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Introduction� In this paper we recall from �U� the notion of conical points and analyze
some of its aspects� The idea of conical points has been used implicitly in �DU�� �DU
��
�U��� �U
� and other papers of Denker and Urba�nski� Recently this idea has been used for
example in �BMO� to study conformal measures and in �MM� to characterize the Hausdor�
dimension and the Poincar�e exponent of Julia sets for certain rational functions� Note that
McMullen used the terminology radial Julia set instead of conical limit set in analogy with
Kleinian groups� We also would like to remark that our approach here is one possible means
for examining these notions in the case of parabolic or �geometrically �nite� rational maps�
In fact� in these cases �and others also� our construction shows that the h�dimensional
Hausdor� measure� where h is the Hausdor� dimension of the Julia set� is supported on
the conical set� From this it is not so hard to show that the dimension of the conical set
equals the dimension of the measure� hence also equals the Poincar�e exponent de�ned by
McMullen and the dimension of the Julia set�

x�� Conical Points� Let f � CI � CI be a rational function of degree d � � Following
�U�� by analogy with the theory of Kleinian groups� we call a point z � J�f�� the Julia
set of f � a conical point of f if there exist � � � and an in�nite increasing sequence nk � �
of positive integers such that for each k� there exists f�nkz � a holomorphic inverse branch
of fnk � de�ned on the disk B�fnk�z�� �� and sending fnk�z� to z� If we want to be more
speci�c we call z a ��conical point to keep track of the radii of the balls around the iterates
fnk�z�� We denote the set of conical points by Con�f� and the set of ��conical points by
Con�f� ��� Other alternative de�nitions of conical points have been later on provided by P�
Jones �oral communication�� F� Przytycki �see �Pr��� and Lyubich and Minsky �see �LM���

Let us begin with some comments concerning conical points� If z is a periodic repelling
point� then� there is some � such that for every n� there is a holomorphic inverse branch�
f�nz � de�ned on the ball B�fn�z�� �� sending fn�z� to z� Thus� in this case z is a conical
point and we may take nk � kp� where p is the period of the point� If z is a ��conical point
and there is a critical point c � ��z�� then the corresponding sequence nk must have gaps
of arbitrarily large length� To see this suppose to the contrary that the gaps are bounded
by some constant b� Now� there exists a positive integer n �in fact in�nitely many of them�
such that jfn�z�� cj � �jjf �jj�b� where the supremum norm jj � jj is taken with respect to
the spherical metric� Consider the only subscript k such that nk�� � n � nk� Then

f
��nk�n�
fn�z� �B�fnk�z�� ��� � B�fn�z�� �jjf �jj��nk�n�� � B�fn�z�� �jjf �jj�b��

Since this last set contains the critical point c� we have a contradiction which �nishes the
argument�

Let PC be the closure of the post critical set� If z � J�f� and ��z� is not a subset of
PC� then z is a conical point� To see this note that there is some � � � and a sequence
nk such that dist�fnk�z�� PC� � �� So� by the monodromy theorem there is a holomorphic
branch f�nkz de�ned on the ball B�fnk�z�� �� such that f�nkz �fnk�z�� � z� In particular�
note that if the post critical set is not dense in J� then each transitive point is a conical
point� This occurs for example for the maps z� � c� where c is real and J�f� is not
a subset of IR� As we mention in the course of the paper� for every invariant ergodic
measure with positive entropy almost every point of J is a conical point� Notice that the





measure of maximal entropy is such a measure and therefore� there are always plenty of
conical points� On the other hand� any preimage of a critical point of any order is not
conical� So� if PC 	� 
� then there is a dense set of non�conical points� Note that if
f is parabolic� then all points of J other than the inverse images of parabolic periodic
points are conical� In this case there exists a unique conformal measure with exponent
equal to the Hausdor� dimension of the Julia set� This measure is supported on the set
of conical points �see �ADU��� On the other hand for all exponents strictly greater than
the Hausdor� dimension there exist also conformal measures and all these measures are
supported on the complement of conical points �see �DU��� This discussion indicates that
the property of being a conical point is rather delicate� One of our main goals is to examine
conditions under which there is precisely one conformal measure supported on the set of
conical points� We prove here that there is always at most one such conformal measure�

Given t � � we say that a Borel probability measure m supported on J�f� is t�
conformal provided

m�f�A�� �

Z
A

jf �jt dm

for all Borel sets A � J�f� such that f � A� f�A� is ��to���

Let us now collect some properties of conical points�

Lemma ���� The set of conical points is a Borel set� in fact it is a G���set�

Proof� Given � � � and an integer n � � let Fn��� be the union of all connected
components C of f�n�B�z� �	��� z � J�f�� such that �C� the only connected component of
f�n�B�z� ��� containing C is disjoint from the set of critical points of fn� Since for every
�

Con�f� �� � F ��� �
�
n��

�
k�n

Fk��� � Con�f� �	��

Con�f� �
S
n�� F ��	n�� Since all the sets F ��� are G�� the proof is completed�

It follows from �DU�� and �Pr�� that HD�Con�f�� � DD�J�f�� � e�f�� where DD�J�f��
is the dynamical dimension of J�f� de�ned as the supremum of dimensions of f �invariant
ergodic probability measures of positive entropy and e�f� is the minimal exponent allowing
a conformal measure� It follows from �PU� that DD�f� coincides with the hyperbolic
dimension introduced in �Sh�� In the case of rational functions with no recurrent critical
points in J�f� �they include hyperbolic� subhyperbolic� and parabolic maps� Con�f� is
the whole Julia set but a countable set formed by all the inverse images of critical points
and rationally neutral periodic points �see �U��� comp� �ADU��� Moreover� in this case
there exists a unique conformal measure supported on the set of conical points� Conformal
measures concentrated on the set of conical points also exist for some subclasses of Collet�
Eckmann maps �see �Pr� and �Pr
��� Recall that a Borel 
��nite measure � supported
on J�f� is said to be ergodic if and only if all f �invariant sets on J�f� �a set A � J�f� is
f �invariant if f���A� � A� are of measure � or their complements are of measure � and �
is said to be conservative if and only if

P
n�� �A � f

n �  ��a�e� for all Borel sets A of
positive measure� Of course� by the Poincare recurrence theorem every �nite f �invariant






measure is conservative� but if �niteness is relaxed� this implication may fail but we will
return to this point in Theorem ��� Let us also mention that if f �invariance is relaxed�
the implication may also fail� In fact� there are non�conservative t�conformal measures�
e�g�� in the parabolic case for any t larger than the Hausdor� dimension� Our main result
in this section is the following�

Theorem ���� There exists at most one value of t for which a t�conformal measure exists
and which is supported on the set of conical points of f � Additionally� for such a t there
is exactly one t�conformal measure supported on the set of conical points of f �

Proof� Let m be a t�conformal measure and let z be a ��conical point� First� using
a normal family argument� we observe that there is a subsequence nk of the sequence
associated with z as a conical point such that limk�� diam

�
f�nkz �B�fnk�z�� ���

�
� ��

In view of the Koebe distortion theorems� there are constants C � � and � � � � �	
depending on � such that

f�nkz

�
B�fnk�z�� ���

�
� B�z� Cj�fnk���z�j���

�
� f�nkz

�
B�fnk�z��

�


��
�
��

Set rk�z� � Cj�fnk���z�j���� Since by topological exactness of f on the Julia set� the mea�
sure m is positive on non�empty open sets� using the two above inclusions and employing
conformality of the measure m along with the Koebe distortion theorem� we see there is a
constant C� � � such that

����� C��� �
m�B�z� rk�z��

�
rk�z�t

� C��

Since z is a conical point� limk�� j�fnk���z�j � and consequently

���� lim
k��

rk�z� � ��

Now� formulas ����� and ���� show that if we have two conformal measures mt and ms

with two distinct exponents t and s respectively �say s � t�� then ms�Con�f� ��� � � for
all � � � and consequently ms�Con�f�� � �� This proves the �rst part of our theorem�

Notice that formulas ����� and ���� also show that any two t�conformal measures restricted
to the set of � conical points are equivalent� Since Con�f� �

S
n�� Con�f� �	n�� any

two such measures are equivalent� Now� suppose a t�conformal measure � supported on
Con�f� is not ergodic� Then Con�f� � A � B where A � B � 
 and ��A� 	� �� ��B� 	� �
and A�B are invariant� Then after normalization we obtain two t�conformal measures�
�� � ��jA�	��A� and �� � ��jB�	��B� which are mutually singular� This contradicts
the statement above� every two t�conformal measures on Con�f� are equivalent� Thus�
every t�conformal measure on Con�f� must be ergodic� This implies there can be only one
t�conformal measure supported on Con�f�� This �nishes the proof�
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x�� Markov partitions and associated maps� There already exists a fairly rich �ow
of papers aiming toward exhibiting and understanding various quasi�Markovian properties
of rational functions� In what follows we would like to provide some partial contribution
toward this end by further developing some ideas contained in �DNU� and �MU�� In partic�
ular we focus on the subset X� of conical points with some natural dynamical properties�
We begin by recalling �DU� Lemma �� �comp� also �Ma���

Fix an ergodic invariant probability measure � of positive entropy� Let � �  � ��
Then there exist an integer m � �� C � �� an open topological disk U containing no
critical values of f up to order m and analytic inverse branches f�mn

i � U � CI of fmn

�i � �� � � � � kn � dnm� n � ��� satisfying�

���� �n�� ���i�kn�� ���j�kn fm � f�m�n���
i � f�mn

j �

��� diam�f�mn
i �U�� � cn� for n � �� �� � � � � and i � �� � � � � kn�

��
� for each �xed n � �� for all i � �� � � � � kn the sets f
�mn
i �U� are pairwise disjoint and

f�mn
i �U� � U �

���� �

�
fz � z �

��
n��

kn�
i��

f�mn
i �U�

�
� ��

In the sequel� in order to simplify exposition� we will take m � �� In what follows we
suppress the dependence of this construction upon � and U unless otherwise noted�

Remark ���� It follows from the proof of �DU� Lemma �� that there existsK � � such that
for every i � �� � � � � � k�� every n � � every j � �� � � � � � kn such that fn���f�nj �U�� �

f��i �U�� and every pair of points x� y � f��i �U� we have

j�f�nj � f���y�j

j�f�nj � f���x�j
� K�

Let us also state as a lemma the following consequence of ���� and ��
��

Lemma ���� For each n� let Nn � �ff�nj �U� � j � �� ���� kng and let N � �Nn� Then N
is a net� i�e� any two sets in N are either disjoint or one is a subset of the other�

Set now

U� �
��
n��

kn�
i��

f�ni �U��

�



We shall de�ne inductively a partition �� of U� by elements of the form f�ni �U�� n � ��
i � �� � � � � � kn� First� all the sets f

��
i �U� are in �� and secondly f�ni �U� � ��� n � � if

and only if f�ni �U� �
Sn��
j��

Skj
i�� f

�j
i �U� � 
� Notice that�

A���

A � U��

since by the net property �see Lemma �� either f�ni �U� �
Sn��
j��

Skj
l�� f

�j
l �U� � 
 or

f�ni �U� �
Sn��
j��

Skj
l�� f

�j
l �U�� The partition �� gives rise to a map F� � U� � U as

follows� take x � U� and consider the unique element ���x� � �� such that x � ���x�� By
the de�nition of U�� there exists a minimal j � � such that f j����x�� � �� � fUg� We
now de�ne F��x� to be f j�x� and we set

X� � J�f� �
��
n��

F�n� �U�� �
��
n��

F�n� �U���

Then F��X�� � X� and we may consider the dynamical system F� � X� � X�� To see
that

T�
n�� F

�n
� �U�� � J�f�� notice that by ��� for each � � �� if n is su�ciently large�

then �f�ni �U�� lies in the � �neighborhood of J�f��

Notice also that X� � X���� is a subset of the set of conical points of f and by ����
��X�� � �� It is a G� set by construction� Also� note that if � has full support �for example
if � is the measure of maximal entropy� then X���� is dense in J�f�� In particular� if the
conformal measure admits an equivalent invariant measure �� then the conformal measure
is supported on the set X����� Examples of such maps can be found for instance in �ADU��
�Pr
�� and �U
�� Finally� X� may be a proper subset of the set of conical points� This is
the case for example for the map z �� z�� where we take U to be the bounded component
of the complement of ��� � � �� �H � G� where H is the circle centered at the origin and
radius 
	 and G is the closed disk centered at the origin and radius �	� In fact in this
case� the dyadic points on the unit circle are not included in X�� We want to raise at this
moment two problems�

Problem A� Does there always exist a conformal measure supported on the set of conical
points�

Problem B� Suppose that for a conformal measure m the set of conical points is of
measure �� Is it true that m�X����� � � for some measure ergodic invariant measure � of
positive entropy�

Keeping the same symbol �� for the partition ��jX�
� property ��
� along with our con�

struction gives the following�

Lemma ���� The partition �� is a Markov partition for the dynamical system F� � X� �
X�� i�e�� the image of any element of �� under F� can be represented as a union of some
elements of ��� Additionally� if x �

S�
n��

Skn
i�� f

�n
i �U�� then F�����x�� � ���

�



Proof� By the construction of �� and F� the second part of Lemma �
 is obvious� Now�
we only need to remark that for every i � �� � � � � � k�� the set F��X� � f��i �U�� � X� and
X� is the union of all elements of ���

Observe that although we have gained a Markov property� the map F� may fail to satisfy
Renyi�s property �distortion� because the elements of �� may accumulate arbitrarily close
to the boundary of U and consequently arbitrarily close to the critical values of order � of
f � In order to remedy this possible failure we introduce below a family of induced maps
Fk as follows� Given k � � and x � X�� let

Nk�x� � minfj � � � F j
� ����x�� � ff

�s
i �U� � � � s � k� i � �� � � � � � ksgg�

Set Ek �
S
ff�si �U� � � � s � k� i � �� � � � � � ksg and let

Xk � X� � Ek

� fx � X� �Ek � Nk�F
n
� �x�� � for in�nitely many n�sg�

This last equality holds since if x � Xk� then its forward trajectory under F� must pass
through E� and consequently Ek in�nitely often�

Finally� we de�ne the induced map Fk � Xk � Xk by setting

Fk�x� � F
Nk�x�
� �x��

We also introduce a partition �k of Xk corresponding to Fk as follows�

�k �
�
l��

���l� �N��
k �l�jXk

�

where ���l� � �lj��F
�j
� ����� We then have

Lemma ���� Fix k � � and suppose that Xk 	� 
� Then the system �Xk� Fk� �k� is
a Markov system with the bounded distortion property in the sense that there exists a
constant Kk � � such that

j�Fn
k �
��y�j � Kkj�F

n
k �
��x�j

for all n � �� G � ���n� and all x� y � G�

Proof� This lemma follows immediately from Lemma �
 which
is responsible for the Markov property along with Remark �� and the fact that the

number of sets of the form f�si �U�� � � s � k� i � �� � � � � � ks is �nite which are responsible
for bounded distortion�

For each k � � and t � �� let us de�ne the topological pressure Pk�t� of the system Fk
with respect to the potential � log jF �kj as follows�

Pk�t� � lim
n��

�

n
log

X
���k�n�

jj�F�nk�� �
�jjt�

�



where �k�n� enumerates all the inverse branches of Fn
k � Note the limit exists since for

each k� the sequence ak�n� � log
P

���k�n�
jj�F�nk�� �

�jjt is subadditive� Notice that Pk�t�

is convex� continuous in its domain of �niteness� and because of ���� strictly decreasing
on its domain of �niteness� Using the Koebe distortion theorem we obtain ak�m � n� �
ak�m� � ak�n� � t logKk� So� we conclude that Pk�t� � ak��� � t logKk � �� SinceP

���k�n�
jj�F�nk�� �

�jj� � K�
k � Area of U � � infft � Pk�t� � g � � Following �MU�� we

denote this in�mum by � � ��Fk�� In fact� we have the following little lemma�

Lemma ���� For each k� ��Fk� � infft �
P

�k���
jj�F��k�� �

�jjt � g and � � ��Fk� is
independent of k�

Proof� The �rst statement immediately follows from subadditivity estimates from above
and below of the sequence ak�n� � log

P
�k�n�

jj�F�nk�� �
�jjt� In order to see why the second

statement is true observe that the series
P

�k���
jj�F��k�� �

�jjt and
P

�k�����
jj�F��k�����

�jjt actu�

ally di�er by only �nitely many summands� To be more precise� if F��� is an inverse branch
of Fk �Fk��� de�ned on an element of the form f�si �U�� � � s � k��� i � �� � � � � � ks� then
it simultaneously is an inverse branch of Fk�� �Fk�� If now F��k�� is an inverse branch de�ned

on an element f�ki �U�� � � i � kk� then F��k�� �f
�k
i �U�� � f��i �U� for some i � �� � � � � � k�

and F��k�� � F��k���� � f
��
j for some � and j � �� � � � � � k�� If in turn F��k���� is an inverse

branch de�ned on f�k��i �U�� i � �� � � � � � kk��� then F�jf��k���
i

�U�
is a composition of at

most k mappings f an d F��k���� �
�
F�jf��k���

i
�U�

���
is an inverse branch of Fk� Therefore�

the only inverse branches of Fk�� which do not correspond to any inverse branches of Fk
are of the form

