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Abstract. In [Sa] Sarig has introduced and explored the concept of positively recurrent
functions. In this paper we construct a natural wide class of such functions and we show
that they have stronger properties than the general functions considered in [Sa].



§1. Preliminaries. In [Sa] Sarig has introduced and explored the concept of positively
recurrent functions. In this paper, using the concept of an iterated function system, we
construct a natural wide class of positively recurrent functions and we show that they
have stronger properties than the general functions considered in [Sa]. In some parts our
exposition is similar and follows the approach developed in [MU]. To begin with, let IN
be the set of positive integers and let ¥ = IN°° be the infinitely dimensional shift space
equipped with the product topology. Let o : ¥ — X be the shift transformation (cutting
out the first coordinate), o({z,}52 ) = {zn}22,). Fix #>0. If ¢ : ¥ — IR and n > 1,
we set
Vn(¢) = Sup{|¢($) - ¢(y)| T =Y1,T2 = Y2, -, Tn = yn}

The function ¢ is said to be Holder continuous of order § if and only if

V(¢) = sup{e”’"V,(¢)} < cc.

n>1
We also assume that
(1.1) sup Z e?() < 0.
wex 7€~ (w)

This assumption allows us to introduce the Perron-Frobenius-Ruelle operator £, : Cy(X) —
Cy(2),
Lo(@w)= D e?Myg(r)

T€Eo (W)

acting on Cp(2), the space of all bounded continuous real-valued functions on ¥ equipped
with the norm || - ||, where ||k||o = sup,cyx |k(z)|. Moreover,

| L4llo < Ly(1) = sup Z e?(M) < 0.
wex 7€ (w)

We extend the standard definition of topological pressure by setting

1
i 3 _ _7
(1.2) P(¢) = nlglgo - log Z Sél[g] exp Z poo ,
lwl=n"
where [w] = {p € ¥ : p1 = w1,p2 = wa,..., P = Wju|}. Notice that the limit exists since

the partition functions
Z sup exp Z¢oa”
jwl=n "L

form a subadditive sequence. Notice also that our definition of pressure formally differs
from that provided by Sarig in [Sa] which reads that given i € IV

(1.3) P(¢) = lim = log Z(,1),

n—oo N
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where
n—1
Zn($,i) =) exp | Y ¢ool(w)
§=0

and the summation is taken over all elements w satisfying 0" (w) = w and wy; = i. However
in [Sa] Sarig proves Theorem 2 which says that P(¢) = sup{P(¢|y )}, where the supremum
is taken over all topologically mixing subshifts of finite type ¥ C ¥ and the same proof
goes through with (1.3) replaced by (1.2). Thus we have the following,.

Lemma 1.1. The definitions of topological pressures given by (1.2) and (1.3) coincide.

Following the definition 2 of [Sa] we call the function ¢ : ¥ — IR positive recurrent if for
every ¢ € IN there exists a constant M; and an integer N, such that for all n > N;

M < Zy (g )A™™ < M;

for some A > 0. As we already have said the main purpose of this paper is to provide
a wide natural class of examples of positive recurrent potential which additionally satisfy
much stronger properties than those claimed in Theorem 4 of [Sa]. In order to describe
our setting let (X, d) be a compact metric space and let ¢; : X — X, i € IN, be a family
of uniform contractions, i.e. d(¢;(x), ¢i(y)) < sd(x,y) for all i € IN, z,y € X and some
s < 1. Given w € X consider the intersection (1,5 @w|, (X), where ¢, = du, 0...0 Py, .
Since ¢y, (X), n > 1, form a descending family of compact sets, this intersection is non-
empty and since the maps ¢;, ¢ € IN, are uniform contractions, it is a singleton. So, we
have defined a projection map 7 : ¥ — X given by the formula

{r(w)} = ¢u}. (X).

n>1

J, the range of 7, is said to be the limit set of the iterated function system ¢; : X — X,
i € IN. Let now ¢® : X — IR, i € IN, be a family of continuous functions such that

(1.4) sup Z e () < 50,
X ien

We define a function ¢ : 3 — IR by setting
(1.5) p(w) = ) (n(0(w))).
It easily follows from (1.4) that P(¢) < oo. In the next section we shall prove the following.

