
GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTICFUNCTIONSJANINA KOTUS AND MARIUSZ URBA�NSKIAbstrat. We explore the lass of ellipti funtions whose all ritial points ontained in theJulia set are non-reurrent and whose !-limit sets form ompat subsets of the omplex plane.In partiular, this lass omprises hyperboli, subhyperboli and paraboli ellipti maps. Leth be the Hausdor� dimension of the Julia set of suh ellipti funtion f . We onstrut anatomless h-onformal measure m and we show that the h-dimensional Hausdor� measure ofthe Julia set of f vanishes unless the Julia set is equal to the entire omplex plane CI . Theh-dimensional paking measure is always positive and it is �nite if and only if there are norationally indi�erent periodi points. Furthermore, we prove the existene of a (unique up toa multipliative onstant) �-�nite f -invariant measure � equivalent with m. The measure �is then proved to be ergodi and onservative and we identify the set of those points whoseall open neighborhoods have in�nite measure �. In partiular we show that 1 is not amongthem.
1. Introdution and General Preliminaries1.1. Introdution.First examples of ellipti (in fat }-Weierstrass) funtions with detailed desription of theirJulia sets appeared in [11℄. Our paper dealing with ellipti funtions whose all ritial pointsontained in the Julia set are non-reurrent and whose !-limit sets form ompat subsets ofthe omplex plane, basially stems from [21℄, [22℄ and [12℄. Any suh ellipti funtion willbe alled non-reurrent. We study geometri properties of the Julia sets ultimately resultingin Theorem 4.1 whih says that the h-dimensional Hausdor� measure of the Julia set of fvanishes unless the Julia set is equal to the entire omplex plane CI. The h-dimensional pakingmeasure is always positive and it is �nite if and only if there are no rationally indi�erentperiodi points. We would like to emphasize that both Hausdor� and paking appearingin this theorem are taken with respet to the spherial metri on CI. The fat of vanishingh-dimensional Hausdor� measure of the Julia set in the ase when h < 2 (note that due to[12℄ h > 1) aused by the existene of poles, dramatially di�erentiate non-reurrent elliptifuntions from the ase of analogous lass of rational funtions (see [21℄). Our main tehnialtool employed in this paper is the onept of semi-onformal, almost-onformal and onformal2000 Mathematis Subjet Classi�ation. Primary 37F35. Seondary 37F10, 30D30.The researh of the �rst author was supported in part by the Foundation for Polish Siene, the Polish KBNGrant No 2 P03A 009 17 and TUW Grant no 503G 112000442200. She also wishes to thank the Universityof North Texas where this researh was onduted.The researh of the seond author was supported in part by the NSF Grant DMS 0100078.1



2 JANINA KOTUS AND MARIUSZ URBA�NSKImeasures. We provide an elaborated proof of the existene, uniqueness and ontinuity of an h-onformal measure. Another important tool is provided by Proposition 2.21, where, expressedin an appropriate language, all non-singular points are shown to be onial. Although thereare some overlaps with rational funtions (see [21℄), most of the proofs are substantiallydi�erent, mainly beause of the existene of poles in the Julia set.Our seond major theme in this paper is the dynamis of f with respet to the onformalmeasure m. As the �rst result in this diretion we we prove the existene of a onservativeergodi �-�nite measure � equivalent tom. Developing this diretion, we study points of �niteand in�nite ondensation of the measure �, the onepts introdued in [22℄. After olletingsome some basi fats about these points we show in Subsetion 5.2 that1 is always a pointof �nite ondensation, perhaps the most interesting fat about the measure �. In the nextsubsetion we relate points of in�nite ondensation with the set 
(f) of rationally indi�erentperiodi points, providing in partiular some suÆient onditions (
(f) = ;) for the invariantmeasure � to be �nite. In the end of this setion we deal with paraboli points themselves.1.2. General Preliminaries.Throughout the entire paper f �, diams and Bs(z; r) denote respetively the derivatives, di-ameters and open balls de�ned by means of the spherial metri whereas f 0, diam and B(z; r)are onsidered in the Eulidean sense.De�nition 1.1. IfH : D! CI is an analyti map, z 2 CI, and r > 0, then by Comp(z;H(z); H; r)we denote the onneted omponent of H�1(B(H(z); r)) that ontains z.Suppose now that  is a ritial point of an analyti map H : D ! CI. Then there existsR = R(H; ) > 0 and A = A(H; ) � 1 suh thatA�1jz � jq � jH(z)�H()j � Ajz � jqand A�1jz � jq�1 � jH 0(z)j � Ajz � jq�1for every z 2 Comp(;H(); H;R) and thatH(Comp(;H(); H;R)) = B(H(); R)where q = q(H; ) is the order of H at the ritial point . Moreover letting R > 0 to besuÆiently small we an require the two above inequalities to hold for every z 2 B(; (AR)1=q)and the ball B(; (AR)1=q) [ Comp(;H(); H;R) to be expressed as a union of the point and q open mutually disjoint sets suh that H restrited to eah of them is injetive.Koebe's Distortion Theorem, I (Eulidean version). There exists a funtion k :[0; 1)! [1;1) suh that for any z 2 CI; r > 0; t 2 [0; 1) and any univalent analyti funtionH : B(z; r)! CI we have thatsupfjH 0(x)j : x 2 B(z; tr)g � k(t) inffjH 0(x)j : x 2 B(z; tr)g:



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 3We put K = k(1=2).Koebe's Distortion Theorem, I (spherial version). Given a number s > 0 there existsa funtion ks : [0; 1) ! [1;1) suh that for any z 2 CI; r > 0; t 2 [0; 1) and any univalentanalyti funtion H : B(z; r) ! CI suh that the omplement CI nH(B(z; r)) ontains a ballof radius s we havesupfjH�(x)j : x 2 B(z; tr)g � ks(t) inffjH�(x)j : x 2 B(z; tr)g:The following is straightforward onsequene of these two Koebe's Distortion Theorems.Lemma 1.2. Suppose that D � CI is an open set, z 2 D and H : D ! CI is an analyti mapwhih has an analyti inverse H�1z de�ned on B(H(z); 2R) for some R > 0. Then for every0 � r � R B(z;K�1rjH 0(z)j�1) � H�1z (B(H(z); r)) � B(z;KrjH 0(z)j�1):Lemma 1.3. Suppose that D � CI is an open set, z 2 D and H : D ! CI is an analyti mapwhih has an analyti inverse H�1z de�ned on B(H(z); 2R) for some R > 0 avoiding a ball ofsome radius s. Then for every 0 � r � RB(z; k�1s (1=2)rjH 0(z)j�1) � H�1z (B(H(z); r)) � B(z; ks(1=2)rjH 0(z)j�1):We shall also use the following more geometri versions of Koebe's Distortion Theoremsinvolving moduli of annuli.Koebe's Distortion Theorem, II (Eulidean version). There exists a funtion w :(0;+1)! [1;1) suh that for any two open topologial disksQ1 � Q2 with Mod(Q2nQ1) � tand any univalent analyti funtion H : Q2 ! CI suh that the omplement CInH(Q2) ontainsa ball of radius s we havesupfjH 0(x)j : x 2 Q1g � w(t) inffjH 0(x)j : x 2 Q1g:Koebe's Distortion Theorem, II (spherial version). Given a number s > 0 there existsa funtion ws : (0;+1)! [1;1) suh that for any two open topologial disks Q1 � Q2 withMod(Q2 nQ1) � t and any univalent analyti funtion H : Q2 ! CI suh that the omplementCI nH(Q2) ontains a ball of radius s we havesupfjH 0(x)j : x 2 Q1g � ws(t) inffjH 0(x)j : x 2 Q1g:Lemma 1.4. Suppose that an analyti map Q Æ H : D ! CI, a radius R > 0 and a pointz 2 D are suh thatComp(H(z); Q(H(z)); Q; 2R)\Crit(Q) = ; and Comp(z; Q ÆH(z); Q ÆH;R)\Crit(H) 6= ;



4 JANINA KOTUS AND MARIUSZ URBA�NSKIIf  belongs to the last intersetion anddiam�Comp(z; Q ÆH(z); Q ÆH;R)� � (AR(H; ))1=qthen jz � j � KA2j(Q ÆH)0(z)j�1R:2. The Dynamis of Non-reurrent Ellipti Funtions2.1. Preliminaries from Ellipti Funtions. As we already indiated in the introdution,throughout the entire paper f : CI ! CI denotes a non-onstant ellipti funtion. Every suhfuntion is doubly periodi and meromorphi. In partiular there exist two vetors w1; w2,Im(w1w2 ) 6= 0, suh that for every z 2 CI and n;m 2 ZZ,f(z) = f(z +mw1 + nw2):The set � = fmw1 + nw2 : m;n 2 ZZgwill be alled the lattie of the ellipti funtion f . This objet is independent of the hoie ofits generators w1 and w2. LetR = ft1w1 + t2w2 : 0 � t1; t2 � 1g;be the basi fundamental parallelogram of f . It follows from periodiity of f that f(CI) =f(R). Therefore f(CI) as a losed and open subset of the onneted set CI is equal to CI. Thismeans that eah ellipti funtion is surjetive. It also follows from periodiity of f thatf�1(1) = [m;n2ZZ�R \ f�1(1) +mw1 + nw2�:For every pole b of f let qb denote its multipliity. We de�neq := maxfqb : b 2 f�1(1)g = maxfqb : b 2 f�1(1) \ Rg:Let BR = fz 2 CI : jzj > Rg:For every pole b of f by Bb(R) we denote the onneted omponent of f�1(BR) ontaining b.If R > 0 is large enough, say R � R0, then BR ontains no ritial values of f , all sets Bb(R)are simply onneted, mutually disjoint and for z 2 Bb(R)f(z) = Gb(z)(z � b)qb (2.1)where Gb : Bb(R) ! CI is a holomorphi funtion taking values out of some neighbourhoodof 0. If U � BR n f1g is an open simply onneted set, then all the holomorphi inverse



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 5branhes f�1b;U;1; : : : ; f�1b;U;qb of f are well-de�ned on U and for every 1 � j � qb and all z 2 Uwe have j(f�1b;U;j)0(z)j � jzj� qb+1qb : (2.2)Therefore j(f�1b;U;j)�(z)j � jzj� qb+1qb 1 + jzj21 + j(f�1b;U;j)(z)j2 � jzj qb�1qb1 + jbj2 � jzj qb�1qbjbj2 ; (2.3)where the last omparability sign we wrote assuming in addition that jbj is large enough,say jbj � R1 > R0. Let M be an upper bound of the ratios of j(f�1b;U;j)�(z)j and jzj qb�1qb jbj�2with b; U; j as above. A straightforward alulation based on (2.1) shows that there exists aonstant L � 1 suh that for all poles b and all R � R1 we haveL�1R� 1qb �diam(Bb(R)) � LR� 1qb ;L�1R� 1qb (1 + jbj2)�1 �diams(Bb(R)) � LR� 1qb (1 + jbj2)�1: (2.4)We will frequently use the following fat proven in [12℄.Theorem 2.1. If f : CI ! CI is an arbitrary ellipti funtion, thenHD(J(f)) > 2qq + 1 � 1;where q = inffqb : b 2 inf�1(1)g = maxfqb : b 2 R \ f�1(1)g.2.2. Julia Sets and Non-Reurrent Ellipti Funtions.The Fatou set F (f) of a meromorphi funtion f : CI ! CI is de�ned in exatly the samemanner as for rational funtions; F (f) is the set of points z 2 CI suh that all the iteratesare de�ned and form a normal family on a neighborhood of z. The Julia set J(f) is theomplement of F (f) in CI. Thus, F (f) is open, J(f) is losed, F (f) is ompletely invariantwhile f�1(J(f)) � J(f) and f(J(f)) = J(f)[f1g. For a general desription of the dynamisof meromorphi funtions see e.g. [5℄. We would however like to note that it easily followsfrom Montel's riterion of normality that if f : CI ! CI has at least one pole whih is not anomitted value then J(f) = [n�0 f�n(1):Let Crit(f) be the set of ritial points of f i.e.Crit(f) = fz : f 0(z) = 0g:



6 JANINA KOTUS AND MARIUSZ URBA�NSKIIts image, f(Crit(f)), is alled the set of ritial values of f . Sine R \ Crit(f) is �nite andsine f(Crit(f)) = f(R\ Crit(f)), the set of ritial values f(Crit(f)) is also �nite. LetI1(f) = fz 2 CI : z 2 [n�0 f�n(1) or limn!1 fn(z) =1gbe the set of points esaping to in�nity under iterates of f . We say that the ellipti funtionf : CI ! CI is non-reurrent, if the following onditions are satis�ed:(1) If  2 Crit(f)\J(f), then the !-limit set !() is a ompat subset of CI (i.e. 1 =2 !())and  =2 !()(2) If  2 Crit(f) \ F (f) then either there exists an attrating periodi point w or arationally indi�erent periodi point w suh that !() � fw; f(w); : : : ; f p�1(w)g, p isa period.From now on, unless otherwise stated, we assume throughout the entire paper that the elliptifuntion f : CI ! CI is non-reurrent. If t � 0, then a measure m supported on J(f) is said tobe semi t-onformal for f : CI ! CI, ifm(f(A)) � ZA jf �jt dm (2.5)for every Borel set A � J(f) suh that f jA is injetive and m is said to be t-onformal forf : CI ! CI, if m(f(A)) = ZA jf �jt dm (2.6)for these sets A.2.3. Loal behavior around paraboli �xed points.In this setion f : CI ! CI is an arbitrary ellipti funtion of degree � 2. In partiular the mapf is not assumed yet to be non-reurrent. In what follows we basially summarize the resultsonerning loal behavior around paraboli �xed points whih have been proved in [1℄, [8℄,and [9℄. Although they were formulated and proved in the ontext of paraboli rational mapsthat is assuming that the Julia set ontains no ritial points, nevertheless they and theirproofs are of loal harater and, in partiular, extend to the lass of all ellipti funtions.Through this setion ! is a simple paraboli �xed point of f , that is f(!) = ! and f 0(!) = 1.First note that on a suÆiently small open neighbourhood V of ! a holomorphi inversebranh f�1! : V ! CI of f is well de�ned whih sends ! to !. Moreover, V an be taken sosmall that on V the transformation f�1! expresses in the formf�1! (z) = z � a(z � !)p+1 + a2(z � !)p+2 + a3(z � !)p+3 + : : : (2.7)where a 6= 0 and p = p(!) is a positive integer.f�1! (z)� ! = z � ! � a(z � !)p+1 + a2(z � !)p+2 + a3(z � !)p+3 + : : :Consider the set fz : a(z � !)p 2 IR and a(z � !)p > 0g. This set is the union of p raysbeginning in ! and forming angles whih are integer multiples of 2�=p. Denote these rays by



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 7L1; L2; : : : ; Lp. For 1 � j � p, 0 < r � 1 and 0 � � < 2� let Sj(r; �) � V be the set ofthose points z lying in the open ball B(!; r) for whih the angle between the rays Lj and theinterval whih joins the points ! and z does not exeed �. Using (2.7) an easy omputationleads to the following 8� > 0 9r1(�) > 0 90 < �0 � � 81 � j � pf�1! (Sj(r1(�); �0)) � Sj(1; �) (2.8)and there are � > 0 and �1 > 0 suh thatjf�1! (z)� !j < jz � !j and j(f�1! )0(z)j < 1 (2.9)for every ! 6= z 2 S1(�1; �) [ : : :[ Sp(�1; �). The following version of Fatou's ower theorem,(see [4℄, [17℄, omp. [1℄) shows that the Julia set J(f) approahes the �xed point ! tangentiallyto the lines L1; L2; : : : ; Lp. This an be preisely formulated as follows.Lemma 2.2. (Fatou's ower theorem) For every � > 0 there exists r2(�) > 0 suh thatJ(f) \B(!; r2(�)) � S1(r2(�); �) [ : : : [ Sp(r2(�); �):Sine the Julia set J(f) is fully invariant (f�1(J(f)) = J(f) and f(J(f)) = J(f) [ f1g,we onlude from this lemma and (2.9) that for every 0 < �2 � minf�1; r2(�)g we havef�1! (J(f) \ B(!; �2)) � J(f) \ B(!; �2):Thus all iterates f�n! : J(f) \ B(!; �2) ! J(f) \ B(!; �2), n = 0; 1; 2; : : : are well de�ned.From (2.8), Lemma 2.2, and (2.9) we obtain the following8� > 0 9r3(�) > 0 81 � j � pf�1! (Sj(r3(�); �) \ J(f)) � Sj(r3(�); �): (2.10)Put � = �(f; !) = minf�2; r2(�); r3(�)g (2.11)Then, it follows from (2.9), (2.8), and Lemma 2.2 that for every z 2 J(f) \ B(!; �).limn!1 f�n! (z) = ! (2.12)In fat it an be proved that this onvergene is uniform on ompat subsets of B(!; �) \J(f) n f!g. See (2.13) for even stronger result. By preise omputations one an prove thefollowing.Lemma 2.3. For every � > 0 suÆiently small and every z 2 J(f) \ B(!; �)f�1! (B(z; � jz � !j)) � B(f�1! (z); � jf�1! (z)� !j):This lemma immediately leads to the following.



