

����� �Ainteger
�t�

�
�

��
�log� �� 
 P�H�$t����

Note that each point in Ainteger
�t�

belongs to at most �Nf"� shadows (�$n� �"� may happen

at the bottom of some I�n� Remember that this point may belong to clA�
H��t��

nA�
H��t��

��

Note now that by our de�nition of rescaled time� if $nj � j � �� �� ��� are all consecutive

integers with non	empty  Rnj then� if � is small enough� we have for the corresponding $tj �

with H�$tj� � �$nj � ���

$tj�� 	 $tj � ��$nj�� 	 $nj��

compare ������ the inequality in the opposite direction �true up to a constant summand��
Note also that $t� � $n��

��



Assume from now on that t� ��  Sm for any m� So� we can substitute in �����
P�H�$t��� � $n� "

�P
j $nj�� 	 $nj

�
" �

log� �
k�$t�� and obtain �using ������

����� ��Ainteger
�t�

� � �
�

��
log� ���$t� 	 k�t��� "

�

�
k�t�� � �

�

��
log� ��$t��

Note that the case f$njg � � is the case fn�z� �� B��� �� for all � � n � n�t��� where �����
immediately follows from ������

Step �� Good hat�integers� Now we show that all $t � Ainteger ��
S

�t�
Ainteger
�t�

are good

hat	integers� This can be done as in �PR�� with the use of )shrinking neighbourhoods�
procedure �P�� �the name comes from �GS���

For each exposed critical point c � J�f� let sj�c�� j � �� �� ��� be the increasing sequence
of all positive integers such that fsj�c��c� �� B��� ���� or fsj�c����c� �� B��� �����

By the de�nitions of � and sj�c� we have j 	 � � a��sj�c� 	 �� f�c��� �We need a
constant a � � here since for fsj�c��c� � B��� �� nB��� ���� for j � j�� j� " ����� j� " T we
have sj all consecutive integers� so the rescaled time can be shorter than T � We can set
a � sup T " ���

De�ne for C� from Lemma ����a�

����� bsj�c� � j�fsj�c������f�c��j�����C���

Hence� using De�nition ���� we obtain

bsj�c� � C������j����a�
����C��

�

In particular the series
P

j bsj�c� is convergent�
Next organize

S
cfsj�c�g� union over all exposed critical points in J � into an increasing

sequence sj and let

bsj � C max
c
��j��sj
sj� �c�

bsj� �c��

where C in the latter formula is a normalizing factor such that� say�

�����
�Y
j
�

��	 bj� � ���

Finally for all positive integers s not belonging to fsjg set bs �� �� Fix x � J�f� �it plays
the role of z from Step ��� and $t � Ainteger� Assume also that for n � n�&�$t�� we have

Case �� fn�x� �� B��� ��

or

Case �� fn���x� �� B��� ���

In the Case �� fn�x� can be very close to � � �� i�e� k � k�&�$t�� can be non	zero�
These are the only possibilities� Indeed� if fn�x� � B��� �� and fn���x� � B��� ��� then

��



there is m such that t �  Sm�x�� This m � n is the smallest integer such that for every
s � m � s � n one has fs�x� � B��� ��� Then

jJ �mj � 	 log� jf
m�x�	 �j 	 �

and for � small enough

��n	m� fm�x�� � 	�p" �� log� jf
m�x�	 �j 	 ��

Hence

����� jJ �mj �
�

p" �
��n	m� fm�x���

So� if

����� log� � � ���p" ���

then �jJ �mj� log� � � ��n	m� fm�x��� i�e� H�$t� � (�J �m�� so $t �� X � � a contradiction�

�This is paradoxical that we assume � to be small� in ������ This is caused by our
rough de�nition of shadows (�$n�� They could be smaller� Along periods of rescaled time
when the trajectory stays close to �� the slope of the edge line of the shadow could be
log� � � � rather than �

� log� �� so the upper	right edge of the shadow could be piecewise
a�ne� below our a�ne edge�This si related with the inclusion in Lemma �����

Consider the sequence

Bs � B

�
fn�x�� � 
 ��k�

sY
i
�

��	 bi�

�

of neighborhoods of B � B�fn�x�� ��k��� where k � � in Case �� together with connected
components

