COUNTABLE ALPHABET NON-AUTNOMOUS SELF-AFFINE
SETS

MARIUSZ URBANSKI

ABSTRACT. We extend Falconer’s formula from [I] by identifying the Hausdorff
dimension of the limit sets of almost all contracting affine iterated function
systems to the case of an infinite alphabet, non-autonomous choice of iterating
matrices, and time dependent random choice of translations.

1. INTRODUCTION

In the seminal paper [1], given k contracting matrices Ay, Ay, ..., Ay, Ken
Falconer has provided a close formula which gives the Hausdorff dimension of the
limit sets of the iterated function system

Sa = {Rq S X AZ.I' + ai}?:l

for Lebesgue almost every vector a = (a;)%_, € R%*. In our article we extend

Falconer’s result in several directions.

e We allow £ to be infinite; instead of Lebesgue measure we then consider
appropriately defined product measure with infinitely many factors.

e Being in the iterating process we allow all the matrices A; to depend on the
time, i.e. making a new composition at a step n, we take the contracting
matrices from an entirely new collection 4™, ... ,A,in).

e We choose the vectors (a;)¥_; randomly according to some random process.

Roughly speaking we have either a finite or countable infinite alphabet E, the
system S, consists now of maps

o (z) = AV +a,, e€E,

we have also a measurable transformation # : X — X preserving some Borel
probability measure X, and smooth transformations S, : GF — G¥ (G C RY),
r € X, with some additional technical properties. Each point x € X generates a

non-autonomous iterative scheme

0 o 328:(@) 5 o pmST@) o e BN

w1 w2 wn,
where
Sy = 52 05h(z) 0 ... 0 Sgn-1().
This determines (see for a rigorous definition) the limit set J(z,0), and our

main result identifies the Hausdorff dimension of J, . for m-a.e. x € X and
1
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“Lebesgue’-a.e. a € G¥. We do this by introducing the Falconer dimension
FD(S), which depends only on matrices AE"), e € E. n € N, and is indepen-
dent of the maps S, : G¥ — G¥. We prove the following main result

Theorem 1.1. If S is an affine scheme on RY, then
HD (/o) = min{g, FD(S)}.
for m-a.e. v € X and \o-a.e. a € GE.
which is Theorem from the last section of our paper. We would like to add

that another extension of Falconer’s result, incorporating a different randomizing

procedure, was treated in [3].

2. AFFINE SCHEMES

Fix E, a countable set, either finite or infinite; it will be called an alphabet
in the sequel. Fix an integer ¢ > 1 and two real numbers x,£ € (0,1). For every
n > 1 and every e € E let A" L R? 5 RY be an invertible linear map with

(2.1) AP <k and (a7 <

Let G C R? be a bounded Borel subset of R? with positive Lebesgue measure. Let
A¢ be the normalized (so that Ag(G) = 1) g-dimensional Lebesgue measure on G
and let A\Z be the corresponding infinite product measure on G¥. This measure
is uniquely determined by the requirement that

AE (H F, X GE\F> =[] e(F2)

acl’ acl’
for every finite subset I' of E and all Borel sets F,, C G, a € I'. Denote by Rs the
largest radius r > 0 such that G C B(0,r). For every n > 1, every e € E, and

(n,a
e

every a € G¥ consider the maps ¢ ). RY — RY given by respective formulas

oM (z) = A"z + q,.

Since all the maps A" are uniform linear contractions and since the set G is
bounded, there exists B, a sufficiently large closed ball in R? centered at the
origin such that

o"(B) C B
foralln > 1, all e € E, and all a € GF. Let I(R?) be the Banach space of all
bounded functions from E to R?, endowed with the supremum norm, i.e.

lalloe = sup{]lac|| : e € E}.
Of course, G¥ is a subset of [ (R?). Let (X, F,m) be a probability space and let

0 : X — X be an invertible measurable map preserving the measure m. For every
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x € X let S, : G¥ — GF be a map for which there exists a bounded convex open
set G C R? with the following properties.

pl) G C G and dist(G,R?\ G) > 0; then GF C Inty, g (GF).

p2) There exists a continuous map S, : GE — GE such that

p3) S’Z is differentiable throughout Int;, (rq) (GE )

p4)

(
(
(
(

|1DS, |00 := sup{||DaSs|| : a € GF} < 0
and
B = esssup{||DS;||e : x € X} < 00
is so small that
kB < 1/3.
(p5) For m-a.e. * € X there exists a Borel probability measure ju, on G¥
equivalent (with bounded Radon-Nikodym derivatives) to A& such that

