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Abstract. We extend Falconer’s formula from [1] by identifying the Hausdorff
dimension of the limit sets of almost all contracting affine iterated function
systems to the case of an infinite alphabet, non-autonomous choice of iterating
matrices, and time dependent random choice of translations.

1. Introduction

In the seminal paper [1], given k contracting matrices A1, A2, . . . , Ak, Ken

Falconer has provided a close formula which gives the Hausdorff dimension of the

limit sets of the iterated function system

Sa = {Rq 3 x 7→ Aix+ ai}ki=1

for Lebesgue almost every vector a = (ai)
k
i=1 ∈ Rqk. In our article we extend

Falconer’s result in several directions.

• We allow k to be infinite; instead of Lebesgue measure we then consider

appropriately defined product measure with infinitely many factors.

• Being in the iterating process we allow all the matrices Ai to depend on the

time, i.e. making a new composition at a step n, we take the contracting

matrices from an entirely new collection A
(n)
1 , . . . , A

(n)
k .

• We choose the vectors (ai)
k
i=1 randomly according to some random process.

Roughly speaking we have either a finite or countable infinite alphabet E, the

system Sa consists now of maps

φ(n,a)
e (x) = A(n)

e x+ ae, e ∈ E,

we have also a measurable transformation θ : X → X preserving some Borel

probability measure X, and smooth transformations Sx : GE → GE (G ⊂ Rq),

x ∈ X, with some additional technical properties. Each point x ∈ X generates a

non-autonomous iterative scheme

φ(1,a)
ω1
◦ φ(2,Sx(a))

ω2
◦ . . . ◦ φ(n,Snx (a))

ωn ◦ . . . , ω ∈ EN,

where

Snx := Sx ◦ Sθ(x) ◦ . . . ◦ Sθn−1(x).

This determines (see (2.2) for a rigorous definition) the limit set J(x,a), and our

main result identifies the Hausdorff dimension of J(x,a) for m–a.e. x ∈ X and
1
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“Lebesgue”–a.e. a ∈ GE. We do this by introducing the Falconer dimension

FD(S), which depends only on matrices A
(n)
e , e ∈ E, n ∈ N, and is indepen-

dent of the maps Sx : GE → GE. We prove the following main result

Theorem 1.1. If S is an affine scheme on Rq, then

HD
(
J(x,a)

)
= min{q,FD(S)}.

for m-a.e. x ∈ X and λEG-a.e. a ∈ GE.

which is Theorem 5.3 from the last section of our paper. We would like to add

that another extension of Falconer’s result, incorporating a different randomizing

procedure, was treated in [3].

2. Affine Schemes

Fix E, a countable set, either finite or infinite; it will be called an alphabet

in the sequel. Fix an integer q ≥ 1 and two real numbers κ, ξ ∈ (0, 1). For every

n ≥ 1 and every e ∈ E let A
(n)
e : Rq → Rq be an invertible linear map with

(2.1)
∥∥A(n)

e

∥∥ ≤ κ and
∥∥∥(A(n)

e

)−1
∥∥∥ ≤ ξ−1.

Let G ⊂ Rq be a bounded Borel subset of Rq with positive Lebesgue measure. Let

λG be the normalized (so that λG(G) = 1) q-dimensional Lebesgue measure on G

and let λEG be the corresponding infinite product measure on GE. This measure

is uniquely determined by the requirement that

λEG

(∏
a∈Γ

Fa ×GE\F

)
=
∏
a∈Γ

λG(Fa)

for every finite subset Γ of E and all Borel sets Fa ⊂ G, a ∈ Γ. Denote by RG the

largest radius r > 0 such that G ⊂ B(0, r). For every n ≥ 1, every e ∈ E, and

every a ∈ GE consider the maps φ
(n,a)
e : Rq → Rq given by respective formulas

φ(n,a)
e (x) = A(n)

e x+ ae.

Since all the maps A
(n)
e are uniform linear contractions and since the set G is

bounded, there exists B, a sufficiently large closed ball in Rq centered at the

origin such that

φ(n,a)
e (B) ⊂ B

for all n ≥ 1, all e ∈ E, and all a ∈ GE. Let l∞E (Rq) be the Banach space of all

bounded functions from E to Rq, endowed with the supremum norm, i.e.

||a||∞ = sup{||ae|| : e ∈ E}.

