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x�� Introduction� In �MU�� we considered conformal in�nite iterated function systems
and explored geometrical and dynamical properties of its limit set� That paper combined
and extended three continuing lines of research� One is the study of an in�nite system
of similarity maps �e�g�� �MW��� the second is the study of a �nite system of contracting
conformal maps �e�g�� �Be�� see also �Bo�� and third is the application of the jump trans

formation �e�g� �ADU�� �Sch��� We now call the systems considered in �MU�� hyperbolic
systems� since the derivatives of the maps in the system were required to be uniformly
bounded below one� We continued our investigation of these systems in �MU�� and gave
special attention to the limit sets of iterated function systems arising from the standard
�real� continued fraction algorithm with restricted entries� In �MU	� our subject of inter

est was the residual set of the Apollonian packing where we �rst had to seriously cope
with a parabolic system� In the present paper we develop the theory of general parabolic
conformal iterated function systems S� Some of our techniques are similar to the methods
developed to analyze jump transformations� see for examples� �Sch�� �ADU�� and �Y�� In
section two� we de�ne what it means for S to be parabolic and develop some basic results
about its limit set and coding map� In section three� we de�ne the pressure function asso

ciated with S and relate this notion to the standard notion of the pressure of a function�
Also� in Theorem 	�� we show how a basic geometric condition of our systems� the cone
condition� plays a critical role in our development� This condition allows us to prove a
measure theoretic open set condition holds for the image of any shift
invariant Borel mea

sure on the coding space� This in turn allows us to obtain the Billingsley type formula
for the Hausdor� dimension of many of these measures in Theorem 	��� Finally� this al

lows us to determine some important parameters and features of the pressure function� In
section four� we study Perron
Frobenius operators associated with the system S and the
corresponding semiconformal measures� i�e�� eigen
measures for the dual operators� We
also determine h� the Hausdor� dimension of the limit set of a parabolic iterated function
system S� In contrast to the hyperbolic systems� there are t
conformal measures for t � h
for parabolic systems� In section �ve� we �rst describe the structure of these t
conformal
measures with t � h� Then we associate with the system S an �always in�nite� hyperbolic
conformal system S� whose limit set may di�er from the limit set of the system S by at
most a countable set� The interplay between the parabolic system and this more easily
analyzed hyperbolic system is our main tool to study h
conformal measures for the orig

inal system S� We prove that if S� is regular�or� euqivalently possesses an h
conformal
measure�� then there exists a unique h
conformal measure for S which is atomless� We
also study invariant probability measures for S� and invariant measures for S �which are
�
�nite� but which may happen to be in�nite� equivalent with the conformal measure for
S� In particular we provide necessary and su�cient conditions for these invariant mea

sures ofr the orginal system S to be �nite� We also show that the h
dimensional Hausdor�
measure of the limit set is always �nite and that under the strong open set condition the
h
dimensional packing measure is positive� In section six we give several illustrative ex

amples� In particular� we return to the Apollonian packing the subject of �MU	�� Here
we study the invariant measure equivalent with h
conformal measure �which is up to a
multiplicative constant equal to the h
dimensional Hausdor� measure� showing that this
measure is �nite� Some of the arguments given in �MU	� which used the general theory
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presented here are completed� We would like to mention here that although in �MU	� we
have considered a slightly di�erent parabolic system and a di�erent hyperbolic system de

rived from it� the results obtained in the present paper also apply to the setting of �MU	��
We end the paper with a class of one
dimensional examples�

x�� Preliminaries� Our setting is this� Let X be a compact connected subset of a
Euclidean space IRd� Suppose that we have countably many conformal maps �i � X � X�
i � I� where I has at least two elements satisfying the following conditions

��� �Open Set Condition� �i�Int�X�� � �j�Int�X�� � � for all i �� j�

��� j��i�x�j � � everywhere except for �nitely many pairs �i� xi�� i � I� for which xi is
the unique �xed point of �i and j��i�xi�j � �� Such pairs and indices i will be called
parabolic and the set of parabolic indices will be denoted by �� All other indices will
be called hyperbolic�

�	� �n � � �� � ���� ���� �n� � In if �n is a hyperbolic index or �n�� �� �n� then ��
extends conformally to an open connected set V 	 IRd and maps V into itself�

��� If i is a parabolic index� then
T
n�� �in�X� � fxig and the diameters of the sets

�in�X� converge to ��

��� �Bounded Distortion Property� 
K � � �n � � �� � ���� ���� �n� � In �x� y � V if �n
is a hyperbolic index or �n�� �� �n� then

j����y�j
j����x�j

� K�

��� 
s � � �n � � �� � In if �n is a hyperbolic index or �n�� �� �n� then jj���jj � s�

��� �Cone Condition� There exist 	� l � � such that for every x � 
X 	 IRd there exists
an open cone Con�x� 	� l� 	 Int�X� with vertex x� central angle of Lebesgue measure
	� and altitude l�

��� There are two constants L � � and 	 � � such that

��j��i�y�j � j��i�x�j�� � Ljj��ijjjy � xj��

for every i � I and every pair of points x� y � V �

We call such a system of maps S � f�i � i � Ig a subparabolic iterated function system�
Let us note that conditions �����	�����
��� are modeled on similar conditions which were
used to examine hyperbolic conformal systems in �MU��� Condition ��� also held for many
of the systems studied in �MU�� but was not a general requirement� We need this condition
in the sequel� If � �� �� we call the system f�i � i � Ig parabolic� As declared in ��� the
elements of the set I n � are called hyperbolic� We extend this name to all the words
appearing in ��� and ���� By I� we denote the set of all �nite words with alphabet I and
by I� all in�nite sequences with terms in I� It follows from �	� that for every hyperbolic
word �� ���V � 	 V � Note that our conditions insure that ��i�x� �� �� for all i and x � V�We
provide below without proofs all the geometrical consequences of the bounded distortion

	



property ���� abbreviated as �BDP�� derived in �MU�� which remain true in our setting�
We have for all hyperbolic words � � I� and all convex subsets C of V

�BDP�� diam����C�� � jj���jjdiam�C�

and

�BDP�� diam����V �� � Djj���jj�
where the norm jjjj is the supremum norm taken over V and D � � is a universal constant�
Moreover�

�BDP	� diam����X�� � D��jj���jj
and

�BDP�� ���B�x� r�� � B����x�� K
��jj���jjr��

for every x � X� every � � r � dist�X� 
V �� and every hyperbolic word � � I�� Also�
there exists � � � � 	 such that for all x � X and for all hyperbolic words � � I�

�BDP�� ���Int�X�� � Con
�
���x�� ��D

��jj���jj
� � Con

�
���x�� ��D

��diam���V ��
�

where Con
�
���x�� ��D

��jj���jj
�
and Con

�
���x�� ��D

��diam����V ��
�
denote some cones

with vertices at ���x�� angles �� and altitudesD��jj���jj andD��diam����V �� respectively�
In addition� for every � � I� �not necessarily hyperbolic� and every x � X� there exists
l��� x� � � such that

�BDP�� ���Int�X�� � Con
�
���x�� �� l��� x�

�
Frequently� refering to �BDP� we will mean either �BDP� itself or one of the properties
�BDP��
�BDP��� The important point in �BDP�� is that by conformality we can get a
cone with vertex x and opening angle � lying in ���X�� but we cannot say anything about
the height of this cone unless � is a hyperbolic word in which case we have �BDP��� For
each � � I� � I�� we de�ne the length of � by the uniquely determined relation � � I j�j�
If � � I� � I� and n � j�j� then by �jn we denote the word ���� � � � �n� Our �rst aim
in this section is to prove the existence of the limit set� More precisely� we begin with the
following lemma�

Lemma ���� For all � � I� the intersection
T
n�� ��jn�X� is a singleton�

Proof� Since the sets ��jn�X� form a nested sequence of compact sets� the intersectionT
n�� ��jn�X� is not empty� Moreover� it follows from ��� that if � is of the form �i��

� � I�� i � �� then the diameters of the intersection
Tk
n�� ��jn�X� tend to � and� in the

other case� the same conclusion follows immediately from ���� In any case�
T
n�� ��jn�X�

is a singleton and we are done�

Improving a little bit the argument just given� we have the following�

Lemma ���� limn�� supj�j�nfdiam����X��g � ��
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Proof� Let g�n� � maxi��fdiam
�
�in�X�g� Since � is �nite it follows from ��� that

limn�� g�n� � �� Let � � I�� Given n � � consider the word �jn� Look at the
longest block of the same parabolic element appearing in �jn� If the length of this block
exceeds

p
n then� since due to ��� all the maps �j � j � I� are Lipschitz continuous with

a Lipschitz constant � �� we have diam���jn�X�� � g�
p
n�� Otherwise� we can �nd

in �jn at least n�pnp
n

�
p
n � � distinct hyperbolic indices� It then follows from ���

�and Lipschitz continuity with a Lipschitz constant � � of all the maps �i� i � I� that
diam���jn�X�� � s

p
n��� The proof is �nished�

We introduce on I� the standard metric d��� �� � e�n� where n is the largest number
such that �jn � � jn� The corollary below is now an immediate consequence of Lemma ����

Corollary ���� The map  � I� � X� ��� �
T
n�� ��jn�X�� is uniformly continuous�

The limit set J � JS of the system S � f�igi�I satis�es

J � �I�� � �i�I�i�J��
We recall the set J is not compact if the index set I is in�nite�

Lemma ���� If X is a topological disk contained in CI� then every parabolic point lies on
the boundary of X�
Proof� Suppose on the contrary that a parabolic point xi � Int�X�� Let D� � fz � CI �
jzj � �g and let R � D� � Int�X� be the Riemann map �conformal homeomorphism� such
that R��� � xi� Consider the composition R�� � �i � R � D� � D�� Then j�R�� � �i �
R�����j � jR����j��jR����j � �� Thus by Schwarz�s lemma R�� ��i �R is a rotation� Since
�i � R � �R�� � �i � R� �R��� it follows that �i�X� � R � �R�� � �i � R� �R���X� � X�
This contradiction �nishes the proof�

x�� Topological pressure and associated parameters� Given a set F 	 I and a
function f � F� � IR we de�ne the topological pressure of f with respect to the shift map
� � F� � F� to be

PF ��� f� � lim
n��

�

n
log

�
� X
��Fn

exp� sup
�����

n��X
j��

f��j����

�
A �

where ��� � f� � F� � � jj�j � �g� Since the sequence

n �� log

�
� X
��Fn

exp� sup
�����

n��X
j��

f��j����

�
A

is subadditive� the limit exists� If F � I� we suppress the subscript F and write simply
P��� f� for PI��� f��
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We call f � I� � IR acceptable if it is uniformly continuous and maxi�Ifsup�f j�i�� �
inf�f j�i��g ��� We shall prove the following�

Theorem ���� If f � I� � IR is acceptable� then

P��� f� � supfPF ��� f�g�
where the supremum is taken over all �nite subsets F of I�

Proof� The inequality P��� f� � supfPF ��� f�g is obvious� To prove the converse suppose
�rst that P��� f� � �� Fix � � �� By the acceptability of f� there exists l � � such that
jf��� � f���j � �� if �jl � � jl and M � maxi�Ifsup�f j�i�� � inf�f j�i��g � �� Now� �x
k � l� By subadditivity�

�

k
log

�
�X
j�j�k

exp� sup
�����

k��X
j��

f��j�����

�
A � P�f��

For each F 	 I and m � N� set

�m�F� f� �
X
��Fm

exp� sup
�����

m��X
j��

f��j�����

So� there exists q � � so large that writing F � f�� � � � � � qg we have �
k log �k�F� f� �

P�f�� �� Put

f �
k��X
j��

f � �j �

Then for every n � �� we have

�kn�F� f� �
X

��Fkn

exp

�
� sup
�����

n��X
j��

f � �kj���
�
A �

X
��Fkn

exp

�
�n��X

j��

inf
�
f j��kj��

��A

�
X

��Fkn

exp

�
�n��X

j��

inf
�
f j��kj�jk�

��A �

But� if j � n� �� then inf
�
f j��kj�jk�� � sup

�
f j��jk�jk�

�� ��k � l��Ml� Hence�

�kn�F� f� �
X

��Fkn

exp

�
�n��X

j��

sup
�
f j��kj�jk�

�� �k � l���Ml

�
A

� e���k�l	n�Mln
X

��Fkn

exp

�
�n��X

j��

sup
�
f j��kj�jk�

��A

�

�
�e���k�l	�Ml

X
��Fk

exp
�
sup
�
f j�� �

���A
n

�
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Therefore�

PF ��� f� � lim
n��

�

kn
log �kn�F� f� � ���k � l�

k
� Ml

k
� P�f�� � � P�f�� 	��

provided k is large enough� Thus� letting �� �� the theorem follows� The case P��� f� ��
can be treated similarly�

Looking at this theorem we should notice that our de�nition of pressure coincides with a
more complicated one given in �Sa� although we will not use this information in our paper�
We say a �
invariant Borel probability measure � on I� is �nitely supported provided
there exists a �nite set F 	 I such that ��F�� � �� The well
known variational principle
�see �Wa�� cf� �PU�� tells us that for every �nite set F 	 I

PF �f� � supfh���� �
Z
fd�g�

where the supremum is taken over all �
invariant ergodic Borel probability measures �
with ��F�� � �� Applying Theorem 	��� we therefore get the following�

Theorem ���� If f � I� � IR is acceptable� then

P��� f� � supfh���� �
Z
fd�g�

where the supremum is taken over all �
invariant ergodic Borel probability measures �
which are �nitely supported�

Our next goal is to relate the pressure of the �volume potential� function g to the way
pressure is de�ned in �MU��� We consider the function g � I� � IR given by the formula

g��� � log j������������j�
Using heavily condition ���� we shall prove the following�

Proposition ���� The function g de�ned above is acceptable�

Proof� Fix n � � and �� � � I� such that �jn � � jn� It then follows from ��� that

jg���� g���j � ��log j������������j � log j������������j
��

�
��j������������j � j������������j��

minfj������������j� j������������jg

� L
jj���� jj

minfj������������j� j������������jg
j������� ������j��

If �� is a hyperbolic index� then using the bounded distortion property� we get

jg���� g���j � LKj������� ������j��

�



On the other hand� since there are only �nitely many parabolic indices� there is a positive
constant M such that if �� is parabolic� then

jg���� g���j � LM j������� ������j��
Let L� � LmaxfK�Mg� Since X being compact is bounded� taking n � �� it follows
from the last inequalities that maxi�Ifsup

�
gj�i�

� � inf
�
gj�i�

�g � L�diam��X� � �� The
uniform continuity of g follows from inequality jg���� g���j � L�j�������������j� and
Corollary ��	� The proof is complete�

In �MU��� for each t � � we have de�ned P�t� by the formula

P�t� � lim
n��

�

n
log

X
j�j�n

jj���jjt�

where jj���jj � supfj����x�j � x � Xg� This analytic de�nition was used simply because
many dynamic and geometric facts about the limit set can be garnered from its basic
properties as a real function� Similarly� we de�ne for each W 	 X