8 JANINA KOTUS AND MARIUSZ URBA�NSKILemma 2.4. For every � > 0 suÆiently small, every z 2 J(f) \ B(!; �) and every n � 0there exists a unique holomorphi inverse branhf�n!;z : B(z; 2� jz � !j)! B(f�n! (z); 2� jf�n! (z)� !j)of fn whih sends z to f�n! (z).The following three results (omp. Lemma 1 and Lemma 2 of [8℄ and Lemma 4.8 of [9℄) anbe proved in exatly the same way as in [8℄ and [9℄.limn!1 jf�n!;z (z)� !jn1=p = (jajp)�1=p and n� p+1p � j(f�n!;z )0(z)j; j(f�n!;z )�(z)j � n� p+1p (2.13)uniformly on ompat subsets of B(!; �) \ J(f) n f!g.Lemma 2.5. Let m be a semi t-onformal measure for f . Then for every R > 0 there existsa onstant C = C(t; !; R) � 1 suh that for every 0 < r � Rm(B(!; r) n f!g)r�t(!) ; m(Bs(!; r) n f!g)r�t(!) � C:where �t(!) = t+ p(!)(t� 1). If m is t-onformal, then in additionm(B(!; r) n f!g)r�t(!) ; m(Bs(!; r) n f!g)r�t(!) � C�1:2.4. Basi properties of non-reurrent ellipti funtions. .In this setion the ellipti funtion f : CI ! CI is assumed to be non-reurrent. A periodipoint ! of f is alled paraboli if there exits q � 1 suh that f q(!) = ! and (f q)0(1) = 1.The set of all paraboli points will be denoted by 
(f). Sine the set of ritial values of f is�nite, it follows from Fatou's theorem that 
(f) is also �nite. In addition, 
(f) is ontainedin the Julia set J(f). The ruial tool for our approah in this paper similarly as in [21℄ isthe following version of Mane's theorem proven in [13℄.Theorem 2.6. Let f : CI ! CI be a non-reurrent ellipti funtion. If X � J(f) n 
(f) isa losed subset of CI, then for every � > 0 there exists Æ > 0 suh that for every x 2 X andevery n � 0, all onneted omponents of f�n(B(x; Æ)) have diameters � �.Corollary 2.7. Let f : CI ! CI be a non-reurrent ellipti funtion. If X � J(f)[f1gn
(f)is ompat, then for every � > 0 there exists Æ > 0 suh that for every x 2 X and every n � 0,all onneted omponents of f�1(Bs(x; Æ)) have Eulidean diameters � �.Proof. Apply Theorem 2.6 for the set f�1(1) and given � > 0. This gives us the or-responding number Æ1 > 0. Taking now � > 0 so small that eah onneted omponent off�n(Bs(1; �)) is ontained in B(b; Æ1) for some pole b 2 f�1(1) onsider the set Y = X nBs(1; �). Sine Y is a ompat subset of CI, it follows from Theorem 2.6 that there exists Æ2 >



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 90 suh that for every x 2 Y and every n � 0 all the onneted omponents of f�n(Bs(x; Æ))have Eulidean diameters � �. Consider a �nite over fBs(x1; Æ2); : : : ; Bs(xk; Æ2); Bs(1; �)gof X, where xj 2 Y for all j = 1; 2; : : : ; k. Taking as Æ half of the Lebesgue number of thisover �nishes the proof.Beause of an extremal importane of this theorem and its orollary for our onsiderations, weprovide in the Appendix the proof of Theorem 2.6 adapting to the ontext of ellipti funtionsoriginal Mane's proof from [13℄ and some lemma from [19℄.We put Crit(J(f)) = Crit(f) \ J(f);� = �(f) = minnminf�(fa; !) : ! 2 
(f)g; 12dist(
(f);Crit(f))o > 0 (2.14)where a � 1 is so large that all paraboli points of fa are simple and the numbers �(fa; !)are de�ned in (2.11). We also denote for every set A � CIO+(A) = [n�0 fn(A):and A = A(f) = maxfA(f; ) :  2 Crit(f)g (2.15)We all two points z and w equivalent and we write z � w if w� z 2 �, the lattie assoiatedwith the ellipti funtion f . Obviously z � w implies that O+(z) = O+(w) and !(z) = !(w).Sine the set Crit(f) \ R is �nite, we onlude that the sets !(Crit(f)) = S2Crit(f)\R !()and O+(Crit(f)) = S2Crit(f)\RO+() are ompat subsets of CI. A positive number � < �=2is now hosen to be less than the following three numbers.minfdist(; O+(f()) :  2 Crit(f)gminf(A()R(f; ))1=q() :  2 Crit(f)gminfj� 0j : ; 0 2 Crit(f) and  6= 0g;where q() = q(f; ) is the order of the ritial point  of f . Notie that the �rst of these num-bers is positive sine O+(f(Crit(f)) is a ompat subset of CI and Crit(f) has no aumulationpoints in CI. Sine f ontains no reurrent ritial points, it follows from Theorem 2.6 thatthere exists 0 <  < 1=4 suh that if n � 0 is an integer, z 2 J(f) and fn(z) =2 B(
(f); �),then diam�Comp(z; fn(z); fn; 2)� < �: (2.16)From now on �x also 0 < � < ��1minf�; 2g so small as required in Lemma 2.4 for every! 2 
(f) and so small that for every z 2 J(f)diam�Comp(z; f(z); f; ��)� < minf�; 2g: (2.17)



10 JANINA KOTUS AND MARIUSZ URBA�NSKILemma 2.8. If n � 0 is an integer, � > 0, z 2 J(f) and for every k 2 f0; 1; : : : ; ngdiam�Comp(fk(z); fn(z); fn�k; �)� � �;then eah onneted omponent Comp(fk(z); fn(z); fn�k; �) ontains at most one ritial pointof f and the equivalene lass of eah ritial point intersets at most one of these omponents.Proof. The �rst part is obvious by the hoie of �. In order to prove the seond partsuppose that1 2 Crit(f) \ Comp(fk1(z); fn(z); fn�k1 ; �); 2 2 Comp(fk2(z); fn(z); fn�k2 ; �)and 1 � 2, where 0 � k1 < k2 � n. But thenfk2�k1(2) = fk2�k1(1) 2 Comp(fk2(z); fn(z); fn�k2; �)and therefore jfk2�k1(2)� 1j < �, ontrary to the hoie of �.Lemma 2.9. The set !(Crit(J(f))) is nowhere dense in J(f).Proof. Suppose that the interior (relative to J(f)) of !(Crit(J(f))) is nonempty. Thenthere exists  2 Crit(J(f)) suh that !() has nonempty interior. But then there wouldexist n � 0 suh that fn(!()) = J(f) and onsequently !() = J(f). This however is aontradition as  =2 !().Let � = ��2Crit(f)\Rq()��1. We shall prove the following.Lemma 2.10. If z 2 J(f), fn(z) =2 B(
(f); �), thenMod�Comp(z; fn(z); fn; 2) n Comp(z; fn(z); fn; )� � � log 2=#(Crit(f) \R)Proof. In view of Lemma 2.8 there exists a geometri annulusR � B(fn(z); 2)nB(fn(z); )entered at fn(z) of modulus log 2=#Crit(f) suh that f�n(R) \ Comp(z; fn(z); fn; 2) \Crit(fn)) = ;. Sine overing maps inrease moduli of annuli at most by fators equal totheir degrees, we onlude thatMod�Comp(z; fn(z); fn; 2) n Comp(z; fn(z); fn; )�� Mod(Rn) � �log 2=#(Crit(f) \ R�=�2Crit(f)\Rq()= � log 2#(Crit(f) \R) ;where Rn � Comp(z; fn(z); fn; 2) is the onneted omponent of f�n(B(fn(z); 2)) enlos-ing Comp(z; fn(z); fn; ).As an immediate onsequene of this lemma and Koebe's Distortion Theorem, II (Eulideanversion) we get the following.



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 11Lemma 2.11. Suppose that z 2 J(f) and fn(z) =2 B(
(f); �). If 0 � k � n and fk :Comp(z; fn(z); fn; 2)! Comp(fk(z); fn(z); fn�k; 2) is univalent, thenj(fk)0(y)jj(fk)0(x)j � onstfor all x; y 2 Comp(z; fn(z); fn; ), where onst is a number depending only on #(Crit(f)\R)and �.For A, B, any two subsets of a metri spae putdist(A;B) = inffdist(a; b) : a 2 A; b 2 Bgand Dist(A;B) = supfdist(a; b) : a 2 A; b 2 Bg:We shall prove the following.Lemma 2.12. Suppose that z 2 J(f) and fn(z) =2 B(
(f); �). Suppose also that Q(1) �Q(2) � B(fn(z); ) are onneted sets. If Q(2)n is a onneted omponent of f�n(Q(2)) ontainedin Comp(z; fn(z); fn; 0) and Q(1)n is a onneted omponent of f�n(Q(1)) ontained in Q(2)n ,then diam�Q(1)n �diam�Q(2)n � � diam�Q(1)�diam�Q(2)� :Proof. Let 1 � n1 � : : : � nu � n be all the integers k between 1 and n suh thatCrit(f) \ Comp(fn�k(z); fn(z); fk; 2) 6= ;:Fix 1 � i � u. If j 2 [ni; ni+1 � 1℄ (we set nu+1 = n� 1), then by Lemma 2.10 there exists auniversal onstant T > 0 suh thatdiam�Q(1)j �diam�Q(2)j � � T diam�Q(1)ni �diam�Q(2)ni � (2.18)Sine, in view of Lemma 2.8, u � #(Crit(f) \R), in order to onlude the proof is thereforeenough to show the existene of a universal onstant E > 0 suh that for every 1 � i � u� 1.diam�Q(1)ni+1�diam�Q(2)ni+1� � Ediam�Q(1)ni �diam�Q(2)ni � :And indeed, let  be the ritial point ontained in Comp(fn�ni+1(z); fn(z); fni+1; 2) and letq denote its order. Sine both sets Q(2)ni+1 and Q(1)ni+1 are onneted, we get for i = 1; 2 thatdiam�Q(i)ni+1�1� � diam�Q(i)ni+1� supfjf 0(x)j : x 2 Q(i)ni+1g � diam�Q(i)ni+1�Dist(; Q(i)ni+1):



12 JANINA KOTUS AND MARIUSZ URBA�NSKIHene, using (2.18), we obtaindiam�Q(1)ni+1�diam�Q(2)ni+1� � diam�Q(1)ni+1�1�diam�Q(2)ni+1�1� � Dist(; Q(2)ni+1)Dist(; Q(1)ni+1) � diam�Q(1)ni+1�1�diam�Q(2)ni+1�1�� T diam�Q(1)ni �diam�Q(2)ni � :We are done.2.5. Partial order in Crit(J(f)) and strati�ations of losed forward-invariant sub-sets of J(f).Now we introdue in Crit(J(f)) a relation < whih, in view of Lemma 2.13 below, is anordering relation, by putting 1 < 2 () 1 2 !(2): (2.19)Sine 2 � 3 implies !(2) = !(3), if 1 < 2, then if 1 < 2 and 2 � 3, then 1 < 3Lemma 2.13. If 1 < 2 and 2 < 3, then 1 < 3.Proof. Indeed, we have 1 2 !(2) � !(3).Lemma 2.14. There is no in�nite, linear subset of the partially ordered set (Crit(J(f)); <)Proof. Indeed, suppose on the ontrary that 1 < 2 < : : : is an in�nite, linearly or-dered subset of Crit(J(f)). Sine the number of equivaleny lasses of relation � is equal to#(Crit(J(f))\R) whih is �nite, there exist two numbers 1 � i < j suh that !(i) = !(j).But this implies that i 2 !(j) = !(i) and we get a ontradition. The proof is �nished.The following observation is a reformulation of the ondition that J(f) ontains no reurrentritial points.Lemma 2.15. If  2 Crit(J(f)), then � ( < ).De�ne now indutively a sequene fCri(f)g of subsets of Crit(J(f)) by setting Cr0(f) = ;andCri+1(f) = 8<: 2 Crit(J(f)) n i[j=0Crj(f) : if 0 < ; then 0 2 Cr0(f) [ : : : [ Cri(f)9=;(2.20)Lemma 2.16. We have(a) If  2 Cri(f) and 0 � , then 0 2 Cri(f).



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 13(b) The sets fCri(f)g are mutually disjoint.() 9p�1 8i�p+1 Cri(f) = ;(d) Cr0(f) [ : : : [ Crp(f) = Crit(J(f))(e) Cr1(f) 6= ;Proof. The item (a) follows immediately from the de�nition of the sets Cri and the fat thattwo equivalent points have the same !-limit sets. By de�nition Cri+1(f) \ Sij=1 Crj(f) = ;,so disjointness in (b) is lear. As the number of equivaleny lasses of the relation � is equalto #(Crit(J(f)) \ R whih is �nite, (a) and (b) imply (). Take p to be minimal numbersatisfying (b) and suppose that  2 Crit(J(f)) n Spj=1 Crj(f). Sine Crp+1(f) = ;, thereexists 0 =2 Spj=1 Crj(f) suh that 0 < . Iterating this proedure we would obtain an in�nitesequene of ritial points 1 =  > 2 = 0 > 3 > : : : . But this ontradits Lemma 2.14proving (d). Now part (e) follows from () and (2.20).As an immediate onsequene of the de�nition of the sequene fCri(f)g we get the followingsimple lemma.Lemma 2.17. If ; 0 2 Cri(f), then � ( < 0).For every point z 2 J(f) de�ne the setCrit(z) = f 2 Crit(J(f)) :  2 !(z)gWe shall prove the following.Lemma 2.18. If z 2 J(f) n I1(f), then either z 2 Sn�0 f�n(
(f)) or !(z) n f1g is notontained in O+(f(Crit(z)) [ 
(f).Proof. Suppose that z =2 Sn�0 f�n(
(f)) [ I1(f). Then by (2.12) the set !(z) n f1g isnot ontained in 
(f). So, if we suppose that!(z) n f1g � O+(f(Crit(z)) [ 
(f); (2.21)then, as !(z) n f1g 6= ;, we onlude that Crit(z) 6= ;. Let 1 2 Crit(z). It means that1 2 !(z) and as 1 =2 
(f), it follows from (2.21) that there exists 2 2 Crit(z) suh thateither 1 2 !(2) or 1 = fn1(2) for some n1 � 1. Iterating this proedure we obtain anin�nite sequene fjg1j=1 suh that for every j � 1 either j 2 !(j+1) or j = fnj(j+1) forsome nj � 1. Consider an arbitrary blok k; k+1; : : : ; l suh that j = fnj (j+1) for everyk � j � l � 1 and suppose that l � (k � 1) � #(Crit(f) \ R). Then there are two indexesk � a < b � l suh that a � b. Thenfna+na+1+:::+nb�1(a) = fna+na+1+:::+nb�1(b) = aand onsequently, as na + na+1 + : : : + nb�1 � b � a � 1, a is a super-attrating periodipoint of f . Sine a 2 J(f), this is a ontradition, and in onsequene the length of the



14 JANINA KOTUS AND MARIUSZ URBA�NSKIblok k; k+1; : : : ; l is bounded above by #(Crit(f) \ R). Hene, there exists an in�nitesubsequene fnkgk�1 suh that nk 2 !(nk+1) for every k � 1. But then nk 2 !(nk+1) forevery k � 1, or equivalently nk < nk+1 for every k � 1. This however ontradits Lemma 2.14and we are done.De�ne now for every i = 0; 1; : : : ; pSi(f) = Cr0(f) [ : : : [ Cri(f)and for every i = 0; 1; : : : ; p� 1 onsider 0 2 S2Cri+1(f) !()\Crit(J(f)). Then there exists 2 Cri+1(f) suh that 0 2 !() whih equivalently means that 0 < . Thus, by (2.20) weget 0 2 Si(f). So [2Cri+1(f)!() \ (Crit(J(f)) n Si(f)) = ; (2.22)Therefore, sine the set S2Cri+1(f) !() � CI is ompat and Crit(J(f)) n Si(f) has no au-mulation point in CI, Æi = dist� [2Cri+1(f)!();Crit(J(f)) n Si(f)� > 0 (2.23)Set � = minfÆi=2 : i = 0; 1; : : : ; p� 1g:Fix a losed forward-invariant subset F of J(f) and for every i = 0; 1; : : : ; p de�neFi(f) = fz 2 F : dist�O+(z);Crit(J(f)) n Si(f)� � �g:Let us now prove the following two lemmas onerning the sets Fi(f).Lemma 2.19. F0 � F1 � : : : � Fp = F .Proof. Sine Si+1(f) � Si(f), the inlusions Fi � Fi+1 is obvious. Sine Sp(f) = Crit(J(f)),it holds Jp(f) = J(f). We are done.Let PC(f) = O+(Crit(J(f)))We shall prove the following.Lemma 2.20. There exists l = l(f) suh that for every i = 0; 1; : : : ; p� 1[2Cri+1(f)!() � O+(f l(Cri+1(f))) � PC(f)i