Of course, GE is a subset of l∞E (Rq). Let (X,F ,m) be a probability space and let

θ : X → X be an invertible measurable map preserving the measure m. For every
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x ∈ X let Sx : GE → GE be a map for which there exists a bounded convex open

set Ĝ ⊂ Rq with the following properties.

(p1) G ⊂ Ĝ and dist(G,Rq \ Ĝ) > 0; then GE ⊂ IntlE(Rq)
(
ĜE
)
.

(p2) There exists a continuous map Ŝx : ĜE → ĜE such that

(p3) Ŝx is differentiable throughout IntlE(Rq)
(
ĜE
)
.

(p4)

||DSx||∞ := sup{||DaŜx|| : a ∈ GE} <∞
and

β := ess sup{||DSx||∞ : x ∈ X} <∞
is so small that

κβ < 1/3.

(p5) For m-a.e. x ∈ X there exists a Borel probability measure µx on GE

equivalent (with bounded Radon-Nikodym derivatives) to λEG such that

µθ(x) = µx ◦ S−1
x .

Note that if the space X is a singleton, then we are talking about one mapping

S : GE → GE (and its extension S̃ : G̃E → G̃E preserving a Borel probability

measure µ on GE equivalent (with bounded Radon-Nikodym derivatives) to λEG.

This of course comprises the case of S being the identity map on GE. This case

is referred to as translation deterministic. S = IdGE was a part of Falconer’s

set up in [1]. He was also assuming that the alphabet E is finite and the linear

contractions A
(n)
e : Rq → Rq are independent of n. We do not assume any of

these. Now, the collection of maps{
φ(n,a)
e : Rq → Rq : n ≥ 1, a ∈ GE, e ∈ E

}
along with the map θ : X → X and described above maps Sx : GE → GE, x ∈ X,

are referred to as an affine scheme S. We classify affine schemes as follows.

(1) Autonomous if the affine contractions A
(n)
e : Rq → Rq are independent of

n.

(1’) Finitely autonomous if S is autonomous and the alphabet E is finite.

(2) Non-autonomous if S is not autonomous.

(3) Of dynamically deterministic type if the maps Sx : GE → GE, x ∈ X, are

independent of x ∈ X. Then the action θ : X → X is irrelevant, and we

may assume without loss of generality that X is a singleton.

(4) Deterministic if S is of dynamically deterministic type and S : GE → GE

is the identity map on GE.

(5) Of dynamically random type if S is not of dynamically deterministic type,

meaning that Sx : GE → GE do depend on x ∈ X.
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(6) A Falconer scheme if S is finitely autonomous and of dynamically deter-

ministic type.

From now on S is an arbitrary affine scheme. As in the introduction, for every

integer k ≥ 1 and every x ∈ X let

Skx := Sx ◦ Sθ(x) ◦ . . . ◦ Sθk−1(x).

Given n ≥ 1, ω ∈ En, and a ∈ GE, we define the maps

Aω := A(1)
ω1
◦ A(2)

ω2
◦ . . . ◦ A(n)

ωn : Rq → Rq

and

φ(x,a)
ω := φ(1,a)

ω1
◦ φ(2,Sx(a))

ω2
◦ . . . ◦ φ(n,Sxn−1(a))

ωn : B → B.

Note that Aω is the linear part of the affine map φ
(x,a)
ω . For every infinite word

ω ∈ EN and every integer n ≥ 1 we put

ω|n := ω1ω2 . . . ωn.

Then
(
φ

(x,a)
ω|n (B)

)∞
n=1

is a descending sequence of non-empty compact subsets of

B and

diam
(
φ

(x,a)
ω|n (B)

)
≤ diam(B)κn.

So, the intersection
∞⋂
n=1

φ
(x,a)
ω|n (B)

is a singleton, and we denote its only element by π(x,a)(ω). So, for every x ∈ X
and every a ∈ GE we have defined the projection map

π(x,a) : EN → B.

Slightly more generally, given any integer k ≥ 1, we consider the maps

φ(x,a;k)
ω := φ(k,a)

ω1
◦ φ(k+1,Sx(a))

ω2
◦ . . . ◦ φ(k+n−1,Sn−1

x (a))
ωn : B → B.

and the corresponding projections

πk(x,a) : EN → B.