Ho(z) = Mz © Sx_l

Note that if the space X is a singleton, then we are talking about one mapping
S : GF — GF (and its extension S : GF¥ — GF preserving a Borel probability
measure p on GF equivalent (with bounded Radon-Nikodym derivatives) to \Z.
This of course comprises the case of S being the identity map on G¥. This case
is referred to as translation deterministic. S = Idge was a part of Falconer’s
set up in [I]. He was also assuming that the alphabet E is finite and the linear
contractions A" : RY — RY are independent of n. We do not assume any of
these. Now, the collection of maps

{(bgn,a):Rq%RQ;nzl,aGGE,GGE}

along with the map 6 : X — X and described above maps S, : G¥ — GF, z € X,
are referred to as an affine scheme S. We classify affine schemes as follows.

(1) Autonomous if the affine contractions Al RY — R? are independent of
n.

(1’) Finitely autonomous if S is autonomous and the alphabet E is finite.

(2) Non-autonomous if S is not autonomous.

(3) Of dynamically deterministic type if the maps S, : GF — GF, r € X, are
independent of x € X. Then the action 6 : X — X is irrelevant, and we
may assume without loss of generality that X is a singleton.

(4) Deterministic if S is of dynamically deterministic type and S : G¥ — GF
is the identity map on GF.

(5) Of dynamically random type if S is not of dynamically deterministic type,
meaning that S, : G¥ — G¥ do depend on = € X.
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(6) A Falconer scheme if S is finitely autonomous and of dynamically deter-

ministic type.

From now on § is an arbitrary affine scheme. As in the introduction, for every
integer £ > 1 and every z € X let
Sf := 5 0 Sp(z) O ... 0 Spr-1(y).
Givenn > 1, w € E", and a € G¥, we define the maps
Ay i=AY 0o AP 0. 0 AW BRI — R
and

¢L(Ux,a) — ¢£Ull,a) o gz5(2,599((1)) o...0 gbgz,sxn—l(a)) - B — B.

wa
Note that A, is the linear part of the affine map qbff’a). For every infinite word
w € EN and every integer n > 1 we put

Wlp = wWiws . . . Wy

Then (qﬁiﬁf)(B))zo:l is a descending sequence of non-empty compact subsets of
B and

diam(¢(x’a) (B)) < diam(B)x".

wln

So, the intersection
(5 B)
n=1

is a singleton, and we denote its only element by 7(; ) (w). So, for every x € X
and every a € G¥ we have defined the projection map

T(z,a) - EN — B.
Slightly more generally, given any integer k > 1, we consider the maps

¢£J:(:,a;k) — ¢(k,a) o ¢(k+1,Sz(a)) o.. .o ¢(li+n—l,5;“1(a)) B — B.

w1 w2 w

and the corresponding projections

In particular,
ﬂ(lx’a) = 7T(a:,a)-
The set
(2.2) J(x,a) = F(z,a)(EN) C BCR?

is called the limit set (or the attractor) of the affine scheme S at the point (z,a).
Our goal is to determine the Hausdorff dimensions of these limit sets. Indeed, we

will show that these dimensions are equal for m-almost all z € X and A\Z-almost
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all @ € G¥, and the resulting common value is directly expressible in terms of the
sequence alone ({Aé") rec BY) .

3. THE SINGULAR VALUE FUNCTION

let A:R? — RY? be an invertible linear contraction and let
I1>0>2a12>...20,>0

be the square roots of (necessarily positive) eigenvalues of the self-adjoint map
A*A : R? — R? Geometrically, the numbers oy, ..., are the lengths of the
(mutually perpendicular) principle semi-axes of A(B(0, 1)), where B(0,1) is the
closed ball in R? centered at 0 and of radius 1. These numbers are called singular
values of the map A : R? — R?. Following Falconer ([I]) we define

a'(A) == ajay.. .ak,lazf(kfl)

if 0 <t < q, where k is the least integer greater than or equal to s, i.e. k —1 <
t <k, and

ol (A) = (s . .. ap_10y)!
if £ > ¢. Denote by L.(R?) the set of all invertible linear contractions from R?

onto itself. Note that L,(R?) is closed under the compositions of maps. We quote
from [1] the following two lemmas.