�
f j
f
��k���

i
�U�

���
� where � � i � kk�� and f

��k���
i �U� � �� and there are

only �nitely many of them� The proof is �nished�

We shall prove the following

Lemma ���� If Pk�t� � � then there exists a jF �kj
tePk�t��conformal measure for Fk �

Xk � Xk�

Proof� The proof of this lemma employs the Perron�Frobenius argument and most directly
the reasoning given in �MU�� Indeed� for every bounded function � � Ek � IR de�ne
L��� � Ek � IR setting

L����x� �
X

�k���x�

jF��k�� �x�j
te�Pk�t���F��k �x���

where the summation is taken over all inverse branches of F��k that are de�ned on that
element of the family ff�si �U� � � � s � k� � � i � ksg which contains x� By the
choice of t� the nonnegative operator L preserves C�Ek�� the space of continuous functions
on Ek and its norm is bounded by �� since the limit de�ning topological pressure Pk�t��
the in�mum of the sequence log

P
�n
jj�F�nk�� �

�jjt is bounded by log
P

��
jj�F��k�� �

�jjt� Denote

by L� � C�Ek� � C�Ek� the operator dual to L� Consider the continuous map � ��
L����	L������� de�ned on the space of Borel probability measures on Ek treated as a

�



subspace of C�Ek�
�� In view of the Schauder�Tichonov theorem� this map has a �xed point�

say m� Writing  � L��m���� we thus have L��m� � m and consequently L�n�m� � nm
for every n � �� By the de�nition of L and its dual operator� and since L��� � � we get
 � m��� � L��m���� �

R
L��� dm � �� In order to get the opposite inequality� �rst

notice that if x � Xk� then f�si �x� � Xk for every s � �� � � � � k and every i � �� � � � � � ks�
This enables us to show that m�A� � � for every set A of the form f�si �U�� � � s � k�

i � �� � � � � � ks� Indeed� since Xk �
Sk
s��

Sks
i�� f

�s
i �U� and m�Ek� � �� there exists

� � j � k and � � l � kj such that m�f�ji �U�� � �� Set A � f�ji �U�� Then

m�A� � m��A� � ��m�L��A��

� ��
Z
f
�j

i
�U�

X
�k���x�

j�F��k�� �
��x�jte�Pk�t��A�F

��
k�� �x�� dm�x��

Since m�f�ji �U�� � � and
P

�k���x�
j�F��k�� �

��x�jte�Pk�t��A�F
��
k�� �x�� � � for every x �

f�ji �U�� we conclude thatm�A� � �� Since the family ff�si �U� � � � s � k� i � �� � � � � � ksg
is �nite and Xk is contained in its union� it follows from the de�nition of pressure Pk�t�
that there exists � � s � k such that

Pk�t� � lim sup
n��

�

n
log

X
���n�s�i�

jj�F�nk�� �
�jjt�

where �n�s� i� enumerates all the inverse branches of Fn
k which begin with f�si � Therefore�

�xing � � �� taking n � � su�ciently large and using Lemma �
� we get

n �

Z X
�n�x�

j�F��k�� �
��x�jte�Pk�t�n dm�x� �

Z
f�s

i
�U�

X
�n�x�

j�F��k�� �
��x�jte�Pk�t�n dm�x�

� K�t
X

���n�s�i�

jj�F�nk�� �
�jjte�Pk�t�nm

�
f�si �U�

�

� K�te�Pk�t����ne�Pk�t�nm
�
f�si �U�

�
� K�tm

�
f�si �U�

�
e��n�

Thus� log � �� and letting � � �� we get  � �� Our aim now is to show that m is

jF �kj
teP�t��conformal� Indeed� for every set A � f�si �U�� s � �� � � � � � k� i � �� � � � � � ks and

every inverse branch F�nk�� of Fn de�ned on f�si �U�� we have

m
�
F�nk�� �A�

�
�

Z
Ek

X
�n�x�

j�F��k�� �
��x�jte�Pk�t�n�F�n

k��
�A� � F

�n
k�� �x� dm�x�

�

Z
A

j�F��k�� �
��x�jte�Pk�t�n dm�x��

where the last equality sign holds� since the sets f�si �U� are mutually disjoint� Thus the
conformality requirement is satis�ed and we only need to show that m�Xk� � �� In order