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 15Proof. The left-hand inlusion is obvious regardless whatever l(f) is. In order to prove theright-hand one �x i 2 f0; 1; : : : ; p � 1g. By the de�nition of !-limit sets there exists li � 1suh that for every  2 Cri+1(f) we have dist�O+(f li());S2Cri+1(f) !()� < Æi=2. Thus,by (2.23), dist�O+(f li());Crit(J(f)) n Si(f)� > Æi=2. Sine � � Æi=2 and sine for everyz 2 O+(f li()) also O+(z) � O+(f li()), we therefore get O+(f l(Cri+1(f))) � PC(f)i. So,putting l(f) = maxfli : i = 0; 1; : : : ; p� 1g the proof is ompleted.2.6. Holomorphi inverse branhes. In this setion we prove the existene of suitableholomorphi inverse branhes-our basi tools in the next setion. SetSing�(f) = [n�0 f�n�
(f) [ Crit(J(f)) [ f�1(1)� and I�(f) = [n�1 f�n(1):We start with the following.Proposition 2.21. If z 2 J(f) n Sing�(f), then there exist a positive number �(z), aninreasing sequene of positive integers fnjgj�1, and a point x = x(z) 2 !(z) n (
(f) [!(Crit(z))) suh that x 6=1 if z =2 I1(f), limj!1 fnj(z) = x andComp(z; fnj(z); fnj ; �(z)) \ Crit(fnj) = ;for every j � 0.Proof. Suppose �rst that z 2 I1(f)nSing�(f). Sine O+(Crit(f)) is a ompat subset of CI,we onlude that for all n large enough dist(fn(z); O+(Crit(f))) � 1. We are therefore donetaking x =1 and �(z) = 1. So, suppose that z =2 I1(f). This means that !(z) n f1g 6= ;.Suppose that !(z)nf1g is unbounded. Sine O+(Crit(f)) is a ompat subset of CI, there thusexists x 2 !(z) n f1g suh that dist(x;O+(Crit(f))) � 2 and we are done �xing a sequenefnjg1j=1 suh jfnj(z)�xj � 1 and taking �(z) = 1. So, assume that !(z) = F[f1g where F �CI is a ompat set. Then F \f�1(1) 6= ; and �x x 2 F \f�1(1). Again, sine O+(Crit(f)) isa ompat subset of CI and sine f�O+(Crit(f))� � O+(Crit(f)), we see that x =2 O+(Crit(f))and we are done taking �(z) = dist(x;O+(Crit(f))). So suppose �nally that !(z) is a ompatsubset of CI. In view of Lemma 2.18 there exists x 2 !(z) n (
(f) [ O+(f(Crit(z)) [ f1g).The number � = dist(x;
(f) [ O+(f(Crit(z)))=2 is positive sine !(Crit(z)) is a ompatsubset of CI and 
(f) is �nite. Then there exists an in�nite inreasing sequene fmjgj�1 suhthat limj!1 fmj(z) = x (2.24)and B(fmj (z); �) \ [n�1 fn(Crit(z)) = ;: (2.25)



16 JANINA KOTUS AND MARIUSZ URBA�NSKINow we laim that there exists �(z) suh that for every j � 1 large enoughComp(z; fmj (z); fmj ; �(z)) \ Crit(fmj ) = ;: (2.26)Otherwise we would �nd an inreasing to in�nity subsequene fmjig of fmjg and a dereasingto zero sequene of positive numbers �i suh that �i < � andComp(z; fmji (z); fmji ; �i) \ Crit(fmji ) 6= ;Let ~i 2 Comp(z; fmji (z); fmji ; �i) \ Crit(fmji ). Then there exists i 2 Crit(f) suh thatf pi(~i) = i for some 0 � pi � mji � 1. Sine the set f�1(x) is at a positive distanefrom 
(f) and sine �i ! 0, it follows from Theorem 2.6 that limi!1 ~i = z. Sine z =2Sn�0 f�n(Crit(f)), it implies that limi!1 pi = 1. But then using Lemma 2.6 again andthe formula f pi(~i) = i we onlude that the set of all aumulation points of the sequenefig is ontained in !(z). Hene, passing to a subsequene, we may assume that the limit = limi!1 i exists. But sine  2 !(z), sine !(z) is a ompat subset of CI and sine1 is theonly aumulation point of Crit(f), we onlude that the sequene i is eventually onstant.Thus, dropping some �nite number of initial terms, we may assume that this sequene isonstant. This means that i =  for all i = 1; 2; : : : . Sine  = f pi(~i), we getjfmji (z)� fmji�pi()j = jfmji (z)� fmji (~i)j < �i:Sine limi!1 �i = 0 and sine !(z) is a ompat subset ofCI, we onlude that limi!1 jfmji (z)�fmji�pi()j = 0. Sine  2 Crit(z), in view of (2.25) this implies that mji � pi � 0 for all ilarge enough. So, we get a ontradition as 0 � pi � mji � 1 and (2.26) is proved. We aredone.Sine if z 2 J(f) n (Sing�(f) [ I1(f)), the limit points of the normal familyf�njz : B(x(z); �(z)=2)! CIonsist only of onstant funtions. Therefore we get the following.Corollary 2.22. If z 2 J(f) n (Sing�(f) [ I1(f)) and the sequene fnjg1j=1 is taken fromProposition 2.21, thenlim supn!1 j(fn)�(z)j = lim supn!1 j(fn)0(z)j = limn!1 j(fnj)0(z)j = +1:In addition, if we assume only that z 2 J(f) n Sing�(f), thenlim supn!1 j(fn)0(z)j =1:3. Conformal MeasuresIn this setion we deal in detail with the existene, uniqueness and some properties of on-formal measures. Let HD denote the Hausdor� dimension, Ht and l2 denote respetively



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 17t-dimensional Hausdor� measure and 2-dimensional Lebesgue measure, both onsidered withrespet to the spherial metri on CI. Throughout this setion and the entire paper we seth = HD(J(f)):We begin with the following.Lemma 3.1. If m is a t-onformal measure for f : J(f)! J(f) [ f1g, then t � HD(J(f))and HtjJ(f) is absolutely ontinuous with respet to m.Proof. Fix z 2 J(f) n (Sing�(f) [ I1(f)). Let �(z) > 0, x 2 !(z) n f1g and the sequenefnjgj�1 be taken from Proposition 2.21. It then follows from this proposition and Koebe'sDistortion Theorem, I(spherial version) thatf�njz (B(fnk(z); �(z)=2)) � B(z; j(fnj)�(z)j�1�(z)=2):Applying again this Koebe's Distortion Theorem and onformality of the measure m, we getfor all j � 1 large enoughm(B(z; j(fnj )0(z)j�1�(z)=2)) � j(fnj)�(z)j�tm(B(fnj(z); �(z)=2))� j(fnj)�(z)j�tm(B(x; �(z)=4))� j(fnj)0(z)j�tm(B(x; �(z)=4))= (2�(z)�1)tm(B(x; �(z)=4))�j(fnj)�(z)j�1�(z)=2)�t;where the seond omparability sign depends on jzj and holds for all j � 1 large enough sothat fnj(z) is suÆiently lose to x. In partiularlim supr!0 m(B(z; r))rt � R(z) > 0;where R(z) = (2�(z)�1)tm(B(x; �(z)=4)). Therefore, puttingXk = fz 2 J(f) n Sing�(f) : jzj � k and R(z) � 1=kgwe have S1k�1Xk = J(f) n (Sing�(f) [ I1(f)) and in view of Theorem 4.3(1) (whih is ofpurely geometri harater independent of our onsiderations here), dHt=dm � b(2)k on Xk.In partiular Ht � m on J(f)n(Sing�(f)[I1(f)). Hene HD�J(f)n(Sing�(f)[I1(f))� � t.By Theorem 1 and Theorem 2 in [12℄), HD(J(f)) > HD(I1(f)). Thus HD(J(f)) = HD�J(f)n(Sing�(f) [ I1(f))� � t and Ht � m on J(f).We will need in the sequel the following result whih is interesting itself.Lemma 3.2. If m is a t-onformal measure for f : CI ! CI, then m(I1(f)n I�(f)) = 0. Evenmore, there exists R > 0 suh thatm(fz : lim infn!1 jfn(z)j > Rg) = 0:



18 JANINA KOTUS AND MARIUSZ URBA�NSKIProof. Let b be a pole of f : CI ! CI. We shall obtain �rst an upper estimate on m(Bb(R))similar to the seond inequality in (2.4). And indeed, overing BR n f1g by two simplyonneted domainsB+R = fz 2 BR n f1g : Imz > 0g and B1R = fz 2 BR n f1g : Imz < 1gwe obtain m(Bb(R) n fbg) � qbXj=1 ZB+R j(f�1b;B+R ;j)�jtdm+ qbXj=1 ZB1R j(f�1b;B�R ;j)�jtdm:Using now (2.3), we obtainZB+R j(f�1b;B+R ;j)�jtdm � ZB+R  11 + jbj2 jzj qb�1qb !t dm(z) = 1(1 + jbj2)t ZB+R jzj qb�1qb tdm(z)� (1 + jbj2)�t ZB+R jzj q�1q tdm(z):Looking at the �rst line of this formula with a pole b of maximal multipliity, we see that theintegral RB+R jzj q�1q tdm(z) is �nite and even more:limR!1 ZB+R jzj q�1q tdm(z) = 0: (3.1)Similarly is �nite the integral RB1R jzj q�1q tdm(z) and it also onverges to 0 as R!1. Putting�R = max(ZB+R jzj q�1q tdm(z); ZB1R jzj q�1q tdm(z))we therefore onlude thatm(Bb(R) n fbg) � 2q�R(1 + jbj2)�t � 2q�Rjbj�2t: (3.2)Now the argument goes essentially in the same way as in [12℄. We present it here for the sakeof ompleteness. We take R2 � R1 de�ned in Setion 2.1 so large thatLR� 1qb < R0 (3.3)for all poles b 2 BR2 and all R � R2. Given two poles b1; b2 2 B2R2 we denote by f�1b2;b1;j :B(b1; R0) ! CI all the holomorphi inverse branhes f�1b2;B(b1;R0);j. It follows from (2.4) and(3.3) that f�1b2;b1;j�B(b1; R0)� � Bb2(2R2 �R0) � Bb2(R2) � B(b2; R0) (3.4)Set IR(f) = fz 2 CI : 8n�0jfn(z)j > Rg:



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 19Sine the series Pb2f�1(1)nf0g jbj�s onverges for all s > 2 and sine by Lemma 3.1 andTheorem 3 from [12℄, t � h > 2qq+1 there exists R3 � R2 suh thatqM t Xb2BR3\f�1(1) jbj� q+1q t � 1=2: (3.5)Consider R � 4R3. Put I = f�1(1) \B(R=2)Sine R=2 +R0 � R=2 +R3 < R=2 +R=2 = R, it follows from (3.4), (2.4) and (3.3) that forevery l � 1 the family Wl de�ned asnf�1bl;bl�1;jl Æ f�1bl�1;bl�2;jl�1 Æ : : : Æ f�1b2;b1;j2 Æ f�1b1;b0;j1�Bb0(R=2) n f�1(1)�o ;where bi 2 I : 1 � ji � qbi ; i = 0; 1; : : : ; l, is well-de�ned and overs IR(f). Applying (2.3)and (2.4) we may now estimate as follows.m(IR(f)) �� Xbl2I qblXjl=1 : : :Xb12I qb1Xj1=1 Xb02Im �f�1bl;bl�1;jl Æ f�1bl�1;bl�2;jl�1 Æ : : : Æ f�1b2;b1;j2 Æ f�1b1;b0;j1�Bb0(R=2)��� Xbl2I qblXjl=1 : : :Xb12I qb1Xj1=1 Xb02I jj�f�1bl;bl�1;jl Æ f�1bl�1;bl�2;jl�1 Æ : : : Æ f�1b2;b1;j2 Æ f�1b1;b0;j1��jBb0 (R=2)jjt1m�Bb0(R=2)�� Xbl2I qblXjl=1 : : :Xb12I qb1Xj1=1 Xb02IM lt 0BB� jbl�1j qbl�1qbljblj2 1CCAt � 0BB� jbl�2j qbl�1�1qbl�1jbl�1j2 1CCAt : : :0BB� jb0j qb1�1qb1jb1j2 1CCAt (2q�R)t 1jb0j2t= (2q�R)tM lt Xbl2I qblXjl=1 : : :Xb12I qb1Xj1=1 Xb02I jblj�2t�jbl�1j� q+1q t : : : jb0j� q+1q t�� (2q�R)tM lt Xbl2I qblXjl=1 : : :Xb12I qb1Xj1=1 Xb02I�jblj� q+1q tjbl�1j� q+1q t : : : jb0j� q+1q t�� (2q�R)tM lt 0�Xb2I jbj� q+1q t1Al ql� (2q�R)t0�qM t Xb2BR3\f�1(1) jbj� q+1q+ t1AlApplying (3.5) we therefore get m(IR(f)) � (2q�R)t2�l. Letting l ! 1 we therefore getm(IR(f)) = 0. Sine m Æ f�1 � m and sine fz : lim infn!1 jfn(z)j > Rg = S1j=0 f�j(IR(f)),we onlude that m�fz : lim infn!1 jfn(z)j > Rg� = 0. We are done.



20 JANINA KOTUS AND MARIUSZ URBA�NSKIDeveloping the general sheme from [7℄ we shall now prove in several steps the existene ofan h-onformal measure. In order to begin we all Y � f1g [ 
(f) [ Sn�1 fn(Crit(J(f))) arossing set if Y is �nite and the following two onditions are satis�ed.(y1) 1 2 Y .(y2) Y \ ffn(x) : n � 1g is a singleton for all x 2 Crit(J(f)).(y3) Y \ Crit(f) = ;.(y4) 
(f) � Y .Sine f(Crit(f)) is �nite, rossing sets do exist. Let V � CI be an open neighbourhood of Y .We de�ne K(V ) = fz 2 J(f) : fn(z) =2 V 8(n � 0)g:Obviously f(K(V )) � K(V ) and sine f : CI ! CI is ontinuous and V is open, we see thatK(V ) is a losed subset of CI. Sine in addition K(V ) � CI n V , we onlude that K(V ) is aompat subset of CI. Fix w 2 K(V ) and t � 0. For all n � 1 onsider the setsEn = �f jK(V )��n (w)and the number (f) = lim supn!1 1n log Xx2En j(fn)�(x)j�t:Sine the ontinuous map f jK(V ) : K(V ) ! K(V ) has no ritial points, all the sets K(V )are (n; Æ)-separated, whereÆ = infy2K(V )fminfjz � xj : x; z 2 �f jK(V )��1 (y) and x 6= zgg > 0:Therefore (f) � P �f jK(V );�t log jf �j� ; (3.6)where the right-hand side of this inequality is the topologial pressure of the potential�t log jf �j with respet to the dynamial system f jK(V ) : K(V ) ! K(V ). Denote this pres-sure simply by P(f; V ). We all a Borel set A � CI speial if jA is injetive. Lemma 3.1 and3.2 from [7℄ (omp. [6℄) enlarged by the reasoning started from the seond paragraph of theproof of Lemma 5.3 in [7℄ an be now formulated together as follows.Lemma 3.3. For every t � 0 there exists a Borel probability measure mV;t supported on K(V )suh that(a) mV;t(f(A)) � RA e(f)jf �jtdmV;t for every speial set A � CI and(b) mV;t(f(A)) = RA e(f)jf �jtdmV;t for every speial set A � CI n V .We will need the following tehnial lemma.Lemma 3.4. The funtion t 7! (f) is ontinuous, (0) > 0 and �1(0) \ (0; h℄ 6= ; if V hasa suÆiently small diameter.



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 21Proof. Continuity of the funtion (f) follows from the fat that 0 < infK(V )fjf �jg �supK(V )fjf �jg < 1. Sine periodi points of f are dense in J(f), K(V ) 6= ; for all V suÆ-iently small. Also if V is suÆiently small and w 2 K(V ), then #En � 2n and onsequently(0) � log 2 > 0. Sine (0) > 0 and sine the funtion (f) is ontinuous, in order to provethe last laim of our lemma, it suÆes to show that (f) � 0 for all t � h. So, suppose onthe ontrary that (f) > 0 for some t � h. It follows from (3.6) thatP(f; V ) > 0: (3.7)Sine the proof of Lemma 4.1 and Corollary 4.2 from [7℄ go word by word in our ontext,we onlude that the Lyapunov exponent �� = R log jf �jd� � 0 for every Borel probabilityf -invariant measure � supported on K(V ). It follows from (3.7) and the variational priniplefor topologial pressure that there exists a Borel probability f -invariant measure � supportedon K(V ) suh that h�(f) � t�� > 0. Sine �� � 0, this implies that h�(f) > 0 and dueto Ruelle's inequality �� > 0. Hene, applying Przytyki's-Manne volume lemma (see [18℄,omp. [14℄), we an write t < h�(f)�� = HD(�) � hand this ontradition �nishes the proof.Let s(V ) = minf�1(0) \ (0; h℄g > 0:Combining Lemma 3.3 and Lemma 3.4 we get the following.Lemma 3.5. There exists a Borel probability measure mV supported on K(V ) suh that(a) mV (f(A)) � RA jf �js(V )dmV for every speial set A � CI and(b) mV (f(A)) = RA jf �js(V )dmV for every speial set A � CI n V .Sine the sequene n 7! s(Bs(Y; 1=n)) is monotonially non-dereasing, proeeding similarlyas in the proof of Lemma 5.4 from [7℄ (note that in the plae where Lemma 3.3 from [7℄ isinvoked, only the �rst inequality in (d) is needed; in partiular mY (1) = 0, where mY is anarbitrary weak aumulation point of the sequene mBs(Y;1=n) we obtained the following.Lemma 3.6. For every s(Y ), an aumulation point of the sequene s(Bs(Y; 1=n)), s(Y ) 2(0; h℄ and there exists a Borel probability measure mY (an appropriate week aumulationpoint of the sequene fmBs(Y;1=n)gn�1) supported on J(f) suh that(a) mY (f(A)) � RA jf �js(Y )dmY for every speial set A � CI and(b) mY (f(A)) = RA jf �jS(Y )dmY for every speial set A � CI n Y .The next fat proven in this setion is provided by the following.