In particular,

π1
(x,a) = π(x,a).

The set

(2.2) J(x,a) := π(x,a)(E
N) ⊂ B ⊂ Rq

is called the limit set (or the attractor) of the affine scheme S at the point (x, a).

Our goal is to determine the Hausdorff dimensions of these limit sets. Indeed, we

will show that these dimensions are equal for m-almost all x ∈ X and λEG-almost
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all a ∈ GE, and the resulting common value is directly expressible in terms of the

sequence alone
(
{A(n)

e : e ∈ E}
)∞
n=1

.

3. The Singular Value Function

let A : Rq → Rq be an invertible linear contraction and let

1 > α1 ≥ α1 ≥ . . . ≥ αq > 0

be the square roots of (necessarily positive) eigenvalues of the self-adjoint map

A∗A : Rq → Rq. Geometrically, the numbers α1, . . . αq are the lengths of the

(mutually perpendicular) principle semi-axes of A(B(0, 1)), where B(0, 1) is the

closed ball in Rq centered at 0 and of radius 1. These numbers are called singular

values of the map A : Rq → Rq. Following Falconer ([1]) we define

αt(A) := α1α2 . . . αk−1α
t−(k−1)
k

if 0 ≤ t ≤ q, where k is the least integer greater than or equal to s, i.e. k − 1 <

t ≤ k, and

αt(A) := (α1α2 . . . αk−1αq)
t/q

if t > q. Denote by L∗(Rq) the set of all invertible linear contractions from Rq

onto itself. Note that L∗(Rq) is closed under the compositions of maps. We quote

from [1] the following two lemmas.

Lemma 3.1. For each t ≥ 0 the function αt : L∗(Rq)→ L∗(Rq) is submultiplica-

tive, meaning that

αt(AC) ≤ αt(A)αt(C)

for all A,C ∈ L∗(Rq).

and

Lemma 3.2. Given a non-integral real number 0 < t < q and a real number

R > 0 there exists a constant c < +∞ (depending on all of then q, t, and R)

such that ∫
B(0,1)

d λq(x)

||Ax||t
≤ c

αt(A)

for all A ∈ L∗(Rq), where λq denotes q-dimensional Lebesgue measure on Rq.
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4. Falconer Dimension

Let S be an affine scheme. Fix t ≥ 0. Define the metric ρ
(t)
F on EN as follows.

ρ
(t)
F (ω, τ) :=

{
αt
(
Aω∧τ

)
if ω 6= τ

0 if ω = τ.

To check that ρ
(t)
F is a metric indeed only triangle inequality requires an argument.

For this take also γ ∈ EN. Then |ω ∧ τ | ≥ min{|ω ∧ γ|, |τ ∧ γ|}. Assume without

loss of generality that ω ∧ τ ≥ |ω ∧ γ|. Then ω ∧ τ = (ω ∧ γ)θ with some θ ∈ E∗,
say θ ∈ Ek. Denote n := |ω ∧ τ |. We then have,

ρ
(t)
F (ω, τ) = αt

(
Aω∧τ

)
= αt

(
A(ω∧γ)θ

)
≤ αt

(
Aω∧γ

)
αt
(
A

(n+1)
θ1

A
(n+1)
θ2

. . . A
(n+1)
θk

)
≤ αt

(
Aω∧γ

)
= ρ

(t)
F (ω, γ)

≤ max{ρ(t)
F (ω, γ), ρ

(t)
F (γ, τ)}.

So, ρ
(t)
F is a metric indeed, in fact we have proved the following.

Proposition 4.1. For every t ≥ 0, ρ
(t)
F is an ultra-metric on EN.

Let Ht
F be the 1-dimensional Hausdorff measure on EN generated by the metric

ρ
(t)
F . Of course if s < t and Hs

F (EN) < +∞, then Ht
F (EN) = 0. Therefore,

inf{t ≥ 0 : Ht
F (EN) = 0} = sup{t ≥ 0 : Ht

F (EN) = +∞}.

Call this common number the Falconer dimension of the scheme S and denote it

by FD(S). Note that it in fact depends only on the sequence
(
{A(n)

e : e ∈ E}
)∞
n=1

and is entirely independent of the vectors ae, e ∈ E, or the maps Sx : GE → GE.