Theorem 1.2. Suppose that the function ¢ : ¥ — IR defined by (1.5) and satisfying
(1.4) is Holder continuous. Let ﬁ; be the operator conjugate to L,. Then ¢ is positive

recurrent with A = eP(#). Moreover there exists M > 0 such that M~! < ATMLE(L) <M
for all n > 1. Suppose additionally that ¢;(X) N ¢;(X) =0 for all 4, j € IN, i # j. Then

3



there are a probability measure v on ¥ and a positive continuous function h : ¥ — IR
such that L} (v) = Av, Lg(h) = A, v(h) = 1 and A™"L%(g) — ([ gdv)h uniformly on
compacts for every uniformly continuous function g such that ||gh=!||o < co. Additionally
(see Theorem 5 of [Sa]) there exists L a large class of functions such that for all g € L,
ATLE(g9) = ([ gdv)h exponentially fast on each initial cylinder of length 1.

§2. Proof of Theorem 1.2. Define first an auxiliary Perron-Frobenius operator L :
C(X) — C(X) given by the formula

Lo(g)(@) = 3 e @ g(¢i()).

1€IN

Ly is continuous, positive and [|Lgl|lo < supy Y ;cw e? @ < 00, Let Ly : C(X)" —
C(X)* be the conjugate operator and consider the map

L (w)
Ly () (1)
of the space of Borel probability measures on X into itself. This map is continuous in the

weak-* topology of measures and therefore, in view of the Schauder-Tichonov theorem, it
has a fixed point, say mg. Thus

[

(2.1) L;;(m¢) = )\m¢
with A = L} (mg)(1L).

Given n > 1 and w € IN™, denote Z?Zl ¢“i) o @iy, by Su(4). Let us then prove the
following.

Lemma 2.1. If z,y € J are such that x = 7(7),y = 7(p) are such that 7|, = pli, then
forallm>1,allw e I™

Su(6) (@) ~ SulO) ()] < 1D emh0k4

e—

Proof. By Holder continuity of ¢ we have for every j =1,...,n,

3 6D Bor@)) = 3 9 Braa))| = | 3 dloor) — 3 blovp)

IN

n-l n—1
> #lodwr) = dlodwp)| < 3 V(@) D)
Jj=0 §=0

< V(p)e P L
— 1—eF
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The proof is finished. L)

Set

Q = exp (V(QS)%) :

We shall prove the following.

Lemma 2.2. The eigenvalue A (see 2.1) of the dual Perron-Frobenius operator is equal to
P(¢)
e 9,

Proof. Iterating (2.1) we get

N = Ntmg (1) = L (1) = [ Lj()dmg
) <

f

|l exp(S. (#))]lo-
lw|=n lwl|=n
So,
1
< i — = .
logA < lim -~ log |2|j | exp(Su(@))llo | = P(¢)

Fix now w € I" and take a point z, where the function S, (¢) takes on its maximum. In
view of Lemma 2.1, for every x € X we have

Z exp(Sy, (o) (z)) > Q1 Z exp(S, -1 Z || exp(Sw ())]]o-

lwl=n lwl=n lwl=n

Hence, iterating (2.1) as before,

W= [ 3T exp(Su@Ddms = Q7 3 llexp(Su @)

lw|=n |w|=n

So, log A > limy, 00 %log(ZM:n || exp(S.(#))|lo) = P(¢). The proof is finished. &

Let Lo and Ly denote the corresponding normalized Perron-Frobenius operators, i.e. Ly =
e_P(¢)L¢ and Ly = e_P(¢)£¢. We shall prove the following.

