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Abstract� The notion of a parabolic Cantor set is introduced allowing in the de�nition
of hyperbolic Cantor sets some �xed points to have derivatives of modulus one Such
di�erence in the assumptions widely re�ects in geometric properties of the Cantor set which
are studied in detail It turns out that if the Hausdor� dimension of this set is denoted by h�
then its h�dimensional Hausdor� measure vanishes but the h�dimensional packing measure
is positive and �nite This measure can be also dynamically characterized as the only h�
conformal measure de�ned in a natural way appropriate in this context It is relatively easy
to see that any two parabolic Cantor sets formed with the help of the same alphabet are
canonically topologically conjugate and we then discuss the rigidity problem of what are
the possibly weakest su�cient conditions for this topological conjugacy to be �smoother�
It turns out that if the conjugating homeomorphism preserves moduli of derivatives of
periodic points� then the dimensions of both sets are equal and the homeomorphism is
shown to be absolutely continuous with respect to the corresponding h�dimensional packing
measures This property in turn implies the conjugating homeomorphism to be Lipschitz
continuous Additionally the existence of the scaling function is shown and a version of
rigidity theorem� expressed in terms of scaling functions� is proven We also study the
real analytic Cantor sets for which the stronger rigidity can be shown that the absolute
continuity of the conjugating homeomorphism alone implies its real analyticity
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x�� Introduction� The ultimate goal of this paper is to classify parabolic Cantor sets
up to bi�Lipschitz and real analytic conjugacy This is done in the last three sections of
the paper The �rst � sections forming the preparation for the classi�cation part occupy a
considerable part of the paper In these sections we establish basic dynamical and geomet�
ric properties of a single parabolic Cantor set The theory of parabolic Cantor sets takes
roots from the theory of parabolic rational maps and expanding cookie�cutter Cantor sets
The former one shared larger part in this paper as a model and prototype for exploring
properties of a single map In particular it equipped us with the powerful method of con�
formal measures which turn out to be very convenient tools when hyperbolicity fails One
of our aims was to demonstrate in a relatively uncomplicated setting �extremely simple
phase space � just the interval� how this machinery works it has turned out to be very
fruitful in various areas dealing with iterates of conformal maps We mean here Kleinian
groups� particularly the pioneering work of Patterson �see �Pa
�� �Pa��� who introduced the
concept of conformal measures� and developing his approach work of Sullivan �see �Su��
and �Su	� for example� Sullivan has also brought the concept of conformal measures to
the setting of rational functions �see �Su��� comp �DU	� for example� This has resulted
in a bunch of papers on the subject and subsequently� along with the �jump� construction
�see Section ��� contributed to the recent development of the theory of conformal in�nite
iterated function systems �see �Ba� and �MU� for example�
On the other hand the theory of expanding Cantor sets �see for example �Be�� �LS�� �Pr���
�Pr��� �PT�� �Su
�� and �Su��� where also a more complete collection of literature can be
found� mainly provided us with the framework to investigate conjugacy classes for parabolic
Cantor sets
The part of the presentation of those properties of a single map which actually do not ap�
peal to the one�dimensional and totally ordered structures of the interval is to high degree
comparable with the presentation given in the papers �ADU�� �DU
� � �DU��� �U
�� and �U��
for rational functions In this respect the technical di�erence between parabolic Cantor
sets and parabolic rational functions is that these latter ones are not required to be analytic
� we actually attempt to work here with as little amount of smoothness as possible One of
the primary tools as well here as in the setting of parabolic rational maps and expanding
Cantor sets is the bounded distortion of derivatives along long inverse branches of iterates
It is the classical fact today that the distortion is bounded for expanding �hyperbolic� sys�
tems In case of parabolic rational maps we have the Koebe distortion theorem at hands�
and �nally this is a technical problem which focuses our attention in the second section of
this paper
From the theory of expanding Cantor sets we mostly borrowed and adopted to our setting
the concept of scaling function and the rigidity problem I contrast to what is going on in
the case of expanding Cantor sets� geometry of parabolic Cantor sets fails to be bounded
Nevertheless it continues to be determined� up to the level of bi�Lipschitz conjugacy� by the
scaling function The geometry is also determined �again up to bi�Lipschitz conjugacy� by
the packing measure class and the Hausdor� dimension of the Cantor set This much less
evident than in the case of expanding sets The point is that for expanding sets there is an
extremely simple relation between conformal �equivalently packing� measure of a ball and
the power of its radius� power taken with the exponent being the Hausdor� dimension of
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the Cantor set under consideration Namely� these two quantities are almost proportional
� their ratio stays bounded away from zero and in�nity For parabolic Cantor sets the
relation between radii of balls and their conformal measures is more complex Proving
Lipschitz conjugacy becomes technically more involved
Of special attention is Section �� where dealing with real analytic systems� employing the
methods of complex analytic functions and� indirectly the concept of nonlinearity �see �Su
�
and �Pr���� we prove a stronger version of rigidity that the absolute continuity �with respect
to packing measures� of the conjugating homeomorphism alone implies its real analyticity

x�� Preliminaries� Let S� denote the unit circle fz � CI � jzj � 
g and let l be the
normalized Lebesgue measure on S�� l�S�� � 
 Let I be a �nite set consisting of at
least two elements and let f�j � j � Ig be a �nite collection of closed nondegenerate
and not overlapping subarcs �their intersections contain at most one point� of S� Finally
let f �

S
j�I �j � S� be a C� continuous map� open onto its image with the following

properties�

��
� If i� j � I and �i ��j �� �� then f j�i��j
is injective

���� For every j � I the restriction f j�j
is C��� di�erentiable� that is the derivative

function f �j�j
is H�older continuous with an exponent � � � which means that

jf ��y�� f ��x�j � Qjy � xj�

for some constant Q � � and all x� y � �j 

���� jf ��x�j 	 
 for all x �
S
j�I �j but jf ��x�j � 
 may hold only if f�x� � x

���� If f��� � � and jf ����j � 
� then the derivative f � is monotone on each su�ciently
small one�sided neighborhood of �

��	� There exists L 	 � such that if f��� � � and jf ����j � 
� then there exists � � � �
���� � ���
� ����
 if � � 
� such that

�

L
� lim inf

x��

jjf ��x�j � 
j

jx� �j�
� lim sup

x��

jjf ��x�j � 
j

jx� �j�
�

L

�

���� For every i � I there exists I�i� � I such that f��i� �
S
j�I �j �

S
k�I�k��k

The reader should notice that in the case when the intervals Ij are mutually disjoint� then
without loosing generality the circle S� can be replaced by a compact subinterval of IR In
this case also the openness of f �

S
j�I �j � S� and ��
� follow automatically from other

assumptions
Coming back to the general case� property ��	�� describes a kind of hyperbolicity and re�
quirement ��	�� establishes the Markov property which always gives rise to a nice symbolic
representation of f  In the sequel we will need f to satisfy one condition more In order
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to express it and in order to express various properties of objects introduced above let us
prepare a suitable language To begin with let A � I � I � f�� 
g be the matrix �called
incidence matrix� de�ned by the requirement that Aij � 
 if and only if f��i�  �j  The
last condition we need is that the matrix A is primitive which means that

���� There exists q 	 
 such that all entries of Aq are positive

Let next ��A � I� be the space of all one�sided in�nite sequences 
 � 
�
�
� 	 	 	 acceptable
by A� that is such that A�j�j�� � 
 for all j � �� 
� �� 	 	 	 and let �

�
A be the set of all �nite

sequences acceptable by A We put �A � �
�
A ��

�
A and for every integer n 	 � we let �nA

be the subset of ��A consisting of all words of length n� 
 Going on with notation� given

 � �A and n 	 � we de�ne 
 jn � 
�
� 	 	 	 
n to consist of the �rst n � 
 initial letters
of 
 � if n� 
 exceeds the length of 
 � then 
 jn is just 
  Notice that ��A is compact and
by primitiveness of A it is nonempty Notice also that ��A is forward invariant under the
left�sided shift map �cutting out the �rst coordinate� which will be denoted by � For all
words 
 � �nA� n 	 � de�ne

��
� � ��� � f
������� � 	 	 	 � f

�n���n�

Observe that ��
� is a nonempty closed subinterval of S� Fix 
 � ��A and consider the
descending sequence f��
 jn� � n 	 �g of compact nonempty subintervals of S� Then
the intersection

T
n����
 jn� is a closed nonempty subinterval of S

� We shall prove the
following

Lemma ���� For every 
 � ��A the set ��
� �
T
n����
 jn� is a singleton Even more�

the diameters of ��
 jn� tend to zero uniformly with respect to n

Proof� Let ��A � f
 � ��A � l���
�� � �g and suppose that ��
A �� � Since for any two

distinct elements 
� 
 � ��A the intersection ��
����
� is either an empty set or a point�
the family ��

A contains an element of largest length So� the remark that if 
 � �
�
A � then

also ��
� � ��A and l�����
��� � l�f���
��� � l���
��� gives a contradiction and �nishes
the proof of the �rst part of the lemma
In order to prove the second part suppose to the contrary that � � � � �n 	 � � 
 �n� �

��A �kn 	 n such that l�
 j�n�kn
� 	 � By compactness of ��A we can �nd an accumulation

point 
 � ��A of the sequence f
 �n� � n 	 
g But keeping in mind that the sequence
of lengths fl���
 jn�� � n 	 
g is decreasing this yields l���
 jn�� 	 � for all n 	 
 and
consequently l���
�� 	 � This however contradicts the �rst part of the lemma and
completes the proof �

In view of Lemma �
 we can de�ne a continuous map  � ��A � S� putting �
� � ��
�
The range of this map� the set J � J�f� � ���A � is called the dynamical Cantor set
�DCS� associated to the dynamical system �f� I� �j� j � I� Although J may happen to be
an interval� nevertheless we still choose the name Cantor set since we consider an interval
as a degenerate Cantor set� and since� which is perhaps a more important reason� J is an
interval in� in some sense� exceptional cases only �see Theorem �� below� Let us now
formulate the following obvious lemma

�



Lemma ���� We have

�a� J �
T
n��

S
���n

A
��
�

�b� J can be characterized as the set of those points of S� whose all positive iterates under
f are de�ned �and therefore contained in

S
j�I �j�

�c� f���J� � J � f�J�

�d� f �  �  � �

Proof� Properties �a� and �b� are obvious The relations f�J� � J � f���J� follow
immediately from �b�� and the inclusion f�J�  J follows from �b� and primitiveness of
the matrix A The property �d� follows from the de�nition of J  �

For every 
 � �A de�ne J�
� � J � ��
� For every x � S� and r � � de�ne BS��x� r�
and BJ�x� r� to be the balls centered at x with radius r respectively in the space S

� and
J  Additionally let B�x� r� be the convex hull in S� containing BJ�x� r� Note that if r is
su�ciently small �independently of r�� then B�x� r� �

S
j�I �j  The next lemma provides

most basic �formal� properties of the sets J�
� Its proof is of set�theoretic �avor and is
left for the reader

Lemma ���� We have

�a� ��n��� J �
S
���n

A
J�
�

�b� ������
A
n��

A
� f�J�
�� � J���
�� and f���
�� � ����
��	

�c� ��i���
A
� f�J�i�� �

S
fJ�j� � Aij � 
g	

�d� ��n��� ������
A
� J�
� �

S
j�I J�
j�	

�e� If U is a nonempty open subset of J � then fn�U� � J for some integer n 	 �

�f� ��x�J� ��n���
S
k�n f

���fxg� n
S
k	n f

���fxg� is dense in J 

Perhaps only a few words about the proof of �e� would be in order Indeed� by primitiveness
of of A there exists k 	 � such that fn�k�J�
�� � J for every 
 � ��A and n � j
 j � 

So� the remark that each nonempty open subset of J contains a cylinder J�
� for some

 � ��A completes the argument

Lemma ���� The set J is either a topological Cantor set �perfect� totally disconnected�
or an interval In particular� if

S
j�I �j is not an interval� then J is a topological Cantor

set

Proof� First we shall show that J contains at least two distinct points Indeed� suppose
to the contrary that J is a singleton� say z Then� as by the de�nition of J � all sets
C�i�� i � I� are nonempty� we deduce that I consists of exactly two elements� say i� and
i�� and Ii� � Ii� � fzg Thus f�z� � z and� as it follows from primitiveness of A that
f��ij �  �i� ��i� for j � 
 or j � �� we deduce from ��
� that f��ij � � S� Therefore
applying ��
� again we conclude that f is a homeomorphism of �ij onto S

� which is a
contradiction and �nishes the proof that J contains at least two distinct points Now� since
by primitiveness of A� for every 
 � ��A there is an integer n 	 � such that f

n�J�
�� � J �

	



each cylinder J�
� contains at least two distinct points Hence� applying Lemma �
 and
Lemma ���a� �nishes the proof of perfectness of J 

In order to complete the proof of the �rst part it su�ces now to show that if J is not totally
disconnected� then it is an interval Indeed� suppose that U is a nondegenerate interval
contained in J  Then U has a nonempty interior in J and by Lemma ���e�� J � fq�U�
for some q 	 � So� J as a continuous image of a connected set is also connected The
second part follows from the �rst one and the observation that by primitiveness of A� the
set J intersects each interval �j � j � I �

Let

 �  �f� � �f� � f� � J � f��� � � and jf ����j � 
g

Each point � �  is called a �xed parabolic point or shorter a parabolic point For every
q 	 
 consider now the system �fq� Iq� ��
�� 
 � Iq� We shall prove the following

Lemma ���� The set Iq consists of at least two elements� f��
�� 
 � Iqg is a �nite
collection of not�overlapping closed intervals� and fq �

S
��Iq ��
� � S� is continuous

Moreover�

�a� The system �fq� Iq� ��
�� 
 � Iq� satis�es the the conditions ��
� � ����
�b� J�fq� � J�f�
�c�  �fq� �  �f�
�d� If 
 � I� and � �  �f� ���
�� then f�j���� is orientation preserving

Proof� The �rst part of this lemma is obvious Let us now deal with the item �a�
Condition ��
� is satis�ed since the composition of injective maps is injective and condition
���� holds since the composition of C��� di�erentiable maps is C��� di�erentiable To
prove ���� notice that by the chain rule j�fq���x�j 	 
 for all x �

S
��Iq ��
� and suppose

that j�fq���x�j � 
 Then by the chain rule and ���� �for f� we have jf ��f i�x��j � 
 for
all i � �� 
� 	 	 	 � q � 
� and therefore� using the second part of ���� �for f�� we conclude
that f�x� � x Hence we have proved ���� for fq and simultaneously condition �c� of
our lemma In order to prove ���� and ��	� consider �rst two functions g and h de�ned
on a neighborhood of a point �� both keeping it �xed and and satisfying ����� ����� and
��	� Note that then both g and h have an in�ection point at �� �g �h���y�� �g �h���x� ��
g��h�y��g��h�x��

�
h��y��g��h�x��

�
h��y��h��x�

�
and both summands have the same sign

So� g � h has again monotone derivative on either side of � Hence ���� for fq follows by
induction Also

j�g � h���x�� 
j � j�g � h���x�� g����h����j

� j�g��h�x��� g�����h��x� � g�����h��x�� h�����j

� jh��x�jjg��h�x��� g����j� jg����jjh��x�� h����j

� jh��x�jjg��h�x��� 
j� jg����jjh��x�� 
j

where the third equality sign has been written since both numbers �g��h�x��� g�����h��x�
and g�����h��x� � h����� are easily seen to have the same signs Notice that by ��	� for
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h� it follows from Mean Value Theorem that limx��
jh�x���j
jx��j � 
 and as

jg��h�x��� 
j

jx� �j�
�
jg��h�x��� 
j

jh�x�� �j�
�
jh�x�� �j�

jx� �j�

we conclude that ��	� is satis�ed for g�h Now� condition for fq also follows by induction

Moving with the proof� condition ���� follows from Lemma ���b� by induction and ����
is satis�ed since products of primitive matrices are again primitive Property �d� can be
easily derived directly from de�nition �

Besides of the formal value of Lemma �� its practical advantage is that passing to the
second iterate of f one keeps the same Cantor set� the same set of parabolic points� and f�

�preserves� one�sided neighborhoods of parabolic points Therefore from now on we will
assume that already for f itself condition �d� of Lemma �	 is satis�ed

Lemma ��	� For every n 	 
 the set Pern�f� � fx � J � fn�x� � xg is �nite

Proof� First note that in view of ���� and the left�hand side of ��	� every point � �  
has an open neighborhood in

S
j�I �j on which jf

��x�j � 
 except for � itself Therefore
 is countable Suppose now that Pern�f� is in�nite for some n 	 
 and let y be an
accumulation point of Pern�f� Since Pern�f� is closed� y � Pern�f� Note that for every
z � Pern�f� su�ciently close to y� the restriction fnj	z�y
 is well de�ned and injective

Pick one such z �� y Then jz � yj � jfn�z� � fn�y�j �
R z
y
j�fn���x�j dx But since  is

countable� so is the set fx � j�fn���x�j � 
g� hence the last integral is greater than jz � yj
This contradiction �nishes the proof �

Using our assumptions ��
� � ���� and Lemma �� we conclude that the number
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�
min