We now define an auxiliary dimension FD∗(S). For every l ≥ 1 and every set

Γ ⊂ EN define

Ftl(Γ) := inf

{∑
ω∈Al

αt(Aω)

}
,

where the infimum is taken over the family Al of all countable covers of Γ by

cylinders [ω] of length ≥ l. The sequence
(
Ftl(Γ)

)∞
l=1

is monotone increasing, and

therefore the following limit

Ft(Γ) = lim
l→∞

F t
l (Γ)

exists and is equal to

sup{Ftl(Γ) : l ≥ 1}.
Note that if s < t and Fs(EN) < +∞, then Ft(EN) = 0. Therefore,

inf{t ≥ 0 : Ft(EN) = 0} = sup{t ≥ 0 : Ft(EN) = +∞}
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Denote this common number by FD∗(S). Note that as in the case of FD(S) it in

fact depends only on the sequence
(
{A(n)

e : e ∈ E}
)∞
n=1

and is entirely independent

of the vectors ae, e ∈ E, or the maps Sx : GE → GE. We shall prove the following.

Proposition 4.2. If S an affine scheme and

lim
e→∞

∥∥A(n)
e

∥∥ > 0

for all n ≥ 1, then

FD∗(S) = FD(S).

Proof. Obviously,

FD(EN) ≤ FD∗(E
N).

In order to prove the opposite inequality fix δ > 0 and consider A, an arbitrary

cover of EN by sets of diameters (with respect to ρ
(t)
F ) ≤ δ. For every Γ ∈ A let

ωγ ∈ E∗A be a longest word such that

Γ ⊂ [ωΓ].

Then of course

(4.1) diam
ρ

(t)
F

(Γ) ≤ diam
ρ

(t)
F

(
[ωΓ]

)
but, more importantly for us at the moment, there exist two elements β, γ ∈ Γ

such that β||[ωΓ]|+1 6= γ||[ωΓ]|+1. As also β||[ωΓ]| = γ||[ωΓ]|, we thus get

diam
ρ

(t)
F

(Γ) ≥ ρ
(t)
F (β, γ) = αt

(
Aβ∧γ

)
= αt

(
AωΓ

)
= diam

ρ
(t)
F

(
[ωΓ]

)
.

Along with (4.1) this yields

(4.2) diam
ρ

(t)
F

(
[ωΓ]

)
= diam

ρ
(t)
F

(Γ)

Hence {[ωΓ]}Γ∈A is also a cover of EN by sets with diameter (with respect to the

metric ρ
(t)
F ) ≤ δ. Therefore, we are done since, by our hypothesis, sup{|ωΓ| : γ ∈

A} converges to zero if δ → 0. �

As an immediate consequence of this proposition we get the following.

Corollary 4.3. If S is a finitely autonomous affine scheme, then

FD∗(S) = FD(S).

We also define

PS(t) := lim
n→∞

1

n
log

∑
|ω|=n

αt(Aω),
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and call PS(t) the lower topological pressure of the affine scheme S at the pa-

rameter t. Let

θ−S := inf{t ≥ 0 : PS(t) < +∞}

and

θ+
S := inf{t ≥ 0 : PS(t) = −∞}.

Since for 0 ≤ s < t, we have αt(Aω) ≤ αt−s1 (Aω)αs(Aω) ≤ κt−sαs(Aω), we imme-

diately get the following.

Proposition 4.4. If S is an affine scheme, then

(a) the function [0,+∞) 3 t 7→ PS(t) ∈ [−∞,+∞] is monotone decreasing,

(b) the function (θ−S , θ
+
S ) 3 t 7→ PS(t) is strictly decreasing.

Proposition 4.5. If S is a finitely autonomous affine scheme, then the following

numbers are equal.

(a) FD(S),

(b) FD∗(S)

(c) inf{t ≥ 0 : PS(t) ≤ 0},
(d) inf{t ≥ 0 :

∑
ω∈E∗ α

t(Aω) < +∞} = sup{t ≥ 0 :
∑

ω∈E∗ α
t(Aω) = +∞}.