Proposition 2.3. my(J) = 1.
Proof. Since by (2.1)

(2.2) Lg(mg) = my

and consequently L™ (mg) = mgy for all n > 0, we have

(2.3) / S exp(Su(6) — P($)n) - (1 0 du)dmyy = /X fdmy

|w|=n



for all n > 0 and all continuous functions f : X — IR. Since this equality extends to all
bounded measurable functions f, we get

(24) my(A) = > /eXp(Sr(¢)—P(¢)n)'11¢W(A)O¢rdm¢ > /AGXP(Sw((ﬁ)—P(QS)”)dmgb

Teln

for all n > 0, all w € I, and all Borel sets A C X. Now, for each n > 1 set X,, =
Ujwj=n ®o(X). Then Ix, o, = 1 for all w € IN". Thus apllying (2.3) to the function
f = 1x, and later to the function f = 1, we obtain

my(X,) = /X S exp(Su(d) — P(6)n) - (1x, o hu)dmy

|w|=n
:/ Z exp(Su(¢) — P(@)n)dmy = /ﬂdm¢ =1.
X
|lw|=n
Hence my(J) = my (ﬂn21 X,,) = 1. The proof is complete. [ )

Theorem 2.4. For all n > 1
Q™' <Ly(l) <Q.

Proof. Given n > 1 by (2.3) there exits x,, € X such that L§(1)(z,) < 1. It then follows
from Lemma 2.1 that for every z € X, Lg (1) < @. Similarly by (2.3) there exists y,, € X
such that L7 (1) > 1. Tt then follows from Lemma 2.1 that for every x € X, L7 (1) > Q~1.
The proof is finished. &

So far we have worked downstairs in the compact space X. It is now time to lift our
considerations up to the shift space X.

Lemma 2.5. There exists a unique Borel probability measure mg on IN°® such that
my([w]) = [ exp(Su (@) — P(¢)n)dmy for all w € IN*.

Proof. In view of (2.4) [ exp(S,(¢) — P(¢)n)dmy =1 for all n > 1 and therefore one can
define a Borel probability measure m,, on C),, the algebra generated by the cylinder sets
of the form [w], w € IN™, putting m, ([w]) = [exp(S.(¢) — P(¢)n)dmy. Hence, applying
(2.4) again we get for all w € IN™.

o1 (@) = 3 mns (i) = 3 [ exp(Sualé) ~ P($)n)dmy

1€IN 1€EIN

N / dooxp [ Y ) 0 doiwiy — P(d)n + W —P(g) | dmy
. pa

1€IN

- / D exp(Su 0 gi = P(#)n) exp (91 — P(9))dmy

1€IN

= /Lo (exp(Sw(4) — P(¢)))dmy = /eXp(Sw(¢) — P(¢))dmy = my([w])
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and therefore in view of Kolmogorov extension theorem there exists a unique probability
measure g on IN> such that mg([w]) = m,|([w]) for all w € IN*. The proof is complete.

L )

Now we are ready to prove that the function ¢ is positive recurrent. Let us first notice
that

LoMw)= Y D= 3" exp(¢™(n(a(r))))

7€~ (w) 7€~ w)
T ) (7 (w
= > exp(p™M(r(w) =D e W) = Ly (1) (r(w)).
7€~ (w) i€IN

Since Ly = e_P(¢)L¢, it then follows from Theorem 2.4 that as M we can take (). In order
to demonstrate that the function ¢ is positive recurrent we first show that

Zn(,1)
L3(1)(w)
foralln > 1, w € ¥, and some constant M; > 0. So fix w € ¥. We shall define an injection

j from {p € ¥ : 0™ (p) = p and p; = i} into 0" (w) as follows: j(p) = p1p2...ppw. Now,
by Lemma 2.1

< M;

> 607 () - 306l G0)| < Iow@Q

and therefore Z,,(¢,i) < QLy(1)(w). Thus by Theorem 2.4 and the definition of the
operators Lo and Lo, Zy,(¢,1) < M;\", where M; = Q. Now we shall prove that Z,, (¢, 4) >
M) \™ for some constant M, and all n > 1. We demonstrate first that for all n > 1 and all
ieX

