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The box-counting dimension for
geometrically finite Kleinian groups

by

B. S t r a t m a n n (Göttingen) and M. U r b a ń s k i (Denton, Tex.)

Abstract. We calculate the box-counting dimension of the limit set of a general geo-
metrically finite Kleinian group. Using the “global measure formula” for the Patterson
measure and using an estimate on the horoball counting function we show that the Haus-
dorff dimension of the limit set is equal to both: the box-counting dimension and packing
dimension of the limit set. Thus, by a result of Sullivan, we conclude that for a geomet-
rically finite group these three different types of dimension coincide with the exponent of
convergence of the group.

1. Introduction. In this paper we determine various fractal dimensions
for limit sets of Kleinian groups. We show that the three concepts of Haus-
dorff, packing and box-counting dimension, when applied to the limit set of
a general geometrically finite Kleinian group, all lead to the same number,
namely the exponent of convergence of the group. That such a result should
hold was already conjectured for some time. The conjecture was explicitly
stated by Davies and Mandouvalos in their paper [6] on upper and lower
bounds of the essential spectrum of the Laplacian for regions with fractal
boundary.

As already mentioned, we study the limit set L(G) of a non-elementary,
geometrically finite Kleinian group G. These groups are discrete subgroups
of Con(N), the group of all orientation preserving Möbius transformations
acting on the (N+1)-dimensional unit ball DN+1 and leaving the hyperbolic
metric d in DN+1 invariant.

The group G is geometrically finite if there exists a fundamental poly-
hedron for its action on DN+1 which has a finite number of faces. This
definition includes the cases where G is cofinite, that is, G has parabolic
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elements and the limit set is the boundary SN of DN+1, and the case where
G is convex cocompact, that is, G acts cocompactly on the convex hull
of L(G), and also the 1-dimensional case where G is a finitely generated
Fuchsian group.

The limit set L(G) of a Kleinian group G is the complement of the region
of discontinuity of the extended action of G on SN . It is well known that for
a geometrically finite G the perfect set L(G) splits disjointly into the set of
parabolic fixed points and the set of conical limit points. In fact, this last
property turns out to be equivalent to the property of G being geometrically
finite ([3], [4]). Unless G is cofinite, the set L(G) is an extremely complicated
structured set which has proved to be an inspiring object for the theory of
fractal sets.

In his pioneering work [11], Patterson laid the foundation for a compre-
hensive study of the limit set in terms of measure theory and in particular
in terms of fractal dimensions. His work was certainly motivated by results
of the classical theory of metric Diophantine approximation. By construct-
ing a measure on the limit set, which is now called the Patterson measure,
he was able to show that for “essentially” every finitely generated Fuchsian
group G the exponent of convergence δ = δ(G) is equal to dimH(L(G)), the
Hausdorff dimension of the limit set (in fact, his proof introduces an unnec-
essary complication in the “parabolic case” and if this is avoided the results
are actually seen to be valid for all finitely generated Fuchsian groups). In
[15] Sullivan generalized the construction of Patterson to the Kleinian group
case. He proved that δ(G) and dimH(L(G)) also coincide for all geometrically
finite Kleinian groups G.

The determination of the Hausdorff dimension is only one possible way to
measure the degree of complexity of a given set. In fact, in practice it is often
extremely difficult to calculate it explicitly. There are other concepts which
also give insight into the complexity of sets and which are often easier to
compute. These include the box-counting dimension dimB and the packing
dimension dimP (definitions will be given later). Our aim in the present
paper is the determination of these two fractal dimensions for the limit sets
of Kleinian groups. To be precise, we shall prove that if G is a geometrically
finite Kleinian group, then

dimB(L(G)) = dimP(L(G)) = dimH(L(G)) = δ(G).

Our proof of this result was inspired by the proof of a similar result for
the Julia sets of parabolic rational maps, given in [8]. There it was shown
that the Hausdorff dimension and the box-counting dimension agree for the
Julia set J(T ) of a parabolic rational map T . The proof in [8] is based on two
general observations. On the one hand, it is possible to obtain a “general
measure estimate” for the dimH(J(T ))-conformal measure on J(T ) (this was
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done in [7], and can be found more explicitly in [8]). On the other hand,
there exists a well elaborated formalism for the “Schweiger transformation”
T ∗ (sometimes also called “jump transformation”), which guarantees the
existence of a unique T ∗-invariant measure on J(T ) which is absolutely
continuous with respect to the dimH(J(T ))-conformal measure ([1]).