22 JANINA KOTUS AND MARIUSZ URBA�NSKILemma 3.7. For every rossing set Y , m = mY is an s(Y )-onformal measure for f : J(f)!J(f) [ f1g, s(Y ) = h, and all atoms of m are ontained in I�(f) [ Sn�0 f�n(Crit(J(f)).Proof. Sine we already know that m(1) = 0 and sine Y \ (Sing�(f) [ I1(f)) � 
(f) [f1g, it follows from Lemma 3.6(b) and Corollary 2.22 thatm(Y n 
(f)) = 0: (3.8)We shall show now that m(
(f)) = 0. And indeed, �x ! 2 
(f). Take a � 1 so largethat fa(!) = ! and (fa)0(!) = 1. It then follows from (2.13) that there exist a ompat setF! � B(!; �) n f!g and a onstant C � 1 suh that for every k � 1C�1k� p(!)+1p(!) � j(f�ak! )�(z)j � Ck� p(!)+1p(!) (3.9)and for every n � 1 there exists kn � 1 suh thatB(!; 1=n) � 1[j=kn f�aj! (F!) and limn!1kn =1: (3.10)It follows from Lemma 3.6(b), (3.9) and the fat that the family ff�an! (F!)gn�1 is of boundedmultipliity, that Xn�1n� p(!)+1p(!) s(Y ) <1:In partiular p(!)+1p(!) s(Y ) > 1. Denote mjBs(Y;1=n) by mn and s(Bs(Y; 1=n)) by sn. Sinelimn!1 sn = s(Y ), we see that for every n � 1 large enough, say n � n0,p(!) + 1p(!) sn > 1 + �:for some � > 0. It therefore follows from Lemma 3.6(a), (3.10) and (3.9) that for all n � n0and all l � 1 mn(B(!; 1=l)) � 1Xj=klmn�f�aj! (F!)� � C p(!)+1p(!) sn 1Xj=kl j� p(!)+1p(!) sn� C p(!)+1p(!) s(Y ) 1Xj=kl j�(1+�):Consequently m(B(!; 1=l)) � C p(!)+1p(!) s(Y ) 1Xj=kl j�(1+�):Sine liml!1 kl =1, we infer m(
(f)) = 0:Combining this and (3.8), we see that m(Y ) = 0. Sine f(
(f)) = 
(f), in order to proves(Y )-onformality of the measure m, it therefore suÆes to show that m(f(Y n 
(f))) =



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 230. But if y 2 Y n (
(f) [ f1g), then due to our de�nition of Y , y =2 Sing�(f) and theformula m(f(y)) = 0 immediately follows from Corollary 2.22, the formula m(fn(f(y))) �j(fn)�(y)js(Y )m(f(y)) and the stated in Lemma 3.6 fat that s(Y ) > 0. Thus the s(Y )-onformality of m is proven and in addition all the atoms of m must be ontained in J(f)n
.In view of Lemma 3.6 and Lemma 3.1, s(Y ) = h. Applying now Lemma 3.2 and Corollary 2.22we see that all atoms of m must be ontained in I�(f) [ Sn�0 f�n(Crit(J(f)). The proof isomplete. 4. Hausdorff and Paking MeasuresLet �h denote the paking measure onsidered with respet to the spherial metri on CI. Weshall prove in this setion that the onformal measure m is atomless and the following mainresult.Theorem 4.1. Let f : CI ! CI be a non-reurrent ellipti funtion. If h = HD(J(f)) = 2,then J(f) = CI. So suppose that h < 2. Then(a) Hh(J(f)) = 0.(b) �h(J(f)) > 0.() �h(J(f)) =1 if and only if 
(f) 6= ;.As an immediate onsequene of this theorem we get the following.Corollary 4.2. If 
(f) = ;, then the Eulidean h-dimensional paking measure �he is �niteon eah bounded subset of J(f).4.1. Preliminaries from Geometri Measure Theory. In this setion we ollet somefats from the geometri measure theory as well as we list without proofs some more tehnialfats taken from Setion 2, Setion 3 and Setion 4 of [21℄. Given a subset A of a metri spae(X; d), a ountable family fB(xi; ri)g1i=1 of open balls entered at the set A is said to be apaking of A if and only if for any pair i 6= jd(xi; xj) > ri + rj:Given t � 0, the t-dimensional outer Hausdor� measure Ht(A) of the set A is de�ned asHt(A) = sup�>0 infn 1Xi=1 rtiowhere in�mum is taken over all overs fB(xi; ri)g1i=1 of the set A by open balls entered at Awith radii whih do not exeed �.



24 JANINA KOTUS AND MARIUSZ URBA�NSKIThe t-dimensional outer paking measure �t(A) of the set A is de�ned as�t(A) = inf[Ai=AnXi �t�(Ai)o(Ai are arbitrary subsets of A), where�t�(A) = sup�>0 supn 1Xi=1 rtio:Here the seond supremum is taken over all pakings fB(xi; ri)g1i=1 of the set A by open ballsentered at A with radii whih do not exeed �. These two outer measures de�ne ountableadditive measures on Borel �-algebra of X.The de�nition of the Hausdor� dimension HD(A) of A is the followingHD(A) = infft : Ht(A) = 0g = supft : Ht(A) =1g:Let � be a Borel probability measure on X whih is positive on open sets. De�ne the funtion� = �t(�) : X � (0;1)! (0;1) by �(x; r) = �(B(x; r))rtThe following two theorems (see [DU5℄) are for our aims the key fats from geometri measuretheory. Their proofs are an easy onsequene of Besiovi� overing theorem (see [G℄).Theorem 4.3. Let X = IRd for some d � 1. Then there exists a onstant b(n) dependingonly on n with the following properties. If A is a Borel subset of IRd and C > 0 is a positiveonstant suh that(1) for all (but ountably many) x 2 Alim supr!0 �(x; r) � C�1;then for every Borel subset E � A we have Ht(E) � b(n)C�(E) and, in partiular,Ht(A) <1.or(2) for all x 2 A lim supr!0 �(x; r) � C�1;then for every Borel subset E � A we have Ht(E) � C�(E).Theorem 4.4. Let X = IRd for some d � 1. Then there exists a onstant b(n) dependingonly on n with the following properties. If A is a Borel subset of IRd and C > 0 is a positiveonstant suh that



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 25(1) for all x 2 A lim infr!0 �(x; r) � C�1;then for every Borel subset E � A we have �t(E) � Cb(n)�1�(E),or(2) for all x 2 A lim infr!0 �(x; r) � C�1;then �t(E) � C�(E) and, onsequently, �t(A) <1.(1') If � is non{atomi then (1) holds under the weaker assumption that the hypothesis ofpart (1) is satis�ed on the omplement of a ountable set.Assume now that � is a Borel measure on CI �nite on bounded sets. These two theoremsmotivated us in [21℄ to introdue the following notions.De�nition 4.5. Given r > 0 and L > 0 a point x 2 CI is said to be (r; L)� t:upper estimableif �(x; r) � L and is said to be (r; L) � t:lower estimable if �(x; r) � L. We will frequentlyabbreviate the notation writing (r; L)-u.e. for (r; L) � t:-upper estimable and (r; L)-l.e. for(r; L)�t:-lower estimable. We also say that the point x is t-upper estimable (t-lower estimable)if it is (r; L) � t:upper estimable ((r; L) � t:lower estimable) for some L > 0 and all r > 0suÆiently small.We will also need the following more tehnial notion.De�nition 4.6. Given r > 0, � > 0 and L > 0 the point x 2 X is said to be (r; �; L) �t:strongly lower estimable, or shorter (r; �; L)-s.l.e. if �(B(y; �r)) � Lrt for every y 2 B(x; r).We ollet now from [21℄ the tehnial fats about the notions de�ned above.Lemma 4.7. If z is (r; �; L)-s.l.e., then every point x 2 B(z; r=2) is (r=2; 2�; 2tL)-s.l.e..Lemma 4.8. If x is (r; �; L)-s.l.e., then for every 0 < u � 1 it is (ur; �=u; Lu�t)-s.l.e..Lemma 4.9. If � is positive on nonempty open sets, then for every r > 0 there exists E(r) � 1suh that every point x 2 X is (r; E(r))-u.e. and (r; E(r)�1)-l.e..



26 JANINA KOTUS AND MARIUSZ URBA�NSKIPassing to onformal maps we onsider now the situation where H : U1 ! U2 is an analytimap of open subsets U1, U2 of the omplex plane CI. We say that given t � 0, the Borelmeasure � �nite on bounded sets of CI is a Eulidean semi t-onformal if and only if�(H(A)) � ZA jH 0jt d�for every Borel subset A of U1 suh that HjA is one-to-one and is all t-onformal if the \�"sign an be replaed by an \=" sign.Lemma 4.10. Let � be a Eulidean semi t-onformal measure. Suppose that D � CI is anopen set, z 2 D and H : D! CI is an analyti map whih has an analyti inverse H�1z de�nedon B(H(z); 2R) for some R > 0. Then for every 0 � r � RK�t�(B(z;K�1rjH 0(z)j�1)) � jH 0(z)j�t�((B(H(z); r))):If, in addition, � is t-onformal, then alsojH 0(z)j�t�((B(H(z); r))) � Kt�(B(z;KrjH 0(z)j�1)):Lemma 4.11. Suppose that � is a Eulidean t-onformal measure. If the point H(z) is(r; �; L)-s.l.e., where r � R=2 and � � 1, then the point z is (K�1jH 0(z)j�1r;K2�; L)-s.l.e..Lemma 4.12. Suppose that � is a Eulidean t-onformal measure. Let  be a ritial pointof an analyti map H : D ! CI. If 0 < r � R(H; ) and H() is (r; L)-l.e., then  is((Ar)1=q; A�2tL)-l.e..Lemma 4.13. Let  be a ritial point of an analyti map H : D ! CI. Let � be a Eulideansemi t-onformal measure suh that �() = 0. If 0 < r � R(H; ) and H() is (s; L)-u.e. forall 0 < s � r, then  is �(A�1r)1=q; q(2A2)t(2t=q � 1)�1L�-u.e..Note that the proof of this lemma is the same as the proof of Lemma 3.4 in [21℄. The onlymodi�ation is that the equality sign in the �rst line of the �rst displayed formula of thisproof is to be replaed by the \�" sign.Lemma 4.14. Suppose that � is a Eulidean t-onformal measure. Let  be a ritial pointof an analyti map H : D ! CI. If 0 < r � 13R(H; ), 0 < � � 1 and H() is (r; �; L)-s.l.e,then  is ((A�1r)1=q; ~�; ~L)-s.l.e, where ~� = (2q+1KA2�)1=q and ~L = LminfK�t; (A2�) 1�qq tg.



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 27Notie now that if m is a semi t-onformal measure for f : J(f) ! J(f) [ f1g, then themeasure me = (1 + jzj2)tm is Eulidean semi t-onformal, i.e.me(f(A)) � ZA jf 0jtdmefor every Borel set A � J(f) suh that f jA is 1-to-1. If m is t-onformal, then so is me inthe obvious sense. The measure me is alled the Eulidean version of m. Obviously me isequivalent to m and is �nite on bounded subsets of CI. From now on throughout the entirepaper we �x a rossing set Y and we onsider an open neighbourhood V � CI of Y suh thatCrit(f) \ V = ; and the losure of V is disjoint from at least one fundamental parallelogramof f . A semi t-onformal measure m is said to be almost t-onformal ifm(f(A)) = ZA jf 0jtdmfor every Borel set A � J(f) suh that f jA is 1-to-1 and A \ V = ;. Hene for every Borelset A suh that f jA is 1-to-1 and A \ V = ; and for every w 2 �, we haveZA jf 0jtdme = me(f(A)) = me(f(A+ w)) � ZA+w jf 0jtdmeand the last inequality sign beomes an equality either if in addition (A + w) \ V = ; or ifm is a t-onformal measure and we assume only that f jA is 1-to-1. Sine f 0 is periodi withrespet to the lattie �, all the above statements and assumptions lead to the following.Lemma 4.15. For every w 2 �, every Borel set A � CI suh that A\V = ; and every almostt-onformal measure m me(A+ w) � me(A):If either in addition (A+w) \ V = ; or if m is h-onformal and we assume only that f jA is1-to-1, then this inequality beomes an equality. For every r > 0 there exists M(r) 2 (0;1)independent of any almost t-onformal measure m suh thatme(F ) �M(r): (4.1)for every Borel set F � CI with the diameter � r. If in addition m is h-onformal, then forevery R > 0 there exist onstants Q(R) and Qh(R) suh thatme(Be(x; r)) � Q(R)r2 � Qh(R)rh (4.2)for all x 2 J(f) and all r � R.The following lemma is proven in the same way as the orresponding lemma from Setion 4of [21℄.



28 JANINA KOTUS AND MARIUSZ URBA�NSKILemma 4.16. Suppose that me is a Eulidean t-onformal measure. Then for every R > 0and every 0 < � � 1 there exists L = L(!;R; �) > 0 suh that for every 0 < r � R everypoint ! 2 
(f) is (r; �; L)-�t(!):s.l.e. with respet to the measure me.4.2. Conformal Measure and Holomorphi Inverse Branhes.In this subsetion we prove two tehnial propositions modeled on Proposition 6.3 and Propo-sition 6.4 from [21℄. Let m be an almost t-onformal measure and let me be its Eulideanversion. The upper estimability and strongly lower estimability will be onsidered in thissetion with respet to the measure me. When we speak about lower estimability we assumemore, that the measure m is t-onformal. Sine the number of paraboli points is �nite,passing to an appropriate iteration, we assume in this and the next setion without loosinggenerality that all paraboli points of f are simple. Fix a forward f -invariant ompat subsetF of CI. Put jjf 0jjF = supfjf 0(z)j : z 2 Fg:Reall that � was de�ned in (2.11) and that � > 0 is so small as required in Lemma 2.3.Proposition 4.17. Fix a forward f -invariant ompat subset F of CI. Let z 2 F , � > 0 andlet 0 < r � ��jjf 0jj�1F ��1 be a real number. Suppose that at least one of the following twoonditions is satis�ed: z 2 F n [n�0 f�n(Crit(J(f))or z 2 F and r > ��jjf 0jj�1F ��1 inffj(fn)0(z)j�1 : n = 1; 2; : : :g:Then there exists an integer u = u(�; r; z) � 0 suh that rj(fu)0(z)j � ��1�� and the followingfour onditions are satis�eddiam�Comp(f j(z); fu(z); fu�j; rj(fu)0(z)j)� � � (4.3)for every j = 0; 1; : : : ; u. For every � > 0 there exists a ontinuous funtion t 7! Bt =Bt(�; �) > 0, t 2 [0;1), (independent of z, n, and r) and suh that if fu(z) 2 B(!; �) forsome ! 2 
(f), then fu(z) is (�rj(fu)0(z)j; Bt)� �t(!):u.e. (4.4)and there exists a funtion Wt = Wt(�; �) : (0; 1℄ ! (0; 1℄ (independent of z, n, and r) suhthat if fu(z) 2 B(!; �) for some ! 2 
(f), then for every � 2 (0; 1℄fu(z) is (�rj(fu)0(z)j; �;Wt(�))� �t(!):s.l.e. (4.5)If fu(z) =2 B(
(f); �), then formulas (4.4) and (4.5) are also true with �t(!) replaed by t:(4.6)



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 29Proof. Suppose �rst that supf�rj(f j)0(z)j : j � 1g > �� jjf 0jj�1F and let n = n(�; z; r) � 0be a minimal integer suh that �rj(fn)0(z)j > �� jjf 0jj�1F : (4.7)Then n � 1 (due to the assumption imposed on r) and also�rj(fn)0(z)j � �� (4.8)If fn(z) =2 B(
(f); �) set u = u(�; r; z) = n. The items (4.4), (4.5) and (4.6) are obvious inview of our assumptions imposed on F .So suppose that fn(z) 2 B(
(f); �), say fn(z) 2 B(!; �), ! 2 
(f). Let 0 � k = k(�; z; r) �n be the smallest integer suh that f j(z) 2 B(
(f); �) for every j = k; k+1; : : : ; n. Considerall the numbers ri = jf i(z)� !jj(f i)0(z)j�1where i = k; k + 1; : : : ; n. By (4.7) we havern = jfn(z)� !jj(fn)0(z)j�1 � �jjf 0jjF��1��1�r = jjf 0jjF ��1�rand therefore there exists a minimal k � u = u(�; r; z) � n suh that ru � jjf 0jjF ��1�r. Inother words jfu(z)� !j � jjf 0jjF��1�rj(fu)0(z)j � jjf 0jjF ��1��1��rj(fu)0(z)j (4.9)If supf�rj(f j)0(z)j : j � 1g � �� jjf 0jj�1F , then it follows from Corollary 2.22 that z 2Sj�0 f�j(
(f)). De�ne then u(�; z; r) = k(�; z; r) to be the minimal integer j � 0 suhthat f j(z) 2 
(f) and put ! = fu(z). Notie that in this ase formulas (4.8) and (4.9) arealso satis�ed. Our further onsiderations are valid in both ases. First note that by (4.9) wehave B(fu(z); �rj(fu)0(z)j) � B(!; (1 + jjf 0jjF ��1��1�)�rj(fu)0(z)j) (4.10)and in view of Lemma 2.5 and (4.8)me�B(fu(z);�rj(fu)0(z)j)� �� C(!; (1 + jjf 0jjF��1��1�)�����1)(1 + jjf 0jjF ��1��1�)�t(!)(�rj(fu)0(z)j)�t(!)So, item (4.4) is proved. Also applying (4.9), Lemma 4.16, Lemma 4.7 and (4.8) we see thatthe point fu(z) is�jjf 0jjF ��1�rj(fu)0(z)j; �� jjf 0jj�1F ���1; 2�t(!)L(!; 2jjf 0jjF�; ��(2jjf 0jjF )�1���1)�-s.l.e.So, if jjf 0jjF ��1� � �, then by Lemma 4.8, fu(z) is��rj(fu)0(z)j; �; (2jjf 0jjF ��1���1)�t(!)L(!; 2jjf 0jjF�; ��(2jjf 0jjF )�1�)��1�-s.l.eIf instead jjf 0jjF ��1� � �, then again it follows from (4.9), Lemma 4.16, Lemma 4.7 and (4.8)that the point fu(z) is ��rj(fu)0(z)j; �; 2�t(!)L(!; 2����1�; �=2)�-s.l.e.. So, part (4.5) is alsoproved.