Lo(Lpp) = me(li]).
Indeed, since [ Lo(Ly)dmg = [Lp)dmg = me([i]) > 0, there exists 7 € ¥ such that
Lo(M1) (1) > mg([d]). It the follows from Lemma 2.1 that for every w € ¥

L@ = Y e (Y ser(n)y)

pEo " (w)
n—1 )
>Q7" Y exp | ¢odl(p)llp) | = Q7 Lo(lp)(r)
pEo—n(T) j=0

> mmg([2))-

Hence £3(1[;)(w) > A"mg([é]). So, in order to conclude the proof that ¢ is positively
recurrent it suffices now to show that

Zn(,1)
L3 (L) (w)

7
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for all n > 1, all w € ¥ and some constant M;" > 0. Indeed, we shall define an injection
k from o~ (w) N [i] to {p : ¥ : c™(p) = p and py = i} by taking as k(7) the infinite
concatenation of the first n words of 7. Then by Lemma 2.1,

n—1 n—1
D (ol () =Y b0 (k(r)))| < logQ
§=0 j=0
and therefore
n—1 n—1
Ly(p)w)= > exp| > dod(plylp) | = Y. exp|d> ¢ooi(p)
pEo—(w) Jj=0 pEo—m(w)N[i] j=0
n—1
< ) exp| Y podl(k(p) +1log@Q
pEo—n(w)N[i] J=0

n—1
<QY exp | Y dodl(p) | =QZu(4,1),
j=0

where the last summation is taken over all elements w satisfying 0™ (w) = w and wy = i.
So, the proof of the positive recurrence of ¢ is complete taking @~ as M. Now we pass
to proving the existence of the measure v and the function h. We begin with the following
two facts.

Lemma 2.6. The measures my and mg o7 *

Proof. Let A C J be an arbitrary closed subset of J and for every n > 1 let A, = {w €
IN™ : ¢,(X)N A #D}. In view of (2.3) applied to the characteristic function 14 we have
foralln>1

i) = 3 [ e(Su(0) - P@)Iwl) (Lao 6, dmy

weIN™

are equal.

= > [e(su(®) - P@L) (L 0 ) dmg

wEA,
<y / exp(S,(9) = P(@)w|) dmy = Y mig([w]) = ring( | [w])
wEA, wEA, wEA,

Since the family of sets {{J,c4 [w]:n > 1} is descending and (51 U, 4, [w] = 77 (A)
we therefore get mg(A) < lim,,—,o0 M4 (UwEAn [w]) = 1y(771(A)). Since the limit set J is
a metric space , using the Baire classification of Borel sets we easily see that this inequality
extends to the family of all Borel subsets of .J. Since both measures m, and myon~" are

probabilistic we get m, = mg o m~1. The proof is finished. [ )

Theorem 2.7. There exists a unique ergodic o-invariant probability measure fis abso-
lutely continuous with respect to mg. Moreover [ig is equivalent with mg and Q! <
dfig/dmge < Q.



Proof. Let L be a Banach limit defined on the Banach space of all bounded sequences of
real numbers. Straightforward computations and an application of Kolmogorov’s extension
theorem show that the function fig([w]) = L((mg(c™™([w])))n>0) defined on IN*, extends
to a o-invariant probability measure on INoo. Keep for it the same symbol fis. Notice
that, using Lemma 2.5, for each w € IN* and each n > 0 we have

ma(o (W) = 3 pllre) = - [ exp(Sruld) - P@)rol) dm

> 3 QY[ exp(S(8) — P(9) 7)) llo exp(Su (6 — P(6)|w]) dim
—Q /exp (= P@)wl)dm 3 [lexp(S+(6 — P(B)[7])lo

> QMg ([w])mg(IN™) = QMg ([w])

and

oo () = 3 mpllre) = 3 [ exp(Sru(d - P@)Irwl) dmg

<) ||exp(ST<¢—P(¢>|T|)||o/exp(5w<¢> — P(§)|wl) dmy

—exp( w(9) — |W| dm Z ||exp (¢)|7’|)||0

< Qg ([w]).