PW �t� � lim
n��

�

n

X
j�j�n

jj���jjtW �

where jj���jjW � supfj����x�j � x �Wg� Let us note that

PW �t� � inffs �
X
n��

X
j�j�n

jj���jjtW e�sn ��g�

We now introduce some notation� For each i � �� let Ipgi � f� � Ip � �p �� ig�

Lemma ���� P��� tg� � P�t��

Proof� First� we show P�t� � PJ �t�� Clearly� PJ�t� � P�t�� To prove the converse
inequality� suppose PJ �t� � s� Then using ���

X
n��

X
j�j�n

jj���jjte�sn �

�
X
n��

X
j�j�n��n 	��

jj���jjte�sn �
X
n��

X
i��

nX
k��

X
��In�k

gi

jj���ik jjte�sn

� Kt
X
n��

X
j�j�n��n 	��

jj���jjtJe�sn �Kt
X
n��

X
i��

nX
k��

X
��In�k

gi

jj���ijjtJe�sn

� Kt
X
n��

X
j�j�n��n 	��

jj���jjtJe�sn �Kt
X
n��

X
i��

nX
k��

X
��In�k

gi

jj���ijjtJe�s�n�k
�	

� Kt
X
n��

X
j�j�n

jj���jjtJe�sn ���

�



So� P�t� � s and consequently P�t� � PJ�t�� Next� we compute

P��� tg� � lim
n��

�

n
log

X
j�j�n

exp
�
sup
�����

n��X
j��

tg��j����
�

� lim
n��

�

n
log

X
j�j�n

exp
�
sup
�����

nX
j��

t log j���j ���j�����j
�

� lim
n��

�

n
log

X
j�j�n

sup
�����

j������n���jt � lim
n��

�

n
log

X
j�j�n

jj���jjJ � PJ �t� � P�t��

The proof is complete�

Our next goal is to prove that the image of all shift
invariant measures satis�es a measure
theoretic open set condition� At this point we make essential use of the cone condition�

Theorem ���� If � is a shift
invariant Borel probability measure on I�� then

� � ����� �X� � �
�X�� � �

for all incomparable words �� � � I��

Proof� We begin by describing a situation which we show to be impossible� Suppose that
there exist a point x � X� an integer q � � and an increasing sequence fnkgk�� of positive
integers along with pairwise di�erent words ��k	� � �k	 � Enk such that

x � ���k��X� � �
�k��X�

and ��k	jnk�q � � �k	jnk�q� Passing to a subsequence we may assume that nk
� � nk � q
for every k � ��We shall construct by induction with respect to k � � a sequence fCkgk��
such that

�a� For every k� Ck consists of at least k� � incomparable words from f��j	� � �j	 � j � kg

Set C� � f���	� � ��	g� Suppose now that Ck has been de�ned� If ��k
�	 does not extend
any word in Ck� then we form Ck
� by adding ��k
�	 to Ck� We can do a similar thing in
case � �k
�	 does not extend any word in Ck� If� on the other hand� ��k
�	 extends some
word � in Ck and � �k
�	 extends a word � in Ck� then � and � are both extended by �k
�

since for j � k� j��j	j� j� �j	j � nj � nk� nk
� � nk � q� and ��k
�	jnk���q � � �k
�	jnk���q�
Since the words in Ck are incomparable� � � � and this is the only word in Ck which is
extended by both ��k
�	 and � �k
�	� In this case we form Ck
� by taking away � and
adding both ��k
�	 and � �k
�	� Now the sets f���X� � � � Ckg are nonoverlapping since
the words are incomparable� By �BDP�� we get k � � pairwise disjoint open cones each
with vetex x and opening angle �� This is clearly impossible if k is large enough� So it is
impossible to have such a point x�

�



Let � be a shift
invariant probability measure and suppose that � � ����� �X� �
�
�X�� � � for some incomparable words �� � � I�� Without loss of generality we may
assume that j� j � j�j� Put E � �� �X� � �
�X� and set

E� �
��
k��

�	
n�k

	
j�j�n

���E��

In view of what we have just proved E� � �� On the other hand� by �BDP�� for every
n � �� each element of X belongs to at most ��� elements of ���X�� � � In� �we assume
that �d���Sd��� � ��� Using this and �
invariance of measure �� we get for every n � �

� � ��
�
� 	
j�j�n

���E�

�
A � ���

X
j�j�n

� � ������E�
� � ���

X
j�j�n

�
�
����E�

�
� ���� � ���E��

where �A � f�� � � � Ag for every set A 	 I�� Hence� for every k � �� � �
��


S�
n�k

S
j�j�n ���E�

�
� ��������E�� and therefore �����E�� � ��������E� �

�� This contradiction �nishes the proof�

Let
� � ��S� � infft � � � P�t� ��g�

Following �MU�� we call � the �niteness parameter of the system S� If � is a Borel
probability measure supported on X� we denote the Hausdor� dimension of � by HD����
the in�mum of the Hausdor� dimensions of sets with � measure �� Let 	 � f�i� � i � Ig be
the partition of I� into initial cylinders of length �� We let H��	� denote the entropy of
the partition 	 with respect to �� Taking into account Theorem 	��� the following theorem
relating the Hausdor� dimension of a measure and the ratio of the entropy to the Lyuponov
exponent was proven for hyperbolic systems in �HMU� and �U���

Theorem ���� If � is a shift
invariant ergodic Borel probability measure on I� such that
H��	� ��� ����� �

R �gd� � � and either ����� � � or h���� � � �h���� � � implies
����� � ��� then

HD�� � ��� � h����

�����
�

If additionally� � � ����i�X� � �j�X�� � � for all i �� j � I then

HD�� � ��� � h����

�����
�

The same proof goes through in our case replacing only the bounded distortion property

by the consequence of ��� which says that
j��i�y	j
j��
i
�x	j � exp

�
Ljy � xj�� for all i � I and all

x� y � V � Let
� � ��S� � supfHD�� � ���g�

��



where the supremum is taken over all ergodic �nitely supported �so shift
invariant� mea

sures of positive entropy� Of course there are many such measures� We shall prove the
following�

Proposition ��	� The pressure function P�t� has the following properties�

��� P�t� � � for all t � �

��� P�t� � � for all � � t � ��

�	� P�t� � � for all t � ��

��� P�t� is non
increasing�

��� P�t� is strictly decreasing on ��� ���

��� P�t� is continuous and convex on ������

Proof� ���� Let i be a parabolic index and let xi be the corresponding parabolic point�
Then �i�� � xi and let � be the Dirac measure supported on i�� Of course� � is
ergodic� �nitely supported� and

R
tg d� � t log j��i�xi�j � �� Hence� by Theorem 	�� and

Proposition 	�	� P ��� tg� � h���� �
R
tgd� � � and ��� is proved�

���� Suppose that � � t � �� Then there exists an ergodic� �
invariant �nitely supported�
measure � of positive entropy such that HD�� � ��� � t� So� Theorem 	�� applies to give
t � HD�� � ��� � h���������� which due to Theorem 	�� and Proposition 	�	 implies
that P��� tg� � h���� �

R
tg d� � ��

�	�� Suppose that P�t� � � for some t � �� Then in view of Theorem 	�� and Propo

sition 	�	 there exists an ergodic �
invariant �nitely supported measure � such that

h���� � t����� � �� Therefore h���� � � and hence� by Theorem 	��� t � h���	
���	

�

HD�� � ��� � �� We are done�

���� Suppose that t� � t�� It is clear from the de�nition of pressure that P�t�� � �
implies P�t�� � �� So� we may assume � � t� � t�� Fix � � �� By Theorem 	�� and
Proposition 	�	 there exists an ergodic �nitely supported measure �� such that h����� �R
t�gd�� � P��� t�g�� �� Then by Theorem 	�� and Proposition 	�	� P��� t�g� � h����� �R
t�gd�� � h������

R
t�gd���

R
�t�� t��gd�� � h������

R
t�gd�� � P��� t�g���� Letting

�� �� we are done�

���� Suppose � � t� � t� � �� Since P��� t�g� � �� in view of Theorem 	�� and Proposi

tion 	�	 there exists an ergodic �
invariant �nitely supported� measure �� such that

�	��� h����� �

Z
t�gd�� � max

�
�

�
� �� t� � t�

��


P��� t�g�

Then h����� � P��� t�g��� � � and therefore by Theorem 	���
h�� ��	

�� ��	
� HD��� � ��� �

�� Hence
R �gd�� � h������� � P��� t�g����� Thus� using �	���� Theorem 	�� and

��



Proposition 	�	� we get

P��� t�g� � h����� �

Z
t�gd�� � h����� �

Z
t�gd�� �

Z
�t� � t��gd��

� P��� t�g�� P��� t�g�
t� � t�
��

� P��� t�g�
t� � t�
��

� P��� t�g� � P��� t�g�
t� � t�
��

� P��� t�g��

���� An application of H older�s inequality shows that each function

t ��
X
j�j�n

exp
�
sup
�����

n��X
j��

g��j����
�

is log convex� Therefore the map t �� P�t�� t � ������ is convex and consequently
continuous�

Let us remark that it is possible that � � �� We will call such systems �strange� and deal
with them in more detail in sections � and �� Also� although it can happen that �S � ��
we always have P ��� � log � and therefore h � ��

x�� The Perron
Frobenius operator� semiconformal measures and Hausdor�

dimension� It follows from Proposition 	��that � is the �rst zero of the pressure function�
We shall provide below more characterizations of this number� Given t � ��S� we de�ne
the associated Perron
Frobenius operator acting on C�X� as follows

Lt�f��x� �
X
i�I

j��i�x�jtf��i�x���

Notice that the nth composition of L satis�es�

Lnt �f��x� �
X
j�j�n

j����x�jtf����x���

Consider the dual operator L�t acting on the space of �nite Borel measures on X as follows

L�t ����f� � ��Lt�f���
Notice that the map � �� L�t ����L�t ������ sending the space of Borel probability measures
into itself is continuous and by the Schauder
Tichonov theorem it has a �xed point� In
other words L�t ��� � ��� for some probability measure �� where � � L�t ������ � �� A
probability measure m is said to be ��� t�
semiconformal provided that L�t �m� � �m� If
� � � we simply speak about t
semiconformal measures� Repeating a short argument from
the proof of Theorem 	�� of �MU� we shall �rst prove the following�

Lemma ���� If m is a ��� t�
semiconformal measure for the system S with � � �� then
m�J� � ��

��



Proof� For each n � � let Xn � �j�j�n���X�� The sets Xn form a descending family
and

T
n��Xn � J � Notice that ��Xj�j

� �� � ��X for all � � I� and therefore� using
��� t�
semiconformality of m� we obtain for every n � ��

�nm�Xn� �

Z
��Xn

dL�nt �m� �

Z
Lnt ���Xn

�dm �

Z X
j�j�n

j���jt���Xn
� ���dm

�

Z X
j�j�n

j���jtdm �

Z
��XdL�nt �m�

�

Z
�n��Xdm � �n�

Thus� m�Xn� � � and therefore m�J� � m
�T

n��Xn� � �� The proof is complete�

We set
�n�t� �

X
j�j�n

jj���jjt�

We note that ��S� � infft � ��t� � ���t� � �g� In order to demonstrate the existence of
�eP�t	� t�
semiconformal measures we shall prove the following�

Lemma ���� If t � ��S� and L�t �m� � �m for some measure m on X� then � � eP�t	�

Proof� We �rst show the easier part that � � eP�t	� Indeed� for all n � �

�n �

Z
Lnt ���X�dm �

Z X
j�j�n

j����x�jtdm�x� �
Z X

j�j�n
jj���jjtdm �

X
j�j�n

jj���jjt

and therefore

����� log� � lim
n��

�

n
log

X
j�j�n

jj���jjt � P�t��

In order to prove the opposite inequality� for each p � �� let Tp �
P

��Ipg jj���jjt� where Ipg
is the set of those words � � Ip such that �p��� �p are not the same parabolic element�
For each n�

�n�t� �
X
j�j�n

jj���jjt

�
X
��Ing

jj���jjt �
X
i��

X
��In��

g

jj���jjtjj��ijjt �
X
i��

X
��In��

g

jj���jjtjj��iijjt � � � ��
X
i��

jj��in jjt

�
nX

k��

!�Tk�

�	



where T� � �� Take � � q�n� � n that maximizes Tk� Then �n � �n � ��!�Tq�n	 and
therefore

P�t� � lim
n��

�

n
log�n � lim inf

n��

�
log�n� ��

n
�
q�n�

n
 �

q�n�
logTq�n	 �

�

n
log!�

�

� max

�
�� lim sup

n��
�

n
logTn


������

Let
"Lnt ��� �

X
��Ing

j���jt�

It follows from condition ��� that for all n � �� � � Ing and all x � X

jj���jjt � Ktj����x�jt�

Summing we have Tn � Kt "Lnt ����x� and integrating this inequality with respect to the
measure m� we get

Tn � Kt

Z
"Lnt ����x�dm�x� � Kt�n�

Thus� by �����

P�t� � maxf�� lim sup
n��

�

n
log Tng � maxf�� log�g�

If now t � ��S�� then by Proposition 	������ P�t� � �� and we therefore get P�t� � log��
Thus� we are done in this case� So� suppose that t � ��S�� Then by Proposition 	���	��
P�t� � � and in view of ����� we are left to show that � � �� In order to do it �x an
arbitrary � � � � �� It follows from conditions ��� and ��� that for all n large enough� say
n � n�� j��in�x�j � �n for all i � � and all x � X� Fix j � �� We then have for all n � n�

�n �

Z
��dL�n�m� �

Z X
j�j�n

j���jtdm �
Z
j��jn jtdm �

Z
�tndm � �tn�

Thus � � �t and letting � � � we get � � �� The proof is complete�

Lemma ���� For every t � ��S� a �P�t�� t�
semiconformal measure exists�

Proof� In view of Lemma ���� it su�ces to prove the existence of an eigenmeasure of the
conjugate operator L�t � But this has been done in the paragraph preceding Lemma ���
which completes the proof�

Let e � e�S� be the in�mum of the exponents for which a t
semiconformal measure exists�
We shall shortly see this in�mum is a minimum� Also� let h � hS be the Hausdor�
dimension of the limit set J � As an immediate consequence of Proposition 	���	� and
Lemma ��	 we get the following�

��



Lemma ���� e�S� � ��S��

Now� suppose that m is t
semiconformal or equivalently�

�����

Z X
��In

j���jt�f � ��� dm �

Z
f dm�

for every continuous function f � X � IR� Since this equality extends to all bounded
measurable functions f � we get

����� m����A�� �
X
��In

Z
j��� jt�����A	 � �� � dm �

Z
A

j���jt dm

for all n � �� � � In and all Borel subsets A of X�

Our next task in this section is to note that h � e� But this follows immediately from the
following lemma whose proof� using ������ is the same as the proof of Lemma ��	 of �MU���

Lemma ���� Ifm is a t
semiconformal measure� thenHt J � m and the Radon
Nikodym
derivative dHt

dm is uniformly bounded from above�

Since obviously � � h� we have thus proved the following�

Theorem ���� e � � � h �the minimal zero of the pressure function�

As an immediate of Lemma ���� Lemma ��	� Proposition 	���	� and Theorem ��� we get
the following

Corollary ��	� The h
dimensional Hausdor� measure of the limit set J is �nite�

x�� The associated hyperbolic system� Conformal and invariant measures� In
this section we describe how to associate to our parabolic system a new system which
is hyperbolic and we apply its properties to study the original system� in particular to
prove the existence of h
conformal measures� However we begin this section with a result
describing the structure of t
semiconformal measures with exponents t � h� Let

�� � f���xi� � i � �� � � I�g

So� �� is the set of orbits of parabolic points� The following theorem allows us to conclude
a t
semiconformal measure is conformal provided the parabolic orbits do not mix�

Theorem ���� If t � h and mt is a t
semiconformal measure� then mt is supported on
��� that is mt���� � �� If for every � � I� and every i � �� ������xi�� � �i�� then
each t
semiconformal measure �t � h� is t
conformal�

��



Proof� For every r � h let mr be an r
semiconformal measure� Note that the existence
of at least one such measure �for every r � h� has been proved in Lemma ��	� cf� also
Proposition 	���	� and Theorem ���� Repeating the reasoning from Proposition 	�� of
�MU��� we see that for every r � h there exists a Borel probability measure "mr on I�

such that "mr � �� � mr and "mr����� �
R j���jrdmr� for all � � I�� Now� �x t � h and

h � s � t� Let "�� � f�i� � i � �� � � I�g� If � �� "��� then there exists an increasing
in�nite sequence fnkg�k�� such that either �nk �� � or �nk�� �� �nk � In either case� using
condition ��� we get

mt���jnk �� �
Z
j���nk j

tdmt � jj���nk jj
t � jj���nk jj

t�sjj���nk jj
s

� jj���nk jj
t�sKs

Z
j���nk j

sdms � K�sjj���nk jj
t�sms���jnk ��������

It immediately follows from conditions ��� and ��� that limk�� jj���nk jj � �� Combining

this and ����� we conclude that "mt�I
� n "��� � � or equivalently mt�"��� � �� Since

������ � "��� we get mt���� � "mt � ������ � "mt�"��� � �� The proof of the �rst part
of Theorem ��� is complete� The proof of the second part is an immediate consequence of
����� applied to the indicator functions of the sets of the form ���A�� where � � I� and A
is a Borel subset of X�

Consider now the system S� generated by I�� where

I� � f�inj � n � �� i � �� i �� jg � f�k � k � I n�g�
It immediately follows from our assumptions that the following is true�

Theorem ���� The system S� is a hyperbolic conformal iterated function system�

The limit set generated by the system S� is denoted by J��

Lemma ���� The limit sets J and J� of the systems S and S� respectively di�er only by
a countable set� J� 	 J and J n J� is countable�

Proof� Indeed� it is obvious that J� 	 J� On the other hand� the only in�nite words
generated by S but not generated by S� are of the form �i�� where � is a �nite word and
i is a parabolic element of S�

Denitions� If S is an iterated function system with limit set J� then a measure �
supported on J is said to be invariant for the system S provided

��E� � �

�	
i�I

�i�E�

�

and � is said to be ergodic for the system S provided ��E� � � or ��J nE� � � whenever
��E#

S
i�I �i�E�� � ��

��



Let us make some notation� Let J� 	 J consist of all points with a unique code under S�
For each x � ��� � J� express � � in� � where i is a parabolic element� n � �� �� �� i and
de�ne n�x� � n� For each k � �� put

Bk � fx � J� � n�x� � kg and Dk � fx � J� � n�x� � kg�

Theorem ���� Suppose that �� on J� is a probability measure invariant under S� and
���J�� � �� De�ne the measure � by setting for each Borel set E 	 J��

����� ��E� �
X
k��

X
j�j�k

������E� �Dk� �
X
k��

X
i��

����ik�E�� � ���E�

Then � is a �
�nite invariant measure for the system S and �� is absolutely continuous
with respect to �� If� for each i � I� the measure �� � �i is absolutely continuous with
respect to the measure ��� then � and �� are equivalent and if �� is ergodic for the system
S�� then � is ergodic for the system S� Moreover� in this last case � is unique up to a
multiplicative constant�

Proof� Let us check �rst that � is S
invariant� Indeed�

�

�
�	
j�I

�j�E�

�
A �

�X
k��

X
i��

��

�
��ik�	

j�I
�j�E��

�
A�

X
j�I

����j�E��

�
�X
k��

X
i��

X
j�I

����ikj�E�� �
X
j�I

����j�E��

�
�X
k��

X
i��

X
j�I

����ikj�E� �Dk
���
�X
k��

X
i��

X
j�I

����ikj�E� � Bk�

�
X
j�I

����j�E��

�
�X
k��

X
i��

����ik�E�� �
�X
k��

X
i��

X
j ��i

����ikj�E�� �
X
j�I

����j�E��

�
�X
k��

X
i��

����ik�E�� � ���E� �
X
j��

����j�E�� � ��E��

Where the last equality holds due to invariance of �� under S�� The invariance of �
has been proved� Since J� �

S
n��Bn� in order to show that � is �
�nite it su�ces to

demonstrate that ��Bn� �� for every n � �� And indeed� given n � � we have

����� ��Bn� �
X
k��

X
i��

����ik�Bn�� � ���Bn��

��



Now� for every i � ��
�ik�Bn� 	 Bk �Bn
k�

Hence� ��Bn� � �!�
P�

k�� �
��Bk� � �!��� �

S�
k��Bk� � �!����X� � �!�� Thus� � is

�
�nite� It follows in turn from ����� that ��E� � � implies ���E� � ���E �D�� � �� So�
�� is absolutely continuous with respect to ��
Now suppose that for each i � I� the measure �� ��i is absolutely continuous with respect
to the measure ��� If ���E� � �� then ������E�� � � for all � � I�� Thus� it follows
from ����� that ��E� � � and the equivalence of � and �� is shown� Suppose now that
E is S
invariant� implying that

S
i�I �i�E� 	 E� Then

S
��I� ���E� 	 E and since �� is

ergodic� either ���E� � � or ���Ec� � �� Since � is absolutely continuous with respect to
��� this implies that either ��E� � � or ��Ec� � �� Hence � is ergodic and the proof is
complete�

Theorem ���� If the assumptions of Theorem ��� are satis�ed� then the �
�nite measure
� produced there is �nite if and only ifX

n��
n���Bn� ���

Proof� Let us set Bi
n � fx � J� � x � �jn��� j � � n fig� � � I�� �� �� jg and

Di �
S
n��B

i
n� By ������ we can write

��J� �
X
n��

��Bn� �
X
n��

X
k��

X
i��

����ik�Bn��

�
X
k��

X
n��

���Bk
n� �
X
k��

X
n��

X
i�I

����ik�B
i
n��

�
X
k��

X
n��

���Bk
n� �
X
k��

X
i��

����ik�D
i��

�
X
n��

�n� �����Bn� �
X
n��

���Bn� �
X
n��

�n� �����Bn��

The proof is therefore complete�

We recall from �MU�� that a probability measure m is said to be t
conformal for the system
S provided m�J� � � and for every Borel set A 	 X and every i� j � I with i �� j�

���	� m��i�A�� �

Z
A

j��ijtdm

and

����� m��i�X� � �j�X�� � ��

A straightforward computation shows �e�g� �MU��� p� ���� that any t
conformal measure is
t
semiconformal� We also recall from �MU�� that a conformal hyperbolic system is regular