30 JANINA KOTUS AND MARIUSZ URBA�NSKIIn order to prove (4.3) suppose �rst that u = k. In partiular this is the ase if z 2Sj�0 f�j(
(f)). ThenComp(fk�1(z); fk(z); f; rj(fu)0(z)j) � Comp(fk�1(z); fk(z); f; ��)and by the hoie of k and (2.9) we have fk�1(z) =2 B(
(f); �). Therefore (4.3) follows fromthe hoie of � (see (2.17)) and (2.16).If u > k (so the �rst ase holds), then ru�1 > jjf 0jjF ��1�r and by (2.16) we getru = jfu(z)� !jjfu�1(z)� !j jf 0(fu�1(z))j�1ru�1 � kfk�1ru�1 � ��1�r:So, �rj(fu)0(z)j � � jfu(z) � !j and applying Lemma 2.4 and (2.9) u � k times we onludethat for every k � j � udiam�Comp(f j(z); fu(z); fu�j; �rj(fu)0(z)j)� � �� < �And now for j = k � 1; k � 2; : : : ; 1; 0, the same argument applies as in the ase u = k.Proposition 4.18. Fix a forward f -invariant ompat subset F of CI. Let � and � be bothpositive numbers suh that � < �minf1; ��1; ��1��1g. If 0 < r < ��jjf 0jj�1F ��1 and z 2F n Crit(J(f)), then there exists an integer s = s(�; �; r; z) � 1 with the following threeproperties. j(f s)0(z)j 6= 0: (4.11)If = u(�; r; z) is well-de�ned, then s � u(�; r; z). If either u is not de�ned or s < u, thenthere exists a ritial point  2 Crit(f) suh thatjf s(z)� j � �rj(f s)0(z)j: (4.12)In any ase Comp�z; f s(z); f s; (KA2)�12�#(Crit(f)�rj(f s)0(z)j� \ Crit(f s) = ;: (4.13)Proof. Sine z =2 Crit(f) and in view of Proposition 4.17, there exists a minimal numbers = s(�; �; r; z) for whih at least one of the following two onditions is satis�edjf s(z)� j � �rj(f s)0(z)j (4.14)for some  2 Crit(J(f)) oru(�; r; z) is well-de�ned and s(�; �; r; z) = u(�; r; z) (4.15)Sine j(f s)0(z)j 6= 0, the parts (4.11) and (4.12) are proved.In order to prove (4.13) notie �rst that no matter whih of the two numbers s is, in view ofProposition 4.17 we always have �rj(f s)0(z)j � ���1�� (4.16)



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 31Let us now argue that for every 0 � j � sdiam�Comp(f s�j(z); f s(z); f j; �rj(f s)0(z)j)� � � (4.17)Indeed, if s = u, it follows immediately from Proposition 4.17 and (4.3) sine � � �. Otherwisejf s(z) � j � �rj(f s)0(z)j � ���1�� < � and therefore, by (2.14), f s(z) =2 B(
(f); �). Thus(4.17) follows from (2.16).Now by (4.17) and (Lemma 2.8), there exists 0 � p � #(Crit(f)), an inreasing sequene ofintegers 1 � k1 < k2 < : : : < kp � s and mutually distint ritial points 1; 2; : : : ; p of fsuh that flg = Comp(f s�kl(z); f s(z); fkl; �rj(f s)0(z)j) \ Crit(f): (4.18)for every l = 1; 2; : : : ; p and if j =2 fk1; k2; : : : ; kpg, thenComp(f s�j(z); f s(z); f j; �rj(f s)0(z)j) \ Crit(f) = ;: (4.19)Setting k0 = 0 we shall show by indution that for every 0 � l � pComp(f s�kl(z); f s(z); fkl; (KA2)�12�l�rj(f s)0(z)j) \ Crit(fkl) = ;: (4.20)Indeed, for l = 0 there is nothing to prove. So, suppose that (4.20) is true for some 0 � l �p� 1. Then by (4.19)Comp(f s�(kl+1�1)(z); f s(z); fkl+1�1; (KA2)�12�l�rj(f s)0(z)j) \ Crit(fkl+1�1) = ;:So, if l+1 2 Comp(f s�kl+1(z); f s(z); fkl+1; (KA2)�12�(l+1)�rj(f s)0(z)j)then by Lemma 1.4 applied for holomorphi maps H = f , Q = fkl+1�1 and the radiusR = (KA2)�12�(l+1)�rj(f s)0(z)j <  we getjf s�kl+1(z)� l+1j � KA2j(fkl+1)0(f s�kl+1(z))j�1(KA2)�12�(l+1)�rj(f s)0(z)j= 2�(l+1)�rj(f s�kl+1(z))0j� �rj(f s�kl+1(z))0jwhih ontradits the de�nition of s and proves (4.20) for l + 1. In partiular it follows from(4.20) that Comp(z; f s(z); f s; (KA2)�12�#(Crit(f)�rj(f s)0(z)j) \ Crit(f s) = ;The proof is �nished.



32 JANINA KOTUS AND MARIUSZ URBA�NSKI4.3. Hausdor� and Conformal Measure.Let m be a Borel probability measure on CI and let me be its Eulidean version, i.e. dmedm (z) =(1 + jzj2)t. We will need in this and the next setion the following.Lemma 4.19. If z 2 J(f), rn & 0 and M = limn!1 r�tn me(B(z; rn)), thenlim supn!1 m�Bs(z; (2(1 + jzj2))�1rn�((2(1 + jzj2))�1rn)t � 2tMand lim infn!1 m�Bs(z; 2(1 + jzj2)�1rn�(2(1 + jzj2)�1rn)t � 2�tMProof. Sine for every r > 0 suÆiently smallB(z; 2�1(1 + jzj2)r) � Bs(z; r) � B(z; 2(1 + jzj2)r)and sine limr&0 me(B(z; r))m(B(z; r)) = (1 + jzj2)t;we get lim supn!1 m�Bs(z; (2(1 + jzj2))�1rn�((2(1 + jzj2))�1rn)t � limn!1 m(B(z; rn))2�t(1 + jzj2)�trtn = 2tMand lim infn!1 m�Bs(z; 2(1 + jzj2)�1rn�(2(1 + jzj2)�1rn)t � limn!1 m(B(z; rn))2t(1 + jzj2)�trtn = 2�tM:We are done.Our �rst goal is to show that the h-onformal measure m proven to exist in Lemma 3.7 isatomless and that Hh(J(f)) = 0. We will onsider almost t-onformal measures � with t � 1.The notion of upper estimability introdued in De�nition 4.5is onsidered with respet to theEulidean almost t-onformal measure �e. Reall that l = l(f) � 1 is the integer laimed inLemma 2.20 and putRl(f) = inffR(f j; ) :  2 Crit(f) and 1 � j � l(f)g= minfR(f j; ) :  2 Crit(f) \ R and 1 � j � l(f)g <1and Al(f) = supfA(f j; ) :  2 Crit(f) and 1 � j � l(f)g= maxfA(f j; ) :  2 Crit(f) \R and 1 � j � l(f)gwhere the numbers R(f j; ) and A(f j; ) are de�ned just above De�nition 1.1. Sine the num-ber of equivalene lasses of the relation � is �nite, looking at Lemma 2.20 and Lemma 4.15,the following lemma follows immediately from Lemma 4.13.



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 33Lemma 4.20. If R(u)i;1 > 0 is a positive onstant and t 7! C(u)t;i;1 2 (0;1), t 2 [1;1), is aontinuous funtion suh that all points z 2 PC(f)i are (r; C(u)t;i;1)-t:u.e. with respet to anyEulidean almost t-onformal measure �e (with t � 1) for all 0 < r � R(u)i;1 , then there existsa ontinuous funtion t 7! ~C(u)t;i;1 > 0, t 2 [1;1), suh that all ritial points  2 Cri+1(f) are(r; ~C(u)t;i;1)-t:u.e. with respet to any Eulidean almost t-onformal measure �e for all 0 < r �A�1l R(u)i;1 .We shall now prove the following.Lemma 4.21. If R(u)i;2 > 0 is a positive onstant and t 7! C(u)t;i;2 2 (0;1), t 2 [1;1), is aontinuous funtion suh that all ritial points  2 Si(f) are (r; C(u)t;i;2)-t:u.e. with respet toany Eulidean almost t-onformal measure �e (with t � 1) for all 0 < r � R(u)i;2 , then thereexist a ontinuous funtion t 7! ~C(u)t;i;2 > 0, s 2 [1;1), and ~R(u)i;2 > 0 suh that all pointsz 2 PC(f)i are (r; ~C(u)t;i;2)-t:u.e. with respet to any Eulidean almost t-onformal measure �e(with t � 1) for all 0 < r � ~R(u)i;2 .Proof. We shall show that one an take~R(u)i;2 = minn��jjf 0jj�1PC(f)��1; R(u)i;2 ; 1o and ~C(u)t;i;2 = maxfK22tC(u)t;i;2; K2tBsg:Indeed, denote #(Crit(J(f))) by #. Put � = 2K(KA2)2# and then hoose � > 0 so largethat � < �minn1; ��1; ��1��1minf; �; R(u)i;2 =2go: (4.21)Consider 0 < r � ~R(u)i;2 and z 2 PC(f)i. If z 2 Crit(J(f)), then z 2 Si(f) and we are done.Thus, we may assume that z =2 Crit(J(f)). Let s = s(�; �; r; z). By the de�nition of �,2Krj(f s)0(z)j = (KA2)�12�#�rj(f s)0(z)j (4.22)Suppose �rst that u(�; r; z) is well de�ned and s = u(�; r; z). Then by Proposition 4.17(4.4) orProposition 4.17(4.6), applied with � = 2K, we see that the point f s(z) is (2Krj(f s)0(z)j; Bt)-t:u.e.. Using (4.22), it follows from Proposition 4.18(4.13) and Lemma 4.10 that the point zis (r;K2hBh)-h:u.e..If either u is not de�ned or s < u(�; r; z), then in view of Proposition 4.18(4.13), thereexists a ritial point  2 Crit(J(f)) suh that jf s(z) � j � �rj(f s)0(z)j. Sine s � u, byProposition 4.17 and (4.21) we get2Krj(f s)0(z)j � �rj(f s)0(z)j < �����1minf�; R(u)i;2 =2g (4.23)



34 JANINA KOTUS AND MARIUSZ URBA�NSKISine z 2 PC(f)i, it implies that  2 Si(f). Therefore using (4.23), the assumptions ofLemma 4.21, and (4.22) and then applying Proposition 4.18(4.13) and Lemma 4.10, we on-lude that z is (r;K22tC(u)t;i;2)-t:u.e.. The proof is omplete.Lemma 4.22. If b 2 f�1(1), if � is a Eulidean almost t-onformal measure with t > 2qbqb+1suh that �(b) = 0, and if m is the h-onformal measure proven to exist in Lemma 3.7, then�(Bb(R)) � R2� qb+1qb tand me(B(b; r)) � r(qb+1)h�2qbfor all 0 < r � 1.Proof. It follows from Lemma 4.15 that me(fz 2 CI : R � jzj < 2Rg) � R2 and �(fz 2 CI :R � jzj < 2Rg) � R2 for all R > 0 large enough. It therefore follows from (2.2) thatme�(Bb(R) nBb(2R)� � R2R� qb+1qb h: (4.24)and ��(Bb(R) nBb(2R)� � R2R� qb+1qb t: (4.25)Fix now r > 0 so small that R = (r=L)�qb is large enough for the formula (4.24) and (4.25)to hold. Using (2.4) and (4.25) we therefore get�(Bb(R)) = � 0�[j�0�Bb(2jR) nBb(2j+1R)�1A = 1Xj=0 ��Bb(2jR) nBb(2j+1R)�� 1Xj=0(2jR)2(2jR)� qb+1qb t = R2� qb+1qb t 1Xj=0 2j�2� qb+1qb t�= Lqb�2� qb+1qb t�r(qb+1)t�2qb 1Xj=0 2j�2� qb+1qb t� � r(qb+1)t�2qb ;where the last omparability sign was written sine qb+1qb t > 2. We are done with the �rst partof our lemma. Replae now in the above formula � by me and t by h, whih is greater than2qbqb+1 due to Theorem 2.1. Sine in this ase the \�" sign an be, due to (4.24), replaed bythe omparability sign \�", sine the �rst equality sign beomes \�" (we do not rule out thepossibility that me(b) > 0 yet), and sine me(B(b; r)) � �(Bb(R)), we are also done in thisase.We shall prove now the following.Lemma 4.23. The h-onformal measure m for f : J(f) ! J(f) [ f1g proven to exist inLemma 3.7 is atomless.



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 35Proof. Using the indution on i = 0; 1; : : : ; p, it follows immediately from Lemma 4.21(whih is an indutive step and for i = 0 the �rst step of indution as S0(f) = ;), Lemma 4.20,and Lemma 2.19 that there exists a ontinuous funtion t 7! Ct 2 (0;1), t 2 [1;1), suhthat if � is an arbitrary almost t-onformal measure on J(f), then�e(B(x; r)) � Ctrt (4.26)for all x 2 PC(f) and all r � r0 for some r0 > 0 suÆiently small. Consider now the almosttn-onformal measures mn = mBs(Y;1=n) (n is assumed to be so large that Bs(Y; 1=n) � V ),where tn = S(Bs(Y; 1=n)). Letting n !1 and realling that m is a week limit of measuresmn, formula (4.26) gives me(B(x; r)) � Chrh (4.27)for all x 2 PC(f) and all r � r0. It now follows from Lemma 4.19 thatlim supr&0 m(B(x; r)rh � 2hCh:for all x 2 PC(f). In partiular m(Crit(f)) = 0 and onsequentlym0�[n�0 f�n(Crit(f))1A = 0: (4.28)Fix now b 2 f�1(1). Fix t 2 � 2qbqb+1 ; h�. Consider all integers n � 1 so large that tn � t.Sine mn(f�1(1)) � mn(f�1(Bs(Y; 1=n)) = 0, it then follows from Lemma 4.22 thatmn(Bb(R)) � R2� qb+1qb tn � R2� qb+1qb t:Hene me(b) = 0. Sine m and me are equivalent on CI, this gives m(b) = 0. SineSn�0 f�n(b) \ Crit(f) = ;, this implies that m �Sn�0 f�n(b)� = 0. Invoking now (4.28)and Lemma 3.7 �nishes the proof.Theorem 4.24. There exists a unique atomless t-onformal measure m for f : J(f) !J(f)[f1g. Then t = h, m is ergodi onservative and all other onformal measures are purelyatomi, supported on Sing�(f) with exponents larger than h. Consequently m(Tr(f)) = 1.Proof. In view of Lemma 4.23 there exists an atomless h-onformal measure m for f :J(f) ! J(f) [ f1g. Suppose that � is an arbitrary t-onformal measure for f and somet � 0. By Lemma 3.1, t � h. Fix z 2 J(f) n (I1(f) [ Sing�(f)). Then in view of Propo-sition 2.21 there exist a point y(z) 2 J(f) and an inreasing sequene fnkg1k=1 suh thaty(z) = limk!1 fnk(z). De�ne for every l � 1Zl = fz 2 J(f) n (I1(f) [ Sing�(f)) : jy(z)j � l and �(z) � 1=lg;�x l � 1 and z 2 Zl. Considering for k large enough the sets f�nkz (B(y; 14l)) and f�nkz (B(y; 14Kl))),where f�nkz is the holomorphi inverse branh of fnk de�ned on B(y; 12l) and sending fnk(z)



36 JANINA KOTUS AND MARIUSZ URBA�NSKIto z, using onformality of the measure � along with Koebe's distortion theorem, we easilydedue thatB(�; l)�1j(fnk)�(z)j�h � ��Bs(z; j(fnk)�(z)j�1)� � B(�; l)j(fnk)�(z)j�h (4.29)for all k � 1 large enough, where K � 1 is the onstant appearing in the Koebe's distortiontheorem and asribed to the sale 1=2 and  > 0 is some onstant omparable with 1. Fixnow E, an arbitrary bounded Borel set ontained in Zl. Sine m is regular, for every x 2 Ethere exists a radius r(x) > 0he form from (4.29) suh thatm([x2EBs(x; r(x)) n E) < �: (4.30)Now by the Besiovi� theorem (see [G℄) we an hoose a ountable subover fBs(xi; r(xi))g1i=1,r(xi) � �, from the over fBs(x; r(x))gx2E of E, of multipliity bounded by some onstantC � 1, independent of the over. Therefore by (4.29) and (4.30), we obtain�(E) � 1Xi=1 �(Bs(xi; r(xi))) � B(�; l) 1Xi=1 r(xi)t� B(�; l)B(m; l) 1Xi=1 r(xi)t�hm(Bs(xi; r(xi)))� B(�; l)B(m; l)C�t�hm( 1[i=1Bs(xi; r(xi)))� CB(�; l)B(m; l)�t�h(� +m(E)): (4.31)
In the ase when t > h, letting �& 0 we obtain �(Zl) = 0. Sine J(f)n (I1(f)[Sing�(f)) =S1l=1Zl, we therefore get ��J(f) n (I1(f)[ Sing�(f))� = 0 whih by Lemma 3.2 implies that�(Sing�(f)) = 1 and the last part of our theorem is proved . Suppose now that t = h. Sine,in view of Lemma 3.2, �(I1(f) n I�(f)) = m(I1(f)) = 0, using (4.31) and letting l%1, weonlude that �jJ(f)nSing�(f) << mjJ(f)nSing�(f). Exhanging the roles of m and � we infer thatthe measures �jJ(f)nSing�(f) and mjJ(f)nSing�(f) are equivalent. Suppose that �(Sing�(f)) > 0.Then there exists y 2 Crit(J(f)) [ 
(f) [ f�1(1) suh that m(y) > 0. But thenX�2y� j(fn(�))�(�)j�h <1;where y� = Sn�0 f�n(y) and for every � 2 y�, n(�) is the least integer n � 0 suh thatfn(�) = y. Hene, �y = P�2y� j(fn(�))�(�)j�hÆ�P�2y� j(fn(�))�(�)j�his an h-onformal measure supported on y� � Sing�(f). This ontradits the proven fat thatthe measures �yjJ(f)nSing�(f) and mjJ(f)nSing�(f) are equivalent and m(J(f) n Sing�(f)) = 1.Thus � and m are equivalent.