Therefore Q1 my([w]) < fig([w]) < QMmy([w]) and these inequalities extend to all Borel
subsets of IN*. Thus, to complete the proof of our theorem we only need to show ergodicity
of fiy or equivalently of my. Toward this end take a Borel set A € IN> with m4(A) > 0.
Since the nested family of sets {[7] : 7 € IN*} generates the Borel o-algebra on IN*°, for
every n > 0 and every w € IN™ we can find a subfamily Z of IN* consisting of mutually
incomparable words and such that A C J{[7]: 7 € Z} and ) ., mg([wT]) < 2mg(wA),
where wA = {wp : p € A}. Then

mg (07" (A) N [w]) = mg(wA) Zm¢ wT]) Z/exp wr (¢ — P(¢)|wT]) dmy

TEZ TEZ
1
2562 exp( w(p—P(o |w| ||OZ/GXP (¢ —P(e )|T|)dm¢
TEZ
1
> 507 [ exp(Su(6— P@)lul) dm 3 ()
TEZ
1
>

5@ g ([whyimg (7] 7 € 23) 2 §Q_1m¢(z4)fn¢([w])-
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Therefore 1oy (o~ (IN\A)w]) = g ([w]\o ™ (A)w]) = rivg () =1y (" (A)w]) <
(1—(2Q) "ty (A))mg([w]). Hence for every Borel set A C IN> with m4(A) < 1, for every
n > 0, and for every w € IN™ we get

(2.5) mg (0" (A) N[w]) < (1 (2Q) 7 (1 — 1y (A))) g ([w]).

In order to conclude the proof of ergodicity of o suppose that c7}(4A) = A and 0 <
me(A) < 1. Put v =1— (2Q)" (1 — my(A)). Note that 0 < v < 1. In view of (2.5), for
every w € IN* we get mg(A N [w]) = mg(oI(A) N [w]) < ymg(w]). Take now n > 1 so
small that yn < 1 and choose a subfamily R of IN* consisting of mutually incomparable
words and such that A C [J{[w] : w € R} and my(U{[w] : w € R}) < npmg(A). Then

mg(A) < Pperme(AN W) < 3 epvimg(w]) = g (U{lw] : w € RY) < yming(A4) <
mg(A). This contradiction finishes the proof. &

Set v = my. Clearly our assumption ¢;(X) N ¢;(X) =0 for ¢,j € IN, i # j implies that
m X — J is a homeomorphism; in particuluar, in view of Lemma 2.6, it establishes a
measure preserving isomorphism between measure spaces (X,v) and (J,mg). To check
that £j(v) = Av take g € Cp(X) and compute

[ 9ci) = [ Lolgran = [ Loto)a~ @) o nw) = [ Lo(o)(x w)img
— / S exp(g(r) - P(@))dm,

reo=t(r = @)

— [ 3 e(6(a) - P@)g o 7 dilw)dmy(z)

1€IN

:/Lo(gOW_l)dm¢ :/gOW_ldm¢:/gdy.

Thus Lo(v) = v and by the definition of Lo and Lf, £3(v) = Av. The fact that L4(h) =
Ah follows immediately from the definition of the operator £y and Theorem 2.7, where
h = dfiy/dimg. The last two parts of Theorem 1.2 are consequences of Theorem 4 and
Theorem 5 of [Sal.

§3. Equilibrium states. In this section we further investigate the o-invariant measure
ftg introduced in Theorem 2.7. We begin with the following technical result.

Lemma 3.1. The following 3 conditions are equivalent
(a) [ —¢dpg < co.
(b) > e inf(—¢|ps)) exp(inf ¢[f;)) < oc.