Proof. Because of Corollary 4.3 it suffices to prove that the numbers in (b), (c),

and (d) are all equal. Indeed, if s < t and
∑

ω∈E∗ α
s(Aω) < +∞, then inf{t ≥ 0 :∑

ω∈E∗ α
t(Aω) < +∞}. Therefore, the equality in (d) is proved. The equality of

numbers in (c) and (d) is a direct consequence of Proposition 4.4(b). Now, if Γ :=:∑
ω∈E∗ α

t(Aω) < +∞, then for every l ≥ 1,
∑

ω∈El α
t(Aω) ≤ Γ, and therefore

F t
l (E

N) ≤ Γ. consequently, F t(EN) ≤ Γ < +∞, and so (b)≤(d). The implication

(c)≤(b) requires the system S to be finitely autonomous and is established in

[1]. �

The proof of the following lemma is an adaptation of the proof of Lemma 3 in

[3].

Lemma 4.6. If S is an affine scheme and F t(EN) = +∞, then there exist a

finite Borel measure ν on EN and a constant C > 0 such that

ν([ω]) ≤ Cαt(Aω)

for all ω ∈ E∗.
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Proof. Because of Proposition 4.1 it follows from Theorem 57(c) in [4] that there

exists a compact set Γ ⊂ EN such that

0 < Ht
F (Γ) < +∞.

Since diam
ρ

(t)
F

([ω]) = αt(Aω), the proof is thus completed by invoking Theo-

rem 8.17 in [Ma]. �

5. Main Theorem; The Proof

The proof of our main theorem, Theorem 1.1 will consist of several lemmas. We

start with the following.

Lemma 5.1. let S be an affine scheme acting on Rq. Let 0 < t < q be a non-

integral number. Then there exists a constant C ∈ (0,+∞) such that∫
X

∫
GE

dλEG(a) dm(x)

||π(x,a)(ω)− π(x,a)(τ)||t
≤ C

αt
(
Aω∧τ

)
for all ω, τ ∈ EN with ω 6= τ .

Proof. Let

ρ := ω ∧ τ
and let k := |ω ∧ τ | < +∞. Let ω′ := σk(ω) and τ ′ := σk(τ). Then

(5.1)

I(ω, τ) :=

∫
X

∫
GE

dµx(a) dm(x)

||π(x,a)(ω)− π(x,a)(τ)||t

=

∫
X

∫
GE

dµx(a) dm(x)∥∥∥φ(a)
ρ

(
π

(k+1)

θk(x),Skx(a)
(ω′)

)
− φ(a)

ρ

(
π

(k+1)

θk(x),Skx(a)
(τ ′)
)∥∥∥t

=

∫
X

∫
GE

dµθ−k(x)(a) dm(x)∥∥∥φ(S−kx (a))
ρ

(
π

(k+1)
(x,a) (ω′)

)
− φ(S−kx (a))

ρ

(
π

(k+1)
(x,a) (τ ′)

)∥∥∥t
=

∫
X

∫
GE

dµθ−k(x)(a) dm(x)∥∥∥Aρ((π(k+1)
(x,a) (ω′)

)
− π(k+1)

(x,a) (τ ′)
)∥∥∥t

�
∫
X

∫
GE

dµx(a) dm(x)∥∥∥Aρ((π(k+1)
(x,a) (ω′)

)
− π(k+1)

(x,a) (τ ′)
)∥∥∥t .

Now,

π
(k+1)
(x,a) (ω′)

)
− π(k+1)

(x,a) (τ ′) = aω′1 − aτ ′1 + F (a),

where F : GE → Rq is given by the formula:

(5.2) F (a) :=
∞∑
j=1

Aω′|j(k+1)

(
(Sjx(a))ω′j+1

)
−
∞∑
j=1

Aτ ′|j(k+1)

(
(Sjx(a))τ ′j+1

)
.
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Now consider the product measure

`ω′1 := λq ⊗
∏

e∈E\{ω′1}

= λq ⊗ λ
E\{ω′1}
G

on Rq, where, we recall, λq is the q-dimensional Lebesgue measure on Rq. Let

H : ĜE → Rq ×GE\{ω′1} be given by the following formula:

(5.3) H(a)j :=

{
aω′1 − aτ ′1 + F (a) if j = ω′1
aj if j 6= ω′1.

We shall prove the following.

Claim 1: The map H : ĜE → Rq ×GE\{ω′1} is injective.