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 37Let us now prove that any h-onformal measure � is ergodi. Indeed, suppose to the ontrarythat f�1(G) = G for some Borel set G � J(f) with 0 < m(G) < 1. But then the twoonditional measures �G and �J(f)nG�G(B) = �(B \G)�(G) ; �J(f)nG(B) = �(B \ J(f) nG)�(J(f) nG)would be h-onformal and mutually singular; a ontradition.If now � is again an arbitrary h-onformal measures, then by a simple omputation based onthe de�nition of onformal measures we see that the Radon-Nikodyn derivative � = d�=dmis onstant on grand orbits of f . Therefore by ergodiity of m we onlude that � is onstantm-almost everywhere. As both m and � are probability measures, it implies that � = 1 a.e.,hene � = m.Let us show now that m is onservative. We shall prove �rst that every forward invariant(f(E) � E) subset E of J(f) is either of measure 0 or 1. Indeed, suppose to the ontrarythat 0 < m(E) < 1. Sine m(I1(f) [ Sing�(f)) = 0, it suÆes to show thatm(E n (I1(f) [ Sing�(f))) = 0:Denote by Z the set of all points z 2 E n (I1(f) [ Sing�(f))) suh thatlimr!0 m(B(z; r) \ (E n (I1(f) [ Sing�(f))))m(B(z; r)) = 1: (4.32)In view of the Lebesgue density theorem (see for example Theorem 2.9.11 in [Fe℄), m(Z) =m(E). Sine m(E) > 0 we �nd at least one point z 2 Z. Sine z 2 J(f)n (I1(f)[Sing�(f)),let x 2 J(f), �(z) > 0, and an inreasing sequene fnkg1k=1 be given by Proposition 2.21.Æ = �(z)=8:Suppose that m(B(x; Æ) n E) = 0. By onformality of m, m(f(Y )) = 0 for all Borel sets Ysuh that m(Y ) = 0. Hene,0 = m�fn(B(x; Æ) n E)� � m�fn(B(x; Æ)) n fn(E)�� m�fn(B(x; Æ)) n E� � m�fn(B(x; Æ)��m(E) (4.33)for all n � 0. Sine J(f) = Sn�1 f�n(1), for some p � 2, the image f p�1(B(x; Æ)) on-tains an open neighbourhood of 1. thus, it ontains at least one (in fat in�nitely many)opy of the fundamental parallelogram R and onsequently f p(B(x; Æ)) = CI . In partiularm�f p(B(x; Æ))� = 1. Then (4.33) implies that 0 � 1�m(E) whih is a ontradition. Con-sequently m(B(x; Æ) n E) > 0. Hene for every j � 1 large enough, m�B(fnj (z); 2Æ) n E� �m�B(x; Æ) n E� > 0. Therefore, as f�1(J(f) n E) � J(f) n E, the standard appliation ofKoebe's Distortion Theorem shows thatlim supr!0 m(B(z; r) n E)m(B(z; r)) > 0



38 JANINA KOTUS AND MARIUSZ URBA�NSKIwhih ontradits (4.32). Thus either m(E) = 0 or m(E) = 1.Now onservativity is straightforward. One needs to prove that for every Borel set B � J(f)with m(B) > 0 one has m(G) = 0, whereG = fx 2 J(f) : Xn�0�B(fn(x)) < +1g:Indeed, suppose that m(G) > 0 and for all n � 0 letGn = fx 2 J(f) : Xk�n�B(fn(x)) = 0g = fx 2 J(f) : fk(x) =2 B for all k � ng:Sine G = Sn�0Gn, there exists k � 0 suh that m(Gk) > 0. Sine all the sets Gn are forwardinvariant we onlude that m(Gk) = 1. But on the other hand all the sets f�n(B), n � k,are of positive measure and are disjoint from Gk. This ontradition �nishes the proof ofonservativity of m. Consequently m(Tr(f)) = 1. Sine, by Lemma 3.1, Hh � m, we thus seethat Hh(J(f) n Tr(f)) = 0. We are done.The proof of part (a) of Theorem 4.1. Let m be the unique h-onformal atomlessmeasure proven to exist in Theorem 4.24. Consider an arbitrary point z 2 Tr(f). Fix a poleb 2 f�1(1). Sine b =2 O+(Crit(f)), there exists  > 0 suh thatB(b; ) \O+(Crit(f)) = ;: (4.34)Sine z 2 Tr(f), there exists an in�nite inreasing sequene fnjg1j=0 suh thatlimj!1 fnj(z) = b and jfnj(z)� bj < =4 (4.35)for every j � 1. It follows from this and (4.34) that for every j � 1 there exists a holomorphiinverse branh f�njz : B(fnj(z); 3=4) ! CI of fnj sending fnj(z) to z. Using now Koebe'sDistortion Theorem (Eulidean version) and Lemma 4.22, we onlude thatme�z; B�Kj(fnj)0(z)j�12jfnj(z)� bj�� � me�B�fnj (z); 2jfnj(z)� bj��j(fnj)0(z)j�h� me�B(b; jfnj(z)� bj)�j(fnj)0(z)j�h� jfnj(z)� bj(qb+1)h�2qb j(fnj)0(z)j�h= �Kj(fnj)0(z)j�1jfnj(z)� bj�hK�hjfnj(z)� bjqb(h�2):Sine h < 2, using (4.35), this implies that limr!0r�hme(B(z; r)) =1. Hene Hh(Tr(f)) = 0in view of Theorem 4.3. Sine by Theorem 4.24 me(J(f) n Tr(f)) = 0, it follows fromLemma 3.1 that Hh(J(f)nTr(f)) = 0. In onlusion Hh(J(f)) = 0 and the proof is omplete.Proposition 4.25. The onformal measure m is absolutely ontinuous with respet to thepaking measure �t and moreover, the Radon-Nikodym derivative dm=d�t is uniformly boundedaway from in�nity. In partiular �t(J(f)) > 0.



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 39Proof. Sine J(f) \ !�Crit(f) n Crit(J(f))� = 
(f), we onlude from Lemma 2.9 thatthere exists y 2 J(f) at a positive distane, say 8�, from O+(Crit(f)). Fix z 2 Tr(f). Thenthere exists an in�nite sequene nj � 1 of inreasing integers suh that fnj(z) 2 B(y; �).Therefore B(fnj (z); 4�) \O+(Crit(f)) = ; and onsequentlyComp(z; fnj(z); fnj ; �=2) \ Crit(fnj ) = ;Hene, it follows from Lemma 1.2 and Lemma 4.10 thatlim infr!0 me(B(z; r))rh � Bfor some onstant B 2 (0;1) and all z 2 Tr(f). Applying Lemma 4.19 we therefore get thatlim infr!0 m(Bs(z; r))rh � 2hB:Hene, by Theorem 4.4(1), the measure mjTr(f) is absolutely ontinuous with respet to�hjTr(f). Sine, by Theorem 4.24, m(J(f) n Tr(f)) = 0, we are done.Lemma 4.26. If 
(f) 6= ;, then �h(J(f)) = +1.Proof. Fix ! 2 
. Sine Sn�0 f�n(!) is dense in J(f) and, by Lemma 2.9, !(Crit(f))is non-where dense in J(f), there exist an integer s > 0, a real number � > 0, and a pointy 2 f�s(!)nB�Sn�0 fn(Crit(f)); ��. Sine by Theorem 2.1, h > 1, it follows from Lemma 2.5and Lemma 4.13 (y may happen to be a ritial point of f s!) thatlim infr!0 me(B(y; r))rh = 0: (4.36)Consider now a transitive point z 2 J(f), i.e. z 2 Tr(f). Then there exists an in�niteinreasing sequene nj = nj(z) � 1 of positive integers suh thatlimj!1 jfnj(z)� yj = 0 and rj = jfnj(z)� yj < �=7for every j = 1; 2; : : : . By the hoie of y, for all j � 1 there exist holomorphi inverse branhesf�njz : B(fnj (z); 6rj)! CI sending fnj(z) to z. So, applying Lemma 1.2 and Lemma 4.10 withR = 3rj, we onlude from (4.36) thatlim infr!0 me(B(z; r))rh = 0:Applying Lemma 4.19, we onlude that the same formulas remain true with me replaedby m and B(z; r) by Bs(z; r). Therefore, it follows from Theorem 4.24 (m(Tr(f)) = 1) andTheorem 4.4(1) that �h(J(f)) = +1. We are done.From now on let m denote the unique atomless h-onformal measure m proven to exist inTheorem 4.24.



40 JANINA KOTUS AND MARIUSZ URBA�NSKISine the number of equivalene lasses of the relation � is �nite, looking at Lemma 2.20 andLemma 4.15, the following lemma follows immediately from Lemma 4.14Lemma 4.27. If C li;1 > 0, 0 < Rli;1 � Rl(f)=3, and 0 < � � 1 are three real numbers suhthat all points z 2 PC(f)i are (r; �; C li;1)-h:s.l.e. with respet to the measure me, then thereexists ~C li;1 > 0 suh that all ritial points  2 Cri+1(f) are (r; ~�; ~C li;1)-h:s.l.e. with respet tothe measure me for all 0 < r � A�1l Rli;1.Let us prove the following.Lemma 4.28. Suppose that 
(f) = ;. Assume that C(l)i;2 > 0, R(l)i;2 > 0 and 0 < � � 1 arethree real numbers suh that all ritial points  2 Si(f) are (r; �; C(l)i;2)-h:s.l.e. with respet tothe measure me for all 0 < r � R(l)i;2. Then there exist ~C(l)i;2 > 0, ~R(l)i;2 > 0 and suh that allpoints z 2 PC(f)i are (r; 8K3A22#(Crit(f)�; ~C(l)i;2)-h:s.l.e. with respet to the measure me forall 0 < r � ~R(l)i;2.Proof. We shall show that this time one an take~R(l)i;2 = minf��jjf 0jj�1F ��1; R(l)i;2; 1g and ~C(l)i;2 = (8(KA2)2#)hC(l)i;2 ;where jjf 0jj = jjf 0jjPC(f)i . Indeed, denote again #(Crit(f)) by #. Take � = 4K(KA2)2# andthen hoose � > 0 so large that� < �minn1; ��1; ��1��1minf; �; R(l)i;2=2go : (4.37)Consider 0 < r � ~R(l)i;2 and z 2 PC(f)i. If z 2 Crit(J(f)), then z 2 Si(f) and we are done.Thus, we may assume that z =2 Crit(J(f)). Let s = s(�; �; r; z). By the de�nition of �4Krj(f s)0(z)j = (KA2)�12�#�rj(f s)0(z)j: (4.38)Suppose �rst that u(�; r; z) is well de�ned and s = u(�; r; z). Then by Proposition 4.17(4.5)or Proposition 4.17(4.6), applied with � = K, we see that the pointf s(z) is (Krk(f s)0(z)k; �=K2;Wh(�=K2))� h:s.l.e.:Using (4.38) it follows from Proposition 4.18(4.13) and Lemma 4.11 that the point z is(r; �;Wh(�=K2))-h:s.l.e.. If either u is not de�ned or s � u(�; r; z), then in view of Proposi-tion 4.18(4.12), there exists a ritial point  2 Crit(f) suh that jf s(z) � j � �rj(f s)0(z)j.Sine s � u, by Proposition 4.17 and (4.37) we get4Krj(f s)0(z)j � �rj(f s)0(z)j < �����1minf�; R(l)i;2=2g: (4.39)Sine z 2 PC(f)i, it implies that  2 Si(f). Therefore, by the assumptions of Lemma 4.28and by (4.39) we onlude that  is (2�rj(f s)0(z)j; �; C(l)i;2)-h:s.l.e.. Consequently, in view of



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 41Lemma 4.7, the point f s(z) is (�rj(f s)0(z)j; 2�; 2hC(l)i;2)-h:s.l.e.. So, by Lemma 4.8 this point is(Krj(f s)0(z)j; 2��=K; (2�K�1)hC(l)i;2)� h:s.l.e.Using now formula (4.38) and Proposition 4.18(4.13) it follows from Lemma 4.11 that thepoint z is (r; 2K��; (2�K�1)hC(l)i;2) � h.s.l.e.. If z 2 Crit(J(f)), then by the de�nition ofPC(f)i we see that z 2 Si(f) and we are done in view of the assumption of the lemma andin view of the de�nitions of ~R(l)i;2 and ~C(l)i;2). The proof is ompleted.Lemma 4.29. If 
(f) = ;, then �he (F ) <1 for every bounded Borel set F � CI.Proof. Let qmin = minfqb : b 2 f�1(1)g:Take � 2 (0; 1) so small that if z 2 CI, then f jB(z;d) is 1-to-1for every d � �dist(z;Crit(f) [f�1(1)). Using indution on i = 0; 1; : : : ; p, it follows immediately from Lemma 4.28 (whihis an indutive step and for i = 0 the �rst step of indution as S0(f) = ;), Lemma 4.27, andLemma 2.19 that eah point z 2 PC(f) is (r; �; G)� hs.l.e. for some � 2 (0; 1), G > 0, R > 0and all r 2 (0; R). Without loss of generality we may assume R 2 (0; 1) to be so small that��1jz � bj�qb � jf(w)j � �jz � bj�qb (4.40)and supfjwj : w 2 PC(f)g � ��1R�qmin � 8R (4.41)for all b 2 f�1(1), all z 2 B(b; R) and some � � 1. Fix a point z 2 F n Sing�(f) andr 2 (0; R). In view of Corollary 2.22 there exists the least n � 1 suh that eitherdist(fn(z);PC(f)) � 8(K�)�1rj(fn)0(z)j or rj(fn)0(z)j � 18�R:There are the following three possibilities.10 K�1rj(fn)0(z)j < 18�R:This in partiular implies thatdist(fn(z);PC(f)) � 8(K�)�1rj(fn)0(z)j:20 K�1rj(fn)0(z)j � 18�R and dist(fn(z);PC(f)) > 8(K�)�1rj(fn)0(z)j:30 K�1rj(fn)0(z)j � 18�R and dist(fn(z);PC(f)) � 8(K�)�1rj(fn)0(z)j:



42 JANINA KOTUS AND MARIUSZ URBA�NSKILet us onsider the ase 10. Sine 8(K�)�1rj(fn�1)0(z)j < dist(fn�1(z);PC(f)), we get8K�1rj(fn�1)0(z)j < �dist(fn�1(z);Crit(f)): (4.42)Suppose now that 8K�1rj(fn�1)0(z)j � �dist(fn�1(z); f�1(1)):This implies that there exists b 2 f�1(1) suh that jfn�1(z) � bj < R. Hene, using (4.40),we get jfn(z)j � ��1jfn�1(z)� bj�qb � ��1R�qb:On the other hand, using (4.41), we obtainjfn(z)j � supfjwj : w 2 PC(f)g+ dist(fn(z);PC(f))� supfjwj : w 2 PC(f)g+ 8(K�)�1rj(fn)0(z)j� supfjwj : w 2 PC(f)g+ 8R � ��1R�qb:This ontradition shows that8K�1rj(fn�1)0(z)j < �dist(fn�1(z); f�1(1)):Along with (4.42) and the de�nition of �, this implies that the map f restrited to the ballB(fn�1(z); 8K�1rj(fn�1)0(z)j), is univalent. It therefore follows from Koebe's 14 -theorem thatf�B(fn�1(z); 8K�1rj(fn�1)0(z)j)� � B(fn(z); 2K�1rj(fn)0(z)j): (4.43)Thus, there exists a unique holomorphi inverse branh f�1� : B(fn(z); 2K�1rj(fn)0(z)j) !B(fn�1(z); 8K�1rj(fn�1)0(z)j) of f sending fn(z) to fn�1(z). SineB(fn�1(z); 8K�1rj(fn�1)0(z)j) \ PC(f) = ;there exists a unique holomorphi inverse branhf�(n�1)z : B(fn�1(z); 8K�1rj(fn�1)0(z)j)! CIof fn�1 sending fn�1(z) to z. Therefore, the ompositionf�nz = f�(n�1)z Æ f�1� : B(fn(z); 2K�1rj(fn)0(z)j)! CIis a well-de�ned holomorphi inverse branh of fn sending fn(z) to z. As dist(fn(z);PC(f)) <R, sine K�1rj(fn)0(z)j < R and sine eah point z 2 PC(f) is (r; �; G) � hs.l.e., we obtainthat me�B(fn(z); K�1rj(fn)0(z)j)� � G(K�1rj(fn)0(z)j)h:Using now Koebe's distortion theorem, we onlude thatme(B(z; r)) � me�f�nz �B(fn(z); K�1rj(fn)0(z)j)��� K�hj(fn)0(z)j�hme(B(fn(z); K�1rj(fn)0(z)j))� K�hj(fn)0(z)j�hGhK�hrhj(fn)0(z)jh = (GK�2rh: (4.44)