For geometrically finite Kleinian groups there is no such well elaborated
“Schweiger formalism” (but see [5]). Nevertheless, our proof here is also
based on two general observations. On the one hand, there exists a “global
measure formula” for the Patterson measure, which was given in [14] and
which we recall in greater detail. On the other hand, we use a growth es-
timate for the counting function for “standard horoballs”, which was also
obtained in [14] and which we also recall in greater detail.

We remark that these two approaches seem to suggest that the T ∗-
invariance of the “Schweiger measure” in the Julia set case corresponds in
some sense to the counting estimate for standard horoballs in the Kleinian
group case.

Let us also give a sample application of our results. For this we recall from
spectral theory the so-called Weyl conjecture, which states that the exponent
of the second order term in the asymptotic expansion of the spectral counting
function for the Laplacian for regions with fractal boundaries should be
governed by the Hausdorff dimension of the fractal boundary ([10]). If in this
conjecture “Hausdorff dimension” is replaced by “box-counting dimension”,
then we obtain the so-called Weyl–Berry conjecture ([10]). It is clear that
the results in the present paper imply that for a region with boundary equal
to the limit set of some geometrically finite group the Weyl conjecture and
the Weyl–Berry conjecture coincide.

Finally, we remark that, after we had submitted the paper for publica-
tion, we received the preprint [3], in which the same result was obtained.

The authors would like to thank the Sonderforschungsbereich 170 at
the University of Göttingen for support and hospitality. The second author
would also like to thank the NSF for financial support.

2. Preliminaries

Counting standard horoballs. Let G be a geometrically finite subgroup
of Con(N). We need to recall some facts about parabolic elements in G. For
a more detailed discussion we refer to [14] and [17].

Let P denote a complete set of inequivalent parabolic fixed points of
G. In particular, we shall assume that P is a subset of the closure of the
fundamental polyhedron of G which contains the origin 0 in DN+1. Then P
is a finite set and G(P ) represents the countable set of all parabolic fixed
points of G. For p in G(P ) let Gp := {g ∈ G : g(p) = p} denote the stabilizer
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of p in G. The group Gp contains a free abelian subgroup G∗p of finite index.
The rank of G∗p depends only on p and is referred to as the rank k(p) of p.

A horoball at p is an open N -ball which is tangential to the boundary SN

at p. We choose a complete set of standard horoballs, that is, we assign to
each h(p) in G(P ) a horoball Hh(p) such that the resulting family of horoballs
is pairwise disjoint and h(Hp) = Hh(p) for each p in P and h in G. With
each standard horoball Hh(p) we then associate a certain element g in Gh(p)
such that g(0), if compared with all the other elements in the orbit Gh(p)(0),
lies closest to the origin 0 in DN+1. The set of group elements g obtained
in this fashion is called the top representation of the coset representatives
of Gp in G and will be denoted by Tp. In the following we shall assume that
the standard horoballs are labelled by elements of Tp. For p in P and g in
Tp we let Hg(p)(rg) := Hg(p), where rg denotes the Euclidean radius of the
N -ball Hg(p). Thus

{Hg(p)(rg) : p ∈ P, g ∈ Tp}
represents the complete set of standard horoballs. Also, for 0 < ε < 1, we
define Hg(p)(εrg) ⊆ Hg(p)(rg) to be the horoball at g(p) of radius εrg.

If we order the standard horoballs according to the sizes of their radii it
becomes natural to ask for the cardinality of horoballs of a particular size.
The following result was obtained in [14] (Corollary 4.1).

Theorem 1. There exist positive constants k1, k2, n0 and %, depending
only on G, such that , for all n > n0 and for all p in P ,

k1%
−nδ ≤ cardAn(p) ≤ k2%

−nδ,

where An(p) := {g ∈ Tp : %n+1 ≤ rg < %n}, and δ denotes the exponent of
convergence of G.

The global measure formula. We also need a formula obtained in [14] and
[16]. This formula gives sufficiently good control on the Patterson measure
of arbitrary balls centred around limit points. As it results from a slightly
coarse study of the involved “geometrically finite geometry”, it also only
reflects the nature of the Patterson measure in a slightly coarse way, as
should be expected from this kind of approach. Nevertheless, for the studies
of various more advanced aspects of the “behaviour at infinity”, this formula
gives just the kind of control over the measure which is required (see e.g.
[12]–[14]). In order to be able to state this formula explicitly, some further
notation is needed.