Proof. Suppose that H(a′) = H(a). Then immediately a′e = ae for all e ∈ E\{ω′1}.
Since τ ′1 6= ω′1, this entails a′τ ′1

= aτ ′1 . So,

F (a′)− F (a) = aω′1 − a
′
ω′1
.

It then follows from (5.2), (p4), linearity of the maps Aω′|j(k+1) and Aτ ′|j(k+1) , and

Q-quasi-convexity of Ĝ, that

(5.4)
||a′ − a||∞ =

= ||a′ω′1 − aω′1 || = ||F (a′)− F (a)||

=
∥∥∥ ∞∑
j=1

Aω′|j(k+1)

(
(Sjx(a

′))ω′j+1

)
− (Sjx(a))ω′j+1

)
−

−
∞∑
j=1

Aτ ′|j(k+1)

(
(Sjx(a

′))τ ′j+1

)
− (Sjx(a))τ ′j+1

)∥∥∥
≤

∞∑
j=1

κj||(Sjx(a′))ω′j+1

)
− Sjx(a))ω′j+1

||+
∞∑
j=1

κj||(Sjx(a′))τ ′j+1

)
− Sjx(a))τ ′j+1

||

≤ 2
∞∑
j=1

κj||Sjx(a′)− Sjx(a)||∞

≤ 2
∞∑
j=1

κjβ||a′ − a||∞

= 2Qκβ(1− κβ)−1||a′ − a||∞
< ||a′ − a||∞,

where the last equality followed from the assumption (see (p4)) that κβ < 1/3.

This contradiction finishes the proof of Claim 1. �

In the same vein let us prove now the existence and estimate the norm of of the

partial derivative Dω′1
F (a) at every point a ∈ GE. Indeed, it again follows from
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(5.2), (p4), and linearity of both Aω′|j(k+1) and Aτ ′|j(k+1) , that

(5.5)
||Dω′1

F (a)|| =

=
∥∥∥ ∞∑
j=1

Aω′|j(k+1) ◦Dω′1
(pω′j+1

◦ Sjx)(a)−
∞∑
j=1

Aω′|j(k+1) ◦Dω′1
(pτ ′j+1

◦ Sjx)(a)
∥∥∥

≤ 2
∞∑
j=1

κj||DSjx||∞ ≤ 2
∞∑
j=1

(κβ)j

=
2κβ

1− κβ
,

i. e. Dω′1
F (a) exists and (5.5) holds. So, because of the special form (5.3), we now

conclude that the map H : ĜE → Rq × GE\{ω′1} is non-singular with respect to

the measure `ω′1 , and its Jacobian is given by the formula

J∗H(a) = | det
(
IdRq +Dω′1

F (a)
)
| ≥ (1− ||Dω′1

F (a)||)q ≥
(

1− 2κβ

1− κβ

)q
.

So, if we consider the measure `ω′1 on H(GE) but the measure λEG on GE, then

JH−1(a), the corresponding Jacobian of the map H−1 : H(GE)→ GE, is

JH−1(b) =
1

λq(G)
J∗H−1(b) ≤ γ :=

(
λq(G)

(
1− 2κβ

1− κβ

)q)−1

for all b ∈ H(GE). Therefore, we can single out the inner integral in (5.1) to get

Ix(ω, τ) :=

∫
H−1(H(GE))

dλEG(a)∥∥∥Aρ((π(k+1)
(x,a) (ω′)

)
− π(k+1)

(x,a) (τ ′)
)∥∥∥t

=

∫
H(GE)

JH−1(b)

||Aρ((b)ω′1)||t
d`ω′1(b)

≤ γ

∫
H(GE)

d`ω′1(b)

||Aρ((b)ω′1)||t

= γ

∫
p∗(H(GE))

∫
pω′1

(p−1
∗ (b))

dλq(y)

||Aρ(y)||t
dλ

E\{ω′1
G (b),

where p∗ : (Rq)E → (Rq)E\{ω
′
1} is the canonical projection onto (Rq)E\{ω

′
1}, i.