���
��
minfl�Ii� � i � Ig

minfdist�Ii� Ij� � i� j � I� Ii � Ij � �g

minfjx� yj � x� y � Per��f�� x �� yg

is positive

Lemma ��
� If � � � � �� and x � B�Per��f�� �� n Per��f�� then there exists n 	 
 such
that fn�x� �� B�Per��f�� ��

Proof� Suppose to the contrary that there exists x � B�Per��f�� �� n Per��f� such that
fn�x� � B�Per��f�� �� for all n 	 
 Then there exists z � Per��f� such that f

n�x� �
B�z� �� for all n 	 
 In view of ���� and ��	� the sequence f�n�x� converges� say to y�
and y �� z But then f��y� � y which contradicts the choice of � and �nishes the proof �

Recall that a continuous map S � X � X of a compact metric space X is expansive if
there exists a positive � such that for all x� y � X� x �� y there exists n 	 � such that
dist�Sn�x�� Sn�y�� 	 �
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Theorem ���� The map f � J � J is open and expansive� and any positive number
� � �� is an expansive constant for f 

Proof� In view of Lemma ���c� we have f�W � J� � f�W � � J for all subsets W ofS
j�I �j � and therefore the openness of f � J � J follows from the openness of f �S
j�I �j � f

�S
j�I �j

�
 Let us now prove expressiveness of f � J � J  Take � � � � ��

and suppose to the contrary that there are two distinct points x and y in J such that
jfn�y� � fn�x�j � � for all n 	 � Let x � �
� and y � ���� 
� � � ��A  Since
x �� y� there exists q 	 � such that 
q �� �q Since f

q�x� � ��q and fq�y� � ��q � we get
contradiction if ��q and ��q are disjoint So� ��q ���q �� �� and let z be the only point
of this intersection By the de�nition of ��� all the iterates f

nj	fq�x��fq�y�
 are injective and
fn�z� lies between fqn�x� and fqn�y� By ���� the point z� as well as all other points of the
intervals ��q and ��q � is eventually periodic� say f

p�fs�z�� � fs�z� But then it follows
from Lemma �� that fk�x�� fk�y� �� B�f j�z�� �� for some s � j � s� p� 
� k 	 q� s� and
simultaneously f j�z� lies between fk�x� and fk�y� This contradiction �nishes the proof
�

As an immediate consequence of this theorem� Lemma �� of �DU�� and �Ru� p 
���� �see
also �PU��� we get the following

Corollary ���� �Closing Lemma� For every � � � there exists !� � � such that if n 	 � is
an integer� x � J � and jfn�x�� xj � !�� then there exists a point y � J such that

fn�y� � y and jf j�y�� f j�x�j � �

for all j � �� 
� 	 	 	 � n� 
 �

The following last part of this section is devoted to prove the distortion properties of
iterates of f  First observe that for every � �  there is a continuous inverse branch
f��� � B��� ���� S� of f such that f��� ��� � � By ����

f��� �B��� ���� � B��� ���

and therefore all iterates f�n� �B��� ���� � B��� ���� n 	 
� are well de�ned Moreover� by
property �d� of Lemma �	 the map f��� preserves one�sided neighborhoods of �
Now� the same argument as in the proof of Lemma �� shows that every connected com�
ponent of

S
j�I �j may contain at most one �xed point So� since the sequence f

�n
� �x� is

decreasing toward �� we obtain

���� lim
n��

f�n� �x� � �

for all � �  and all x � B��� ��� We shall prove the following
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Lemma ���� For all � �  and all x � B��� ��jjf jj
��� n f�g we have

jx� �j

jf�x�� xj
�

�X
n��

j�f�n� ���x�j �
f��� �x�� �j

jx� f��� �x�j

Proof� For every x � B��� ��jjf jj���n f�g and k 	 
 let Fk�x� �
Pk

n�� j�f
�n
� ���x�j Then

Z x

f��
� �x�

Fk�t� dt �
kX

n��

jf�n� �x�� f��n���� �x�j � jf��� �x�� f��k���� �x�j	

By ��	� all the functions j�f�n� ��j� n 	 
� are decreasing on either side of � in B��� ��� In
particular Fk�f

��
� �y�� 	 Fk�t� 	 Fk�x� for all f

��
� �x� � t � x Thus jx� f��� �x�jFk�x� �

jf��� �x� � f
��k���
� �x�j � jx � f��� �x�jFk�f��� �x�� Therefore� letting k � 
� using �����

and noting that B��� ��jjf jj��� � f��� �B��� ����� the required inequalities follow �

Observe that in the proof of Lemma �
� we have not used the �rst part of ��	� describing
the in�nitesimal behavior of f around parabolic points� and this is the main reason we
decided to formulate and prove it Incorporating formula ��	� in its full strength we can
prove more� that the series

P�
n�� j�f

�n
� ���x�j� converges This will be done in several

consecutive lemmas We begin with a generalization of a result of Thaler �see �Th�� which
actually goes back to the 
� th century We provide a di�erent more �dynamical� proof
which is here due to L Olsen

Lemma ����� Let p� a� A � � be three positive numbers and let � � ��� A� � IR be a
real�valued function If ��x� � x�axp���o�xp��� as x� ��� then there exists � � ��� A�
such that

lim
n��

�n�x�

n��	p
� �pa���	p

for all x � ��� �� and the convergence is uniform on compact subsets of ��� ��

Proof� For every a � � de�ne an auxiliary function �a � ���
�� ���
� putting

�a�x� �
x

�
 � apxp��	p

It is easy to check that with a� b � � the following conditions are satis�ed

�a� � � �a�x� � x for all x � �

�b� �a � �b � �a�b

�c� �a is increasing

�d� �a�x� � x� axp�� � O�x�p��� as x� ��

�e� limn�� n�	p�na�x� � �pa�
��	p and the convergence is uniform on compact subsets of

���
�

�



Perhaps only property �e� requires a proof Here it is Using �b� we get

�pan��	p�na �x� � �pan�
�	p�na�x� �

x�
xp � �

pan

	�	p � 


uniformly on compact subsets of ���
�

Now note that if g and � are two real�valued functions de�ned on the same interval of IR�
at least one of them� g or � is increasing� and if g � �� then gn � �n for all n 	 
 In
order to prove Lemma �

 �x � � � � a By �d� and the assumption on � there exists
� � ��� A� such that ��a�
� � ��x� � ��a�
��x� for all x � ��� �� and using �c� we therefore
get �n�a�
� � �n�x� � �n�a�
��x� for all x � ��� �� and all n 	 
 Thus� using �e�� we can
write

�p�a� �����	p � lim
n��

n�	p�na�
�x� � lim inf
n��

n�	p�n�x� � lim sup
n��

n�	p�n�x�

� lim
n��

n�	p�na�
�x� � �p�a� �����	p

So� letting �� � �nishes the proof �

As an immediate consequence of Lemma �

 we get the following

Corollary ����� Let p� a� A � � be three positive numbers and let � � ��� A� � IR be a
real�valued function If ��x� � x� axp�� for x � ��� A�� then there exists � � ��� A� such
that

�a� lim sup
n��

�n�x�

n��	p
� �pa���	p

for all x � ��� �� and the convergence is uniform on compact subsets of ��� �� If instead
��x� � x� axp�� for x � ��� A�� then

�b� lim inf
n��

�n�x�

n��	p
	 �pa���	p

Lemma ����� There exist constants � � � � �� and L� 	 � such that if � �  and
z � B��� ��� then

��L��
�� � lim inf

n��

jf�n� �z�� �j

n��	�
� lim sup

n��

jf�n� �z�� �j

n��	�
� L���

and the convergence is uniform on compact subsets of B� � �� n  


�



Proof� First notice that by the Mean Value Theorem and since f is C� di�erentiable we

have limx��
jf�x���j
jx��j � 
 Using this and boundedness of jf ��x�j from below and from

above we deduce that ��	� remains true� perhaps with a bigger value of L� if we replace f
by f���  Then for every x su�ciently close to � we have

jf��� �x�� �j �

Z x

�

j�f��� ���t�j dt �

Z x

�

�
� L��jt� �j�� dt

� jx� �j � L���� � 
���jx� �j�����a�

and similarly

jf��� �x�� �j 	

Z x

�

�
� Ljt� �j�� dt

	 jx� �j � L�� � 
���jx� �j���	��b�

So� employing Lemma �

 completes the proof �

We have enumerated inequalities ��a� and ��b� since these will be frequently used in the
sequel As an immediate consequence of Lemma �
� we get the following

Corollary ����� ����������R	�� ��L��R���� ��z�B�����nB���R�� ��n���

L��R�
�� �

jf�n� �z�� �j

n��	�
�
jf�n� �z�� �j

n��	�
� L��R�

Relying on this fact we shall prove the following

Lemma ����� ����������R	�� ��L��R���� ��z�B�����nB���R�� ��n���

L��R�
�� �

j�f�n� ���z�j

n�
���
�

� L��R�	

Proof� Since all the functions j�f�n� ���z�j� n 	 
� are monotone nearby �� we have

���� j�f�n� ���z�jjf��� �z�� zj � jf�n� �z�� f��n���� �z�j � j�f��n���� ���f��� �z��jjf��� �z�� zj	

It follows from ��a� and ��b� that L�����
���jf�n� �z���j��� � jf�n� �z��f��n���� �z�j �
L�� � 
���jf�n� �z�� �j��� for all x � B��� �� Hence combining Corollary �
� and ����
we get

j�f�n� ���z�j �
L�� � 
���L��R�

���

jf��� �z�� zj
n�

���
�

and

j�f��n���� ���z�j 	
L���� � 
���L��R�

������

jf��� �z�� zj
n�

���
�







The proof is completed �

Since � � ���
���� it follows from Lemma �
	 that for every � �  and every x � B��� ��

��
��
�X
n��

j�f�n� ���x�j� �


and the convergence is uniform on compact subsets of B� � �� n  

Now observe that for every x � S� and every n 	 
� if fn�x� is well�de�ned� then there
exists a continuous inverse branch f�nx � B�fn�x�� ��� � S� of fn sending fn�x� to x�
where �� � minfl�f��i�� � i � Ig We shall prove the following

Lemma ���	� �t�� ���s�� �K��t�s��� �M�t�s��� such that if x � S�� n 	 �� fn�x� is
well�de�ned� and dist�fn�x�� � 	 t� then for all points y� z � B�fn�x��minf�� stg�

K��t� s�
�� �

j�f�nx ���y�j

j�f�nx ���z�j
� K��t� s�

and
n��X
j��

j�f j���x�j� �M�t� s�	

Moreover for every t � � we have lims��K��t� s� � 


Proof� Set r � minf�� �
 � s�tg� � � ��t� s� � inffjf ��z�j � z �� B� � rjjf �jj���g and
let K � K�t� s� � � be the supremum of the series appearing in ��
�� taken over the
set B� � r� n B� � rjjf �jj��� Fix y � B�fn�x��minf�� stg�� for every � � j � n put
yj � f j�f�nx �y�� and let p�j� be the number of integers � � i � n � 
 � j such that
f i�y� �� B� � rjjf �jj��� De�ne also increasing sequences � � kj � lj � n determined by
the requirements that

�a� fykj � ykj��� 	 	 	 � yljg � B� � r�

and

�b� If i ��
S
jfkj� kj � 
� 	 	 	 � ljg� then yi �� B� � r�

Since y � yn �� B� � r�� we conclude that for all j the point ylj � B� � r� nB� � rjjf �jj���

Thus
Plj

i�kj
j�fn�i���yi�j�� � �K � 
�j�fn�lj ���ylj �j

�� � �K � 
����p�lj� and then

n��X
i��

j�fn�i���yi�j
�� �

X
j

�K � 
����p�lj� �
X
i�G

���p�i� � �K � 
�
n��X
i��

���i

� �K � 
�
��

�� � 

���

�

where the second inequality sign we could write since all the numbers p�lj� and p�i�� i � G�
are mutually distinct So� the last part of the lemma is proven As a matter of fact in what


�



follows we will need a slightly stronger version of this estimate where we let the point y vary
in B�fn�x��minf�� stg� with i Let now z be another point in B�fn�x��minf�� stg� Then
using ���� and the mean value theorem we see that for every j there exists w�j� � �z� y�
such that

jlog jf ��zj�j � log jf
��yj�jj � jjf ��zj�j � jf

��yj�jj � Qjzj � yj j
�

� Qj�fn�j���w
�j�
j �j��jz � yj�

� Q��st��j�fn�j���w
�j�
j �j��

Hence applying ��

�� in fact its stronger version discussed above� we get



 log j�f�nx ���y�j � log j�f�nx ���z�j


 �

n��X
j��

jlog jf ��zj�j � log jf
��yj�jj

� ��st��Q
n��X
j��

j�fn�j���w
�j�
j �j��

� ��st��Q�K � 
�
��

�� � 


So� the �rst part of the proof is �nished setting

K��t� s� � exp

�
��st��Q�K � 
�

��

�� � 


�
	

In order to see that lims��K��t� s� � 
 it su�ces to notice that

lim
s��

��t� s� � inffjf ��z�j � z �� B� �minf�� tg�g � 


and lims��K�t� s� is �nite as the supremum of the series appearing in ��
�� over the set
B� �minf�� tg� nB� �minf�� tg�jjf �jj� The proof is �nished �

Observe that given � �  and � � t � �� partitioning separately both connected com�
ponents of B��� �� n B��� t� into �nitely many segments of length � t��� and increasing
K��t� t��� if necessary� we derive from Lemma �
� the following

Corollary ���
� For every � � t � � there exists K��t� � � such that if x � S�� n 	 ��
fn�x� is well�de�ned and belongs to B��� �� nB��� t�� then

K��t�
�� �

j�f�nx ���y�j

j�f�nx ���z�j
� K��t�

for all points y� z lying in the same connected component of B��� �� nB��� t� as fn�x�


�



Lemma ����� For every � � s � 
 there exists K��s� � 
 such that if x � S�� n 	 �� and
fn�x� is well�de�ned� then

K��s�
�� �

j�f�nx ���y�j

j�f�nx ���z�j
� K��s�

for all points y� z � B�fn�x��minfsdist�fn�x�� �� ���g�

Before starting the proof let us give a few words of comment on this lemma First of
all this is a substantial improvement of Lemma �
� since now the distortion constant
K��s� is independent of the distance from fn�x� to  � it depends only on the ratio of the
radius of the ball around fn�x� and dist�fn�x�� � Note also that the lemma is vacuous
if fn�x� �  

Proof of Lemma ����� If dist�fn�x�� � 	 ���� then

sdist�fn�x�� � �
s

���
dist�fn�x�� �

�

�
�

s

���
diam�S��

�

�
�
�s

�

�

�

and therefore it follows from Lemma �
� that any constantK��s� � K������ �s��� works in
this case So� we can suppose that dist�fn�x�� � � ��� and let � �  be the only point such
that jfn�x���j � ��� Denote the ball B

�
fn�x��minfsdist�fn�x�� �� ���g

�
by B�fn�x��

Since B�fn�x�� � B�fn�x�� sjfn�x�� �j� � B��� ��� for every y � B�fn�x�� there exists a
unique integer k � k�y� such that fk�y� � B��� ��nB��� ��jjf �jj� Suppose now additionally

that f�nx � f�n�  Then for every y � B�fn�x�� we have f�nx �y� � f
��n�k�
� �fk�y��� thus by

Lemma �
	 L��� �n�k��
���
� � j�f�nx ���y�j � L��n�k�

� ���
� � where L� � L����jjf �jj� is the

constant produced in Lemma �
	 Since �
� s�jfn�x���j � jy��j � �
� s�jfn�x���j�
it follows from Corollary �
� that �
� s�jfn�x�� �j � L�k

��	� and �
 � s�jfn�x�� �j 	
L��� k��	�� where L� � L����jjf �jj� Thus

maxfk�y� � y � B�fn�x��g

minfk�y� � y � B�fn�x��g
�

�
L��

 � s


� s

��

Denote the number in the right�hand side of this inequality by a�s�� 	 
 We then have
for all y� z � B�fn�x��

j�f�nx ���y�j

j�f�nx ���z�j
�

L��n� k�y���
���
�

L��� �n� k�z���
���
�

� L��

�
n� k�y�

n� k�z�

�� ���
�

� L��a�s�
���

and therefore we are done in this case In the general case let � � j � n be the least

integer such that f i�x� � B� � ���� for all j � i � n Then f i�x� � f
��n�i�
� �fn�x�� and

f�nx � f
��i���
x � g � f

��n�i�
� where g is the inverse branch of f sending f i�x� to f i���x�

and f
��i���
x is the inverse branch of f i�� sending f i���x� to x Now� we have just proved

that f
��n�i�
� has the distortion bounded by a number depending only on s� a uniform


�



boundedness of distortion of g is obvious� and since the point f �i����x� is far away from  

�at least at the distance 	 ����� a uniform bound of the distortion of f
��i���
x follows from

the �rst part of the proof We are done �

As an immediate consequence of Lemma �
� we get the following

Corollary ����� For every su�ciently small � � � � 
� for every x � S�� and n 	 �� such
that if fn�x� is well�de�ned� then