Ws � Comp�fn�s�x�� fs� Bs� and W �
s�� � f�Ws��

Recall the main idea of shrinking neighborhoods approach from �P��� in our setting
with the subsequence sj� If along backwards iteration from fn�x� a critical point c is
captured by Ws then fs�c� � B�fn�x�� ���� so fs�c� �� B��� ���� if �� � ���� in Case ��
�We can assume the latter inequality� since we do not need the inclusions in Lemma �����
Similarly in Case � we have fs���c� �� B��� ����� Hence s � sj�c� for some j� hence bs 
� ��
So�

fs��
�
Ws�� nW

�
s��

�
� Bs�� nBs

is a non	trivial Koebe�s space for the appropriate branch of f��s��� allowing us to use
j�fs�����f�c��j to control the diameter as in Lemma ����a��

��



Let us be more precise now� We want to show that if Ws contains an exposed critical
point� then H�$t� belongs to the shadow (���n	 s��� Assume this is not the case� Then
there is a smallest such s� with an exposed critical point c �Ws� Hence there are at most
�Nf integers � � s� � s such that Ws� contains an exposed critical point �as $t � Ainteger

and s is the smallest�� Note again that this s is of the form sj�c�� This is a tricky place in
the proof�

The number of all s� � s of captures by Ws� of critical points �not only exposed ones�
is bounded above by ��Nf "��N where N is the maximal positive integer for which there
exist critical points c 
� c� in J�f� with fN �c� � c�� Ws�� is simply connected since all
the sets Comp�fs

�

�x�� fn�s
�

� B�fn�x�� ����k�� for � � s� � n have small diameters if �
is small� by backward Lyapunov stability �see De�nition ��� and Appendix B�� �We can
see the simple	connectedness also directly� as in �PR��� by induction� proving only that all
Wsj containing critical points have diameters so small that each could capture at most one
critical point�� This implies in particular that there exists a constant D � D�Nf � such
that we can apply Lemma ����a� to F � fs�� for our s � sj�c� and to V � Ws��� We
obtain

j�f �s������f�c��jdiam�W �
s��� � C�b

�C�
s ����k�

Hence� by De�nition ��� and by ������ we can write with a constant C depending on C�

and C�

diam�W �
s��� � C����

�kb�C�s jf �s���
�
�f�c��j�� � C����k��	�s���f�c�����

Since both points� fn�s�x� and critical c� are in Ws� the above expressions give also upper
bounds also for the distance between these points� So� for � � ����n	s� x��� after applying
	 log�� we obtain for � small enough

jIsj � �K���n	 s� x�� � 	� log��Pdist�c� fn�s�x��� �

	� log���P �diam�W �
s����

��
� � 	� log���P �	 log�C " k	 log����"
�

�
��s	 �� f�c�� log��

Hence� again for � small enough to compensate other constants here�

����� jIsj � k "
�

�
��s	 �� f�c�� log� ��

Note now that ��s	 �� fn�s���x�� � ���s	 �� f�c��� This estimate says that the rescaled
times for the trajectories f�c�� f��c�� ���fs�c� and fn�s���x�� fn�s���x�� ���� fn�x� are sim	
ilar� This is so since for � small� all diameters diamfs

�

�Ws�� s
� � �� �� ���n	 s are small�

Here is the place where we substantially use the backward Lyapunov stability� Thus by
�����

jIsj 	 k �
�

�
��s	 �� fn�s���x�� log� ��

so H�$t� � (���n	 s��� a contradiction�
Let us summarize� We have proved in this way that there are at most �Nf integers

s � � � s � n such that Comp�fs�x�� fn�s� B� captures an exposed critical point� So

��



the number of all times of captures of critical points �not only exposed ones� is bounded
above by ��Nf " ��N � Hence fn has at most D�Nf � critical points in Wn � Vt�x�� The
last inclusion follows from ������ This proves that $t is good� So� ����� yields ����� with
� � �

��
log� �� Remember that at the end of Step � we assumed that t� ��  Sm�x�� For

t� �  Sm�x�� if m � � �i�e� if x� ���� fn�t���x� � B��� ���� Theorem ��� is trivial� i�e� all
hat	integers � $t� are good� If m � �� then by ������ for t� the largest in  Rm�x�� we have

$t� � �
p��

�$t� 	 $t�� i�e� $t� � �
p��

$t�� Hence ����� for $t� yields ��G�x������t��
�t�

� �
p��

�

Proof of Theorem 
��� This repeats roughly an adequate part of the proof of mean
porosity in �PR�� Th����� and Proof of Theorem ����

We need to pass from good times �more precisely from good hat	integers� for x � J
to good scales� in which Jc contains some de�nite disk� We use the notation Vt�x� for
$t � G�x� as in �����a	c� and V �t �x� if � is replaced by ����

We claim that there is an integer N such that the following holds� For all x � J and
for all $t� $t� � G�x� with $t	 $t� � N

���
� diam�V �t �x�� �
�

�
diam�V �t��x���

For $t� � � and for �� t �  R��x� the inequality ���
� is trivial� For �� t �  S��x�� it follows
from the de�nition of the rescaled time close to a parabolic point� Indeed� in the latter
case� for n � n�t�

diam�V �t �x��

diam�V ���f
n�x���

� �j�fn���x�j�� � ���n��

and
diam�V ���x��

diam�V ���f
n�x���

�
jx	 �j

jfn�x�	 �j
� ����n�

�
p�� �

we obtain diam�V �t �x���diam�V ���x�� � ��
p

p�� �n���
Finally for �� t �  T �x� this follows from Lemma ���� Other cases are combinations of

the above cases�
In fact� for each � � 	 � � there is N � N�	� f�M� �� such that diam�V �t �x�� �

	diamV ���x� for t � N �

For $t� � � use backward iteration� Write n� n� for n�t� and n�t�� respectively� As fn

is M	 critical on V �t �x�� the iterate fn�n
�

is M 	critical on V �t�t��f
n��x��� So

fn
�

�V �t � � V �t�t��f
n��x�� � B�fn

�

�x�� 	diamV ���f
n��x���

by the �rst case� Applying f�n
�

we obtain ���
� provided 	 is small enough� by Lemma
��� �b��

Observe also that for every t we have

������ diamV �t �x� � ��S maxfL� �g��n�t���k�t�� for L � sup jf �j�

�




where S is the number of n�s � � n � n�t� such that fn���x� �� B��� �� �provided n � ���
but fn�x� � B��� ���

The proof of ������ uses the de�nition of the rescaled time in which� close to �� the
rate of shrinking for backward iterates is ���� see ����� the �rst inequality in the opposite
direction and no factor �� The factor ��S comes from a bound on distortion that can be
� on each block �is� js� �see �������

Consider the increasing sequence $tj of all good hat	integers of x� f$tjg � G�x�� and set
$kj � $tNj � i�e� consider only every N 	th good hat	integer� By the de�nition of TPCE we

have $kj � ���Nj� and as� $kj�� 	 $kj � N � inequality ���
� implies that

diam�V �kj���x�� �
�

�
diam�V �kj �x���

where ki � &�$ki�� Hence� taking into account also ������� we obtain a strictly increasing
sequence uj � Pj �with P � ����N log�maxf�� Lg� such that

diam�V �kj �x�� � ��uj �

�� means� up to a factor between ��� and ���

Finally� as in x�� we �nd inside each V �kj a disk of radius �diamV �kj disjoint from the Julia

set� This proves the mean porosity of J�f��

x�� Final remarks on PCE maps� In �P��� �PR�� and �NP� some other properties
equivalent to TCE are listed� The same can be introduced for TPCE�

De�nition ���� �a� �exponential shrinking of components� There exist �� � � and �� � � �
such that for every z � J�f� n �� every t � W �z�� see x�� and Vt�z� as in ������ one has

diamVt�z� � �
��n�t�
� �

�b� �exponential shrinking of components at critical points� The same as above� but only
for Vt�z� containing a critical point�

�c� �uniform hyperbolicity on periodic orbits� abbr� PUHPer� There exists �� � � such that
for every periodic x � J�f� n � one has j�fn���x�j � ��n� �

Theorem ���� �a�� �b� and TPCE are equivalent� They imply �c��

Proof� TPCE implies �a� by ���
�� The proof of the implication �b�� TPCE is similar
to the proof of Theorem ��� �one need not even use )shrinking neighbourhoods���� The
proof of �a� � �c� is easy� It is the same as in �P�� and �NP��

�Recently it was proved in �PRS� that UHPer �PUHPer in absence of parabolic points� is
equivalent to TCE� In view of this� the equivalence of PUHPer and TPCE seems probable�

��



An analysis of the proof of TCE� CE in �P�� might give a positive answer to the following
question�

Question ���� Does TPCE imply PCE� provided there is only one critical point in J�f�*

Remark ��	� Analogously to TCE� �A� is H+older� for f polynomial and A� the basin
of attraction to �� �GS�� �P��� there would exist a natural property of A� equivalent to
TPCE�

Remark ��
� A theory analogous to our PCE is possible for iteration of maps of interval�
compare �NP��

Appendix A� Average distance from critical points� Proof of Lemma 
�	� For
every c � Crit�f��J�f� and arbitrary a � � de�ne the function kc � CI � f�� �� �� ���g�f�g
by setting

kc�x� � minfn � � � x �� B�c� a���n����g if x 
� c

and kc�x� �� if x � c�

The following lemma can be easily deduced from the fact that up to a biholomor	
phic change of coordinates every holomorphic function is of the form z �� zq in some
neighborhood of a critical point of order q � ��

Lemma A��� There exists � � � �depending on a and f� such that

�A��� jf ��x�j � �
 ��kc�x�

for every x � CI �

Lemma A��� 
the Main Lemma� Suppose a � ��� Then there exists a constant Q � �
such that for every integer n � �� if x � J satis�es

�A��� kc�f
j�x�� � kc�f

n�x�� for every j � �� �� ���� n	 ��

then

�A���� minfkc�x�� kc�f
n�x��g"

n��X
j
�

kc�f
j�x�� � Q$n�

where the rescaled time $n � ��n� has been de�ned in x��

Proof� Notice that since a�� � � and B��� ��� � Crit�f� � �� if f j�x� � B��� �� then
kc�f

j�x�� � �� The proof of Lemma A�� is carried through by induction with respect to
n� For n � � the statement is obvious since f�c� 
� c� The procedure for the inductive
step will be be the following� Given x� f�x�� ���� fn�x� satisfying �A��� we shall decompose

��



this string into two blocks� �a� x� f�x�� ���� fm�x��m � n for which we shall prove �A����
�b� fm�x�� ���� fn�x� for which we can apply the inductive hypothesis� Summing these two
estimates we prove �A��� for x� f�x�� ���� fn�x��

Let k� � minfkc�x�� kc�fn�x��g and B � B�c� a���k
������

If k� � �� let � � m� � n be the �rst positive integer such that

�i� diam�fm
�

�B�� � a��k
�

��
�

�
diamB�

or

�ii� kc�f
m�

�x�� � k��

If k� � � set

�iii� m� � ��

Now� if fm
�

�x� �� B��� �� we set m �� m��
If fm

�

�x� � B��� �� we set m the smallest m � m� such that fm�x� �� B��� �� or
m �� n if f j�x� � B��� �� for all m� � j � n�

In all these cases the sequence y � fm�x�� f�y�� ��� fn�m�y� satis�es the assumption
�A��� automatically� with x� n replaced by y� n	m� and moreover
kc�y� � minfkc�y�� kc�fn�m�y��g� Hence by the inductive hypothesis

�A���
n��X
j
m

kc�f
j�x�� � Q��n	m��

with the latter ��n	m� � ��n	m� y�� see the notation preceding ������
Assume k� � � �the cases �i� or �ii��� By the de�nition of m we have for every

� � j � m��

�A��� diam�f j�B�� � a��k
�

so f j�B� cannot intersect at the same time �B�c� a��k
��

� and �B�c� a���k
������ for k�� � k��

Hence for every w � B�
kc�f

j�w�� � kc�f
j�x��	 ��

Hence by Lemma A�� it follows that

�A��� jf ��f j�w��j � �
���kc�f
j�x������

For j � � we replace here kc�x� by k��
For is � j � js � m�� see ������ we have by �A���� provided a has been chosen small

enough� a better estimate�

�A��� j�f js�is���f is�w��j � �j�f js�is���f is�x��j � � 
 �n�is�js��

��



The �rst inequality follows from diamf js�B� � 
jf js�x�	�j Lemma ��� and distortion of

f
��js�is�
� bounded on f js�B� by � for a small enough�

The second inequality follows from the de�nition of n�is� js� and from

j�f js�is���f is�x��j�

�
jf js�x�	 �j

jf is�x�	 �j

�p��

� �

for � small enough� see ����� and the arguments following it�

For is � m� � js we cannot repeat the above considerations since diam�f is�B�� can be
large in comparison to jf is�x� 	 �j� In particular we can have f is�B� � �� and we get
troubles with bounded distortion� Instead� provided jf is�w�	�j � jf is�x�	�j� we estimate
as follows