Lemma 3.1. For each t > 0 the function oy : L.(RY) — L,(RY) is submultiplica-

tive, meaning that
a'(AC) < o' (A)a!(C)
for all A,C € L,(RY).

and

Lemma 3.2. Given a non-integral real number 0 < t < q and a real number
R > 0 there exists a constant ¢ < 400 (depending on all of then q, t, and R)
such that

d () < c

/B(O,l) || Az|[* at(A)

for all A € L,(R?), where \, denotes q-dimensional Lebesque measure on RY.
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4. FALCONER DIMENSION

Let S be an affine scheme. Fix ¢ > 0. Define the metric p(ﬁf) on EN as follows.

¢ ot (Appr ifw#T1
()(w,T) — { ( ) 7

Pr 0 if = 7.

To check that pg) is a metric indeed only triangle inequality requires an argument.
For this take also v € EN. Then |w A 7| > min{|w A 4|, |7 A v|}. Assume without
loss of generality that w AT > |w A ~y|. Then w AT = (w A )8 with some 6 € E*,
say 6 € E*. Denote n := |w A 7|. We then have,

P (w,7) = ' (Aurr) = @' (Ao )5at(AwM)at(Af,’l‘“)Ag’;“)...Agj“))

o' (Auny) = P (w

< max{p(w.7). o < r>}.

So, pg) is a metric indeed, in fact we have proved the following.

Proposition 4.1. For everyt > 0, pg) is an ultra-metric on EN.

Let H.. be the 1-dimensional Hausdorff measure on EN generated by the metric
Pt Of course if s < t and H5(EN) < +o0, then H,(EY) = 0. Therefore,

inf{t > 0: H%(EY) = 0} = sup{t > 0: H%(EY) = +o0}.

Call this common number the Falconer dimension of the scheme S and denote it
by FD(S). Note that it in fact depends only on the sequence ({Aé”) te € E})ZO:1
and is entirely independent of the vectors a., e € E, or the maps S, : GF — GF.

We now define an auxiliary dimension FD,(S). For every [ > 1 and every set

' C EY define
FY(I') := inf { > at(Aw)} :

wEA,
where the infimum is taken over the family A; of all countable covers of I by

cylinders [w] of length > [. The sequence (Ff(F))Zl is monotone increasing, and

therefore the following limit

FYT) = lim F/(T)

l—00

exists and is equal to
sup{Fi(T) : 1 > 1}.
Note that if s < t and F*(EY) < +o0, then F'(EY) = 0. Therefore,
inf{t > 0: F(EY) = 0} = sup{t > 0: F{(E") = +o0}
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Denote this common number by FD,(S). Note that as in the case of FD(S) it in
fact depends only on the sequence ({Aé”) e€ kb }):;1 and is entirely independent
of the vectors a., e € E, or the maps S, : GF — G¥. We shall prove the following.

Proposition 4.2. If S an affine scheme and

tim (40| > 0

e—00
for alln > 1, then

FD.(S) = FD(S).
Proof. Obviously,
FD(EY) < FD,(EM).

In order to prove the opposite inequality fix § > 0 and consider A, an arbitrary

cover of EN by sets of diameters (with respect to pg)) < 4. For every I' € A let
wy € E% be a longest word such that

I'c [O.)F].
Then of course
(4.1) diampg)(l“) S diamp;? ([u}r])
but, more importantly for us at the moment, there exist two elements 5,7 € I’
such that Bjwpi+1 # Vljwe+1- A also Bliw = Vljw), we thus get
. t .
dlamp;f)(f‘) > p%)(ﬁ’fy) = at (AB/W) =af (AWF) = dlampg) ([wp])
Along with (4.1)) this yields
(4.2) diampg,) (Jwr]) = diampg)(F)
Hence {[wr]}pe 4 is also a cover of EN by sets with diameter (with respect to the

metric pg)) < §. Therefore, we are done since, by our hypothesis, sup{|wr| : v €
A} converges to zero if § — 0. O

As an immediate consequence of this proposition we get the following.

Corollary 4.3. If S is a finitely autonomous affine scheme, then
FD.(S) = FD(S).

We also define .
Ps(r) = lim “log 3 a'(A),

n—00
|w|=n
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and call Pg(t) the lower topological pressure of the affine scheme S at the pa-
rameter t. Let

s :=inf{t > 0: Pg(t) < +o0}
and

05 :=inf{t > 0:Pg(t) = —oo}.
Since for 0 < s < t, we have a!(A,) < o/ *(A,)a*(A,) < k' %a®(A,), we imme-
diately get the following.