K��
� ��� �

j�f�nx ���y�j

j�f�nx ���z�j
� K����

for all points y� z � B�fn�x�� �dist�fn�x�� ��

Our last result in this section is in some sense a partial improvement of Lemma �
� toward
attempting to have lims��K��s� � 


Lemma ���� For every integer q 	 
 there exists an increasing function Qq � ��� �� �
�
�
� such that limt��Qq�t� � 
 and

Q��q �t� �
j�f�nx ���y�j

j�f�nx ���z�j
� Qq�t�

for all points y� z � �� where � � B� � t� is an arbitrary subarc of S� such that "
�
� �

ff�j� ��B��� ��� � j 	 �g
�
� q and x is any point in S� such that fn�x� is well de�ned and

fn�x� � B��� t�

Proof� Observe that without loosing generality one can assume q � 
 Take w � �B��� ��
such that � � ���w� Suppose �rst that x � � is a parabolic point Take any v � B��� t�
In view of ���� we have j�f�n� ���v�j � j�f�n� ���f��� �v��j for all n 	 
 On the other hand

j�f�n� ���f��� �v��j � j�f�n� ���v�j �
jf ��f��� �v��j

jf ��f
��n���
� �v��j

� j�f�n� ���v�j � jf ��f��� �v��j

Hence


 �
j�f�n� ���f��� �v��j

j�f�n� ���v�j
� jf ��f��� �v��j

for all n 	 
 Since� by continuity of f �� we have limv�� jf
��f��� �v��j � jf ����j � 
� it

follows from ��
�� and ���� �monotonicity of f �� the existence of a function K��t� claimed
in the lemma as long as only the inverse branches of the form f�n� � � �  � are involved In
the general case using what has been proved above� one repeats the argument described
in the last part of the proof of Lemma �
� �


	



Frequently in the sequel� if there will be no speci�c requirements of how small � � � is
to be we will drop the dependence of K���� on � writing K� for K���� We end up this
section �xing the following notation

R��� � B��� �� nB��� ��jjf �jj�	

x� Pressure and dimensions� This section is somewhat sketchy� of rather general
character and consists of two parts �rst of which is devoted to describe and discuss some
general facts from geometric measure theory� while the second one provides quick intro�
duction to the thermodynamic formalism and establishes some its basic applications in
geometric measure theory This part mostly overlaps with respect to the contents as well
as with respect to the methods used with the paper �DU
�

To begin with given a subset A of a compact metric space �X� d�� a countable family
fB�xi� ri�g

�
i�� of open balls centered at points of A is said to be a packing of A if and only

if for any pair i �� j
d�xi� xj� 	 ri � rj 	

Given a nondecreasing function g � ��� ��� ���
� for some � � �� the g�dimensional outer
Hausdor� measure Hg�A� of the set A is de�ned as

Hg�A� � sup

��

inf
 �X
i��

g
�
diam�Ai�

��
�

where in�mum is taken over all countable covers fAi � i 	 
g of A by arbitrary sets whose
diameters do not exceed � If g is of the form xt instead of writing Hxt we write Ht and
speak about t�dimensional outer Hausdor� measure In this case one will get comparable
numbers �in the sense that ratios are bounded away from zero and in�nity� if instead of
covering A by arbitrary sets one considers only open balls centered at points of A

The g#dimensional outer packing measure $g�A� of the set A is de�ned as

$g�A� � inf
�Ai�A

X
i

$�g�Ai�
�

�Ai are arbitrary subsets of A�� where $
�
g� the g�packing premeasure is given by�

$�g�A� � inf

��

sup
 �X
i��

g�ri�
�
	

Here the supremum is taken over all packings fB�xi� ri�g�i�� of the set A by open balls
centered at points of A with radii which do not exceed � Similarly as in the case of
Hausdor� measures if g is of the form xt instead of writing $xt we write $t and speak
about t�dimensional outer packing measure These two outer measures Hg and $g de�ne
countable additive measures on Borel ��algebra of X For additional properties of packing
measures and a comprehensive discussion of this and related notions the reader is referred
to the paper �TT� and �Ma� and �PU� books


�



The de�nitions of the Hausdor� dimension HD�A� of A and packing dimension PD�A� are
the following

HD�A� � infft � Ht�A� � �g � supft � Ht�A� �
g

and

PD�A� � infft � $t�A� � �g � supft � $t�A� �
g	

Let now � be a Borel probability measure on X De�ne the function � � �t��� � X �
���
�� ���
� by

��x� r� �
��B�x� r��

rt
	

The following two theorems �see �DU��� �Fa�� �Ma�� �PU�� and �TT� for example� are for our
aims the key facts from geometric measure theory Their proofs are an easy consequence
of Besicovi%c covering theorem �see �Gu��

Theorem ���� Assume thatX is a compact subspace of an d�dimensional euclidean space
Then there exists a constant b�d� depending only on d with the following properties� If A
is a Borel subset of X and C � � is a positive constant such that
�
� for all �but countably many� x � A

lim sup
r��

��x� r� 	 C���

then for every Borel subset E � A we have Ht�E� � b�d�C��E� and� in particular�
Ht�A� �

or

��� for all x � A

lim sup
r��

��x� r� � C���

then for every Borel subset E � A we have Ht�E� 	 Cb�d�����E�

Theorem ���� Assume thatX is a compact subspace of an d�dimensional euclidean space
Then there exists a constant b�d� depending only on d with the following properties� If A
is a Borel subset of X and C � � is a positive constant such that
�
� for all x � A

lim inf
r��

��x� r� � C���

then for every Borel subset E � A we have $t�E� 	 Cb�d�����E��
or

��� for all x � A

lim inf
r��

��x� r� 	 C���

then for every Borel subset E � A we have $t�E� � b�d�C��E� and� consequently�
$t�A� �



�



�
&� If � is non�atomic then �
� holds under the weaker assumption that the hypothesis of
part �
� is satis�ed on the complement of a countable set

Let us now pass to the dynamics and thermodynamic formalism Let S � X � X be a
continuous map of a compact metric space X and let � � X � IR be a continuous function
Given an � � � and an integer n 	 
 we say that a set F � X is �n� ���separated if and
only if for all x� y � F � x �� y there exists � � k � n� 
 such that dist�Sk�x�� Sk�y�� � �
Let

En � inf
F

X
x�F

exp
�n��X
j��

� � Sj�x�
�
�

where the in�mum is taken over all maximal �in the sense of inclusion� �n� ���separated
sets The topological pressure P�S� �� of the map S and the function �potential� � is
de�ned as the following limit

P�S� �� � lim

��

lim sup
n��




n
logEn

In the case when the function f is identically equal to � the quantity En is the maxi�
mal cardinality of an �n� ���separated set The pressure P�S� �� is then rather called the
topological entropy of S and is denoted by htop�S�

A Borel measure � is said to be S�invariant if and only if ��S�� � � The measure � is said
to be ergodic if and only if all invariant sets A� that is satisfying equality ��A� � ��S���A���
are either of measure � or their complements are of measure � If � is a Borel probability
measure invariant under S then �see �BK�� the following limit exists for � ae x � X

��
� h�x� � lim

��

lim sup
n��

�



n
log��Bn�x� ����

where Bn�x� �� � fy � X � dist�Sj�y�� Sj�x�� � � for all j � �� 
� 	 	 	 � n� 
g The integralR
h�x� d��x� is called the metric entropy of S with respect to the measure � and is

denoted by h�S� If � is ergodic almost all numbers h�x� are equal to h�S� Usually
in the literature a di�erent approach is used to de�ne metric entropy� which is based on
the concept of partition Formula ��
� is then a deep theorem� called Brin�Katok formula
whose proof uses heavily Breiman�Shannon�McMillan theorem ByM�S��Me�S�� M

��S�
andM�

e �S� we denote respectively the set of all Borel probability measures invariant under
S� its subset of ergodic measures� measures of positive entropy� and ergodic measures of
positive entropy The following formula

���� P�S� �� � sup
M�S�

�
h�S� �

Z
� d�

�
� sup

Me�S�

�
h�S� �

Z
� d�

�

called the variational principle for topological pressure� or just variational principle� estab�
lishes basic relationship between the notions of pressure and entropy� and has been proven
in �Wa�


�



Coming back to our continuous map f � J � J we recall �rst that the Lyapunov exponent
��f� of f with respect to a measure � �Me�f� is de�ned as

��f� �

Z
log jf �j d�	

We shall prove the following

Proposition ���� If � � Me�f�� then ��f� 	 � Additionally ��f� � � � �� � �

 � �� � � � � ����f�g� � 
 for some � �  

Proof� That ��f� 	 � we see immediately from ���� The equivalence of the three last
properties follows from ergodicity of �� and �� � � 
 obviously implies that ��f� � � If
�� � � �� then there is a compact set K � J of positive � measure disjoint from  �and
hence of positive distance from  apart� and therefore jf �jK � � for some � � 
 Since
by the Birkho� ergodic theorem every typical point of � visits K with positive frequency�
keeping in mind ���� we deduce that ��f� � � �

Let us now de�ne the pressure function P�t�� t � ���
� putting

P�t� � P�f jJ ��t log jf
�j�	

Some basic elementary properties of this function are collected in the following proposition

Proposition ���� The function t �� P�t� is continuous� non�increasing� and non�negative
if  �� �

Proof� The continuity follows immediately from general facts about topological pressure
�see �Wa�� In order to prove that P�t� is decreasing� consider � � t� � t�	 We see from
Proposition �� that for � � M�f�� h�f� � t�� 	 h�f� � t�� Hence� applying the
variational principle it follows that P�t� is non�increasing If  �� �� we can consider an
f �invariant probability measure � concentrated on a forward orbit of some point � �  
Obviously h��f� � �� � � Hence� again by the variational principle� P�t� 	 h��f��t�� �
� for every t � ���
� This completes the proof of the proposition �

Recall that
HD��� � inffHD�Y � � ��Y � � 
g	

By de�nition� HD��� � HD�J� � � and hence supfHD��� � � � M�
e �f�g � 
 This

supremum is in the literature denoted by DD�J� and called dynamical dimension of J �see
�DU	�� comp �PU�� Let us recall also the famous formula for the Hausdor� dimension of
an ergodic measure of positive entropy invariant under a conformal map whose origins go
back to Billingsley&s work and probably even earlier Up to our knowledge� in the context
of real one�dimensional dynamics� this formula has been proved by F Hofbauer and P
Raith in �HR� under possibly weakest assumptions� much weaker than required here It
reads that if � �M�

e �f�� then ��f� � � and

���� HD��� �
h�f�

��f�


�



We shall prove the following

Lemma ���� We have
�a� P�t� � � for every t � ���DD�J��
�b� If  � �� then P�t� � � for every t � �DD�J��
� If  �� �� then P�t� � � for every

t � �DD�J��
�
�c� Pj	��DD�J�
 is injective

Proof� For the sake of this proof let us denote the dynamical dimension DD�J� by s If t �
s then by ���� there exists � �M��f� such that t � h�f���	 Hence P�t� 	 h�f��t� �
� and �a� is proved In order to prove �ii� consider any t 	 � and suppose that P�t� � �	
Then by ����� the variational principle� there exists � �M�f� such that h�f�� t� � �	
So� in view of Proposition ��� h�f� � �� and by ����� s 	 HD��� � h�f��� � t So�
P�t� � � for t 	 s and �b� follows from Proposition �� We will show �c� Assume that
P�t�� � P�t�� for some � � t� � t� � s	 As f jJ is expansive� there exist ��� �� � M�f�
�see eg �Wa�� such that h��f�� t��� � P�t�� � P�t�� � h��f�� t��� 	 If �� � � then
t��� � t��� 	 This implies that P�t�� 	 h��f� � t��� � h��f� � t��� � P�t�� # a
contradiction Therefore �� � � and by ����� h��f� � �	 Thus P�t�� � P�t�� � � which
contradicts part �a� �

It follows from this lemma that in the case when  �� �� the graph of the pressure func�
tion P�t� looks like on the Figure 
� it has a phase transition at the point s � DD�J�
An intriguing problem arises of what kind this phase transition is Is for example P�t�
di�erentiable at s or not' We will come back to this point at the end of Section �� at this
moment we we shall prove the following

Theorem ��	� The function P�t� is di�erentiable at t � DD�J� if and only if there is no
equilibrium state of positive entropy for the potential �DD�J� log jf �j

Proof� For the sake of this proof set s � DD�J� Of course we only need to consider the
left�hand side neighborhood of s On the right�hand side P�t� is perfectly analytic and
Lemma �	�b� shows that if P��s� exists� then it must be equal to � So� suppose that there
is �� an equilibrium state for �s log jf �j with h � � Then by ����� � � � and by �����
the variational principle� for every t � �� we have P�t�� P�s� 	 h � t� � �h � s�� �
��t� s�� Hence

lim sup
t
s

P�t�� P�s�

t� s
� �� � �

and P��s� does not exist

If� on the other hand P��s� does not exist� then there exist a sequence tn � s and a number
� � � such that

���� P�tn�� P�s� 	 ��s� tn�	

Without loosing generality we may assume that the sequence �n of equilibrium states
for �tn log jf �j converges in the weak topology of measures to an f �invariant measure �

��



Since� by Theorem ��� the map f � J � J is expansive� it follows from �Wa� that the
entropy function � � h��f� is upper semi�continuous This and the continuity of P�t�
imply that � is an equilibrium state for the potential �s log jf �j We shall now show that
h � � completing the proof Indeed� it follows from ���� that for all n 	 
 we have
hn � tn�n 	 P�s����s� tn� 	 hn�s�n  Hence �n 	 � for all n 	 
 By Lemma �	
we have hn� tn�n � P�tn� 	 �� whence lim infn�� hn 	 s� Thus� applying the upper
semi�continuity of the entropy function again� we get h 	 s� � � which completes the
proof �

x� Conformal measures and dimensions� This section constitutes a natural extension
of the previous one enriching its results by employing the method of conformal measures
along the lines worked out in �DU
�� �DU	�� and �U
� �see also �PU�� We begin this section
with the de�nition of conformal measures Let t 	 � be a real number A Borel probability
measure m on the Cantor set J is called t�conformal for f if and only if

��
� m�f�A�� �

Z
A

jf �jt dm

for every special set A � J � that is a Borel subset of J such that f jA is injective

Notice that if m is t�conformal� then

���� m�f�A�� �

Z
A

jf �jt dm

for every Borel set A � J  Observe also that for a measure m to be conformal it is enough
to check ��
� for Borel subsets of elements of partition f�j � j � Ig From ���� and
primitiveness of the incidence matrix A we immediately get the following

Lemma ���� Any conformal measure for f is positive on nonempty open subsets of J 

Lemma ���� Let x � J n
S�
n�� f

�n� � Then there exist an increasing sequence fnj �
nj�x� � j 	 
g of positive integers� a sequence frj�x�g

�
j�� of positive reals decreasing to ��

and an element y � ��x� nB� � �� with the following properties�
�a� y � limj�� fnj �x�

�b� fnj �x� �� B� � �� 

�c� If m is a t�conformal measure for f � t 	 �� then there exists a constant B�m� 	 
 such
that

B�m��� �
m�B�x� rj�x���

rj�x�t
� B�m�	

for all j 	 


�




Proof� In view of Lemma �


M � inffm�B�z�K��
� ���� � z � Jg � �	

It follows from Theorem �� that if x � J n
S�
n�� f

�n� �� then there exists a sequence

fnj � nj�x� � j 	 
g such that fnj�x� �� B� � �� Let f
�nj
x � B�fnj �x�� ��� � S� be the

continuous inverse branch of fnj sending fnj �x� to x Then it follows from Corollary �
��

that f
�nj
x

�
B�fnj �x�� ���

�
 B

�
x� rj� and f

nj �B�x� rj��  B�fnj �x�� K��
� ���� where

rj � rj�x� � K��
� j�f�njx ���fnj �x��j�� � K��

� ��j�fnj ���x�j��	

Using conformality of m and Corollary �
� we can estimate


 	 m�fnj �B�x� rj��� �

Z
B�x�rj�

j�fnj ��jt dm 	 K�t
� j�fnj ���x�jtm�B�x� rj��

� ����tK��t
� r�tj m�B�x� rj��

and

M � m�fnj �B�x� rj��� �

Z
B�x�rj�

j�fnj ��jt dm � Kt
�j�f

nj ���x�jtm�B�x� rj��

� ����tr�tj m�B�x� rj��	

Therefore M�����t � m�B�x�rj��
rt
j

� K�t
� ����

�t Also� using ���� we can easily deduce that

limj�� j�f
�nj
� ���fnj �x��j � � and consequently� rj�x� � K��

� j�fnj ���x�j���� � � Since
J is compact� passing to a subsequence of j� property �a� will be also satis�ed �

Let us now give a proof of the following well�known fact from the geometric measure theory

Lemma ���� Let � and � be Borel probability measures on Y � a bounded subset of a
Euclidean space Suppose that there are a constantM � � and for every point x � Y a
decreasing to zero sequence frj�x� � j 	 �g of positive radii such that for all j 	 
 and all
x � Y

��B�x� rj�x�� �M��B�x� rj�x��	

Then the measure � is absolutely continuous with respect to � and the Radon�Nikodym
derivative d��d� is uniformly bounded away from in�nity 