j�fm
��is���f is�w��j � �

�
��

jf is�w�	 �j

�p��

� �p��

�
jfm�x�	 �j

jf is�x�	 �j

�p��

� �p���n�is�m�������A���

If jf is�w�	 �j � jf is�x�	 �j� we estimate as follows

�A�
� j�fm
��is���f is�w��j � �j�fm

��is���f is�x��j � � 
 �n�is�m
�� � � 
 �n�is�m������

Gathering �A���	�A�
� we obtain for C � �" p" �

�A����
diam�fm

�

�B��

diam�B�
� �

C	�m���k��
Pm�

��

j��
kc�f

j�x���
�

In case �i� but not �ii� we have

�A���� diamfm
�

�B��diamB � ����

This together with �A���� gives

��� � �
C	�m���k��

P
m�

��

j��
kc�f

j�x���
�

Hence

�A���� k� "
m���X
j
�

kc�f
j�x�� � C��m� " � � �C " ����m��

In the case �ii� we also obtain �A����� Since otherwise fm
�

�B� � B and consequently the
family of functions �f tmjB�t
������� is normal� which contradicts the fact that c � J�f��
Therefore �A���� holds in this case too� In the case �iii�� we have �A���� trivially by
k� � ��m� � �� Finally we can change in �A���� m� to m since kc�f

j�x�� � � for all
j � m�� ����m	 �� This together with �A��� proves the Lemma�

��



The proof of Lemma ��� is now the same as in �DPU�� The idea is to �nd � � n� � n
where kc�f

n��z�� attains maximum� next n� � r where kc�f
r�z�� on n� � r � n attains

maximum� etc�� and to use Lemma A�� for blocks ��� n��� �n�� n��� ���� �nk� n�� The index
omitted in the sum is n�� Next do the same with every other critical point c and sum up
the resulting inequalities over c � J�f��

Appendix B� Backward asymptotic stability� For a rational map f � CI � CI a critical
point in J�f� is called exposed if its forward trajectory does not contain any other critical
point� Let � denote the set of all periodic parabolic points� Given x � J�f� and � � �
denote by N �x� �� the set of all integers n � � such that fn�x� �� B��� ���

Theorem B��� Suppose that for every exposed f 	critical point c � J�f� and every � � �

�B���
X

n�N �f�c����

j�fn���f�c��j�� ��

Then there exists � � � and �n � � such that for every non	parabolic x � J�f�� every
n � �� and every component W of f�n�B�x� �dist�x������ we have diam�W � � �n�

Proof� In absence of parabolic points this theorem coincides with �P�� Remark ����� Since
the proof was not explicitely written there� only ingredients were provided� We will �rst
prove Theorem B�� in this case and only at the end we will indicate the modi�cations that
should be done to prove the general case�

Let N be the maximal nonnegative integer such that there exist c� c� � Crit�f�� J�f�
for which fN �c� � c�� Denote the set of all exposed critical points in J�f� by Crite� It is
easy to �nd a sequence bn � �� n � �� �� ��� such that

�B��� �n �� bnmin


�
��

N��X
j
�

j�fn���j���f�c��j��
���

� c � Crite�f�

��
����

P
bn �� and in addition

�B���
�Y
n
�

��	 bn� � ����

Set also �� � � and then set

C� � inf �n and C� � sup
diam�W �

diam�B�
j�f j���y�j�

where the supremum is taken taken over all disks B and components W of f�j�B� for all
j � �� �� ���� N " � and y �W � It is easy to see that C� ��� �P�� Lemma �����

��



Let N� � N be such that �n � �C�C� for all n � N�� Here C� is the constant from
Lemma ��� �a� for D � �� Then C� � �� see for example �P�� �������

We consider �� so small that if B�x� ���� contains a critical point in J�f� but no other
critical point has this critical former point in its forward trajectory� and if f�n�B�x� ������
Crit�f� 
� �� then n � N��

For every � � � let �� �� sup diam�W �� where the supremum is taken over all com	
ponents W of f�j�B� for all j � �� �� ���� N " � and B� disks of radius �� If � � �� then
of course �� � �� We consider only � small enough so that �� � ��� Now given a disk
B � B�x� ���� and given a backward trajectory x � x�� x�� ���� f�xj� � xj�� we consider
disks