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 43Let us now deal with the ase 20. In this ase the holomorphi inverse branh f�nz :B(fn(z); 2K�1rj(fn)0(z)j)! CI of fn sending fn(z) to z is well-de�ne. Using Koebe's distor-tion theorem and Lemma 4.15, we getme(B(z; r)) � me�f�nz �B(fn(z); K�1rj(fn)0(z)j)��� K�hj(fn)0(z)j�hme(B(fn(z); K�1rj(fn)0(z)j))� K�hj(fn)0(z)j�hCh �18R�� (K�1rj(fn)0(z)j)h= Ch �18R��K�2hrh (4.45)
Case 33. Suppose �rst that jfn�1(z)� bj � 12K�1rj(fn�1)0(z)jfor some pole b 2 f�1(1). ThenB(fn�1(z); K�1rj(fn�1)0(z)j � B(b; 12K�1rj(fn�1)0(z)j): (4.46)Sine 12K�1rj(fn�1)0(z)j � 116�R, it follows from Lemma 4.22 thatme�B(b; 12K�1rj(fn�1)0(z)j)� � C�12K�1rj(fn�1)0(z)j�(qb+1)h�2qb (4.47)for some universal onstant C > 0. Sine 2K�1rj(fn�1)0(z)j < 8K�1��1rj(fn�1)0(z)j �dist(fn�1(z);PC(f)), we see that there exists a unique holomorphi inverse branh f�(n�1)z :B(fn�1(z); 2K�1rj(fn�1)0(z)j)! CI of fn�1 sending fn�1(z) to z. Therefore, applying (4.46),(4.47) and Koebe's distortion theorem, we obtainme(B(z; r)) � me�f�(n�1)z �B(fn(z); K�1rj(fn�1)0(z)j)��� K�hj(fn�1)0(z)j�hme�B(fn�1(z); K�1rj(fn�1)0(z)j)�� K�hj(fn�1)0(z)j�hme�B(b; 12K�1rj(fn�1)0(z)j)�� K�hCj(fn�1)0(z)j�h�12K�1rj(fn�1)0(z)j�(qb+1)h�2qb� CK�h�K�1rj(fn�1)0(z)j�qb(h�2)rh� CK�h �18�R�qmax(h�2) rh:

(4.48)
So, suppose �nally that jfn�1(z)� bj > 12K�1rj(fn�1)0(z)j:



44 JANINA KOTUS AND MARIUSZ URBA�NSKIfor all poles b 2 f�1(1). Sine alsodist(fn�1(z);PC(f)) > 4K�1��1rj(fn�1)0(z)j; (4.49)we onlude that the map f : CI ! CI, restrited to the ball B(fn�1(z); 12�K�1rj(fn�1)0(z)j),is univalent. It therefore follows from Koebe's 14 -theorem thatf�B(fn�1(z); 12�K�1rj(fn�1)0(z)j)� � B�18�K�1rj(fn)0(z)j�:Hene, there exists a unique holomorphi inverse branh f�1� : B�fn(z); 18�K�1rj(fn)0(z)j�!B(fn�1(z); 12�K�1rj(fn�1)0(z)j) of f sending fn(z) to fn�1(z). In view of (4.49) there existsa unique holomorphi inverse branh f�(n�1)z : B(fn�1(z); 12�K�1rj(fn�1)0(z)j) ! CI of fn�1sending fn�1(z) to z. Hene, the ompositionf�nz = f�(n�1)z Æ f�1� : B�fn(z); 18�K�1rj(fn)0(z)j�! CIis a well-de�ned holomorphi inverse branh of fn sending fn(z) to z. Sine 116�K�1rj(fn)0(z)j >2�7�2R, applying Koebe's distortion theorem and Lemma 4.15, we getme(B(z; r)) � me�f�(n�1)z �B(fn(z); 116�K�1rj(fn)0(z)j)��� K�hj(fn)0(z)j�hme�B(fn(z); (16K)�1�rj(fn)0(z)j)�� K�hCh(2�7�2R)j(fn)0(z)j�h�(16K)�1�rj(fn)0(z)j�h= (16)�1K�2h�Ch(2�7�2R)rh:Combining this inequality along with (4.44) (4.45) and (4.48), we onlude that �he (F ) <1.We are done.Our last lemma in this setion is this.Lemma 4.30. If 
(f) = ;, then the spherial paking measure �h(J(f)) is �nite.Proof. Sine the paking measure �h is �-invariant, it follows from Lemma 4.29 andProposition 4.25 that �he�J(f) \ (B(0; 2R) nB(0; R))� � R2 for all R � 1. Sine in additiondPhd�he (z) = (1 + jzj2)�h and sine h > 1, we get�h�J(f) \ (CI nB(0; 1))� = 1Xn=0�h�J(f) \ (B(0; 2n+1) nB(0; 2n))�� 1Xn=0 2�2hn�he�J(f) \ (B(0; 2n+1) nB(0; 2n))�� 1Xn=0 2�2hn22n = 1Xn=0 2(2�2h)n <1:



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 45We are done.The proof of Theorem 4.1 is therefore omplete.5. Invariant MeasuresIn this setion we deal with �-�nite invariant measures equivalent to the onformal measurem. We prove their existene, ergodiity, onservativity and we detet the points around whihthese measures are �nite or in�nite. This allows us to provide suÆient onditions for their�niteness.5.1. �-�nite invariant measures equivalent to the onformal measure m. In order toprove Theorem 5.2 below we apply a general suÆient ondition for the existene of �-�niteabsolutely ontinuous invariant measure proven in [15℄. In order to formulate this onditionsuppose that X is a �-ompat metri spae, � is a Borel probability measure on X, positiveon open sets, and that a measurable map f : X ! X is given with respet to whih measure� is quasi-invariant, i.e. � Æ f�1 << �. Moreover we assume the existene of a ountablepartition � = fAn : n � 0g of subsets of X whih are all �-ompat and of positive measure�. We also assume that �(X n Sn�0An) = 0, and if additionally for all m;n � 1 there existsk � 0 suh that �(f�k(Am) \ An) > 0;then the partition � is alled irreduible. Martens' result omprising Proposition 2.6 andTheorem 2.9 of [15℄ reads the following.Theorem 5.1. Suppose that � = fAn : n � 0g is an irreduible partition for T : X ! X.Suppose that T is onservative and ergodi with respet to the measure �. If for every n � 1there exists Kn � 1 suh that for all k � 0 and all Borel subsets A of AnK�1n �(A)�(An) � �(f�k(A))�(f�k(An)) � Kn �(A)�(An) ;then T has a �-�nite T -invariant measure � absolutely ontinuous with respet to �. Inaddition, � is equivalent with �, onservative and ergodi, and unique up to a multipliativeonstant. Moreover, for every Borel set A � X�(A) = limn!1 Pnk=0 �(f�k(A))Pnk=0m(f�k(A0)) :The �rst result of this setion is the following.Theorem 5.2. There exists a �-�nite f -invariant measure � absolutely ontinuous with re-spet to h-onformal measure m. In addition, � is equivalent with m and ergodi.



46 JANINA KOTUS AND MARIUSZ URBA�NSKIProof. Let � 2 CI be a periodi point of f with some period p � 3. We putP3(f) = O+(f(Crit(f))) [ f�; f(�); : : : ; f p�1(�)g:Sine O+(f(Crit(f)) is a forward-invariant nowhere-dense subset of J(f) and sine the h-onformal measure m is positive on nonempty open subsets of J(f), it follows from ergodiityand onservativity of m (see Theorem 4.24) that m(O+(f(Crit(f)))) = 0. Sine m has noatoms (see Theorem 4.24) we therefore obtain that m(P3(f)) = 0. We shall now onstrutthe partition � of the set J(f) n P3(f). We shall hek next that it satis�es the assumptionsof Theorem 5.1. We �rst de�ne the family of balls�B �z; 12dist(z; P3(f))��z2CInP3(f) :This family obviously overs CI n P3(f). Sine CI n P3(f) is an open set, it is a Lindel�of spae,and therefore we an hoose a ountable subover of CI n P3(f), whih we denote by�B �zi; 12dist�zi; P3(f)���1i=1 :We indutively de�ne a partition A = fAig1i=0 of CI n P3(f) as follows. LetA0 = �B �z0; 12dist(z0; P3(f))�� :Assume that we have de�ned the set A1; : : : ; An suh thatAj � �B �zj; 12dist(zj; P3(f))��and IntAj 6= ;:Then An+1 we de�ne asAn+1 = �B �zn+1; 12dist(zn+1; P3(f))�� n n[j=1Aj:The set An+1 is disjoint with the sets A1; : : : ; An andAn+1 � B �zn+1; 12dist(zn+1; P3(f))� n n[j=1B �zj; 12dist(zj; P3(f))� :Thus either An+1 = ; or IntAn+1 6= ; and we remove all the empty sets.We shall now hek that the partition is irreduible. And indeed, it follows from the on-strution of the sets fAig1i=0 and ontinuity of the measure m that it suÆes to demonstratethat if z 2 CI, r > 0 and K � CI is a ompat set, then there exists n � 1 suh thatfn0�B(z; r) n [k�0 f�k(1)1A � K n [k�0 f�k(1):



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 47Sine the set of repelling periodi points is dense in the Julia ([2℄, omp. [5℄), there thus existsa periodi point x 2 B(z; r), say of period q � 1. Sine x is repelling there exists s > 0 sosmall that B(x; s) � B(z; r) and f q(B(x; s)) � B(x; s). Sine Sj�1 f qj(B(x; s)) � CI, sineK is a ompat subset of CI and sine ff qj(B(x; s))g1j=1 is an inreasing family of open sets,there thus exists k � 1 suh that f qk(B(x; s)) � K.Let us hek now the distortion assumption of Theorem 5.1. And indeed, in view of Koebe'sdistortion theorem there exists a onstant K � 1 suh that if f�n� : B�zi; dist(zi; P3(f))�! CIis a holomorphi branh of f�n, then for every k � 0 and all x; y 2 Ak � B �zi; 12dist (zi; P3(f))�we have j(f�n� )0(y)jj(f�n� )0(x)j � K: (5.1)We therefore obtain for all Borel sets A;B � Ak with m(B) > 0 and all n � 0 thatm(f�n� (A))m(f�n� (B)) = RA j(f�n� )0jhdmRA j(f�n� )0jhdm � supAkfj(f�n� )0jhgm(A)infAkfj(f�n� )0jhgm(B) � Khm(A)m(B) :and similarly m(f�n� (A))m(f�n� (B)) � K�hm(A)m(B) :Sine by Theorem 4.24 the measure is onservative ergodi, all the assumptions of Theorem 5.1have been heked and we are done.The following lemma easily follows from Theorem 5.1.Lemma 5.3. For every n � 0 we have 0 < �(An) <1.We say that the f -invariant measure � produed in Theorem 5.2 is of �nite ondensationat x 2 J(f) if and only if there exists an open neighborhood V of x suh that �(V ) < 1.Otherwise � is said to be of in�nite ondensation at x. We respetively say that x is a point of�nite or in�nite ondensation of �. We end this subsetion with the following obvious results.Lemma 5.4. If x is a point of in�nite ondensation of �, then eah point of the losureffn(x) : n � 0g is also of in�nite ondensation of �.Lemma 5.5. The set of points of in�nite ondensation of measure � is ontained in the unionO+(Crit(f)) [ 
 [ f1g.Proof. If z =2 O+(Crit(f)) [ 
 [ f1g, then by loal �niteness of the family fAn : n � 0gthere exist an open neighborhood V of z and an integer k � 0 suh that m�V nSkj=0Aj� = 0.



48 JANINA KOTUS AND MARIUSZ URBA�NSKIHene, in view of Lemma 5.3 and Theorem 5.2 (� � m) we get �(A) � Pkj=0 �(Aj) < 1.The proof is �nished.5.2. 1 is a Point of Finite Condensation of �.The goal of this subsetion is to prove that1 is a point of a �nite ondensation of the measure�. We start with the following.Lemma 5.6. For every R > 1 large enough there exists a onstant C1(R) > 0 suh thatm(Bb(R)) � C1(R)diamhs (Bb(R)).Proof. For every k � 0 let Ak;R = fz 2 CI : 2kR � jzj < 2k+1Rg. As in the proof ofLemma 3.2 let B+R = fz 2 BR n f1g : Imz > 0gB1R = fz 2 BR n f1g : Imz < 1g and B+R = fz 2 BR n f1g : Imz > 0g:We also put A+k;R = Ak;R \ B+R and A�k;R = Ak;R \ B�R . Using formula (2.3) we an write forall b 2 f�1(1), all j 2 f1; : : : ; qbg and all k � 0 thatm(f�1b;B+R ;j(A+k;R)) = ZA+k;R j(f�1b;B+R ;j)�jhdm � (1 + jbj2)�h(2kR) qb�1qb hm(A+k;R)and similarly m(f�1b;B+R ;j(A�k;R)) � (1 + jbj2)�h(2kR) qb�1qb hm(A�k;R)Thusm(f�1b;R;j(Ak;R)) = m(f�1b;R;j(A+k;R)) +m(f�1b;R;j(A�k;R)) � (1 + jbj2)�h(2kR) qb�1qb hm(Ak;R):Summing now over all j 2 f1; : : : ; qbg, we getm(Ak;R;b) � (1 + jbj2)�h(2kR) qb�1qb hm(Ak;R) (5.2)where Ak;R;b = Bb(R) \ f�1(Ak;R). Therefore, putting S = Pw2�(1 + jwj2)�h <1 (sine byTheorem 2.1 h > 1), we obtainm(f�1(Ak;R)) = Xb2f�1(1)m(Ak;R;b)= Xb2R\f�1(1) Xw2�m(Ak;R;b+w)� Xb2R\f�1(1) Xw2��1 + jb+ wj2��h(2kR) qb�1qb hm(Ak;R)� m(Ak;R) Xb2R\f�1(1)(2kR) qb�1qb h Xw2�(1 + jb + wj2)�h� m(Ak;R)S(2kR) q�1q h



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 49Hene m(Ak;R) � (2kR) 1�qq hS�1m(f�1(Ak;R)) where q = maxfqb : b 2 R \ f�1(1)g. Com-bining this and (5.2), we get for every b 2 f�1(1) thatm(Ak;R;b) � (1 + jbj2)�h(2kR)(1� 1q )h(2kR)( 1q�1)hS�1m(f�1(Ak;R))� (1 + jbj2)�hS�1m(f�1(Ak;R)) � (1 + jbj2)�hm(f�1(Ak;R))Summing now over all k � 0 we get m(Bb(R)) � (1 + jbj2)�hm(f�1(BR)) � (1 + jbj2)�h.Combining in turn this with (2.4) we getm(Bb(R)) � LhR hq diamhs (Bb(R)) (5.3)The proof is omplete.Lemma 5.7. Fix R > 2 suÆiently large. Re-numerating the elements of the partitionfAjg1j=0, we may assume that A0 � BR and diams(A0) = 1. For every b 2 f�1(1) and everyn � 0 let A(n) = f�n(A0) \ Bn, where Bn is a onneted omponent of f�n(BR). Then thereexists a onstant C2 > 0 suh that m(Bn) � C2(R)m(A(n)).Proof. It follows from the onstrution of the partition fAngn�0 thatm(A(n)) � diamhs(A(n)) (5.4)Sine dist(0; A0) � R > 2 and sine diam(A0) = 1 using (2.3), and (2.4), we get for everypole b 2 f�1(1) thatdiams(A0;b)diams(Bb(R)) � (1 + jbj2)�1dist(0; A0) qb�1qb diams(A0)(1 + jbj2)�1R�1qb � R qb�1qb R 1qb = 1; (5.5)where A0;b = f�1(A0) \ Bb(R). Sine !(Crit(f)) is a ompat subset of the omplex planeCI, dist(!(Crit(f)); f�1(1)) > 0. Therefore there exists r > 0 suh that for all R > 1 largeenough Bb(R) � B(b; r) and B(b; 2r) \ O+(Crit(f)) = ;. Sine Bn = f�(n�1)� (Bb(R)) foran appropriate holomorphi inverse branh f�(n�1)� : B(b; 2r) ! CI of f (n�1), it follows fromKoebes's distortion theorem and (5.5)diams(A(n))diams(Bn) = diams(f�(n�1)� (A0;b))diams(f�(n�1)� (Bb(R)) � diams(Ao;b)diams(Bb(R)) � 1and that diamhs (Bn)m(Bn) = diamhs(f�(n�1)� (Bb(R)))m(f�(n�1)� (Bb(R))) � diamhs (Bb(R))m(Bb(R)) :Combining the last two formulas and (5.4) we getm(A(n)) � diamhs(Bn) �  diamhs (Bb(R))m(Bb(R)) !m(Bn) � m(Bn)The proof is omplete.