�



to do this put Un �
S
���n

f�si �U�� Then �Un
� F�nk�� �x� � � for all � � �n and all x � U �

Therefore

m�Un� �

Z
Ek

X
�n�x�

j�F��k�� �
��x�jte�Pk�t�n�Un

� F�nk�� �x� dm�x�

�

Z
Ek

X
�n�x�

j�F��k�� �
��x�jte�Pk�t�n dm�x�

�

Z
Ek

� dm � ��

Since Un is a descending family and
T
n�� Un � Xk� we conclude that m�Xk� � �� The

proof is �nished�

Lemma �� makes up the central component of the following main result of this section�

Theorem ��	� For each k and t� there exists exactly one jF �kj
tePk�t��conformal measure

for Fk � Xk � Xk and Pk�t� is the only number �t which admits a jF �kj
te	t �conformal

measure� There also exists exactly one Fk�invariant probability measure �k absolutely
continuous with respect to m� This measure is ergodic� positive on non�empty open sets
and equivalent to m�

Proof� First notice that Lemma � easily implies topological exactness of Fk � Xk � Xk

and this along with the conformality condition implies that any conformal measure is
positive on non�empty open sets of Xk� In particular all the sets f�si �U�� � � s � k�
� � i � ks have positive measure� Therefore using conformality condition and bounded
distortion property

we easily conclude the existence of a constant C � � such that if m� and m� are
respectively jF �kj

te	� and jF �kj
te	� �conformal measures then

e�	��	��nC�� �
m��F

�n
k�� �U��

m��F
�n
k�� �U��

� Ce�	��	��n

for all n � � and all the inverse branches of Fn
k � Since the sets of the form F�nk�� �U� generate

the 
�algebra of Borel sets of Xk� we conclude that �� � �� and
the measures m� and m� are equivalent with Radon�Nikodym derivatives bounded by

C� Now� Renyi�s condition along with topological exactness imply that each conformal
measure has an equivalent Fk�invariant measure� Since all such measures must be also
mutually equivalent� there can exist at most one such a measure� Invoking now Lemma ��
�nishes the proof�

Theorem ��
� If Pk�t� � � for some k � �� then Pn�t� � � for all n � k and mnjXk

coincides with mk up to a multiplicative constant� Moreover� there exists a 
��nite jF ��j
t�

conformal measure for F� � X� � X� which is �nite on all the sets Xn and whose restriction
to Xn coincides with mn up to a multiplicative constant�

��



Proof� Since Xn�Ek � Xk�Ek � Xk andmn�Xn�Ek� � � and since Fk restricted to any
atom of its Markov partition can be expressed as a composition of at most two mappings
Fn� using the chain rule we conclude that after normalization mnjXk

is jF �kj
t�conformal�

Thus applying Theorem �� �nishes the proof of the �rst part of Theorem ��� In order to
prove the second part consider the sequence of measures m�

n� n � k� de�ned inductively as
follows� m�

k � mk and mn�� � cn��mn��� where cn is chosen such that m�
n��jXn

� m�
n�

Thus the formula ��A� � m�
n�A� for A � Xn de�nes a measure on

S
n�kXn � X� which

has all the required properties�

As a converse to Theorem �� we shall prove the following�

Theorem ���� Up to a multiplicative constant� there exists at most one 
��nite jF ��j
t�

conformal measure for F� � X� � X� which is �nite on all the sets Xk� k � �� If such a
measure exists� then Pk�t� � � �so such t is also determined uniquely� for all k � � and m
is conservative ergodic with respect to F��

Proof� All the claims of this theorem except ergodicity and conservativity follow im�
mediately from Theorem �� combined with the remark that for every k � � mjXk

is
jF �kj

t�conformal for Fk � Xk � Xk� Conservativity and ergodicity follow now from the fact
that X� �

S
k��Xk and from the fact that all the maps Fk � Xk � Xk are conservative

�conservativity of at least one of these maps would be su�cient for us as every point in X�

visits X� under F� in�nitely often� which in turn is a consequence of the second part of
Theorem �� producing Fk�invariant ergodic probability measures equivalent with mjXk

�

We want to �nish the paper with the following problem�

Problem C� Suppose that m is a 
��nite jF ��j
t�conformal measure for F� � X� � X�� Is

m �nite on the sets Xk� k � ��

We wish to thank the referees for their useful comments and criticism in improving this
paper�
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