For ξ in SN let sξ denote the ray from the origin 0 in DN+1 to ξ. If A
is a subset of DN+1 then Π(A), the shadow at infinity of A, is defined by

Π(A) := {ξ ∈ SN : sξ ∩A 6= ∅}.
For positive t, we let ξt denote that point on sξ which lies at hyperbolic
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distance t from the origin. Also, let b(ξt) be the shadow at infinity of the N -
dimensional hyperbolic hyperplane which is orthogonal to sξ and intersects
sξ at ξt. Using elementary hyperbolic geometry it is easily seen that b(ξt) is
a Euclidean N -ball in SN centred at ξ with Euclidean radius comparable to
e−t.

As already mentioned in the introduction, we denote by µ the Patter-
son measure. For a construction of this measure we refer to [11]. If G is a
geometrically finite Kleinian group, it is well known that µ is an ergodic
and “δ-conformal” probability measure supported on the limit set L(G) and
which has no atomic part. Here δ = δ(G) is the exponent of convergence of G,
i.e. δ is the exponent of convergence of the Dirichlet sum

∑
exp(−s·d(0, g0)),

where the sum is taken over all g in G. By δ-conformal we mean that for
each Borel subset E of SN and for each g in G, we have

µ(g−1(E)) =
∫
E

j(g, ξ)−δ dµ(ξ),

where j(g, ξ) denotes the conformal distortion of g at ξ.
The “global measure formula” for µ, announced above, can now be given.

We point out that this formula reflects the δ-conformality of the Patterson
measure in the presence of a geometrically finite group action. The exis-
tence of such a global estimate was certainly already known to Patterson
and Sullivan and for its derivation we refer to the elementary proof in [14]
(Theorem 2).

Theorem 2. There exist positive constants k3 and k4, depending only
on G , such that for each ξ in L(G) and for all positive t ,

k3e
−tδ(e−d(ξt,G(0)))δ−k(ξt) ≤ µ(b(ξt)) ≤ k4e

−tδ(e−d(ξt,G(0)))δ−k(ξt),

where k(ξt) is equal to k(p) if ξt lies in Hg(p)(rg) for some p in P and g in
Tp, and is equal to δ otherwise.

As an immediate consequence we obtain the following estimate for the
measure of the shadow at infinity of arbitrarily “squeezed” standard horo-
balls ([14], Corollary 3.5).

Corollary 1. There exist positive constants k5 and k6 such that for
each p in P , g in Tp and for all positive θ < 1,

k5θ
2δ−k(p)rδg ≤ µ(Π(Hg(p)(θrg))) ≤ k6θ

2δ−k(p)rδg.

Hausdorff, packing and box-counting dimension. Finally, we recall a few
well known measure-theoretic concepts and facts which have proved to be
efficient tools for a classification of sets with an extremely complicated in-
ner structure. For further details we refer to the nicely written book of
Falconer [9].
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Let a subset Λ of RN be given. For positive ε let Cε(Λ) denote the set of
all coverings and Pε(Λ) the set of all packings of Λ by open balls centred in
Λ and with radii not exceeding ε. For positive s the s-dimensional Hausdorff
measure Hs(Λ) resp. packing measure Ps(Λ) of Λ is defined by

Hs(Λ) := lim
ε→0

inf
U∈Cε(Λ)

∑

u∈U
(diam(u))s,

Ps(Λ) := inf
Λ=∪iΛi

∑

i

lim
ε→0

sup
U∈Pε(Λi)

∑

u∈U
(diam(u))s.

The Hausdorff dimension dimH(Λ) and the packing dimension dimP(Λ) of
Λ are then defined by

dimH(Λ) := sup{s : Hs(Λ) =∞} = inf{s : Hs(Λ) = 0},
dimP(Λ) := sup{s : Ps(Λ) =∞} = inf{s : Ps(Λ) = 0}.

Let P∗ε (Λ) ⊂ Pε(Λ) denote the set of all packings of Λ by open balls
centred in Λ and with radii equal to ε. An element U of P∗ε (Λ) is a maximal
ε-packing of Λ if and only if card(U) = max{card(V) : V ∈ P∗ε (Λ)}. A max-
imal ε-packing of Λ will be denoted by Uε(Λ). The box-counting dimension
dimB(Λ) of Λ can then be defined by

dimB(Λ) := lim
ε→0

log cardUε(Λ)
− log ε

(if this limit exists).
For the purposes of this paper it is more convenient to define the box-

counting dimension by using packings rather than, as is more common,
by using coverings. It is easy to see that these two definitions are in fact
equivalent ([9], p. 41).

It seems worth mentioning that the idea of using the concept of box-
counting dimension in order to have a further method to distinguish be-
tween different highly complicated sets dates back to the beginning of this
century. Since then various different terms for this concept were and unfor-
tunately sometimes still are in use synonymously. For example, terms like
“ε-entropy”, “entropy dimension”, “Minkowski dimension” or even “capaci-
ty” (distinct from “capacity” in potential theory) were in use to denote what
we have introduced above as the box-counting dimension.