Proof� Consider a Borel set E � Y and �x � � � Since limj�� rj�x� � � and since �
is regular� for every x � E there exists a radius r�x� being of the form rj�x� such that
��
S
x�E B�x� r�x�� n E� � � Now by the Besicovi%c theorem �see �Gu�� we can choose a

countable subcover fB�xi� r�xi��g
�
i�� from the cover fB�x� r�x��gx�E of E� of multiplicity

bounded by some constant C 	 
� independent of the cover Therefore we obtain

��E� �
�X
i��

��B�xi� r�xi��� �M
�X
i��

��B�xi� r�xi���

�MC�
� ��
i��

B�xi� r�xi��
�

�MC��� ��E��	

��



Letting � � � we obtain ��E� � MC��E� So � is absolutely continuous with respect to
� with Radon#Nikodym derivative bounded by MC �

Let X � J n
S�
n�� f

�n� � As a direct consequence of the two previous lemmas we get
the following

Lemma ���� Any two t�conformal measures for f � J � J restricted to the set X are
equivalent Moreover their Radon�Nikodym derivative � � X � IR is bounded away from
zero and in�nity� and satis�es ��f�x�� � ��x� for almost every x � X	

Proof� Indeed� in view of Lemma �� and Lemma �� only the equation ��f�x�� � ��x�
requires a proof� which is obtained by direct computation �

Lemma ���� If Ht is the t#dimensional Hausdor� measure on J and m is a t�conformal
measure for T � J � J then Ht is absolutely continuous with respect to m such that the
Radon#Nikodym derivative is bounded from above Consequently t 	 HD�J� and there is
no t�conformal measure for t � HD�J�

Proof� Let F � J be any Borel set Put E � X � F � F n
S�
n�� T

�n� � Since the
set

S�
n�� f

�n� � is at most countable� Ht�E� � Ht�F �	 Fix �� � � �	 Since m is regular�
similarly to the argument used in the proof of Lemma ��� we can �nd a countable cover
fB�xi� r�xi��g

�
i�� of E of multiplicity bounded by M 	 
 such that xi � E� the radius

� � r�xi� � � is of the form rj�xi� for every i � 
� �� 	 	 	 �de�ned in Lemma ��� and such
that m

�S�
i�� B�xi� r�xi�� n E

�
� � Hence� applying Lemma �� to the measure m� we

obtain

�X
i��

r�xi�
t � B�m�

�X
i��

m�B�xi� r�xi��� � B�m�Mm
� ��
i��

B�xi� r�xi��
�

�MB�m����m�E��

Letting �� � and then � � � we get Ht�F � � Ht�E� � CB�m�m�E� � CB�m�m�F �	 �

Let e�J� be the in�mum of all exponents t 	 � such that a t�conformal measure exists and
let ��J� be the �rst zero of the pressure function P�t� The main result of this section is
the following

Theorem ��	� We have DD�J� � ��J� � e�J� � HD�J� and an h�conformal measure
exists� where h denotes the common value of these three numbers

Proof� That ��J� � DD�J� � HD�J� � e�J� we see from Lemma �	 and Lemma �	 So�
in order to complete the proof it su�ces to �nd a ��J��conformal measure on J  But since
by Theorem �� the mapping f � J � J is open and expansive� and since P���J�� � �� the
existence of such measure follows from Theorem �
� of �DU�� �

It seems interesting to ask about other conformal measures for t � h If  � �� then no such
measures exist In the opposite case the do exist �since P�f� � �� but are concentrated

��



on the backward orbit of  �f� We will never make use of this remark and the reader
interested in proofs is suggested to look at the paper �DU
�

x	 Local behavior around parabolic points� In this section we examine the local
behavior of conformal measures around parabolic points For every � �  let

���� � h� �����h� 
�	

We begin with proving the following

Lemma ���� If m is an h�conformal measure for f � J � J � then ��C���� ������ ����r	��

C��� �
m�B��� r� n f�g�

r����
� C�	

Proof� Fix a constant L� � L����jjf �jj�� where the function L� is described in Corol�
lary �
� and for every n 	 
 de�ne Rn � fz � B��� �� � L��� n��	� � jf�n� �z� � �j �
L�n

��	�g By de�nition of R��� and since � is an expansive constant for f � J � J � we
conclude that for every z � B��� �� � J n f�g there exists l 	 � such that f l�z� � R���
Therefore� the set J � R��� is nonempty and since J is perfect� it has nonempty interior
in J  Hence at least one of the connected components of R���� denote it by R����� has
positive measure m By Corollary �
� there is n� 	 
 such that f�n� �z� � Rn for every
n 	 n� and every z � R��� In other words this means that Rn  f�n� �R���� for n 	 n�
Thus

B

�
��

L�
n�	�

�


��
k�n

Rk 
��
k�n

f�k� �R���� 
��
k�n

f�n� �R�����	

On the other hand� for any z � B��� �� n f�g let l�z� 	 � be the smallest integer such

that f l�z� � R��� Take n� 	 n� so large that if z � B��� L�n
��	�
� �� then l�z� 	 n�

Consider now any z � B��� L�n
��	�� n f�g with n 	 n� Since l�z� 	 n� and f l�z��z� �

R��� we conclude that z � �f l�z��z��l�z� � Rl�z� Therefore L
��
� l�z���	� � L�n

��	� and

consequently l�z� 	 L���� n Hence

B

�
��

L�
n�	�

�
� sbtf�g �

�
l�L���

� n

f�l� �R����	

In view of Lemma �
	 and the conformality of the measure m we get

m
�
B��� L�n

��	��
�
	

�X
k�n

m�f�k� �R����� 	
�X
k�n

L�h� �k�
���
� �hm�R�����

	 m�R�����L
�h
�

�nX
k�n

�k�
���
� �h 	 m�R�����L

�h
� n���n��

���
� h�

� ��
���
� hm�R�����K

�hL�h� �n��	�������

��



where L� � L����kf
�k�� and �using continuity of m in addition�

m
�
B��� L�n

��	��
�
� m

�
m
�
f�g �

�
l�L���

� n

f�l� �R����
�
� Lh�

X
l�L���

� n

l�
���
� h

� L���L�n
��	������

where L�� � � denotes some constant The proof is �nished observing that the limit of
�n�������

n���� is 
 �

Now we shall prove a result which can be viewed as an improvement of Lemma 	


Lemma ���� ������ ��C��C������� ������ ��z�J�

C��� jz � �j���� � m�B�z� �jz � �j�� � C�jz � �j����

Proof� Let us �rst prove the right�hand side of this lemma Consider z � B��� �� such
that �
 � ��jz � �j � 
 Then in view of Lemma 	
� we have

m�B�z� �jz � �j�� � m�B��� �
 � ��jz � �j�� � C�
 � ������jz � �jh�p����h���

� C��
 � ��hjz � �jh	

If jz��j � �
����� or z �� B��� ��� it is enough to apply the obvious estimatem�B�z� �jz�
�j�� � 


In order to prove the left�hand side inequality suppose �rst that z � B��� �� for some
� �  and even more that jz��j � ��L������	� where � � ���� Let k 	 � be the largest
integer such that f�k� �z� � B�z� �jz��j� By a simple integration argument contained for
example in the proof of Lemma �
�� it follows from ��	� that

�	
� L���� � 
���jx� �j��� � jf��� �x�� xj � L�� � 
���jx� �j���

for every x � B��� �� Therefore

�jz � �j �
kX

j��

jf��j���� �z�� f�j� �z�j � �k � 
�L�� � 
���jz � �j����

whence k � 
 	 L���� � 
��jz � �j�� Thus by �	
� we get k 	 l � 
 where l �
L����jz � �j�� Letting now n 	 � be the least integer with fn�z� � R��� and setting
y � fn�z�� it follows from Lemma �
	 that

m�B�z� �jz � �j�� 	
kX

j��

m��f��j���� �z�� f�j� �z��� 	
lX

j��

m��f��j���� �z�� f�j� �z���

�
n�lX
q�n

m��f��q���� �y�� f�q� �y��� 	
n�lX
q�n

L����jjf
�jj���hq�

���
� h

	 L����jjf
�jj���hl�n� l��

���
� h�	��

�	



Now it follows from Corollary �
� that with L� � L����jjf
�jj�� we have n��	� 	 L��� jz��j�

whence n � L�� jz � �j�� Thus� combining this� �	��� and since k 	 l � 
 we get

m�B�z� �jz � �j�� 	 L����jjf
�jj���hL����jz � �j���L�� � L������

���
� h�jz � �j����

���
� h

	 Cjz � �j��jz � �j�����h � Cjz � �j����

with a universal constant C depending on � Thus the proof is �nished since the case
jz��j 	 ��L������	� for all � �  is taken care by the observation that the in�mum of all
measures m�B�z� ���L������	��� z � J � is positive which in turn follows from Lemma �

�

We want to end up this section with the following two results which although of global
character� are proved by employing a local argument Moreover the second result is a
starting point for our all next considerations

Theorem ���� We have h � HD�J� � maxf���������� � 
� � � �  g

Proof� Fix �x � �   Since � is an expansive constant for f � the interior of at least one of
the two connected components of R���� has a nonempty intersection with the set J  Call
it by R���� Since by Theorem �� there exists an h�conformal measure m for f � J � J �
it follows from Lemma �
	 that


 	
�X
n��

m�f�n� �R����� 	 L����kf
�k��hm�R�����

�X
n��

n�
���
� h	

Since m�R����� � �� this formula implies that the series
P�

n�� n
� ���

� h converges There�
fore� h � ���������� � 
� The proof is �nished �

Theorem ���� There exists a unique �up to equivalence of measures� h�conformal measure
Moreover this measure is continuous

Proof� By Theorem �� and Theorem �
� in �DU�� there is an h�conformal measure for f 
By Lemma ��� this measure� if continuous� is unique up to equivalence of measures From
Lemma �
	 and Theorem 	� we deduce that there exist constants � � � and C � � such
that for every �xed point � �  and every point � � R��� ��C���z���� ��t�h��� ��k���

�X
n�k

j�f�n� ���z�jt � C
�X
n�k




n���
	

Let us now construct a special sequence of neighborhoods of   To this end �x � �  �
n 	 
� and consider the two connected components V �

� and V �
� of S� n f�n�f�g� that

are adjacent to � De�ne then Wn �  �
S
��� V

�
� � V �

� which is an open neighborhood

of  and let Kn � fz � J � fk�z� �� Wn for every k 	 �g The sets Kn are closed
and forward invariant under f  Moreover the maps f jKn

� Kn � Kn are open Since
additionally� by Theorem ��� these are expansive� it follows from Theorem �
� in �DU��

��



and Theorem �� that for every n 	 
 there exists a number hn � h and an hn�conformal
measure for f jKn

 Notice that then mn�f�A�� 	
R
A
jf �jtn dmn for every special set A � J

and mn�f�A�� �
R
A
jf �jtn dmn for every special set A � J disjoint from Wn Let m be

an arbitrary weak accumulation point of the sequence fmng�n�� in the weak�� topology
on J  Fix k 	 
 Since f � J � J is an open map it easily follows� see for ex lemma
�� in �DU	�� that m�f�A�� �

R
A
jf �ju dm for every special set A � J disjoint from Wk

where tn � u Therefore� since fWn � n 	 
g is a descending sequence of sets such that
J �

T
n��Wn �  � letting k � 
 we conclude that this formula spreads out to every

special set A � J disjoint from   And since jf ����j � 
 for every � �  � it is true for
every special set A � J  Consequently m is a u#conformal measure for f � J � J  As
u � h� it follows from Theorem �� that u � h

In order to conclude the proof it is su�cient to show thatm� � � � Since � is an expansive
constant for f � we conclude that for every � �� x � B��� ���J there exists the least integer
n�x� 	 � such that fn�x� � R��� Thus� for every open neighborhood V � B��� �� of �
we have V � J � sbtf�g�

S
n�n�V � f

�n
� �R����� where n�V � � minfn�x� � � �� x � V � Jg

Using the properties of fmng and the de�nition of �� we therefore conclude that for every
k 	 
 large enough

mk�V � � Cm�R����
�X

n�n�V �




n���
	

Thus letting k�
 we getm�V � � Cm�R����
P�

n�n�V �
�

n��� which proves thatm��� � ��

since n�V ��
 as V shrinks to � �

In Section � we shall show more� that there is only one such measure

x� Geometric measures� In this section following the ideas and exposition contained
in �DU��� �DU��� and �U�� we deal with geometric properties of the set J  Recall that in
Section � we have de�ned X to be J n

S�
n�� f

�n� �

Lemma 	��� If F � J is a closed nonwhere dense �relative to J� forward invariant subset
of J � then m�F � � �

Proof� Since m is nonatomic it su�ces to show that m�F nX� � � Denote by Z the set
of all points z � F nX such that

lim
r��

m�B�z� r� � �F nX��

m�B�z� r��
� 
	

In view of the Lebesgue density theorem �see for example Theorem �
�

 in �Fa���m�Z� �
m�Y � Suppose now that m�Z� � � and �x x � Y  Let y and the sequence fnjg be the
objects associated to x produced in Lemma �� Since F is nonwhere dense in J and since
m is positive on nonempty open sets of J for every j large enough m

�
B�fnj �x�� ���nF

�
	

m�B�x� ����� nF �� � Therefore� as f���J nF � � J nF � the standard way of application

��



of the bounded distortion property �Corollary �
� in our case� and conformality of m
gives

lim sup
r��

m�B�z� r� n F �

m�B�z� r��
� �

which contradicts the de�nition of the set Z and �nishes the proof �

A point z � J is said to be transitive if ��z� � J  Consider a countable basis fVng�n�� of
topology on J  By Lemma �
 and Lemma ���e� every set Kn � fz � fk�z� �� Vng is of
m measure zero and therefore m

�S
k��

S
n�� f

�k�Vn�
�
� � Since the complement of this

set consists of transitive points� we obtain the following

Lemma 	��� m�fz � ��z� � Jg� � 
	

Lemma 	��� For every C � � there exists C� � � such that if n 	 �� fn�z� � B��� ���
� �  � and fn���z� �� B��� �� �in case n 	 
�� then for every r � � satisfying rj�fn���z�j �
��K��

� and rj�fn���z�j 	 Cjfn�z�� �j we have

C��� �rj�fn���z�j������h��� �
m�B�z� r��

rh
� C��rj�f

n���z�j������h���	

Proof� Since fn���z� �� B��� ��� applying Corollary �
� to the continuous inverse branch
f�nz � B�fn�z�� ���� S� of fn sending fn�z� to z we obtain

�jjf �jjK��
�hj�fn���z�j�hm�B�fn�z�� K��

� rj�fn���z�j�� �

� m�B�z� r�� �

� �jjf �jjK��
hj�fn���z�j�hm�B�fn�z�� K�rj�f

n���z�j��	��
�

It follows from the last assumption of our lemma that the ball B�fn�z�� K�rj�f
n���z�j� is

contained in the ball B��� �K� � C�� �rj�fn���z�j� Thus� in view of Lemma 	
�

m�B�z� r�� � C��jjf
�jjK��

h�K� � C�� �����j�fn���z�j�h�rj�fn���z�j�����	

Hence

����
m�B�z� r��

rh
� C��jjf

�jjK��
h�K� � C�� ������rj�fn���z�j������h���	

If �
�K

��
� rj�fn���z�j 	 jfn�z�� �j then B��� ��K

��
� rj�fn���z�j� � B�fn�z�� K��

� rj�fn���z�j�
and by similar arguments as before we obtain

����
m�B�z� r��

rh
	 C��� �jjf �jjK��

�h��K��
������rj�fn���z�j������h���	

If �
�K

��
� rj�fn���z�j � jfn�z� � �j then using ��
�� assumption �b�� and Lemma 	� with

� � CK
��
� we get

m�B�z� r�� 	 �C�����
���jjf �jjK��

�hj�fn���z�j�hjfn�z�� �j����

	 �C�����
���������jjf �jjK��

�hK
�����
� j�fn���z�j�h�rj�fn���z�j�����

��



and therefore

m�B�z� r��

rh
	 �C�����

����jjf �jjhK
h�����
� ����rj�fn���z�j������h���	

This� ����� and ���� prove the lemma �

Now we shall construct �positive� integer valued functions n�z� r�� k�z� r� and u�z� r�� �z �
J � � � r � 
�� simultaneously proving their properties listed in Theorem �� below

Theorem 	��� There exists Q 	 
 such that for every pair �z� r�� z � J � � � r � 
� there
exists a number ��z� r� � f���� � � �  g � f�g such that

Q���rj�fu���z�j���z�r��h��� �
m�B�z� r��

rh
� Q�rj�fu���z�j���z�r��h���	

Moreover ���K�kf
�k���jfu�z���j � rj�fu���z�j � ��K��

� and there is a continuous inverse
branch f�uz � B�fu�z�� rj�fu���z�j�� S� sending fu�z� to z

Proof� Suppose �rst that supn��frj�f
n���z�jg � ���K�kf �k��� and let n � n�z� r� 	 � be

a minimal integer such that rj�fn���z�j � ���K�kf
�k��� Then also rj�fn���z�j � ��K��

� 
We say that the pair �z� r� belongs to the family � if fn�z� �� B� � �� Since the conformal
measure m is positive on nonempty open sets� inffm�B�x� ��K��

� kf �k��� � x � Jg � �
Therefore� using Corollary �
� we conclude the existence of a constant C� � � independent
of �z� r� � � and such that

���� C��� �
m�B�z� r��

rh
� C�	

So� in this case our theorem is proved setting u�z� r� � n�z� r�
Let � �   We say that �z� r� � ���� if fn�z� � B��� �� Let � � k � k�z� r� � n
be the least integer such that f j�z� � B��� �� for every j � k� k � 
� 	 	 	 � n Consider all
the numbers ri � jf i�z� � �jj�f i���z�j�� where i � k� k � 
� 	 	 	 � n By the de�nition of
n�z� r� we have rn � jfn�z� � �jj�fn���z�j�� � K�jjf

�jj������r and therefore there exists
a minimal k � u � u�z� r� � n such that ru � K�kf �k������r Then

��	� ���K�kf
�k���jfu�z�� �j � rj�fu���z�j � ��K��

� 	

Thus� if u � k� then it follows from Lemma �� with C � ���K�kf �k��� that there exists
a constant C� � � such that

���� C��� �rj�fu���z�j������h��� �
m�B�z� r��

rh
� C��rj�f

u���z�j������h���	

So� we are done in this case If u � k then ru�� � K�kf �k������r and therefore� using
���� and ����� we get

ru �
jfu�z�� �j

jfu���z�� �j
jf ��fu���z��j��ru�� 	 kfk��ru�� 	 K�����

��r	

��



Thus

���� rj�fu���z�j � ��K��
� jfu�z�� �j	

Let f�uz � B�fu�z�� �jfu�z���j�� S� be the continuous inverse branch of fu which sends
fu�z� to z Applying Lemma 	�� it follows from formulas ����� ��	�� and Corollary �
�
that formula ���� continues to hold in case u � k� with a possibly bigger constant than
C�
It remains to deal with the case when supn��frj�f

n���z�jg � ���K�kf �k��� Then by �����

z � J n
S�
j�� f

�j� � Let u � u�z� r� 	 � be the minimal integer such that Tu�z� �  and

let f�uz � B�fu�z�� K�rj�fu���z�j� � S� be a continuous inverse branch sending Tu�z� to
z Applying Corollary �
� we therefore obtain

K�h
� j�fu���z�j�hm�B�fu�z�� K��

� rj�fu���z�j�� �

� m�B�z� r�� �

� Kh
� j�f

u���z�j�hm�B�fn�z�� K�rj�f
u���z�j��	

and employing Lemma 	
 �nishes the proof �

Lemma 	��� There exists � � � su�ciently small such that if x � J nX� q is a positive
integer� fq�x� � B��� ��� � �  � and fq���x� �� B� � ��� then

u
�
x� ���Kjjf �jj���jfq�x�� �jj�fq���x�j��

�
� q	

Proof� We need to determine how small � � � should be and our requirements are that
� � ��jjf �jj and � � �L�L�jjf �jj���	�� where L� � L����jjf �jj� and L� � L����jjf �jj� are
constants taken from Lemma �
	 and Corollary �
� respectively Set

r � ���Kjjf �jj���jfq�x�� �jj�fq���x�j��	

Then q � n�x� r� Let l 	 
 be the minimal integer such that fq�l�x� � R��� Then by
Corollary �
�� jfq�x�� �j 	 L��� l��	� Hence� by Lemma �
	 we get

j�f l���fq�x��j 	 L��� l
���
� 	 �L�L��

��jfq�x�� �j������

Thus
rj�fq�l���x�j 	 ���Kjjf �jj����L�L��

��jfq�x�� �j�� � ��K��

So� n�z� r� � q � l and therefore k�z� r� � q Finally from this� the de�nition of r� and
u�z� r� we conclude that u�z� r� � q �

Theorem 	�	� We have � � $h�J� �
 and Hh�J� �
 Additionally Hh�J� � � if and
only if h � 
 Moreover $h is equivalent to m with Radon�Nikodym derivative bounded
away from zero and in�nity

��



Proof� The inequalities Hh�J� � 
� � � $h�J�� and a uniform boundedness of dm�d$h
follow from Lemma �	 Let � � maxf���� � � �  g Since h � 
� it follows from
Theorem �� that lim infr��m�B�z� r��r

h 	 Q�����K��
� ���h��� for all z � J  Therefore in

view of Theorem ������ d$h�dm � b�
�Q���K��
� �����h� and $h�J� �
 Now it is left to

show that Hh�J� � � if h � 
 Let J� � fz � J � ��z�� � �g It follows from Lemma ��
and Lemma �	 that Hh�J�� � �� whence we only need to show that Hh�X n J�� � �� but
this follows immediately from Lemma �	� Theorem ��� and Theorem �
�
� The proof
is �nished �

The next result can be considered as a completion of Theorem ��

Theorem 	�
� If J is disconnected� then h � HD�J� � 
 In particular the Lebesgue
measure of J is equal to �

Proof� First we shall show that l�J� � � Indeed� if l�J� � �� then in view of the Lebesgue
density theorem l

�
B�x� r��J���r� 
 for l�ae x � J  Fix one such point x which addition�

ally does not belong to the countable set
S�
n�� f

�n� � Let frj�x�g�j�� be the sequence of
radii produced in Lemma �� and let nj � nj�x�� j 	 
� be the sequence of positive integers
produced there Recall that rj � K��

� ��j�fnj���x�j�� Since� by Lemma �� J is a compact
nowhere dense subset of S�� the exists an arc � � B�fnj �x�� �� n J for every j su�ciently

large But then by Corollary �
�� l
�
f
�nj
x ���

�
	 K��

� j�fnj ���x�j��l��� 	 ������rj and

B�x� rj� � J � f
�nj
x

�
B�fnj �x�� ���� J

�
 Therefore we get

l�B�x� rj� � J� � �rj � l�f�njx ���� � �rj

�

�




�

l���

�

�

which contradicts our choice of x and shows that l�J� � � Hence H��J� � � and the proof
is completed applying the middle part of Theorem �� �

Remark 	��� We would like to end up this section with the remark that making use of
the concept of the jump transformation �see the next section� one could prove� essentially
as in �DU��� that the box counting dimension of J exists and coincides with HD�J�

x
� Schweiger�s formalism and jump transformation� This section has rather
abstract character and is self�contained We closely follow here Section � of �DU�� which
in turn is based on Schweiger approach given in �Sc� A much more complete treatment of
the subject is presented in �ADU�

So� let �B�F � �� be a probability space and let T � B � B be a measurable and nonsingular
map We assume that the transformation T admits a countable measurable partition
� � fB�k� � k � Ig such that for every k � I

T �B�k�� �
�

i�I��k�

B�i� for some I ��k� � I	

�




Any partition with this property is also called a Markov partition for T  We assume that
the family

��
� fT �B�k�� � k � Ig is �nite

The transition matrix A � �Aij�i�j�I associated to the Markov partition � is de�ned by

Aij �

�

 if T �B�i��  B�j�

� if T �B�i�� �B�j� � �
i� j � I	

A sequence 
 � 
�� 
�� 	 	 	 � 
n� n 	 
� is said to be A�admissible if A�i�i�� � 
 for every
i � �� 
� 	 	 	 � n � 
 The matrix A is assumed to be irreducible� ie for all i� j � I there
exists an A�admissible sequence that begins with i and ends with j

We also assume that for every k � I there exists a measurable and nonsingular map
T��k � T �B�k��� B�k� which is the inverse to T jB�k� In particular� T � B�k�� T �B�k��
is injective For any A�admissible sequence 
 � 
�� 
�� 	 	 	 � 
n de�ne

����

T�n� � T �B�
n����� B�
��

T�n� � T
��n���
� jn��

� T���n
�

B�
� � T�n� jn
�B�
n�� �

n�
j��

T�j�B�
j��	

Let L�n� denote the family of all cylinders B�
� of length n The family L �
S�
n�� L

�n� is
supposed to generate the ��algebra F  We put

�� �x� �
d�T�n�

d�
�x�

for the Jacobian �with respect to �� of the mapping T�n� at the point x � T �B�
n���� Fix
a constant C 	 
 A cylinder B�
� is called an R�cylinder if it satis�es �R(enyi&s condition�

ess supf�� �x� � x � T �B�
n����g � C ess inff�� �x� � x � T �B�
n����g	

The set of all R�cylinders with constant C is denoted by G�C� T � We assume that there
exists a constant C 	 
 and a class ��C� T � � G�C� T � such that�

If B�
� � ��C� T � then B��
� � ��C� T �

for any A�admissible sequence � such that A�j��� � 
	 Note that for any B�
� � ��C� T �
with ��B�
�� � � and for any admissible sequence �
�� one also obtains ��B��
�� �

�
�
T
�j�j
� �B�
��

�
� � For n 	 
 let

Dn � fB�
� � L�n� � B�
 js� � L n ��C� T � for all � � s � ng	

��



Our last assumption here is that

lim
n��

X
Dn

��B�
�� � �	

The proofs of the following two results are elementary and go back to �Sc�

Lemma 
��� Let E be a measurable set Then� for any B�
� � L�n� � ��C� T �� we have

��T�n�E� � B�
�� 	 C���T �B��n�����E� � ��B�
���

where �T �B��n���� denotes the conditional measure of � on T �B�
n����

Lemma 
��� Any cylinder is �mod �� a disjoint union of elements of ��C� T � Conse�
quently� the family ��C� T � generates the ��algebra F mod �

In order to prove ergodicity of T with respect to � �see Theorem 
 of �Sc��� additional
arguments are required� involving the primitiveness of the matrix A We therefore give a
full proof

Theorem 
��� The transformation T is ergodic with respect to the measure �

Proof� Suppose that T���E� � E and ��E� � � Then it follows from Lemma �� that
there exists l 	 
 and 
 � ��C� T � of length l such that

���� ��E �B�
�� � �	

Since T is nonsingular� we also have ��T l�E�B�k�� k�� 	 	 	 � kl�� � � Since T l�E� � E and
by ���� it follows that

���� ��E � T �B�
l����� 	 ��T l�E� � T l�B�
��� 	 ��T l�E � B�
��� � �	

Since the matrix A is irreducible� for every k � I there exists B�k�� � L�s��� such that
A�s�� � 
� where s � j�j Therefore B�k�
� � ��C� T � and by ����� ����� and Lemma �


��E � B�k�� 	 ��E � B�k�
�� � ��T��s���l��E� �B�k�
��

	 C���T �B��l�����E� � ��B�k�
�� � �	

Consequently� for any j � I we have ��E � T �B�j�� � �� and using ��
�� we see that
� � minf�T �B�q���E� � q � Ig � � Hence by Lemma �
 again� one obtains for any

Z � L�n� � ��C� T � that ��E � Z� � ��T�n�E� � Z� 	 C�����Z� Therefore� using
Lemma ��� the indicator function of the set E is ��ae positive� which means that
��E� � 
 The proof is �nished �

Let I�x� � fk � I � x � T �B�k��g Let us recall the following two elementary facts

��



Lemma 
��� The transformation T admits a �#�nite T#invariant measure equivalent to
� if and only if there exists a measurable function � such that

��x� �
X

k�I�x�

��T��k �x���k�x� ae

Lemma 
��� If there is a constant D � � such that G�D� T � � L� then T admits a �nite
T#invariant measure equivalent to � such that the Radon#Nikodym derivative is uniformly
bounded away from zero and in�nity

The right hand side of the formula in Lemma �� may be regarded as the value of the
Perron#Frobenius operator associated to the measure � and applied to the function f 
Also notice that in the proof of Lemma �	� formula ��
� is also used

Let us now� for every n 	 
� introduce the class

Bn � fB�
� � ��C� T � � B�
 jn��� � Dn��g	

De�ne the jump transformation T � � B � B by

T ��x� � Tn�x� if x � B�
� and B�
� � Bn	

It follows that T � is almost everywhere de�ned Moreover� it is nonsingular and ergodic
with respect to � Since for every B�
� � Bn we have T

��B�
�� � T �B�
n��� we conclude
that the family

S�
j��Bn is a Markov partition for T

� �usually in�nite� even if � was �nite�
The corresponding transition matrix is irreducible and ��
� is also satis�ed Moreover�

Proposition 
�	� G�C� T �� � L� and there exists a unique� ergodic� T ��invariant proba�
bility measure �� equivalent to � Moreover� the Radon#Nikodym derivative �� � d���d�
satis�es D�� � �� � D for some constant D � �

The �rst statement of this proposition is contained in Lemma 	 of �Sc� The existence of
�� follows then from Lemma �	 Uniqueness and ergodicity of �� follow from standard
arguments and from ergodicity of T � with respect to �	 The main result of Schweiger&s
theory is the following

Theorem 
�
� The transformation T admits a unique �up to a multiplicative constant��
���nite� invariant measure � equivalent to � with Radon#Nikodym derivative d

d� given by
the formula

d�

d�
�x� � ���x� �

�X
n��

X
Dn�x�

���T�n� �x���� �x��

where Dn�x� � fB�
� � Dn � x � T �B�
n��g

The existence of � is shown as in the proof of Theorem � in �Sc� # up to some minor changes
Uniqueness of � �not included there� follows easily from ergodicity of T with respect to

��



� Finally� following �Sc�� we state the following necessary and su�cient condition for the
�niteness of the measure �

Proposition 
��� The measure � is �nite �or equivalently the Radon�Nikodym derivative
d
d�
is integrable� if and only if

�X
n��

X
Dn

��B�
�� �
	

Let us also mention the following technical result

Lemma 
��� Let �T � resp �T� � denote the Jacobian of T � resp the Jacobian of T �� �with
respect to �� Then

log �T � L���� if and only if log�T� � L���
��

and in this case
R
B
log �T d� �

R
B
log �T� d��

Remark 
��� The irreducibility of the transition matrix has only been used to prove
ergodicity and uniqueness of invariant measures All other results of this section are true
without this assumption

Remark 
���� In particular� in the context of a dynamical system �f� I� �j� j � I� taking
as ��C� f� the family of all the cylinders 
 � 
�� 
�� 	 	 	 � 
n � ��A such that

�
j

f��j� �  � ��

where the union is taken over all the indexes j with Aj�n � 
 all the results obtained
in this section apply to the h�conformal measure m and the map f � J � J  As one of
the consequences of this remark observe that combining Lemma �	� Theorem 	�� and
Theorem �� we get the following

Theorem 
���� There exists a unique h�conformal measure m for the map f � J � J 
Moreover this measure is continuous

Now� as an immediate consequence of Theorem �� we get the following

Theorem 
���� The map f � J � J admits a unique �up to a multiplicative constant� f �
invariant ���nite measure � equivalent �or equivalently absolutely �nite� to the conformal
measure m

Lemma 
���� If F is a Borel subset of J and F �  � �� then ��F � � �


�	



Proof� First notice that de�ning the jump transformation we can also use the cylinder
sets f�� � 
 � �qAg with a �xed integer q 	 
 This is possible since by Lemma ��
this family forms a Markov partition for f  Although in that way we will be getting
mutually di�erent jump transformations� these will give raise to the same measure � up
to multiplicative constants By the de�nition of ��C� T � it follows from Lemma �
 and
Theorem �� that d��dm�x� � ���x� out of some neighborhood of  shrinking to  if
q �
 Hence� invoking Proposition �� �nishes the proof �

In the context of dynamical Cantor sets Proposition �� leads to the following much more
e�ective criterion for the �niteness of the invariant measure �

Theorem 
���� The f �invariant ���nite measure �� equivalent to the conformal measure
m� is �nite if and only if

h � �max

�
����

���� � 

� � �  

�

Proof� It follows from Lemma �
	 and the choice of the family ��C� f� that

�X
n��

X
Dn

m�B�
�� �
�X
n��

X
���

X
k�n

n�
������

����
h

�
X
���

�X
n��

n � n�
������

����
h �

X
���

�X
n��

n��
������

����
h

and this series converges if and only if 
� ������
���� h � �
 for all � �   Applying Proposi�

tion �� �nishes the proof �

Combining this theorem and Theorem �� we get the following

Corollary 
��	� The following three conditions are equivalent

�a� P��t� does not exist

�b� There exists a probability f �invariant measure � absolutely continuous with respect
th the conformal measure m

�c� There exists an equilibrium state of positive entropy associated to the potential
�h log jf �j

Proof� The equivalence of conditions �a� and �b� follows from Theorem �� and Theo�
rem ��
In order to see that �c� implies �b� notice �rst that� in view of Theorem �
� measure �
is equivalent to m and therefore HD��� � h Since � is non�atomic and ergodic� using
the Birkho� ergodic theorem we conclude that �� � � Hence by ����� h��f� � � and
h��f�� h�nu � � Since by Lemma �	� P�t� 	 �for all t 	 �� we have shown that � is an
equilibrium state for �h log jf �j
The implication �b�� �c� can be proven proceeding as in �Le� �

��



Corollary 
��
� If ���� � 
 for all � �  � in particular if f � C�� then the measure � is
in�nite