e. p∗((be)e∈E = ((be)e∈E\{ω′1}, and, we recall, pω′1 : (Rq)E → Rq is the canonical

projection onto ω′1th coordinate. Now, if a ∈ GE, then

||(H(a))ω′1|| = ||aω′1 − aτ ′1 + F (a)|| ≤ ||aω′1 ||+ ||aτ ′1||+ ||F (a)||

≤ 2RG +RGκ(1− κ)−1

= (2 + κ(1− κ)−1)RG,

where the estimate ||F (a)|| ≤ RGκ(1− κ)−1 is a simplification of the calculation

from (5.4). Therefore, for every b ∈ p∗(H(GE)), we have that pω′1(p−1
∗ (b)) ⊂
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B(0, (2 + κ(1 − κ)−1)RG). So, by virtue of Lemma 3.2, there exists a constant

C > 0 such that

Ix(ω, τ) ≤ γ

∫
p∗(H(GE))

∫
B(0,(2+κ(1−κ)−1)RG)

dλq(y)

||Aρ(y)||t
dλ

E\{ω′1}
G (b)

≤ C

αt(Aρ)

∫
p∗(H(GE))

dλ
E\{ω′1}
G

=
C

αt(Aρ)
λ
E\{ω′1}
G

(
p∗(H(GE))

)
≤ C

αt(Aρ)
.

Therefore,∫
X

∫
GE

dλEG(a) dm(x)

||π(x,a)(ω)− π(x,a)(τ)||t
�
∫
X

∫
GE

dµx(a) dm(x)

||π(x,a)(ω)− π(x,a)(τ)||t

�
∫
X

Ix(ω, τ) dm(x)

≤ C

αt
(
Aω∧τ

) ∫
X

dm(x)

=

∫
X

Ix(ω, τ) dm(x).

The proof of our lemma is complete. �

the proof of the following proposition goes, with almost no changes, as the proof

of Proposition 5.1 in [1]

Proposition 5.2. If S is an affine scheme and Ht
F (EN) < +∞, then Ht(J(x,a)) <

+∞ for all x ∈ X and all a ∈ GE.

Proof. Begin in the same way as in the proof of Proposition 4.2. Fix δ > 0 and

consider A, an arbitrary cover of EN by sets of diameters (with respect to the

metric ρ
(t)
F ) ≤ δ. For every Γ ∈ A let ωγ ∈ E∗A be a longest word such that

Γ ⊂ [ωΓ].

Then of course

(5.6) diam
ρ

(t)
F

(Γ) ≤ diam
ρ

(t)
F

(
[ωΓ]

)
but, more importantly for us at the moment, there exist two elements β, γ ∈ Γ

such that β||[ωΓ]|+1 6= γ||[ωΓ]|+1. As also β||[ωΓ]| = γ||[ωΓ]|, we thus get

diam
ρ

(t)
F

(Γ) ≥ ρ
(t)
F (β, γ) = αt

(
Aβ∧γ

)
= αt

(
AωΓ

)
= diam

ρ
(t)
F

(
[ωΓ]

)
.
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Along with (5.6) this yields

(5.7) diam
ρ

(t)
F

(
[ωΓ]

)
= diam

ρ
(t)
F

(Γ)

Hence {[ωΓ]}Γ∈A is also a cover of EN by sets with diameter (with respect to the

metric ρ
(t)
F ) ≤ δ. Therefore, for all x ∈ X and all a ∈ GE we have that

J(x,a) ⊂
⋃
Γ∈A

φ(x,a)
ωΓ

(B).

But each set φ
(x,a)
ωΓ (B) is contained in a rectangular box with sides of length

2diam(B)α1(Aω), 2diam(B)α2(Aω), . . . , 2diam(B)αq(Aω).

If k is the least integer greater than or equal to t, then each such box can be

divided into at most(
4diam(B)

α1(Aω)

αk(Aω)

)
·
(

4diam(B)
α2(Aω)

αk(Aω)

)
· . . . ·

(
4diam(B)

α2(Aω)

αk(Aω)

)
·

· (4diam(B))q−k+1

rectangular cubes with sides of length αk, that is of diameter
√
qαk. There-

fore, fixing η > 0, there exists, because of (2.1) and (5.7), δη > 0 such that

diam
(
φωγ (B)

)
≤ η for all Γ ∈ A. Hence,

Ht
η

(
J(x,a)

)
≤

≤
∑
Γ∈A

(
4diam(B)

α1(Aω)

αk(Aω)

)
·
(

4diam(B)
α2(Aω)

αk(Aω)

)
· . . . ·

(
4diam(B)

α2(Aω)

αk(Aω)

)
·

· (4diam(B))q−k+1(
√
qαk)

t

�
∑
Γ∈A

α1

(
AωΓ

)
α2

(
AωΓ

)
. . . αk−1

(
AωΓ

)
α
t−(k−1)
k

(
AωΓ

)
�
∑
Γ∈A

αt
(
AωΓ

)
.