The following lemma relates the above defined three different notions of
dimension. For the proof we refer to [9] (p. 43).

Lemma 1. If Λ is a subset of RN , then dimH(Λ) ≤ dimP(Λ) ≤ dimB(Λ).

Finally, we state a useful method for obtaining upper bounds for the
box-counting dimension of subsets in RN . This method is in a certain sense
opposite to the method provided by “Frostman’s lemma”, which allows one
to give lower bounds for the Hausdorff dimension of subsets of RN .
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Lemma 2. Let Λ denote a subset of RN . Assume there exists a proba-
bility measure ν supported on Λ. Further , assume that there exist positive
constants C and r0 and a positive number α such that for all ξ in Λ and for
all positive r < r0 we have

ν(Br(ξ)) ≥ Crα.
It then follows that dimB(Λ) ≤ α.

P r o o f. For positive r < r0 we have

1 = ν(Λ) ≥
∑

u∈Ur(Λ)

ν(u) ≥ Crα cardUr(Λ).

Thus

lim
r→0

log cardUr(Λ)
− log r

≤ α.

Corollary 2. If Λ is a subset of RN such that there exist positive
constants C∗ and r∗0 so that , for all positive r < r∗0 ,

cardUr(Λ) ≤ C∗r−α,
then it follows that dimB(Λ) ≤ α.

3. The box-counting dimension of the limit set. In this section
we prove the main result of this paper. The results presented in the previ-
ous section have the following immediate implication for the box-counting
dimension of the limit sets of special geometrically finite Kleinian groups.

For a given group G, let kmin denote the minimal rank of parabolic fixed
points of G. It is clear that kmin is a constant that depends on G only.

Lemma 3. If G is a geometrically finite Kleinian group which is either
convex cocompact or , in the presence of cusps, has kmin greater than or equal
to δ, then

dimB(L(G)) = dimH(L(G)) = δ.

P r o o f. For convex cocompact groups, as well as for geometrically finite
groups with kmin ≥ δ, the “fluctuation factor” e−d(ξt,G(0))(δ−k(ξt)) in Theo-
rem 2 is always at least 1. An application of Lemma 2 then yields that
dimB(L(G)) ≤ δ. The opposite inequality follows from Lemma 1 combined
with a result of Sullivan stating that dimH(L(G)) = δ ([14], [15]).

Theorem 3. If G is a geometrically finite Kleinian group, then

dimB(L(G)) = dimP(L(G)) = dimH(L(G)) = δ.

P r o o f. The cases where G is either convex cocompact or, if there are
cusps, has kmin ≥ δ, have been dealt with in Lemma 3 above. Thus we
assume in the following that kmin < δ.
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It is clear that the non-trivial part of the theorem is the verification of the
inequality dimB(L(G)) ≤ δ: the opposite inequality follows directly, as in the
proof of Lemma 3, from Lemma 1 and from the fact that dimH(L(G)) = δ.

For t positive we consider UIe−t(L(G)), a maximal e−t-packing of L(G).
Here I is some index set labelling the elements of the packing. In particular,

UIe−t(L(G)) = {b(ξit) : i ∈ I},
where ξi ∈ L(G) for each i in I. In the following let a small, positive number
ε be fixed. We now partition the index set I into pairwise disjoint sets as
follows:

I = I1 ∪ I2 ∪
⋃

p∈P
k(p)<δ

∞⋃
n=1

Jn(p),

where

I1 := {i ∈ I : either d(ξit, G(0)) ≤ C or ξit ∈ Hg(q)(rg) for some q ∈ P
with k(q) ≥ δ and for some g ∈ Tq},

I2 := {i ∈ I : ξit ∈ Hg(q)(rg) for some q ∈ P with k(q) < δ

and for some g ∈ Tq, and C < d(ξit, G(0)) ≤ εt},
Jn(p) := {i ∈ I : d(ξit, G(0)) > εt, n ≤ d(ξit, G(0)) < n+ 1

and ξit ∈ Hg(p)(rg) for some g ∈ Tp}.
We remark that in this definition the positive constant C depends only

on the group (C may be taken to be equal to the hyperbolic diameter of the
“compact part” of the corresponding orbifold).

For the case i ∈ I1 we argue as in the proof of Lemma 2, as follows:

1 ≥ µ
( ⋃

i∈I1
b(ξit)

)
≥ card I1 ·min

i∈I1
µ(b(ξit)) ≥ k3 card I1 · e−tδ,

and thus

(1) card I1 ≤ k−1
3 etδ.