Corollary 
���� If the family t �� ft is a local perturbation of f around points of  such
that limt�t� �t��� � � for some t�� then for every t su�ciently close to t� the corresponding
invariant measure �t is �nite

Proof� For the proof it su�ces to notice that the local perturbations around  keep the
Hausdor� dimension of Jft away from � �

��



The sections ���� and 
�� the last three sections of this paper� are devoted to study the
rigidity problem for parabolic Cantor sets To be more precise we explore the problem
of what are necessary and su�cient conditions for two parabolic Cantor sets which are
topologically conjugate to be conjugate in a smoother manner like bi�Lipschitz continuous
or real analytic In Section � we resolve this problem �see Theorem �
� in terms of spectra
of moduli of multipliers of periodic points as well as in terms of measure classes of of packing
measures and Hausdor� dimensions
In Section � dealing with real analytic systems we prove �see Theorem ��� a much stronger
rigidity result that absolute continuity with respect to packing measures �the equality of
Hausdor� dimensions is not required)� implies that the conjugating homeomorphism is
real analytic
In the last section� Section 
�� we undertake the most geometrical approach de�ning and
proving the existence of the scaling function We then express a partial solution of the
rigidity problem in terms of the these functions
Our approach to the rigidity problem of parabolic Cantor sets is motivated by the results
and ideas used in the setting of hyperbolic systems See for example �Su
�� �Su��� �Pr���
�Pr��� �PT�� �LS�� and �Be� where also a more complete collection of literature can be found

x�� Rigidity of dynamical Cantor sets� In this section we deal with two dynamical
systems �f� I� �f�j� j � I� and �g� I� �g�j� j � I� assuming that these are set�theoretically
equivalent� that is that �f�i � �f�j �� � if and only if �g�i � �g�j �� � Then the map
� � Jf � Jg given by the formula

��f �
�� � g�
�

is well de�ned �that is for all x � Jf it does not depend on the choice of 
 � ��f �x��
and moreover it can be easily checked that � is a homeomorphism Our main aim in this
section is to prove the following rigidity theorem

Theorem ���� The following three conditions are equivalent

�a� If z � Pern�f�� then j�g
n�����z��j � j�fn���z�j

�b� The dimensions hf � HD�Jf � and hg � HD�Jg� are equal and the homeomorphism
� transports the measure class of the packing measure $hf on Jf onto the measure
class of the packing measure $hg on Jg

�c� Both homeomorphisms � and ��� are Lipschitz continuous

We shall also provide the proof of the following theorem which sheds some light on what
is going on in the general case

Theorem ���� The conjugacy � � Jf � Jg is H�older continuous if and only if either both
Cantor sets Jf and Jg are hyperbolic or both are parabolic

Since the proofs of Theorem �� and the implication �b�� �c� have a considerable overlap�
we partially proceed with them simultaneously In fact we begin with two general technical

��



lemmas� then we prove the implication �c� � �a� of Theorem �
 and we begin the proof
that �b� � �c� including there the proof of Theorem �� We end the section with the
implication �a�� �b�

The de�nition we intend to give now and the lemma following it involve only one single
dynamical system �f� I� �j� j � I� and therefore formulating these and proving Lemma ��
we skip the subscript �f� when dealing with the objects associated with this dynamical
system

De�nition ���� Suppose that a positive number � � � is given If � �  we set R���� �
B��� �� nB��� ��jjf �jj� If x and y �not necessarily di�erent� are in the closure of the same
connected component of B��� �� n f�g� then we let z � fx� yg be the point lying farther
from � By � � q � q�x� y� � 
 we denote the largest integer such that f�q� �z� � �x� y�
and by p � p��� x� y� 	 � we denote the least integer such that fp�z� � R����

Lemma ���� �����	�� �����	�� ������ ��x��y�S�� ��C������ such that the following holds�

If x and y belong to the closure of the same connected component of B��� �� n f�g and
jfp�y�� fp�x�j 	 �� then

C��� ����
qX

j��

�p� j��
������

���� � jy � xj � C��� ��

qX
j��

�p� j��
������

���� �

where we assume ��� � 


Proof� Without loosing generality we may assume that z � y� where z is described in
De�nition �� Suppose �rst that q 	 
 Then by the de�nitions of q and p we have

q���
j��

f��p�j��

�
�f��� �fp�y��� fp�y��

�
� �x� y�

and
q�

j��

f��p�j��

�
�f��� �fp�y��� fp�y��

�
 �x� y�

Since fp�y� � R���� it follows from ��b� that jf��� �fp�y�� � �j 	 r���� where r��� �
��jjf �jj � L����� � 
���������� Hence �f���f

p�y��� fp�y�� � B��� �� n B��� r���� and ap�
plying Lemma �
	 we get

r���L��� �r����

q��X
j��

�p�j��
������

� � jf��� �fp�y���fp�y�jL��� �r����

q��X
j��

�p�j��
������

� � jx�yj

and

jx� yj � jf��� �fp�y��� fp�y�jL��r����

qX
j��

�p� j��
������

� � �L��r����

qX
j��

�p� j��
������

�

��



Since �p� q��
������

� � �p� q � 
��
������

� � combining the last two displays we get




�
L��r���

��

qX
j��

�p� j��
������

� � jx� yj � �L��r����

qX
j��

�p� j��
������

�

and we are done in the case q 	 


If q � �� then we have �x� y� � f�p� ��f��� �y�� y�� and similarly as above we get jx �

yj � �L��r����p
�
������

�  On the other hand in this case �x� y� � f�p� ��f��� �y�� y�� Since
�fp�x�� fp�y�� � �f��� �fp�y��� fp�y��� similarly as before we get �fp�x�� fp�y�� � B��� �� n
B��� r���� Therefore� in view of Lemma �
	

jx� yj 	 jfp�x�� fp�y�jL��r����
��p�

������
� 	 �L��r����

��p�
������

�

The proof is �nished �

Lemma ���� If Jf and Jg are two dynamical Cantor sets and � � Jf � Jg is the canonical
topological conjugacy between them� then �� f � �  g if and only if �� 	 
 �x � Jf �n 	 


��� log j�fn���x�j � log j�gn�����x��j � � log j�fn���x�j	

Proof� A straightforward computation shows that if the second part of our equivalence
is satis�ed� then �� f � �  g In order to prove the converse implication it is of course
su�cient to show only one of these two inequalities� say the second one Take � � �� � �f so
small that ��B� f � ���� � B� g� �g� Then there exist two universal constants � � Wf � 

and Wg 	 
 such that for all � �  f and all x � B��� ��� n  f

jf ��x�j 	Wfp�x� ���
�f �����

�f ��� and jg��x�j � Wgp�x� ���
�g�����

�g���

Let now � � �� � �� be so small that for every � �  f and for every x � B��� ��� the
number p�x� ��� is so large that

logWf

log p�x� ���
� 
 	




�

Let �� � inffjf ��x�j � x � Jf n B� f � ���g � 
 Using also the fact that f� f� �  g� we
can therefore conclude that

log jg����x�j � max

�
log jjg�jj

log��
� sup

�
�f ��� � 


�f ���

�g��� � 


�g���

�
��
 � logWg�

�
log jf ��x�j

Now the straightforward application of the chain rule completes the proof �

Proof that �c� � �a�� Indeed� suppose that there is a periodic point z of period n
such that j�gn�����z��j �� j�fn���z�j Then without loosing generality we can suppose that

��



j�gn�����z��j � j�fn���z�j Fix two numbers ��� �� � 
 such that j�gn�����z��j � �� �
�� � j�fn���z�j and take � � �f � �f and � � �g � �g so small that j�fn���x�j 	 �� for all
x � B�z� �f �� j�gn���y�j � �� for all y � B���z�� �g�� and ��Jf�B�z� �f �� � Jg�B���z�� �g�
Fix x � Jf � B�z� �f � n fzg Then for all k 	 
 we have jf�nkz �x� � zj � ��k� jx � zj and
jg�nk��z� ���x��� ��z�j 	 ��k� j��x�� ��z�j Therefore

lim
k��

jg�nk��z� ���x��� ��z�j

jf�nkz �x�� zj
	 lim

k��

�
��
��

�k
j��x�� ��z�j

jx� zj
�


and since g�nk��z� ���x�� � ��f�nkz �x��� this shows that � is not Lipschitz continuous �

Proof that �b� � �c�� Since the two measures mg and mf � ��� are equivalent� the
measures ��g and �

�
f ��

�� are also equivalent� whence� in view of Proposition �� these are
equal as equivalent ergodic probability g��invariant measures Therefore� it follows from
the last part of this proposition that there exists M 	 
 such that

��
� M�� �
mg���A��

mf �A�
�M

for all Borel subsets A of Jf  In order to continue the proof we need the following

Lemma ��	� If �b� is satis�ed and � �  f � then ���� �  g and ������� � ����

Proof� Take �f � �g � � so small that ��Jf � B��� �f�� � B������ �g� Suppose now that
jg�������j � 
 and �x 
 � � � jg�������j Take � � � � �g so small that jg

��z�j 	 � for all
z � B������ �� Fix y � Jg � B������ �� By conformality of mg we have for all n 	 �

mg��g
��n���
���� �y�� g�n�����y��� � ��nmg��g

��
�����y�� y�� � ��n

On the other hand� in view of Lemma �
	� for all n 	 � we get

mf ��f
��n���
� �����y��� f�n� �����y���� 	 L��f�R�n

�
������

����
hfmf ��f

��
� �����y��� ����y����

where R � j� � ����y�j Therefore

mg��g
��n���
���� �y�� g�n�����y���

mf ��f
��n���
� �����y��� f�n� �����y����

�

�
�
L��f �R�mf ��f

��
� �����y��� ����y���

���
��nn

������

����
hf

Since limn�� ��nn
������
����

hf � � and mf ��f
��
� �����y��� ����y��� � � we arrive at a contra�

diction with ��
� and the proof of the �rst part of Lemma �� is �nished

�




In order to prove the second part of the lemma we apply Lemma �
	 again� this time to
the both maps f and g obtaining as a result the existence of a constant M � � such that
for all n 	 


M�� � n
�
���������
�������

hg�
������
����hf �M

Thus hg�������� � 
��������� � hf ����� � 
������ Since the dimensions hg and hf are
equal� we get ������� � ���� which �nishes the proof of Lemma �� �

Now� let us continue the proof of the implication �b� � �c� including the proof of Theo�
rem �� Fix � � � � �f�� so small that if x� y � Jf with jx� yj � �� then j��x�� ��y�j �
�g�� Let 
 � � be so small that jx � yj � 
 implies j����x�� ����y�j � ��jjf �jj and let
�� � � be so small that jx � yj � �� implies that j��x� � ��y�j � 
�� Finally let 
� � �
be so small that if jx� yj � 
 � then j����x�� ����y�j � ���jjf �jj
Consider now an arbitrary pair of points x �� y � Jf with jx � yj � ���jjf �jj Since by
Lemma �� Jf has no isolated points� in order to prove the Lipschitz continuity of � we
may assume that mf ��x� y�� � � Then also mg��x� y�� � � Let n � n�x� y� 	 
 be the
least integer such that jfn�y� � fn�x�j 	 ���jjf �jj Then jfn�y� � fn�x�j � �� We will
consider several cases

Case �� ffn�y�� fn�x�g �
�
Jf n B� f � ��jjf �jj�

�
�� � Without loosing generality we may

assume that fn�x� � Jf n B� f � ��jjf
�jj� whence in view of Lemma �� and the choice of


 we have gn�x� � Jg nB� g� 
� Thus� applying Lemma �
� we get

K��
f���
���j�f

n���x�j �
jfn�y�� fn�x�j

jy � xj
� Kf���
���j�f

n���x�j�

K��
g���
���j�g

n�����x��j �
jgn���y��� gn���x��j

j��y�� ��x�j
� Kg���
���j�g

n�����x��j�

Using these two formulas and applying also Lemma �	 we now get

j��y�� ��x�j �



�
Kg�
���Kf���
����jjf

�jj���� ��	�jy � xj�	�

which ends the proof of H�older continuity in this case

To continue the proof of the implication �b�� �c� notice that we get two similar inequalities
for conformal measures

K
�hf
f�� �
���j�f

n���x�jhf �
mf ��f

n�x�� fn�y���

mf ��x� y��
� K

hf
f���
���j�f

n���x�jhf �

and

K
�hg
g�� �
���j�g

n�����x��jhg �
mg��g

n���x��� gn���y����

mg����x�� ��y���
� K

hg
g���
���j�g

n�����x��jhg 	

It follows now from the above inequalities for measures� from ��
� and since hf � hg that

�Kh
g��M

�Kh
f���
����

�� j�fn���x�jh

j�gn�����x��jh
� Kh

g��M
�Kh

f���
���	

��



Hence applying the inequalities involving distances we get

j��y�� ��x�j

jy � xj
	 K��

g��K
��
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jgn���y��� gn���x��j

jfn�y�� fn�x�j
	
�
Kg��Kf���
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j�gn�����x��j

�
�
Kg��Kf���
���
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M�	h 
 jjf

�jj

���
	

So� we are done in this case

Case �� ffn�y�� fn�x�g � B� f � ��jjf
�jj� Since j��y�� ��x�j � �� � ��� � �f�� there is

� �  f such that f
n�x�� fn�y� � B��� ��jjf �jj� Let us consider

Case ���� The two points fn�y� and fn�x� are in the same connected component of
B��� ��jjf �jj�n f�g Let � � k � k�x� y� � n be the least integer such that �f j�x�� f j�y�� �
B��� ��jjf �jj� for all k � j � n Finally let q � q�fk�x�� fk�y�� and p � p��� fk�x�� fk�y��
Since p 	 n�k� we get jfp�k�y��fp�k�x�j 	 jfn�y��fn�x�j 	 ���jjf

�jj Since ���jjf
�jj � ��

it follows from Lemma �
� that with the constant Cf � C��� ���jjf �jj� � � and � � ����
we have

���� C��f

qX
j��

�p� j��
���
� � jfk�y�� fk�x�j � Cf

qX
j��

�p� j��
���
� 	

Now� since � is a topological conjugacy between f and g� we have q�gk���x��� gk���y��� �
q�fk�x�� fk�y�� Let S be closure of the connected component of B��� ��jjf �jj� n f�g that
has non�empty intersection with ffk�x�� fk�y�g and let � � ���� � � be the diameter
of ��S � Jf � Note that then p��jjg�jj� gk���x��� gk���y��� � p��� fk�x�� fk�y��� and as
jgk���x��� gk���y��j 	 
�� using Lemma �� and applying Lemma �� for the map g� we
have

C��g��

qX
j��

�p� j��
���
� � jgk���y��� gk���x��j � Cg��

qX
j��

�p� j��
���
� �

where Cg�� � C�����jjg�jj�minf
�� ����jjg
�jjg� is the constant produced in Lemma ��

associated with the map g Combining this formula and ���� we get

���� �CfCg�
�� �

jgk���y��� gk���x��j

jfk�y�� fk�x�j
� CfCg�

where Cg � maxfCg�� � � �  fg Observe now that by the de�nition of n and k we
have jfk���y�� fk���x�j � ���jjf �jj and dist

�
 f � ffk���y�� fk���x�g

�
	 �f�jjf �jj Hence

jgk�����y�� � gk�����x��j � 
�� and dist
�
 g� fgk�����y��� gk�����x��g

�
	 
  So� repre�

senting inverse branches f�kx and g�k��x� respectively as the compositions f
��k���
x � f��

fk���x�

and g
��k���
��x� � g��

gk�����x��
� it follows from Lemma �
� that

�Kf���
���jjf
�jj���j�fk���x�j �

jfk�y�� fk�x�j

jy � xj
� Kf���
���jjf

�jjj�fk���x�j

��



and

�Kg���
���jjg
�jj���j�gk�����x��j �

jgk���y��� gk���x��j

j��y�� ��x�j
� Kg���
���jjg

�jjj�gk�����x��j�

So similarly as in the Case 
� applying Lemma �	 and using ����� we get

j��y�� ��x�j � Cjy � xj�	��

where C is a universal constant which �nishes the proof of H�older continuity in this case

Similarly for conformal measures

�Kf���
���jjf
�jj��hj�fk���x�jh �

mf ��f
k�y�� fk�x���

mf ��y� x��
� �Kf���
���jjf
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mg��g
k���y��� gk���x����

mg����y�� ��x���

� �Kg���
���jjg
�jj�hj�gk�����x��jh	

From the last two inequalities �involving measures� and from ��
� we derive

�
�Kf���
���jjf

�jj�hM��Kg���
���jjg
�jj�h

���
�

j�fk���x�jh

j�gk�����x��jh

� �Kf���
���jjf
�jj�hM��Kg���
���jjg

�jj�h	

Hence� applying the estimates for distances and ����� we get
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jy � xj
� Kg���
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���jjf
�jj
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Therefore the proof is also �nished in this case
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Case ���� The two points fn�y� and fn�x� are in di�erent connected components of
B��� ��jjf �jj� n f�g Then also fk�y� and fk�x� are in di�erent connected components of
B��� ��jjf �jj� n f�g Since the map fkj	x�y
 �even more� the map fnj	x�y
� is well de�ned

there exists a �unique� point v � �x� y� such that fk�v� � w� in particular v � Jf  Now�
note that since n�x� v�� n�y� v� 	 n�x� y�� both pairs �x� v� and �y� v� fall in the Case �

�although it would not hurt us� the Case 
 is forbidden for the pairs �x� v� and �y� v� since�
by the choice of �� and �� the nth iterates of both points must be then out of  f and
therefore the numbers j��x� � ��y�j and jx � vj are comparable as well as the distances
j��y�� ��v�j and jy � vj are Combining these together �nishes the proof of Theorem ��
and the implication �b�� �c� �

In order to prove the implication �a� � �b� let us introduce the following notation For
every x � Jf let

��x� � log jg����x��j � log jf ��x�j

and if x � Jf is a transitive point of the map f � Jf � Jf � which means that the closure

ffn�x� � n 	 �g of the forward trajectory of x is equal to Jf � then for every n 	 � set

���� u�fn�x�� �
n��X
j��

��f j�x��

We shall �rst prove the following technical result

Lemma ��
� If x is a transitive point of f � then for every � � t � ��� the function u
restricted to the set �Jf nB� f � t�� � ff

n�x� � n 	 �g is uniformly continuous

Proof� Fix � � � � 
�� and let � � � � �t be a number less than the number produced
in Corollary �� associated with �t Consider two points fm�x�� fn�x� � Jf n B� f � t�
with jfn�x�� fm�x�j � � Without loosing generality we may assume that m � n Then
in view of Corollary �� there exists a point y � Jf such that f

n�m�fm�y�� � fm�y�
and jfm�j�x� � fm�j�y�j � �t for all j � �� 
� 	 	 	 � n � m Since by the assumptionPn��

j�m ��f j�y�� � �� we therefore get

u�fn�x��� u�fm�x�� �
n��X
j�m

��f j�x�� �
n��X
j�m

�
��f j�x��� ��f j�y��

�

�
n��X
j�m

��
log jg����gj�x���j � log jg����gj�y���j

�
�
�
log jf ��f j�x��j � log jf ��f j�y��j

��

� log





 �g
n�m�����gm�x���

�gn�m�����gm�y���





� log




 �f

n�m���fm�x��

�fn�m���fm�y��






Thus� in order to show that ju�fn�x��� u�fm�x��j is small if � � � is small it su�ces to
prove that both numbers j log j�gn�m�����gm�x�����gn�m�����gm�y���j and the the number
j log j�fn�m���fm�x����fn�m���fm�y��j are small Since � is a homeomorphism it is enough

�	



to establish this property for the latter number And indeed� Since �t � ��� � �� it follows

from the properties of y that fm�y� � f
��n�m�
fm�x� �fn�y��� where f

��n�m�
fm�x� � the continuous

inverse branch of fn�m sending fn�x� to fm�x� is de�ned on B�fn�x�� �� Therefore� since
jfn�x� � fm�x�j � � � ���� since jfn�x� � fm�x�j � �t� and since dist�fn�x�� f � 	 t� it
follows from Lemma �
� that



log





 �f
n�m���fm�x��

�fn�m���fm�y��










 � j logK��t� ��j

and lim
�� j logK��t� ��j � � The proof is �nished �

Proceeding with the proof of the implication �a�� �b� we shall show the following

Lemma ���� The functions log jf ��x�j and log jg����x��j are cohomologoous in the class
of continuous functions on Jf � that is there exists a continuous function u � Jf � IR such
that

log jg����z��j � log jf ��z�j � u�f�z��� u�z�

for all z � Jf 

Proof� It follows from Lemma ���e� that there exists a transitive point x � Jf  We shall
show that u de�ned by ���� on the forward trajectory of x extends continuously to Jf
and satis�es the cohomological equation required in Lemma �� First note that by ����

��	� ��z� � u�f�z��� u�z�

for all z � ffn�x� � n 	 
g and in view of Lemma �� u extends continuously to the set
Jf n  f  Therefore ��	� holds for all z � Jf n � f � f��� �� Using these two facts we
shall now show that u extends continuously to Jf and that then ��	� holds for all z �  f 
Indeed� let � �  f  Take x � f��f�g n f�g and de�ne u��� by the formula

u��� � ��x� � u�x�	

We want to show �rst that u is continuous at � and that u��� is independent of of the
choice of x � f��f�g n f�g So� let yn � �� yn �� � Since by Theorem �� the map
f � Jf � Jf is open there exists a sequence xn � x such that f�xn� � yn and therefore

lim
n��

u�yn� � lim
n��

���xn� � u�xn�� � ��x� � u�x� � u���	

The continuity of u at � is therefore proven In order to prove the independence of
x � f��f�g n f�g actually the same argument is employed Take z � f��f�g n f�g Since
Jf is perfect there is a sequence of points zn � Jf n fzg� n 	 
� tending to z Since by
Theorem �� the map f � Jf � Jf is open� there exists a sequence vn � Jf of points
tending to x and such that f�vn� � f�zn� for all n 	 
 Hence

u��� � ��x� � u�x� � lim
n��

���vn� � u�vn��

� lim
n��

u�f�vn�� � lim
n��

u�f�zn�� � lim
n��

���zn� � u�zn��

� ��z� � u�z�	

��



We have therefore obtained that u extends continuously to Jf and that ��	� holds for all
z �  f n  f  But since the functions appearing in ��	� are continuous and  f n  f is
dense in Jf � we conclude that ��	� continuous to be true for all z � Jf  �

Proof of the implication �a�� �b�� The proof we present here is similar to the Proof
of Lemma �� In view of Lemma �� we conclude the existence of a constant Q 	 
 such
that for all z � Jf and all n 	 
 we have

���� Q�� �
j�gn�����z��j

j�fn���z�j
� Q�

We shall show that the measuremg�� is absolutely continuous with respect to the measure
mf  So� take � � � so small that if jx� yj � �� then j����x� � ����y�j � � Fix �g � �
so small as required in Lemma �
� for the map g and then take �f � � so small as
required in Lemma �
� for the map f and moreover so small that if jx� yj � �f�� then
j��x� � ��y�j � �g� As in the proof of Lemma �� it follows from Theorem �� that
for every x � Jf n

S�
n�� f

�n� �� there exists a sequence fnj � nj�x� � j 	 
g such

that fnj�x� �� B� � �� Let f
�nj
x � B�fnj �x�� ��� � S� be the continuous inverse branch

of fnj sending fnj �x� to x Then it follows from Corollary �
�� that fnj �B�x� rj�� 
B�fnj �x�� K��

� ��f ��f�� and

���� mf �B�x� rj�� 	 K�h
� ��f�P j�f

nj ���x�j�h�

where P � inffm�B�z�K��
� ��f ��f��� � z � Jg � � and

rj � rj�x� � K��
� ��f �j�f

�nj
x ���fnj �x��j�� � K��

� ��f ��f�j�f
nj ���x�j��	

Since also B
�
x� rj� � f

�nj
x

�
B�fnj �x�� �f��

�
� by the choice of �f we get

�
�
B
�
x� rj�

�
� �

�
f�njx

�
B�fnj �x�� �f��

��
� g

�nj
��x�

�
B�gnj����x�� �g��

�

Since by the property �a�� �� f � �  g and since dist
�
fnj �x�� f

�
	 �f � it follows from the

choice of � that dist
�
gnj ���x��� g

�
� � Hence� applying Lemma �
� for g� using ����

and ���� we get

mg

�
��B�x� rj�x��

�
� mg

�
g
�nj
��x��B�g

nj ���x��� �g���
�

� Kh
��g��g�mg

�
B�gnj ���x��� �g��

�
j�gnj �����x��j�h

� Kh
��g��g�j�g

nj�����x��j�h � Kh
��g��g�Q

hj�fnj ���x�j�h

� Kh
��f��f �K

h
��g��g�Q

hP��mf

�
��B�x� rj�x��

�

So� applying Lemma �� �nishes the proof �

��



x�� Real analytic systems� In this section we consider parabolic Cantor sets generating
by dynamical systems �f� I� �j� j � I� with f being real analytic on each set �j  It turns
out that then the rigidity theorem� Theorem �
� takes on a much stronger form� namely in
the condition �b� the assumption of equality of Hausdor� dimensions can be dropped In
order to meet this aim we work �rst with complex analytic extensions of f to get analyticity
of the Radon�Nikodym derivative d��dm This in turn� with the help of complex analytic
methods� implies real analyticity of the Jacobian of the map f � J � J with respect to the
measure � The last step indirectly employing the concept of nonlinearity of expanding
dynamical Cantor sets due to Sullivan shows that the Jacobian is not everywhere locally
constant which constitutes the last major ingredient of the proof of real analyticity of the
conjugacy � We begin with the following

De�nition ���� A dynamical system �f� I� �j� j � I� is said to be real analytic if the map
f �
S
j�I �j � S� has a real analytic extension onto an open neighborhood of f �

S
j�I �j

in S�

The remark that enables us to take advantage of the theory of complex analytic functions
is that for any real analytic dynamical system there exists an open in CI� the set of complex
numbers� neighborhoodH of f �

S
j�I �j and an CI�analytic function onH whose restriction

to f �
S
j�I �j coincides with f  We call this function the �complex� analytic extension of

f and we keep for it the same symbol f  Our exposition begins with citing the following
improved version of the Koebe Distortion Theorem proven in �Pr
� �for the classical version
and some discussion of the subject see �Po� for example�

Lemma ���� �The Koebe distortion Theorem� Given an open bounded subset G of the
complex plane CI there exists a constant K � 
 such that if B�z� �� � G and H � B�z� ���
G is a holomorphic univalent map� then for every � � � � 
 and every x � B�z� �� we have

jH ��x�j

jH ��z�j
�
jH ��z�j

jH ��x�j
� K�
� ����

Switching to the setting of parabolic Cantor sets and using some ideas from �Pr
� we shall
prove the following

Lemma ���� Let V � J be an open neighborhood of   Then there exists an r � �
such that for every x � J n V � every n 	 � and every z � J � f�n�x� there is an inverse
CI�analytic branch f�nz � BCI�x� �r� � CI of fn sending x to z Additionally the diameters
of the sets f�nz

�
BCI�x� �r�

�
converge to � uniformly with respect to variables n� x � J n V �

and z � J � fz

Proof� Since f � H � CI as analytic is open and since J is compact�

� � dist
�
J� ��H � f�H��

�
� �	

��



Hence� using compactness of J again we see that there exists s � � such that all the inverse
branches of f are well de�ned on the balls B�x� s�� x � J  Suppose now additionally that
x �� V and consider an arbitrary in�nite sequence xn � J � n 	 �� such that f�xn��� � xn
and x� � x Set

bn �



�
M�t� 
�����j�f��n���xn�� ���x�j�

where t � dist� � J nV � and M�t� 
��� is taken from Lemma �
� In view of Lemma �
�P�
n�� � 
�� and therefore the product $n���
� bn�

�� converges In fact it lies between

 and e Hence there exists r � � independent of x so small that

��
� �r$n���
� bn�
�� � minfs� �� t��� s��KM�t� 
������g

We shall show by induction that for every n 	 
 there is an analytic inverse branch
f�nxn

� B
�
x� �r$k�n�
� bk�

��
�
� CI sending x to xn and

f�nxn

�
B
�
x� �r$k�n�
� bk�

��
��
� B�xn� s�

Indeed� for n � �� f��x�
is the identity map and our assertion follows from ��
� So� �x

some n 	 � and suppose that the assertion is true for this n Then by the de�nition of

s the inverse branch f
��n���
xn�� � B

�
x� �r$k�n�
 � bk�

��
�
� CI is also well�de�ned and by

Lemma �� �the Koebe Distortion Theorem�� the de�nition of bn&s and ��
�

f��n���xn��

�
B
�
x��r$k�n���
� bk�

��
��
�

� B
�
xn��� �r$k�n���
� bk�

��Kb��n j�f��n���xn��
���x�j

�
� B

�
xn��� �r$k���
� bk�

��K�M�t� 
���
�

� B
�
xn��� s�

Thus� the inductive reasoning is completed and as for every n� $k�n�
�bk�
�� 	 
� the �rst

part of the lemma is proven The second part follows now immediately from Lemma �

and Lemma �� �the Koebe Distortion Theorem� �

As an immediate consequence of Lemma �� and Lemma �� �the Koebe distortion theorem�
we get the following

Corollary ���� ���� �q �n�q �z�JnV if f�n� � B�z� �r� � CI is an inverse branch of fn

then j�f�n� ���x�j � ��� for every x � B�z� r�

Our next goal is to show that the Radon�Nikodym derivative d��dm allows a real analytic
extension� that is in fact even a complex analytic extension In order to cope with this
problem we need to go back to Section � to examine the way the ���nite measure � has
been constructed So� �rst we de�ned the jump transformation f� � Jf n  setting

f��x� � fn�x����x��

��



where n�x� 	 � is the least integer n 	 � such that fn�x� ��
S
j�I����j  In Proposition ��

we claimed that there exists a unique� ergodic� f��invariant probability measure �� equiv�
alent to m and �� � d���dm satis�es D�� � �� � D for some constant D � � Now
proceeding essentially as in the proof of Lemma �� of �U
�� we shall prove the following 

Lemma ���� If �f� Jf � is real analytic� then there exists a CI�analytic extension of �
� �

d���dm onto an open neighborhood of
S
j�J �j 

Proof� Let

L � L��m�� L��m�� L����z� �
X

x��f�����z�




j�f����x�jh
��x�

be the Perron�Frobenius operator of the mapping f with respect to the measure m� that is
L��� � d

�
��m

�
� �f������dm Therefore it follows from Proposition �� that �� � d���dm

is the only positive �xed point of L An easy computation shows that for every n 	 


���� Ln����z� �
X

x���f��n����z�

��x�

j��f��n���x�jh

For every x � S� and k 	 
 let n�x� k� � n�x� � 
 � n�f��x�� � 
 � n��f����x�� �

 � 	 	 	 � n��f��k���x�� � 
 �we make the convention n��� � 
� for � �  � Then
�f��k�x� � fn�x�k��x� In view of Lemma �� and the de�nition of the jump transformation
there exists � � R � r such that for every k 	 
� every z � J � and every x � �f���k�z� there

exists a unique holomorphic inverse branch f
�n�x�k�
��x�k� � B�z� �R�� CI of fn�x�k� determined

by the condition f
�n�x�k�
��x�k� �z� � x Since the map f mapping

S
j�I �j onto its image is

open� using ����� we can write

Lk����y� �
X

x��f���k�z�

j�f
�n�x�k�
��x�k� ���y�jh��f

�n�x�k�
��x�k� �y��

for every k 	 
 and y � S� � B�z� �R� Since f
�n�x�k�
��x�k� �S� �B�z� �R�� � S�� we have

j�f
�n�x�k�
��x�k� ���y�j �

y � �f�n�x�k���x�k� ���y�

f
�n�x�k�
��x�k� �y�

for all y � S� � B�z� �R�	

Thus

���� Lk�
��y� �
X

x��f���k�y�

�
�y � f

�n�x�k�
��x�k�

��y�

f
�n�x�k�
��x�k� �y�

�
A
h

for every y � S� � B�z� �R��

where raising to the h�th power we have chosen the unique analytic branch sending z

to j�f�n�x�k���x�k� ���z�jh which is well�de�ned since the set B�z� �R� is simply connected Let

	�



M�z� � ��m�B�z� R����� � �
 Since 
 	 m��f���m�B�z� R��� �
R
B�z�R�

Lk�
�dm�

there exists a point yk � B�z� R� such that

���� Lk�
��yk� �M�z�	

In view of Lemma �� there exists a constant N � � such that

��	�








y

f
�n�x�k�
��x�k� �y�







 � N for every k 	 
� y � B�z� R� and x � �f���k�z��

and in view of Lemma �� �the Koebe Distortion Theorem�

j�f
�n�x�k�
��x�k� ���y�j � Kj�f

�n�x�k�
��x�k� ���yk�j

for every k 	 
� y � B�z� R�� and x � �f���k�z� Therefore� using ����� ����� and ��	��
we get

X
x��f���k�z�








y � �f

�n�x�k�
��x�k� ���y�

f
�n�x�k�
��x�k� �y�








h

� �NK�h
X

x��f���k�z�

j�f�n�x�k���x�k� ���yk�j
h

� �NK�hLk�
��yk�

� �NK�hM�z�

for every k 	 
 and y � B�z� R� Hence the series appearing in ���� de�nes on B�z� R�
a holomorphic function for which we keep also the name Lk�
� It follows again from the
last display that











k

k��X
j��

Lj�
��y�







 � �NK�hM�z� for every k 	 
 and y � B�z� R�

Thus� by Vitali&s theorem� the family f �k
Pk��

j�� L
j�
�g�k�� of holomorphic functions on

B�z� R� is normal in the sense of Montel and therefore one can �nd an increasing to

in�nity subsequence fksg�s�� such that
�
ks

Pks��
j�� Lj�
� converges on B�z� R��� uniformly

to an analytic function� say H � B�z� R��� � CI Hence �� � H almost everywhere on
S� �B�z� R��� Thus the proof is �nished since analyticity is a local property �

Now� as an immediate consequence of Lemma �	 and Theorem ��� along with real ana�
lyticity of 
�jf �jh� and Lemma �
	� we get the following

Lemma ��	� The Radon�Nikodym derivative � � d��dm has a real analytic extension to
the set

S
j�J �j n  

	




Let now � denote the Jacobian of the map f with respect to the measure � Since
��x� � jf ��x�jh��f�x�����x�� we derive from Lemma �� the following main technical
result about real analyticity

Lemma ��
� The Jacobian � has a real analytic extension to the set
S
j�J �j n 

Our �rst consequence of Lemma �� is the following

Lemma ���� If �f��j� I� is a real�analytic parabolic system� then there is i � I such that
the Jacobian � of f with respect to the invariant measure � is not locally constant at any
point of �i

Proof� Suppose to the contrary that every interval �j contains a point �not necessarily
lying in J� around which the Jacobian � is constant Then it follows from Lemma ��
that � is constant on each whole interval �j � j � I Denote this common value by �j
Since � is invariant

P
y�f���x� �

��
i �y� � 
 for � almost every x � J � and since each point

of J has at least two distinct preimages under f and since � is positive on non�empty open
sets� it follows that ��y� � 
 for all y � f���x� Hence � � minf�j � j � Ig � 
 Take
now an arbitrary point � �  and choose one point z � J � B��� �� n f�g In view of
Lemma �
�� �

�
�f��� �z�� z�

�
�
 Thus

����� z�� �
X
n��

�
�
f�n� ��f��� �z�� z��

�
�
X
n��

��n�
�
�f��� �z�� z�

�
�





� �
�
�
�f��� �z�� z�

�
�


Choosing if necessary one point in J � B��� �� n f�g locating on the other side of �� we
therefore conclude that � has a neighborhood of �nite � measure Since  is �nite the
same continues to be true for the whole set   Combining this fact and Lemma �
� we
deduce that ��J� � 
 But this contradicts Corollary �
� and �nishes the proof of the
lemma �

Let us now proof the main result of this section

Theorem ���� Let �Jf � f� and �Jg� g� be two real�analytic parabolic systems and let
� � Jf � Jg be the corresponding canonical topological conjugacy If the homeomorphism
� transports the measure class of the packing measure $hf on Jf onto the measure class
of the packing measure $hg on Jg� then � and �

�� extend to real analytic maps on open
neighborhoods in S� respectively of Jf and Jg In particular HD�Jf � � HD�Jg�

Proof� Fix an f �invariant measure �f equivalent to the conformal measure mf  Since �
transports measure class of mf to the measure class of conformal measure mg� the measure
�g � �f � ��� is g�invariant and equivalent with mg Since � is invertible it equivalently
means that ��� the Jacobian of � with respect to the measures �f and �g is equal to 

The formula g � � � � � f combined with the chain rule therefore give

�g � � � �f �f � ae�

	�



where �g and �f denote respectively the Jacobians of the maps g and f with respect to the
measures �g and �f  Since the measure �f is positive on non�empty open subsets of Jf
and since by Lemma ��� both sides of this equality are continuous on Jf n

�
 f ����� g���

we get

��	� �g � ��x� � �f �x�

for all x � Jf n
�
 f � ���� g�� Now Lemma �� applied to the real analytic system

�g� Jg� produces an open arc V � S� such that V � J�g �� � and �gjV is injective Let
W � ����V �Jg� Since W is a non�empty subset of Jf and since �g�V � is an open subset
of IR� using ��	�� we deduce the existence of an open subset U of S� n

�
 f ����� g�� such

that � �� U � Jf �W � �f �U� � �g�V � and

���� ��x� � ��gjV �
�� � �f �x�

for all x � Jf � U  In particular �jJf�U has a real analytic extension on U  Take now an
arbitrary point z � Jf  In view of Lemma ���f� there exist y � Jf �U and n 	 � such that
fn�y� � z Take r � �� depending on y and n� so small that there exists f�ny � B�z� r�� S��
a continuous inverse branch of fn sending z to y We may additionally require r � � to
be so small that f�ny �B�z� r�� � U and gn��gjV �

�� � �ff
�n
y �B�z� r�� is well de�ned From

� � fn � gn � � �on Jf � we deduce that � � gn � � � f�ny on Jf � B�z� r� So� since f�ny

on B�z� r� is real analytic and since gn is real analytic on any arc where it is well de�ned�
using ���� we deduce that gn � ��gjV ��� � �f � f�ny � B�z� r� � S� gives a real analytic
extension of �jJf�B�z�r� to the ball B�z� r� Thus we have proved that every point of Jf
has an open connected neighborhood in S� to which � can be extended in a real analytic
fashion Now� to conclude the proof� it su�ces to remark that any two of such real analytic
extensions� de�ned on respective intervals having non�empty intersections� coincide �

x�� The scaling function� In this section we collect some basic properties of the scal�
ing function associated with a cookie�cutter Cantor set construction� stressing di�erences
between parabolic and hyperbolic case Next we formulate a rigidity theorem in terms of
scaling functions Throughout the section we assume that the basic sets �j � j � I� are
mutually disjoint which implies that ��A � �� is the full shift space over d � "I elements�
 � �� � J is a homeomorphism� and J is a topological Cantor set Moreover we require
that for all j � I

�
�
� f��j� 
�
i�I

�i

and the endpoints of the interval f��j� are contained in the union
S
i�I �i� hence are the

same for all j � I

Recall that in Section 
 by ��
�� 
 � �n� we have denoted the interval ��� � f
������� �

	 	 	� f�n���n� Now we want to extend this de�nition letting 
 be of the form ��� where

	�



� � �� and � ranges over the set G �consisting of d � 
 elements� of gaps between the
elements �j � j � I We set

����� � ���� � f��j�j������

and now we are in position to de�ne the function S � �� � ��� 
��d�� putting for all 
 � ��

and j � I � G

S�
��j� � Sj�
� �
j��
j�j

��
�j

Note that
P

j S�
��j� � 
 We will also consider functions S de�ned on the dual shift

space !�� consisting of all left�in�nite words 	 	 	 
n
n�� 	 	 	 
�� 
i � I Given n 	 � and

 � !�� we de�ne Sn�
� � S�
n
n�� 	 	 	 
�� So� Sn � !�

� � ��� 
��d�� Our �rst aim is to
prove the following

Theorem ���� The sequence fSn � !�
� � ��� 
��d�� � n 	 
g converges uniformly The

limit function S � !�� � ��� 
��d��� called the scaling function� is continuous

Proof� Take j � I � G Fix also integers k� n 	 � Take an auxiliary x � ��
 jn�k�
In view of the Mean Value Theorem there exist y � ��
kj� and z � ��
 jk� such that
j��
 jn�kj�j � j�f�nx ���y�j � j��
kj�j and jj��
 jn�k�j � j�f�nx ���z�j � j��
k�j Therefore

jSn�k�
��j�� Sk�
��j�j �





 j��
 jn�kj�jj��
 jn�k�j
�
j��
kj�j

j��
k�j






�





 j�f
�n
x ���y�j � j��
kj�j

j�f�nx ���z�j � j��
k�j
�
j��
kj�j

j��
k�j






�
j��
kj�j

j��
k�j





 j�f
�n
x ���y�j

j�f�nx ���z�j
� 







�





 j�f
�n
x ���y�j

j�f�nx ���z�j
� 






�
���

With the help of �
��� we shall prove that all the sequences Sn�	��j�� j � I �G� satisfy the
uniform Cauchy condition Indeed� �x again j � I�G and � � � Take � � � so small that
maxfQ������ 
� 
� Q�����

��g � �� where Q� is the function produced in Lemma ���
Now �x A��� � � so small that setting

K� � K����jjf
�jj� L����jjf

�jj�����L����jjf
�jj����jjf �jj�������A����

where the function K� is produced in Lemma �
�� it holds maxfK�� 
� 
�K��
� g � ���

Finally� in view of Lemma �
 we can �x k 	 
 so large that

�
��� diam���
 jk�� � A���

for all 
 � !�
Take now an arbitrary 
 � !� and suppose that

dist� ���
 jk�� 	 �	

	�



Let t 	 � be the least integer such that ��
 jk� � f
��k�t�
� ���
 jt�� for some � �   Since

� is positive� dist� ���
 jt�� 	 ��jjf �jj If t � k� then diam���
 jt�� � A��� Otherwise�
using Corollary �
� we conclude that dist� ���
 jk�� � L����jjf �jj��k � t���	� Hence
L����jjf �jj��k� t���	� 	 � and therefore k� t � �L����jjf �jj������  Thus by Lemma �
	
we get

diam���
 jk�� 	 L����jjf
�jj����k � t��

���
� diam���
 jt��

	 L����jjf
�jj���L����jjf

�jj�����������diam���
 jt��

which implies that

diam���
 jt�� � L����jjf
�jj�L����jjf

�jj�����������diam���
 jk��

� L����jjf
�jj�L����jjf

�jj�����������A���	

Hence applying �
��� and Lemma �
�� it follows from the choice of k and � that for every
n 	 � we have

jSn�k�
��j�� Sk�
��j�j � jSn�k�
��j�� St�
��j�j� jSt�
��j�� Sk�
��j�j

� �maxfjK� � 
j� j
�K��
� jg � ��
���

So� we can assume that
dist� ���
 jk�� � �	

Then ��
 jk� � B� � ��� Therefore if 
 jk does not consist only of indices corresponding
to one parabolic point �so the assumptions of Lemma ��� are satis�ed with q � 
�� the it
follows from �
���� Lemma ���� and the choice of � that for every n 	 �

jSn�k�
��j�� Sk�
��j�j � maxfQ������ 
� 
�Q��� ����g � �	

Now� the only case left is when 
 jk consists of indices j� only for some � �  � where
j� � I is determined by the requirement that � � �j�  Since by the Mean Value Theorem

limx��
jf��
� �x���j
jx��j

� 
 and in view of Corollary �
� and Lemma �
	 we deduce that

limn�� Sn�j
n
���j� is equal to 
 if j � j� and � otherwise Hence taking k su�ciently

large� larger than required in �
��� perhaps we see that jSn�k�
��j� � Sk�
��j�j � �
if 
 jn�k � jn�k�  Otherwise look at the largest number q such that 
 jq � jq� Then
k � q � n� k and

jSn�k�
��j�� Sk�
��j�j � jSn�k�
��j�� Sq���
��j�j� jSq���
��j�� Sq�
��j�j�

� jSq�
��j�� Sk�
��j�j

As above jSq�
��j��Sk�
��j�j � � Moreover the �rst summand jSn�k�
��j��Sq���
��j�j
is estimated from above by � similarly as the two summands in �
��� �q�
 corresponds to
t� and in view of �
��� applied with n � 
 the second summand jSq���
��j��Sq�
��j�j is
less than � if and only if diam���
 jk��� and consequently also diam���
 jk�� is su�ciently

		



small Then jSn�k�
��j� � Sk�
��j�j � �� which completes the proof of the uniform
convergence of the sequence Sn Since all the functions Sn are obviously continuous the
limit function is also continuous and the proof is �nished �

Now we shall prove the fact� actually already proven in the course of the proof of The�
orem 
�
 which describes some di�erences between parabolic and hyperbolic dynamical
Cantor sets in the language of scaling functions

Lemma ���� S�
��j� � � if and only if for all n 	 �� ��
n� is the �only� element
containing some � �  and �j does not contain �

Proof� Suppose �rst that for all � �  not all the elements ��
n�� n 	 �� contain � If
��
�� �  �� �� set q � � Otherwise there exists a least �nite number q 	 
 such that

q �� 
� In any case dist� ���
 jq�� 	 ��� In view of the Mean Value Theorem there exist
y � ��
 jqj� � ��
 jq� and z � ��
 jq� such that j��
 jq�nj�j � j�f�nt ���y�j � j��
 jqj�j and
j��
 jq�n�j � j�f�nt ���z�j � j��
 jq�j� where f

�n
t denotes the inverse branch of fn sending

��
 jq� to j��
 jq�n� Therefore

Sq�n�
��j� �
j��
 jq�nj�j

j��
 jq�n�j
�
j�f�nt ���y�j

j�f�nt ���z�j
Sq�
��j�

and applying Corollary �
� we get Sq�n�
��j� 	 K������
��Sq�
��j� So� letting n � 


�and employing Theorem 
�
 of course�� we get S�
��j� 	 K�������
��Sq�
��j� � �

Now suppose that ��
 jn� � f�n� ����� for all n 	 � and some � �   If j is taken such
that � �� �j � then in view of Lemma �
	 and Corollary �
�

Sn�
�j �
j��
 jnj�j

j��
 jn�j
�

l������n
����

�

l��� �����n�
�
�

� L������L������n
��	

Hence S�
��j� � � Since
P

j S�
��j� � 
� the proof is completed �

Corollary ���� If two dynamical Cantor sets Jf and generated respectively by dynamical
systems �f� I��f�j� j � I� and �g� I��g�j� j � I� have the same scaling functions� then the
topological conjugacy � � Jf � Jg sends the set of parabolic points of f onto set of
parabolic points of g

Theorem ���� If two dynamical Cantor sets Jf and Jg generated respectively by dy�
namical systems �f� I��f�j� j � I� and �g� I��g�j� j � I� have the same scaling functions�
then the topological conjugacy � � Jf � Jg is Lipschitz continuous
Conversely� if the conjugacy � � Jf � Jg is a C

� di�eomorphism� then the Cantor sets Jf
and Jg have the same scaling functions

Proof� Let us prove �rst the second part of this theoremIndeed� keep the same notation
� for a C� extension of � to an open neighborhood of Jf  Decreasing this neighborhood
if necessary we can assume that ��� the derivative of � nowhere vanishes Therefore for

	�



every n 	 � su�ciently large and every 
 � �n� the map �j�f ��� is well de�ned and

���f �
�� � �g�
� Now� in view of the Mean Value Theorem� for every 
 � !�� every j � I
and every su�ciently large n 	 �� there are y � �f �
 jnj� � �f �
 jn� and z � �f �
 jn� such

that j�g�
 jnj�j � j���y�jc*j�f �
 jnj�j and j�g�
 jn�j � j���z�jc*j�f �
 jn�j Thus

Sg�n�
��j� �
j���y�j

j���z�j
Sf�n�
��j�	

Since limn�� j��
 jn�j � �� it follows from positiveness and continuity of �� that

Sg�
��j� � lim
n��

Sg�n�
��j� � lim
n��

Sf�n�
��j� � Sf �
��j�

�nishing the proof of the second part of the theorem

In order to prove the �rst part of this theorem we will show that condition �a� of Theo�
rem �
 is satis�ed� that is that the spectra of moduli of periodic points of f and g are the
same So� let z be an arbitrary periodic point of f � say of period q 	 
 For � � j � q � 

let f j�z� � �f �
j� and let 
 � 
�
� 	 	 	 
q�� Our aim is to show that j�gq���z�j � j�fq���z�j
In view of Corollary 
�� we may assume that neither z nor ��z� are parabolic Denoting
by 
n the concatenation of n words 
 � we get

j�g�

n��
��j

j�g�
n
��j
�
j�f �


n��
��j

j�f �
n
��j
�

�
j�g�


n
� 	 	 	 
q��
��j

j�g�
n
� 	 	 	 
q���j
�
j�g�


n
� 	 	 	 
q���j

j�g�
n
� 	 	 	 
q���j
� 	 	 	 �

j�g�

n��
�
��j

j�g�
n��
��j
�

�
j�f �


n
� 	 	 	 
q��
��j

j�f �
n
� 	 	 	 
q���j
�
j�f �


n
� 	 	 	 
q���j

j�f �
n
� 	 	 	 
q���j
� 	 	 	 �

j�f �

n��
�
��j

j�f �
n��
��j

� Sg�

n
� 	 	 	 
q����
��Sg�


n
� 	 	 	 
q����
q��� 	 	 	 Sg�

n
� 	 	 	 
q����
q����

� S��f �
n
� 	 	 	 
q����
��S
��
f �
n
� 	 	 	 
q����
q��� 	 	 	 S

��
f �
n
���
��

Thus� denoting by 
� � !� the in�nite concatenation of 
 &s we obtain

lim
n��

�
j�g�


n��
��j

j�g�
n
��j
�
j�f �


n��
��j

j�f �
n
��j

�
�

�
Sg�


�
� 	 	 	 
q����
��

Sf �
�
� 	 	 	 
q����
��
�
Sg�


�
� 	 	 	 
q����
q���

Sf �
�
� 	 	 	 
q����
q���
� 	 	 	 �

Sg�

�
���
��

Sf �
�
���
��

� 
�
�	�

On the other hand� since �f �

n
�� � fq��f �


n��
�� and �g�

n
�� � gq��g�


n��
��� by
the Mean Value Theorem there are two points xn � �f �


n��
�� and yn � �g�

n��
��

such that j�f �

n
��j � j�fq���xn�jj�f �


n��
��j and j�g�

n
��j � j�gq���yn�jj�g�


n��
��j
Combining these equalities and �
�	� we get

j�gq�����z��j

j�fq���z�j
� lim

n��

j�gq���yn�j

j�fq���xn�j
� 
	

Applying now Theorem �
 completes the proof �

	�
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