50 JANINA KOTUS AND MARIUSZ URBA�NSKIWe are ready now to prove the main result of this setion.Theorem 5.8. 1 is the point of �nite ondensation of the measure �.Proof. Take R > 0 so large as required in Lemma 5.7. It follows from this lemma thatm(f�k(BR)) � C2(R)m(f�1(A0)) for every k � 0. Thus, applying Theorem 5.1 , we get�(BR) = limn!1Pnk=0m(f�1(BR))Pnk=0m(f�1(A0)) � C2(R) <1:We are done.5.3. All Points of Finite and In�nite Condensation. We say that z 2 J(f) n 
 isgeometrially good if m(Bn) � diamh(Bn) (5.6)for every set B of suÆiently small diameter ontaining x, every n � 0 and every onnetedomponent Bn of f�n(B). The diretion of the inequality above makes that heking geo-metrial goodness one an assume the sets B to be balls entered at x. The most generalsuÆient ondition for �nite ondensation is the following.Lemma 5.9. If z 2 J(f) n 
 is geometrially good, then z is a point of �nite ondensationof measure �.Proof. Sine z =2 
, taking � > 0 suÆiently small, z =2 B(
; �). Set B = B(z; ).Sine m(B) > 0 and m(Sn�0An) = 1, there exists i � 0 suh that m(B \ Ai) > 0. SineB \Ai \J(f) has a non-empty interior relative to J(f), there exists an open ball F � B \Aihaving nonempty intersetion with J(f). Of ourse m(F ) > 0. For every n � 0 let Bn be aonneted omponent of f�n(B) and let Fn � Bn be some onneted omponent of f�n(F )ontained in Bn. Using Koebe's Distortion Theorem, I (Eulidean version) and the fat thatthe point z is geometrially good, we getm(Fn) � diamh(Fn) =  diam(Fn)diam(Bn)!h diamh(Bn) � m(Bn) diam(Fn)diam(Bn)!hApplying now Lemma 2.12 to the onneted sets F and B we obtainm(Fn) � m(Bn) diam(F )diam(B)!h :Thus nXk=0m(f�k(B)) � nXk=0m(f�k(F )) � nXk=0m(f�k(Ai)):



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 51Hene, using Lemma 5.3, we get �(B) � �(Ai) < 1 and therefore z is a point of �niteondensation of �.In order to make use of this lemma we need to provide suÆient onditions for points to begeometrially good. This is done below.Lemma 5.10. If � is h-upper estimable at every point z 2 J(f) with the same estimabilityonstant, then every point z 2 J(f) is geometrially good.Proof. The proof of this lemma follows by a straightforward indutive argument inorpo-rating Koebe's Distortion Theorem, Lemma 4.13, �niteness of the equivalene lasses of therelation � on the set of ritial points of f , Lemma 2.8, and equivalently (2.16).Theorem 5.11. The set of points of in�nite ondensation of � is ontained in the set ofparaboli points 
(f).Proof. The proof of Lemma 4.23 shows that eah point z 2 J(f) is upper estimable withrespet to the Eulidean h-onformal measure me and so, also with respet to the measure m.Therefore the proof of Theorem 5.11 is ompleted by applying Lemma 5.10 and Lemma 5.9.Corollary 5.12. If 
 = ;, then there exists an f -invariant probability measure � equivalentto m.x6. Invariant measure - Paraboli points. From what we have shown in the previoussetion, it is lear that in order to loalize the points of in�nite ondensation of � we have tolook at the paraboli points. Proeeding in exatly the same way as in Setion 6 of [22℄, wean prove the following.Proposition 5.13. If ! 2 
 n O+(Crit(f)), then � is of in�nite ondensation at ! if andonly if h � 2p(!)p(!)+1 .Corollary 5.14. Ifmaxfqb : b 2 R \ f�1(1)g � sup( 2p(!)p(!) + 1 : ! 2 
) ;then the invariant measure � is �nite.



52 JANINA KOTUS AND MARIUSZ URBA�NSKIProposition 5.15. If ! 2 
 and h � 2p(!)p(!)+1 , then � has in�nite ondensation at !.Theorem 5.16. If  2 J(f) is a ritial point of f of order q, ! = f() 2 
, and h � 2qp(!)p(!)+1 ,then ! is of in�nite ondensation of measure �.6. AppendixThe goal of this appendix is to provide a proof of Theorem 2.6. We �rst prove a versionof Przytyki's lemma from [19℄ for the sake of ompleteness and then we prove a version ofMane's theorem from [13℄. We deided to provide a full proof of this theorem sine its originalMane's proof ontains some minor misprints and it would be very diÆult to indiate in whihplaes and in whih way one needs to modify it.Lemma 6.1. For every integer K � 0 and every 0 < � < 1 the following holds. For every� > 0 and every � > 0 there exists Æ0 = Æ0(K; �; �; �) > 0 suh that for every disk B(x; Æ) withÆ � Æ0 and every x 2 CI in the distane at least � apart from the set of paraboli points andattrating points, for every n � 0 and every onneted omponent W = Compf�n(B(x; Æ))suh that fnjW has at most K ritial points ounted with multipliities, for every omponentW 0 = Comp(f�n(B0)) in W , for the dis B0 = B(x; �Æ) we havediamW 0 � �diamW 0 ! 0 for n!1 uniformly (i.e. independently of the hoies of B and W 0).Proof. Suppose on the ontrary that there exist a sequene fxng1n=1 of points in the distaneat least � apart from the set of paraboli points and attrating points, a sequene Æn & 0,a sequene of omponents Wn = Compf�kn(Bn) with kn ! 1, as n ! 1 suh that thenumber of ritial points of eah map fkn on Wn is bounded by K and W 0n, the sequeneassoiate to Wn as in the statement of the lemma, suh that limn!1 diam(W 0n) = 0. Thenfor eah n there exists L = L(n) : 0 � L � K suh that there is no ritial value of fknjWn inP (n) := B(xn; Æn(�+ (1� �) L+ 1K + 1)) nB(xn; Æn(�+ (1� �) LK + 1)):Without loosing generality we may assume that all the omponents W 0n interset the funda-mental region R. PutW (1)n := Compf�knB(xn; Æn(�+ (1� �) L(n)K + 1)))W (2)n := Compf�knB(xn; Æn(�+ (1� �)L(n) + 1K + 1 )))



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 53the omponents ontaining W 0n, Pn :=W (2)n nW (1)nand for every 0 � m � kn, i = 1; 2,W (i)n;m = fkn�m(W (i)n ); Pn;m := fkn�m(Pn) = W (2)n;m nW (1)n;m:Let, for eah n, the number m = m(n) � kn be the least integer suh thatdiamW (1)n;m � min(�; inf1;22Crit(f);1 6=2g dist(1; 2));So for every 0 � t < m(n) the set Pn;t is a topologial annulus. That is so beause ateah step bak by f�1 from Pn;t�1 to Pn;t there is at most one branh point for f�1 fromW (i)n;t�1 to W (i)n;t; i = 1; 2. Now, all the annuli Pn;m(n)�1's have moduli bounded below by2�K(1 � �) 1K+1 . Sine in addition all the omponents W 0n interset the fundamental region<, it follows from Montel's Theorem that there exists a topologial (maybe not geometri)annulus P ontained in all Pn;m(n)�1's for a subsequenes ns, whih bounds a topologial diskD. So D � W (2)ns;m(ns)�1. Hene fm(ns)�1(D) � B(x; Æn). Passing to yet another subsequenewe may assume that the sequene xn onverges to a point y 2 CI at the distane at least � apartfrom the set of paraboli points and attrating points. Sine Æn ! 0, we have also m(n)!1.Thus D annot interset the Julia set J(f). If the were ontained in a preimage of a Siegeldisk or a Herman ring, the limit of diameters of iterate fm(ns)�1(D) would be positive. ThusD is either ontained in the basin of attration to an attrating periodi orbit or a paraboliperiodi orbit. In either ase the limit of the sets fm(ns)�1(D) would be ontained in eitheran an attrating periodi orbit or a paraboli periodi orbit. Sine this limit would oinidewith y, we get a ontradition. The proof is omplete.Remark 6.2. Obviously this lemma remains true (with the proof required only minor modi-�ations) if instead of the disk B(x; Æ) one takes the square entered at x and with edges oflength Æ. This is the version we will need in the next theorem.Theorem 6.3. Let f : CI ! CI be an ellipti funtion. If a point x 2 J(f) n 
(f) is notontained in the !-limit set of a reurrent ritial point, then for all � > 0 there exists aneighbourhood U of x suh that:(a) For all n � 0, every onneted omponent of f�n(U) has diameter � �;(b) There exists N > 0 suh that for all n � 0 and every onneted omponent V off�n(U), the degree of fnjV is � N ;Proof. The ore of the theorem is (a), from whih the property (b) will easily follow. Givenan open set U � CI denote (U; n) the set of onneted omponents of f�n(U). Observethat V 2 (U; n) implies f j(V ) 2 (U; n � j) for all 0 � j � n. If V 2 (U; n) de�ne�(V; n) = #fx 2 V ; (fn)0(x) = 0g ounted with algebrai multipliity. A square is the setS of the form S = fz 2 CI : j<(z � p)j < Æ; j=(z � p)j < Æg. The point p is the enter and Æ



54 JANINA KOTUS AND MARIUSZ URBA�NSKIits radius. Given a square S with enter p and radius Æ, then, given k > 0, denote by Sk thesquare with enter p and radius kÆ. If S is a square with radius Æ, denote by L(S) the familyof squares ontained in S 32 �S and having radius Æ=4. Denote by L�(S) the family of squaresS 32 � S and having radius Æ=4. Denote by L�(S) the family of squares S 320 with S0 2 L(S).Suppose that x is not a paraboli point or is ontained in the !-limit set of reurrent ritialpoint. Then there exists Æ0 > 0 suh that(1) There is no ritial point  of f suh that there exists 0 � n1 � n2 satisfyingjfn1()� j < Æ0and jfn2()� j < Æ0(2) jx� pj > 10Æ0 for every paraboli or attrating periodi point p.Given � > 0 take �1 > 0 satisfying(3) 0 < �1 < minf�=10; Æ0=10g(4) if U is an open onneted set with diam(U) � 2�1 then diam(W ) � Æ0 for all W 2(U; 1)Let N0 be the number of equivalene lasses of the relation � between ritial points of f .Take N1 > 2 suh that(5) If S is a square and V 2 (S; n) satis�es �(V; n) � N0 + 1 then the number ofonneted omponents of f�n(S 23 ) ontained in V is � N1.Finally, take Æ given by(6) Æ = minfÆ0=10; �1=10; Æ(2N0; �120N1 ; 23 ; Æ0)g where Æ(2N0; �120N1 ; 23 ; Æ0) is given by Lemma 6.1.Let S0 be the square of enter x and radius Æ. Suppose that Theorem 6.3 fails for U = S0.Then there exists n > 0 and V 2 (S0; n) with diamV � � � 10�1. On the other hand, by(1), diamS0 = 2p2Æ < 3Æ < �1: Hene there exists an integer n0 � 0 suh that there existsV0 2 (S 320 ; n0) satisfying(7) diam(f�(n0�i)(S0) \ f i(V0)) � �1 for all 1 � i � n0, and(8) diam(f�n0(S0) \ V0) > �1Sine diamS0 < �1 it follows that n0 > 0. Now, starting with S0 we shall onstrut a sequeneof squares S0; S1; S2; : : : and stritly positive integers n0 � n1 � n2 : : : satisfying(9) Sj+1 2 L�(Sj)(10) there exists Vj 2 (S 32j ; nj) suh thatdiam(f (�nj�i)(Sj) \ f i(Vj)) � �1for all i � i � nj and diam(f�nj(Sj) \ Vj) > �1:



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 55From (7) and (8), it follows that S0 satis�es (10). If we onstrut suh a sequene of squaresand integers, then Theorem 6.3 will be proved by ontradition beause the ondition n0 �n1 � n2 : : : � nm � : : : > 0 implies that nj = ni for all � i for a ertain i. But (a) impliesthat the radius of Sj is (38)jÆ; in partiular diam(Sj)! 0 when j ! +1. But by (10),�1 < diam(f�nj(Sj) \ Vj) = diam(f�ni(Sj) \ Vj);Vj 2 (S 32j ; nj) = (S 32j ; ni)Taking j ! +1; and realling that i is ontained and limj!1 diamSj = 0, we onlude thatthe inequality above annot hold.The sequene fSjg and fnjg will be onstruted by indution starting with S0. Suppose Siand ni onstruted for 0 � i � j. To �nd Sj+1 and nj+1 we begin by observing that from (a)it follows that if p 2 S 2 L�(Sj), then, byjp� xj � jXi=0 diam(Si) = j+1Xi=0(38)idiam(S0) = 2p2 j+1Xi=0(38)iÆ � 4p2Æ:Hene, if a point q satis�es dist(q; S) � Æ0, we havejq � xj � 4p2Æ + Æ0 � 2Æ0:By (2), this means that(11) dist(q; S) > Æ0 for all S 2 L�(Sj) and all paraboli or attrating periodi point q.For the indution step (i.e. the onstrution of Sj+1 and nj+1), we shall use the followinglemma.Lemma 6.4. If U � CI is an open set and V 2 (U; n) satis�esdiamf i(V ) � Æ0; 0 � i � nthen �(V; n) � N0:Proof. If �(V; n) � N0 + 1, there exists N0 + 1 di�erent points xi, 1 � i � N0 + 1, in Vjsuh that (fnj )0(xj) = 0. This means that for eah 1 � i � N0 + 1 there exist 1 � mi < n,suh that fmi(xi) is a ritial point. Realling that N0 is the number of the equivalenelasses of the equivalene relation �, it follows that there exists two di�erent points in the setfxi; 1 � i � N0 + 1g, that we shall denote by x1; x2, and two ritial points 1 and 2 in thesame equivalene lass of the equivalene relation�, suh that fmi(x1) = 2 and fm2(x2) = 2.Assume without loss of generality that 0 � m1 � m2. Then by the hoie of Æ0, m1 < m2 andjfm2�m1(1); 1)j = jfm2�m1(2); 1)j = jfm2(x1)� fm2(x2)j � diamfm2(Vj) � Æ0and jfn�m1 � (1); xj = jfn�m1(fm1(x1))� xj = jfn(x1)� xj � Æ0ontraditing property (1) of Æ0.



56 JANINA KOTUS AND MARIUSZ URBA�NSKINow, to �nd Sj+1 and nj+1 we �rst laim that there exists S 2 L(Sj) that for some 0 < n � njhas V 2 (S; n) with diamV � �110N1 . Suppose that the laim is false. Then, for all 1 � i � nj;diam(f i(Vj)) � diam�f�(nj�i)(Sj) \ f i(Vj)�+ supfdiam(W);W 2 (S; nj � i); S 2 L(Sj)g� �1 + �110N1 � 2�1From this inequality applied to i = 1 and property (4), we havediam(Vj) � Æ0Moreover, sine 2�1 � Æ0 ( by (3)), diam(f i(Vj)) � Æ0for all 1 � i � nj, hene for all 0 � i � nj. By Lemma 6.4. This proves that �(Vj; nj) � N0.Then, sine Vj 2 (S 23j ; nj) it follows from (5), (11) and Lemma 6.4 thatW 2 (Sj; nj);W � Vj ! diam(W ) � �110N1Moreover, by the way N1 was hosen, we have#fW 2 (Sj; nj);W � Vjg � N1and we are assuming thatS 2 L(Sj); U 2 (S; nj)! diam(U) � �10N1 :Now observe that Vj is the union of sets U 2 (S; nj); U � Vj; S 2 L(Sj) and the setsW 2 (Sj; nj);W � Vj. Moreover, for any two sets W 0, W 00 in this family there existW 0 = W0;W1; : : : ;Wk =W 00 in (Sj; nj) and ontained in Vj suh that for all 0 � i < k thereexists Si 2 L(Sj) and Ui 2 (Si; nj) suh that U i \W i 6= ; U i \W i+1 6= ;. Thendiam(Vj) � N1 � �110N1 + �110N1� = �15ontraditing the last inequality in ondition (10). This ompletes the proof of the laim. Nowwe an take S 2 L(Sj) suh that diam(V ) � �10N1 for some V 2 (S; n); 0 � n � nj. Take~V 2 (S 32 ; n) ontaining V . Suppose that �( ~V ; n) � N0. Then by Lemma6.1 and ondition(6) diam(V ) � �120N1sine V 2 ((S 32 ) 23 ; n) and is ontained in ~V . This ontradits the fat thatdiam(V ) � �110N1



GEOMETRY AND ERGODIC THEORY OF NON-RECURRENT ELLIPTIC FUNCTIONS 57and proves �( ~V ; n) � N0 + 1. From Lemma 6.4, it follows thatdiam(f i( ~V )) > Æ0for some 0 � i � n. Now we de�ne Sj+1 = S 32 . Then f i( ~V ) 2 (S 32 ; n� i) and diam(f i( ~V )) >Æ0 � 10�1. Moreover diamS 32j+1 � 2Æ < �1. Then there exists 0 � nj+1 � n � i � nj � i andVj+1 2 (S 32j+1; nj+1) suh that diam(f�nj+1(Sj+1) \ Vj+1) > �1and diam(f�nj+1+i(Sj+1) \ f i(Vj+1)) � �1:Observe that nj+1 > 0 sine diam�Sj+1� < 2Æ < �1. This ompletes the onstrution of thesequene fSjg and fnjg and the proof of part (a) of Theorem 6.3. Property (b) of Theorem 6.3follows from (a) and Lemma 6.4.Our destination in this appendix is the following.Proof of Theorem 2.6 If X is a ompat subset of the omplex plane CI the theoremimmediately follows from Theorem 6.3 and ompatness of X. So suppose that X � J(f) n
(f) is a losed subset of CI. Let � = dist(
(f); f�1(1)) > 0. In view of (2.2) and (2.4)there exists R > 0 so large that if jf(z)j � R=2, then for some b 2 f�1(1),z 2 Bb(R=2)jf 0(z)j � 2 and diam(Bb(R=2)) � �=2: (6.1)Consider now the ompat set Y = X[(CInB(
(f);�=2))nBR and the orresponding number0 < Æ � minf�; R=2g asribed to Y and the number minf�; R=2g. In order to omplete theproof it suÆes to show that if x 2 BR, then the diameter of eah onneted omponent Cn(x)of f�n(B(x; Æ)) does not exeed � for every � > 0. And indeed, �x w 2 f�n(x) \ Cn(x) andlet 1 � k � n be the least integer suh that fn�k(w) =2 BR provided it exists. Otherwise, setk = n. We shall show by mathematial indution thatdiam�fn�j(Cn(x))� � Æ � minf�; R=2g (6.2)for every 0 � j � k. For j = 0 this formula is true sine fn(Cn(x)) = B(x; Æ). So, suppose thatit is true for some 0 � j � k � 1. Sine fn�j(w) 2 BR and sine diam (fn�j(Cn(x))) � R=2,we onlude that fn�j(Cn(x)) � BR=2: (6.3)It therefore follows from the �rst part of formula (6.1) thatdiam�fn�j+1j(Cn(x))� � 12diam�fn�j(Cn(x))� � Æ:This proves formula (6.2). It follows from (6.3) and the seond part of formula (6.1) thatfn�k(Cn(x)) � CI n B(
(f);�=2). Sine we also know that fn�k(w) =2 BR, we onlude thatfn�k(w) 2 Y , we see that diam(Cn(x)) � minf�; R=2g � �. We are done.
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