For the case i ∈ I2 we obtain in a similar way

1 ≥ µ
( ⋃

i∈I2
b(ξit)

)
≥ card I2 ·min

i∈I2
µ(b(ξit))

≥ k3 card I2 ·min
i∈I2

(e−tδe−d(ξit,G(0))·(δ−k(ξit)))

≥ k3 card I2e−tδe−εt(δ−kmin),

and thus

(2) card I2 ≤ k−1
3 et(δ+ε(δ−kmin)).
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Now we turn to the remaining case where i is an element of
⋃

p∈P
k(p)<δ

∞⋃
n=1

Jn(p).

For the moment fix n and p as above. We consider all possible locations for
ξit with i in Jn(p). An elementary geometric argument yields that the radii
rg of those standard horoballs Hg(p)(rg) with g in Tp which possibly contain
elements ξit with i in Jn(p) have the property that

rg ≥ e−t.

Fig. 1. Possible location of ξit, for i ∈ Jn(p)

In order to relate the underlying hyperbolic and Euclidean geometry,
define nt to be the smallest positive integer for which %nt ≤ e−t, i.e.

(3)
t

− log %
≤ nt ≤ t

− log %
+ 1.

With this choice of nt we obtain

(4) {g ∈ Tp : rg ≥ e−t} ⊂
nt⋃
m=0

Am(p).

We also observe that if ξit with i in Jn(p) is given, then ξit ∈ Hg(p)(rg) for
some g in Tp, and it is geometrically evident that (see Fig. 1)

(5) b(ξit) ⊂ Π(Hg(p)(2e
−nrg)).

From (3)–(5) and Theorems 1 and 2 it now follows that

µ
( ⋃

i∈Jn(p)

b(ξit)
)
≤ µ

( nt⋃
m=0

⋃

g∈Am(p)

Π(Hg(p)(2e
−nrg))

)

≤
nt∑
m=0

∑

g∈Am(p)

µ(Π(Hg(p)(2e
−nrg)))
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≤ 22δ−kmink4

nt∑
m=0

∑

g∈Am(p)

rδge
−n(2δ−k(p))

≤ 22δ−kmink4e
−n(2δ−k(p))

nt∑
m=0

∑

g∈Am(p)

%mδ

≤ 22δ−kmink4k2e
−n(2δ−k(p))(nt + 1)

≤ 22δ−kmin+1k4k2e
−n(2δ−k(p))(− log %)−1t.

For i ∈ Jn(p) we have, by definition of Jn(p),

t < ε−1d(ξit, G(0)) ≤ ε−1(n+ 1).

Hence, if we let c0 := 3 · 22δ−kmin+1k4k2, we obtain

(6) µ
( ⋃

i∈Jn(p)

b(ξit)
)
≤ c0ε−1ne−n(2δ−k(p)).

On the other hand, we have, using Theorem 1 and the fact that UIe−t(L(G))
is an e−t-packing,

µ
( ⋃

i∈Jn(p)

b(ξit)
)
≥ k3e

−tδ card Jn(p) · min
i∈Jn(p)

e−d(ξit,G(0))(δ−k(p))

≥ k3e
kmin−δe−tδe−n(δ−k(p)) card Jn(p).

Combining this estimate and (6), we obtain

card Jn(p) ≤ c0k−1
3 eδ−kminε−1ne−nδetδ.

Hence, if we define c1 := c0k
−1
3 eδ−kmin cardP ·∑∞n=1 ne

−nδ, it follows that

(7) card
( ⋃

p∈P
k(p)<δ

∞⋃
n=1

Jn(p)
)
≤ c1ε−1etδ.

Now (1), (2) and (7) imply that

card I ≤ k−1
3 etδ + k−1

3 et(δ+ε(δ−kmin)) + c1ε
−1etδ.

In order to summarize the above calculations, we remark that we have
just shown that for each positive ε there exists a positive constant c such that
for sufficiently large, positive t the index sets I of the maximal e−t-packings
UIe−t(L(G)) satisfy

card I ≤ cet(δ+ε(δ−kmin)).

From Corollary 2 it now follows that

dimB(L(G)) ≤ δ + ε(δ − kmin).

This holds for arbitrary small, positive ε, thus

dimB(L(G)) ≤ δ.
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Using Sullivan’s result (dimH(L(G)) ≥ δ) and Lemma 1, we obtain

dimB(L(G)) = dimP(L(G)) = dimH(L(G)) = δ.
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