��



if P�h� � � or equivalently an h
conformal measure exists� We shall now prove a little but
useful lemma concerning general hyperbolic systems�

Lemma ���� If S � f�i � X � X� i � Ig is a regular hyperbolic conformal iterated
function system� then its hS
conformal measure is atomless�

Proof� Suppose to the contrary that m�z� � � for some z � J � Then� by Corollary 	��� of
�MU��� "m��� � � for some � � ���z�� where "m is the measure produced in Lemma 	�� of
�MU��� Let �� be the �
invariant probability measure produced in Theorem 	�� of �MU���
Since for every n� ����n���� � ����� � � and �� is a probability measure� � is eventually
periodic meaning that there exist k � � and q � � such that �q��k���� � �k���� Therefore�
we can write �k��� � ��� for some � � I�� Since m����� � �� m������ � � and by the
conformality of m we have m������ � m��� ���

���� �
R
����	

j��� jhSdm � m������

which is a contradiction �nishing the proof�

Theorem ��	� Suppose that S is a parabolic conformal iterated function system and the
associated hyperbolic system S� is regular� Then m� the h
conformal measure for S� is
also h
conformal for S and m is the only h
semiconformal measure for S�

Proof� Let m be the h
conformal measure for the system S�� We will �rst show that m
is h
conformal for the system S over the limit set J� We will then associate with S one
more hyperbolic system S�� and use some properties of this system to verify that m is
h
conformal for S� Since m�J�� � �� the probability measure m clearly satis�es the �rst
condition for conformality� m�J� � �� Next� we will show that m satis�es equation ���	�
for all Borel subsets A of J� Since J nJ� is countable and m is atomless� it su�ces to show
that ���	� holds for Borel subsets of J�� Also� since ���	� holds whenever i is a hyperbolic
index even for Borel subsets of X� we only need to verify ���	� for parabolic indices� Let

G � fA � A is a Borel subset of J� and ���	� holds �i � �g�

Since G is closed under monotone limits� it su�ces to show that ���	� holds for every subset
U of J� which is relatively open� Let

� � f� � I�� � � � �a�b��� �a�b��� �a�b��� � � � $ �n an� bn � �� bn �� an� an
�g�

Let W � ���� Using Theorem 	�� from �MU�� and the Birkho� ergodic theorem� we
see that m�W � � � and m��i�W �� � �� �i � �� Let us demonstrate that if i � � and
� � ���� ��� ��� ���� � I�� n�� then there is some l such that for every k � l� ���� ���� �k� � I��
and the concatenation i ��� � �����k can be parsed �or regrouped� so that it represents an
element of I�� � To see this� �rst suppose that �� � I n �� Then l � � since i � �� � ��� � �k
can be parsed as i��� ��� ����k which is an element of I�� � Now� suppose �� � pnq where
p � � and p �� q� If p � i� then again l � �� since i � �� � ��� � �k can be parsed as
in
�q� ��� ����k which is an element of I�� � If i �� p and n � �� then i � �� � ��� � �k can
be parsed as �ip� pn��q� ��� ��� � � � � �k� � I�� and also in this case l � �� If� on the other
hand� n � � and p � i� then �� � a�b�� where a� � � and b� �� a�� If b� � I n �� then
i � �� � ��� � �k can be parsed as �ia�� b�� ��� ��� � � � � �k� � I�� and l � �� So� suppose that

��



b� � �� Now� consider ��� If �� � I n�� then the concatenation i��� � �����k can be parsed
as �ia�� b���� ��� � � � � �k� � I�� and l � �� Otherwise �� � pnq� where p � �� q �� p and
n � �� If p � b�� then i���� �����k can be parsed as �ia�� b

n
�
� q� ��� � � � � �k� � I�� and l � ��

If p �� b� and n � �� then i � �� � ��� � �k can be parsed as �ia�� b�p� p
n��q� ��� � � � � �k� � I��

and l � �� If� on the other hand� n � �� then �� � a�b�� where a� �� b�� b�� If b� � I n ��
then i � �� � ��� � �k can be parsed as �ia�� b�a�� b�� ��� � � � � �k� � I�� and l � �� So� we may
assume that b� � �� Now� excluding inductively in this manner the cases when i���������k
can be parsed in a fashion that it would belong to I�� � we would end up with the conclusion
that � � � contrary to our assumption� Now� let U 	 J� be relatively open� Then there
is a set M 	 I�� � consisting of incomparable words such that U nW 	 ���M�� �J

�� 	 U�
and if � �M then i � � � I�� � Thus�

m��i�U�� � m��i���� �J���� � �U n ��� �J��� �
X
�

m��i��� �J
����

�
X
�

Z
J�
j��i � �� ��jhdm �

X
�

Z
�� �J�	

j��ijhdm �

Z
U

j��ijhdm�

where the third equality follows since m is h
conformal for the system S� and in the fourth
equality we additionally employed the change of variables formula� Now� we want to show

m��i�J� � �j�J�� � �

whenever i �� j� Again� it su�ces to verify this when J is replaced by J� and at least one
of the indices i and j is parabolic� As before there is a set Mi 	 I�� of incomparable words
such that J� nW 	 ���Mi

�� �J
�� 	 J�� and if � � Mi then i � � � I�� � Also� let Mj 	 I��

have similar properties with respect to the index j� Then

m��i�J� � �j�J�� � m����
�Mi	Mj
�i� �J

�� � �j
�J��� �
X

Mi	Mj

m��i� �J
�� � �j
�J��� � ��

Finally� to show that m is conformal� we must demonstrate that ���	� and ����� hold
whenever A is a Borel subset of X� Note that it su�ces to show that m�A� � � implies
m��i�A�� � �� for all Borel subsets A ofX and all parabolic indices i� In order to prove this�
we introduce a new hyperbolic system� The index set for this system is I�� � I� nf�i� i� i� �
i � �g�fpnq � p � �� q �� p� n � �g� Let us prove that the system S�� satis�es the bounded
distortion property� To see this read a word � � I��� as a word in I� � � � ���� ��� ���� �n��
If �n � I n�� then we have bounded distortion by property ��� of the system S� If �n � �
and �n�� �� �n� then again by property ��� we have bounded distortion with constant K�
If �n�� � �n� then �n�� �� �n��� by the de�nition of I���� Then the word �jn�� satis�es
the hypothesis of condition ��� and so

j����y�j
j����x�j

�
j���jn��

���n�y��jj���n�y�j
j���jn��

���n�y��jj���n�y�j
� Kmax

� jj��ijj
minf��i�x� � x � Xg � i � �


�

where the last number is �nite since � is� To see that S�� satis�es the open set condition�
notice that �ijk�Int�X����pqr�Int�X�� � � for all ijk �� pqr� Next consider �inj�Int�X���

��



�pmq�Int�X��� where n�m � �� If i �� p� this intersection is empty� Also if i � p and
n �� m� the intersection is empty� Otherwise� q �� j and the intersection is empty� Finally�
consider �inj�Int�X�� � �pqr�Int�X��� where n � �� If i �� p or if i � p and q �� i�
the intersection is empty� Otherwise� i � p � q and in this case r �� i since the word
�i� i� i� is not allowed in I��� Finally� the hyperbolicity of the system S�� is an immediate
consequence of property ���� So� S�� is a hyperbolic conformal iterated function system�
Also� since each element of I�� can be parsed into an element of I��� � we have J�� � J� �
J n feventually parabolic pointsg� Also notice that if the system S� is regular� then the
system S�� is regular� To see this note that we have already shown that if m is conformal
for S�� then m is conformal for S over J � Thus m is conformal for S�� over J � So� for each
n� � �

R
J
dm �

R
J

P
��In�� j����x�jdm� But� for each x � J � we have

X
��In��

jj���jjh �
X
��In��

j����x�jh � �K����h
X
��In��

jj���jjh�

where K�� is the distortion constant for the system S�� over X� Integrating this formula
against the measure m we getX

��In��
jj���jjh � � � �K����h

X
��In��

jj���jjh�

From this it immediately follows that P���h� � �� But� this is equivalent to saying that
there is an h
conformal measure m�� for the system S�� over X� We only need to prove
that m�� � m� Let G be open relative to J�� Let W be a collection of incomparable words
in I�� such that G �

S
��W ���J

��� Since m is conformal for S�� over J �

m�G� �
X
��W

Z
J

j���jdm �
X
��W

Khjj���jj �
X
��W

KhK��h
Z
J

j���jdm�� � KhK��hm���G��

Interchanging m and m�� in the above estimate� we get

�KhK��h���m���G� � m�G� � KhK��hm���G��

From this it follows that m and m�� are equivalent� To show that m � m��� let A be a
Borel subset of X� Then m����A�� � m����A � J�� �m����A n J��� But� since m�� is
conformal over X�m���A n J� � R

AnJ j���jhdm�� � �� So� since m is conformal for S over

J� we have m����A�� �
R
A
J j���jhdm �

R
A
j���jhdm� Also� one can show that ����� holds

using the same procedure� Thus� m is conformal for S�� over X�
Finally� to see that m is conformal for the entire system S over X� let i � � and choose
an arbitrary q �� i� q � I� Then iq � I� and iqi � I��� Thus�Z

�i�A	

j��iqjhdm � m��iq��i�A�� � m��iqi�A�� �

Z
A

j��iqijhdm�

So� if m�A� � �� then since j��iqjh is positive on �i�A�� we have m��i�A�� � ��

��



In order to prove the second part of our theorem suppose that � is an arbitrary measure
supported on J and satisfying

����� �����A�� �
Z
A

j���jhd�

for all Borel sets A 	 X and all � � I�� We show that m is absolutely continuous with
respect to �� Indeed� for every � � I�� we have

�����X�� �
Z
X

j���jhd� � K�hjj���jjh � K�h
Z
X

j���jhdm � K�hm����X���

Next� consider an arbitrary Borel set A 	 X such that ��A� � �� Fix � � �� Since
� is regular there exists an open subset G of X such that A � J� 	 G and ��G� � ��
There now exists a family F 	 I�� of mutually incomparable words such that A � J� 	S
��F ���X� 	 G� Lemma ��� of �MU�� states that there exists a universal upper bound

M on the multiplicity of the family f���X� � � � Fg� Hence� using the fact that m is
supported on J�� we obtain

m�A� � m�A � J�� � m

� 	
��F

���X�

�
�
X
��F

m����X��

� Kh
X
��F

�����X�� � KhM�

� 	
��F

���X�

�
� KhM��G�

� KhM��

Thus� letting �� �� we get m�A� � � which �nishes the proof of the absolute continuity of
m with respect to �� Our next aim is to show that ��J nJ�� � �� Suppose on the contrary
that ��J n J�� � �� Set P � f���xi� � i � �� � � I�g� Since J n J� 	 P � ��P � � �� Write
� � �� � ��� where ��jXnP � � and ��jP � �� Thus ���P � � ��P � � �� Since ���P � 	 P
for all � � I�� we get for every Borel set A 	 X and every � � I�

������A�� � ������A � P �� � �����A � P �� �
Z
A
P

j���jhd� �

Z
A

j���jhd���

Hence multiplying �� by �����X�� we conclude from what has been proved that m is
absolutely continuous with respect to ��� Since ���XnP � � �� this implies thatm�XnP � �
�� and consequently m�P � � �� Since P is countable we arrive at a contradition with
Lemma ���� Thus ��J�� � �� Since� by Lemma ���� any h
semiconformal measure �
is supported on J and� by ������ satis�es ������ we conclude that any h
semiconformal
measure is supported on J� and satis�es ������ Since� additionally� by regularity of the
system S�� P��h� � �� it follows from Lemma 	��� of �MU�� that � is h
conformal for S��
An application of Theorem 	�� of �MU�� implying the uniqueness of h
conformal �even
h
semiconformal� measures for the hyperbolic system S�� shows that � � m� The proof is
complete�

��



Following the case of hyperbolic systems �see �MU��� we call a parabolic system regular
if there exists an h
conformal measure for S supported on J�� Since such a measure is
h
conformal for S�� as an immediate consequence of Theorem ��� we get the following�

Corollary ���� The parabolic system is regular if and only if the associated system S� is
regular�

Trying to say something about parabolic systems which are not regular we are led to
introduce the class of strange systems which by de�nition are those systems for which
there is no t with � � P�t� ��� In the hyperbolic case the strange systems coincide �see
�MU��� with systems which are not strongly regular or equivalently with those with � � h�
This last characterization continues to be true also for parabolic systems and this class
may also be characterized by the requirement of the existence of a number 	 �which then
turns out to be � � h� such that P�t� � � for all t � 	 and P�t� � � for all t � 	� Let
us remark that we do not want to call the strange systems �irregular� since the irregular
hyperbolic systems are precisely those for which no conformal measure exists whereas for
a strange parabolic system the following questions remain open�

Questions� Can there exist a strange parabolic system such that the associated hyperbolic
system is regular% Can there exist a strange parabolic system with a purely atomic h

conformal measure%

We shall prove the following�

Proposition ���� If the system S is strange� then so is S��

Proof� Since hS� � hS � P
��t� � � for all t � hS � So� we are only left to show that

P��t� � � for all t � hS � And indeed� �x t � hS � Since S is strange� P�t� � � and
therefore ��t� � �� Since � is �nite� this implies that

P
i�In� jj��ijjt � �� But then

���t� �Pi�In� jj��ijjt ��� Hence P��t� �� and we are done�

Let us brie&y touch on the packing measure of J� Since J� is dense in J � as an immediate
consequence of Theorem ��� and Lemma ��	 of �MU�� we get the following�

Corollary ����� Suppose that S is a parabolic iterated function system and the associated
hyperbolic system S� is regular� If J � Int�X� �� � �that is� if the strong open set condition
is satis�ed�� then the h
dimensional packing measure of J is positive�

Let us remark here that in Corollary ��� we have proved that the h
dimensional Hausdor�
measure of J is �nite�

Finally� let us give some results about equivalent ergodic invariant measures for regular
systems� As a consequence of Theorem ��� we have the following�

�	



Corollary ����� Suppose that S is a parabolic iterated function system� the associated
hyperbolic system S� is regular and let m be the corresponding h
conformal measure�
Then there exists a unique probability measure �� equivalent with m� which is ergodic
and invariant under S� and� up to a multiplicative constant� there exists a unique �
�nite
measure � equivalent with m and ergodic invariant under S�

Proof� The �rst part of this corollary is an immediate consequence of Theorem 	�� and
Corollary 	��� from �MU��� That m is h
conformal for S follows from Theorem ���� The
last part is a consequence of this conformality �the measures ����i are therefore absolutely
continuous with respect to ��� and Theorem ����

Corollary ����� If the assumptions of Corollary ���� are satis�ed� the �
invariant measure
� produced there is �nite if and only if

X
i��

�X
n��

n

Z
Xi

j��in jhdm ���

where Xi �
S
j ��i �j�X��

Proof� Since by Theorem 	�� and Corollary 	��� from �MU�� m and �� are equivalent
with Radon
Nikodym derivatives are bounded away from � and in�nity� it therefore follows
from Theorem ��� that � is �nite if and only if the series