Therefore,

Ht
(
J(x,a)

)
� Ht

F (EN).

So,

Ht
(
J(x,a)

)
= lim

η→0
Ht
η

(
J(x,a)

)
� lim

η→0
Ht
F (EN) < +∞.

The proof is complete. �

Now we can prove the main theorem of our paper.

Theorem 5.3. If S is an affine scheme on Rq, then

HD
(
J(x,a)

)
= min{q,FD(S)}.

for m-a.e. x ∈ X and λEG-a.e. a ∈ GE.
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Proof. Because of the previous proposition we only have to prove that

HD
(
J(x,a)

)
= min{q,FD(S)}.

for m-a.e. x ∈ X and λEG-a.e. a ∈ GE. Indeed, fix a non-integral number 0 < s <

min{q,FD(S)}. Take then arbitrary 0 < s < t < min{q,FD(S)}. So, F t(EN) =

+∞, and, by Lemma 4.6, there is a finite Borel measure ν on EN such that

(5.8) ν([ω]) ≤ Cαt
(
Aω
)

for all ω ∈ E∗. Applying Lemma 5.1, formula (5.8), and the observation that

ν ⊗ ν does not charge the diagonal, we get

(5.9)

I :=

∫
X

∫
EN

∫
EN

∫
GE

dm(x) dλEG(a) dν(ω) dν(τ)

||π(x,a)(ω)− π(x,a)(τ)||s
≤
∫
EN

∫
EN

dν(ω) dν(τ)

αs
(
Aω∧τ

)
�

∞∑
n=0

∑
|γ|=n

∫∫
ω,τ∈EN
ω∧τ=γ

αs
(
Aγ)

−1dν(ω) dν(τ)

=
∞∑
n=0

∑
|γ|=n

αs
(
Aγ)

−1ν ⊗ ν(Aγ)

≤
∞∑
n=0

∑
|γ|=n

αs
(
Aγ)

−1ν2([γ])

≤
∞∑
n=0

∑
|γ|=n

αs
(
Aγ)

−1αt
(
Aγ)ν([γ]).

Now, with k being the least integer greater than or equal to s and l being the

least integer greater than or equal to t, we get

αt
(
Aγ)α

s
(
Aγ)

−1 = α1(Aγ)α2(Aγ)αk−1(Aγ) . . . αk(Aγ)αk+1(Aγ) . . . αl−1(Aγ)αl(Aγ)
t−l+1

α1(Aγ)
−1 . . . α−1

k−1(Aγ)αk(Aγ)
−s+k−1

= αk(Aγ)
k−sαk+1(Aγ) . . . αl−1(Aγ)αl(Aγ)

t−l+1.

Since t− l + 1 ≥ 0 and since k − s > 0, we further get

αt
(
Aγ)α

s
(
Aγ)

−1 ≤ αk(Aγ)
k−s ≤ ||Aγ||k−s ≤ κ(k−s)|γ|.

Hence, we can continue (5.9) as follows.

I ≤ C

∞∑
n=0

κ(k−s)n
∑
|γ|=n

ν([γ]) = C

∞∑
n=0

κ(k−s)n = C(1− κk−s)−1 < +∞.

Hence, for m-a.e. x ∈ X and λEG-a.e. a ∈ GE, we have that

I(x,a) :=

∫
EN

∫
EN

dν(ω) dν(τ)

||π(x,a)(ω)− π(x,a)(τ)||s
< +∞.
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This means that∫
J(x,a)

∫
J(x,a)

d(ν ◦ π−1
(x,a))(z) d(ν ◦ π−1

(x,a))(ξ)

||z − ξ||s
< +∞,

and this in turn (see [2], comp. [Ma]) implies that HD(J(x,a)) ≥ s. Thus, HD(J(x,a)) ≥
min{q,FD(S)}, and the proof is finished. �
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