Bs � B
�
x� ��

sY
j
�

��	 bj�
�

together with connected components Ws of f�s�Bs� such that Ws � xs �this is so	called
!shrinking neighbourhoods! procedure� �P����GS��� until Ws� for s � s�� contains a critical
point for the �rst time� Denote this critical point by c� Of course it can happen that we
never capture a critical point� then we set s� �� and say that we have an in�nite block�
By Lemma ����a� we have for s � s�

diam
�
Comp�xs��� f

s��� B�x� ���
�
� diam�f�Ws�� � C�j�f

s�����f�c�j��b��s ��

� C��
��
s �� � �C�C

��
� ���B���

Suppose now that s� � �� i�e� c � W�� Then let � � j � N be the largest integer such
that Comp�xj��� f

j�W�� � f
�j�fcg� consists of a critical point� �This is a singleton if � is

small enough�� We call �x�� ���� xj��� a critical block� with respect to �� Then by de�nition
of ��

r �� diam
�
Comp�xj��� f

j��� B�x� ���
�
� �� � ���

The critical block �x�� ���� xj��� is followed by a block �xj��� ���� xj���s�� de�ned as above
for the sequence xj��� xj��� ��� and the disk B � B�xj��� �r�� By the de�nition of �� this
block is long� namely s� � N�� Denote the critical point captured by Ws� by c�� Then� as
in �B���� for s � s�

diam
�
Comp�x�j�����s���� f

j�s�B�x� ���
�
� diam�f�Ws�� � C�j�f

s�����f�c��j��b��s �r �

� C�j�f
�s�����j������f�c���j��j�f j�����fs�c���jb��s �r�

We have

�B��� j�f �s�j���f�c���j��b��s � ���s

and j�f j�����fs�c���jr � C���� Hence

�B��� diam
�
Comp�xj�s� f

j�s� B�x� ���
�
� �C�C��

��
s � �

�

�
��

��



Fix now x � J�f� and its backward trajectory �xs� and divide it into blocks as follows�
The �rst block is x�� ���� xs��� de�ned as above for the disk B�x� ���� for �� �� �

�C
��
� C���

If s� � �� this block does not appear� By �B���

�B��� Comp�xs���� f
s���� B�x� ���� � B�xs���� ���

The next block is composed of a critical block followed by a long block� for the sequence
xs���� xs� � ��� and the disk B � B�xs���� ���� By �B���� for s" j appearing there� denoted
below by s�� we obtain

�B��� Comp�xs� � f
s�� B�xs���� ��� � B�xs�� �����

We continue with blocks composed of critical blocks followed by long ones and we obtain
for ,n � �

Pn
j
� sj�	 �

Comp�x�n � f
�n � B�x� ���� � B�x�n � �

�n���

Note that if � � �� r� � �see the paragraph where we introduced the long block notion��
then

sup
��s��s

n
diam

�
Comp�xj���s� � f

s� � B�xj��� r��
�o

� ��

This is so by Lemma ��� applied withM � �� since the adequate branches of f�s
�

extend to
B�xj���

�
�r� �see �B����� Therefore diam

�
Comp�xj � f

j� B�x� ���
�
� � and the convergence

is uniform� Otherwise� if there existed L � � and sequences x�k� and n�k� such that

diam
�
Comp�x�k��n�k�� f

�n�k�� B�x�k�� ���
�
� L

and ,n�k� ��� then n�k� would be bounded� So� there would exist k with an arbitrarily
long block� Hence� in �B���� if this is the �rst block� or in �B��� for one of the blocks which
follow� the diameter of the right hand ball could be � multiplied by an arbitrarily small
factor� So� the estimate by L resulting from the composition of blocks would be false� This
is a contradiction�

Finally if an in�nite block occurs after a sequence of �nite blocks� the convergence is
also uniform since the convergence along in�nite blocks is uniform �see Lemma �����

Consider now the case when � 
� �� Then� similarly as in the proof of Theorem ����
we set bn � � for all n such that n and n	 � �� N ���� where N ��� ��

S
c�Crite N �f�c�� ���

For other n� i�e� such that there exists c � Crite for which fn���f�c�� �� B��� �� or
fn�f�c�� �� B��� ��� we �nd bn such that

P
bn ��� moreover �B��� holds� and �B��� holds

with
PN��

j
� replaced by the sum only over j � ��� N " �� � N ����
Let nj be all consecutive integers in N ���� Then we modify the de�nition of N� so

that �n � �C�C� for all n � nj � N��
We consider x or x� �� B��� �� and proceed as in the case when � � � case� getting

bn 
� � whenever Wn captures a critical point� This gives the needed Koebe�s space
�see Proof of Theorem ���� Step ��� Finally for a critical block x� x�� ���� xj�� followed by
xj��� ���� xj���s we can prove �B��� due to �B���� The latter holds since s" j � N �f�c��� ��
which is true since fs�j���f�c��� � B�c� ���� So fs�j���f�c��� �� B��� ��� for �� � small
enough�

��
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