P
n�� nm�Bn� converges� Since

m�Bn� �
P

i��
R
Xi
j��in jhdm� the proof is complete�

Corollary ����� If for every i � � there exists some �i and a constant Ci � � such that
for all n � � and for all z � Xi

C��i n
� �i��

�i � j��in�z�j � Cin
� �i��

�i �

then the �
�nite invariant measure � produced in Corollary ���� is �nite if and only if

h � �max

�
�i

�i � �
� i � �


�

Proof� The proof is an immediate consequence of Corollary �����

x�� Examples� This section contains examples illustrating some of the ideas developed
in this paper� We begin with the following�

Example ���� �Apollonian packing� Consider on the complex plane the three points zj �
e��ij	�� j � �� �� � and the following additional three points a� �

p
	��� a� � ���p	�e�ij	�

and a� � ���p	�e��ij	�� Let f�� f�� and f� be the M obius transformations determined by
the following requirements� f��z�� � z�� f��z�� � a�� f��z�� � a�� f��z�� � a�� f��z�� � z��
f��z�� � a�� f��z�� � a�� f��z�� � a�� and f��z�� � z�� Set X � B��� ��� the closed ball
centered at the origin of radius �� It is straightforward that the images f��X�� f��X�

��



and f��X� are mutually tangent �at the points a�� a� and a�� respectively� disks whose
boundaries pass through the triples �z�� a�� a��� �z�� a�� a�� and �z�� a�� a�� respectively� Of
course all the three disks f��X�� f��X� and f��X� are contained in X and are tangent to
X at the points z�� z� and z� respectively� Let S � ff�� f�� f�g be the iterated function
system on X generated by f�� f� and f�� Notice that all the maps f�� f� and f� are
parabolic with parabolic �xed points z�� z� and z� respectively� It is not di�cult to check
that all the requirements of a parabolic system are satis�ed� Observe that the limit set
J of the parabolic system S coincides with the residual set of the Apollonian packing
generated by the curvilinear triangle with vertices z�� z�� z�� In �MU	�� using a slightly
di�erent iterated function system� we have dealt with geometrical properties of J proving
that � � h � HD�J� � �� � � Hh � � and Ph�J� � �� In this paper we want to study
its dynamical properties� Let us �rst notice that the system S� is regular� Indeed� we
proved in �MU	� that

fn� �z� �
�
p
	� n�z � n

�nz � n�
p
	

and

�fn� �
��z� �

	

��nz � n�
p
	��

�

By the symmetry of the situation this implies that

j�fni � fj���z�j �
�

n�

for all i �� j� Hence ���t� � Pn��
�
n�t � where �

��t� is the psi function of the system S�

introduced just before Lemma ���� Thus ��S�� � ��� and ������� ��� Hence� it follows
from Theorem 	��� of �MU�� that the system S� is regular� even more it is hereditarily
regular� Thus� the assumptions of Theorem ��� and Corollary ���� are satis�ed in our
case� Let m be the h
conformal measure for S and let � be an S
invariant �
�nite measure
equivalent with m� We shall prove the following�

Theorem ���� The invariant measure � of the Apollonian system ff�� f�� f�g is �nite�

Proof� In the proof of regularity of S�� we have observed that j�fni ��j � ��n� on Xi�
i � �� �� �� Since h � � � � �

�
� � it therefore follows from Corollary ���	 that � is �nite�
The proof is complete�

Example ���� A large class of examples appears already in the case when X is a compact
subinterval of the real line IR� We call such systems one
dimensional� If the parabolic
elements �i of a one
dimensional system S have� around parabolic �xed points xi� a rep

resentation of the form

����� �i�x� � x� a�x� xi�
�
�i � o��x� xi�

�
�i�

then �see e�g�� �U���

����� j��in�x�j � n
� �i��

�i

��



outside every open neighbourhood of xi� Hence the following theorem is a consequence of
Theorem ���� and Corollary ���	�

Theorem ���� If S is a one
dimensional parabolic system with �nite alphabet and satis

fying ������ then S is regular and any S
invariant invariant measure � equivalent with the
hS
conformal measure is �nite if and only if h � �maxf �i

�i
�
� i � �g�

Proof� The regularity of S� is checked in exactly the same way as in Example ���� So�
the system S is regular by Corollary ���� Since the other assumptions of Corollary ���	 are
satis�ed by ���� the proof of this theorem is an immediate consequence of Corollary ���	�

Corollary ���� If S is a one
dimensional parabolic system with �nite alphabet� and if
for all i � �� �i � � �or equivalently if all �i�s are twice di�erentiable at xi�� then S is
regular and the corresponding invariant measure � equivalent with hS
conformal measure
is in�nite�

Proof� The proof is an immediate consequence of Theorem ��� and the fact that h � ��

We would like to close this section with some examples of strange systems�

Example ���� Our aim here is to describe a class of one
dimensional systems which are
strange� Towards this end consider an arbitrary hyperbolic system S � f�i � i � Ig on the
interval X � ��� �� such that ����S�� �� or equivalently P���S�� �� �examples of such
systems may be found in the section Examples of �MU���$ we may assume that there is an
interval G � ��� �� with G 	 X nSi�I �i�X�� Consider also a parabolic map � � X � G
such that � is its parabolic point and � has the following representation around ��

��x� � x� ax�
� � o�x�
���

where ��S��
�
�

� � and a � �� We shall prove the following�

Theorem ��	� If F 	 I is a su�ciently large �nite set� then the system SF � f�g � f�i �
i � I n Fg is strange�

Proof� In view of ����� and the relation between ��S� and � there exists a constant C � �
such that for each i � I�

P
n�� jj��n � �i��jj��S	 � Cjj��ijj��S	� Since �S���S�� � �� for

every su�ciently large �nite set F 	 I we have �C � ��
P

i�InF jj��ijj��S	 � �� Hence

��SF ���S�� �
X
i�InF

jj��ijj��S	 �
X
i�InF

X
n��

jj��n � �i��jj��S	

�
X
i�InF

jj��ijj��S	 � C
X
i�InF

jj��ijj��S	

� �C � ��
X
i�InF

jj��ijj��S	 � ��

��



Hence P�SF ���S�� � � and therefore� as hS�
F

� hSF � PSF �t� � � for all t � ��S�� On
the other hand� since for every t � ��S�� �S�t� � � and since F is �nite� �SF �t� �
jj��jjt �Pi�InF jj��ijjt ��� Hence PSF �t� �� and the proof is complete�

Example ���� We would like to construct here an example of parabolic one
dimensional
system which is regular but strange� We start of with a hyperbolic regular but strange
system S � f�igi�I on the interval ��� �� such that ����� � � and

	
i�IN

�i���� ��� � ��� ���

A way of constructing such systems is described in Example ��� of �MU��� Since Lebesgue
measure is a �
conformal measure for S �so S is regular� and since S is strange� ��t� ��
for all � � t � � and P��� � �� Replace now the contraction �� by a parabolic element "��
such that � is its parabolic point and "�i���� ��� � �i���� ���� Denote the new system by "S�
Then obviously � S�t� �� for all � � t � � and consequently� P S�t� �� for all � � t � ��

Since HD�J S� � �� P S�t� � � for all t � �� Hence� "S is strange and HD�J S� � �� Since

"�i���� ���
		

i��
�i���� ��� � ��� ���

the Lebesgue measure � on the interval ��� �� is �
conformal for the system "S� Since
obviously ��f����� � � � IN�g� � �� the system "S is regular�
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