(¢c) Hz,(a) < oo, where oo = {[i] : i € IN} is the partition of X into initial cylinders of
length 1.
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Proof. Suppose that [ —¢dfis < co. It means that Zzeﬂ\ff —¢dfiy < oo and conse-
quently

00 > Y inf(—¢|y / djig = Y inf(—¢|[i])/[.] hdin

i€IN 1eIN

> Q1Y inf(— @l QY inf(—¢lg) / exp(¢9) () — P())dmg ()

1€ IN 1€IN
= Qe T Y inf(—gy) / exp(¢ () )dmy ()
ieIN X

Thus

m>2ﬁﬂ¢m/QmWmemmzZﬁﬂwmmmyw%

1€IN 1€IN

= Z inf(—¢|(;)) exp(inf @)

ieN
Now suppose that ), n inf(—a|;)) exp(inf ¢|;;) < oo. We shall show that Hz, (o) < oo.
So,
Hp, (@) = Y —ag([i]) log fig([i]) < D —Qring([i]) (log g ([i]) — log Q).

1€IN teIN
But » ;. v —Qmg([i])(—1og Q) = Qlog @, so it suffices to show that

S — g ([i]) log 1 ([i]) < o0

1€IN

But

™ g (i) logg (i) = 3 —rig((i]) log ( [ (s - p<¢>)> drg

< > (i) (inf 6 — P(9)).

But 3, v Mg ([i(])P(¢) = P(¢), so it suffices to show that Y, —mg([i]) infx ¢ < oco.
And indeed, using Lemma 2.1 we get

Z —mg([1]) mf o = Z me([4]) sup (—p™) < Z me ([ mf —¢®) +1og Q).

icIN 1€IN 1€IN

Since Y,y Mg([i]) log @ = log @, it is enough to show that ), mg([7]) infx(—¢®) <
00. And indeed,

Zm¢ [i]) 1nf qﬁ(l Z/exp p®) — )qusigl(f(—qﬁ(i))

1€EIN i€IN
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But in view of (1.4) ¢ are negative everywhere for all ¢ large enough, say ¢ > k. Then
using Lemma 2.1 again we get

2 (i) inf(=9) < e™MVQ Y exp(inf(6?)) inf(—¢")

i>k i>k

which is finite due to our assumption. Hence, ), n mg([7]) infx (— ¢®) < oco. Finally
suppose that Hg, (o) < co. We need to show that [ —¢dpiy < 0o. We have

0o > Hy, (@) = Y —ing([i]) log (g ([i]) < D —rmg([i]) (inf(¢l — P(¢) — log Q).

1€IN €IV

Hence ), v =14 ([4]) inf(¢|;7) < oo and therefore

[ oo =% / —pdiiy < 3 sup(—glp)rig([i) = 3 — inf(6]ug)mg([i) < oo.

icIN i€cIN 1€IN

The proof is complete. &

By Theorem 3 of [Sa] we know that sup{h,(c) + [ ¢du} = P(¢$), where the supremum
is taken over all o-invariant probability measures such that f —¢pdp < oo. We call a o-
invariant probability measure p an equilibrium state of the potential ¢ if h, (o) + [ ¢dp =
P(¢#). We shall prove the following.

Theorem 3.2. If ), inf(—a|;)) exp(inf ¢[[;)) < oo, then fig is an equilibrium state of
the potential ¢ satisfying [ —¢djiy < oo.

Proof. It follows from Lemma 3.1 that [ —¢djis < co. To show that fi, is an equilibrium
state of the potential ¢ consider a = {[i] : ¢ € IN}, the partition of ¥ into initial cylinders
of length one. By Lemma 3.1, H;, (o) < oo. Applying the Breiman-Shanon-McMillan
theorem and the Birkhoff ergodic theorem we therefore get for fig-a.e. w € ¥

hy, (o) > hy, (0,a) = lim —110g([ ln])

n—oo N

-t ~iog ( [ exp(5.(0))dns ~ P)) )

n—oo N

n—,oo N

= Jim = og | [ exp(X plo @har)dies(r) — P(6)n)

n—1

> lim sup -1 log /exp(z ¢(07 (w)) + log Q@ — P(¢)n)

n
n—00 =0

= i =Y 0007 @) + P(0) = — [ pdiis + P(9),
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Hence hy, (o) + [ ¢djiy > P(¢), which in view of the variational principle (see Theorem 3
in [Sa]) implies that fi4 is an equilibrium state for the potential ¢. The proof is finished.
)
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