Proposition 4.4. If S is an affine scheme, then

(a) the function [0, +00) 3 t — Pg(t) € [—o0, +00] is monotone decreasing,
(b) the function (05,0%) >t Pg(t) is strictly decreasing.

Proposition 4.5. If S is a finitely autonomous affine scheme, then the following
numbers are equal.
(a) FD(S)
(b) FD.(S)
(c) inf{t > 0:Pg(t) <0},
(d) inf{t >0:> p(Ay) < +oo} =sup{t >0:> _p o(A,) = +oo}.

Proof. Because of Corollary [4.3| it suffices to prove that the numbers in (b), (c),
and (d) are all equal. Indeed, if s <t and ) _p. a®(Ay,) < 400, then inf{t > 0
Y ower @(Ay) < +oo}. Therefore, the equality in (d) is proved. The equality of
numbers in (¢) and (d) is a direct consequence of Proposition [4.4(b). Now, if T :=
Y ower @(Ay) < +oo, then for every [ > 1, 3" _pa'(A,) < T, and therefore
F}(EM) <T. consequently, F*(EN) <T < 400, and so (b)<(d). The implication
(¢)<(b) requires the system S to be finitely autonomous and is established in
. O

The proof of the following lemma is an adaptation of the proof of Lemma 3 in

3.

Lemma 4.6. If S is an affine scheme and F'(EY) = +oo, then there exist a
finite Borel measure v on EN and a constant C > 0 such that

v([w]) < Ca'(Ay)
for all w € E*.
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Proof. Because of Proposition it follows from Theorem 57(c) in [4] that there
exists a compact set I' C EY such that

0 < H.(T) < +oo0.
Since diamp(t)([w]) = a'(A,), the proof is thus completed by invoking Theo-
F
rem 8.17 in [Mal. O
5. MAIN THEOREM; THE PROOF

The proof of our main theorem, Theorem [I.1] will consist of several lemmas. We
start with the following.

Lemma 5.1. let S be an affine scheme acting on R?. Let 0 < t < q be a non-
integral number. Then there ezists a constant C' € (0,400) such that

/ / d)\E Jdm(z)  __ C
GE Hﬂ-(z a)\W) — W(m’a)(T)Ht T at (Aw/\r)

for all w, 7 € BN with w # .

Proof. Let
pi=wAT
and let k := |w A 7| < +00. Let o' := o¥(w) and 7’ := ¢%(7). Then

Hem) = //GEHM?% d:f;;)(g,;d }
_ Mt \Q) AT
_/X/GE (a)( (k+1) ( >) ¢p ( k+1 Sk(a)<7_l)) t

P \Tor(a),8%(a)\W
:// dtg ku()dm()
(5.1) x Jar ¢§s;k<a>>(7r(<§;)1>(w,>)_¢gs;’“<a)>(ﬂgiz)1>(7,)) '
_ / / dpg-r(2) (@) dm()
xJee |4, (@) - x|
x// dpg(a) dm(z) .
xJae || A, (nlt D) = D @)

Now,
k+1 k+1
ng’a))(w’)) _ w((x’aQ(T') = 4y — ay + F(a),

where I : GEF — R is given by the formula:

(52) ZA /|j(k+1) g+1 ZA /|](k+1 )) ]{+1).
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Now consider the product measure
E\{w}
by =2 [ =rxoret
e E\{w]}
on RY where, we recall, A, is the g-dimensional Lebesgue measure on RY. Let
H:GF - R7 x GEM«1} pe given by the following formula:
Ay — ar + Fa) if j=uw)
a; if j # wi.

(5.3) H(a); == {

We shall prove the following.
Claim 1: The map H : GE 5 R x GEM«1) g injective.
Proof. Suppose that H(a') = H(a). Then immediately a,, = a. for alle € E\{w}}.
Since 7] # wi, this entails a’T{ = a. So,
F(d) — F(a) = ay; — ay.
It then follows from (5.2), (p4), linearity of the maps A, ;x+1) and A, j;xsn), and

()-quasi-convexity of G, that
(5.4)
|l — af|oc =

= |l — aw |l = [[F(a) = F(a)|

= 132 Ao ((826)) — (2@, )

=D~ Ao (SU))r,) = (S3@),)

< D RISL@))y,,) = Sha)uy 1+ D2 RIISH)),,) = i@y,
<2 wlISia) - 5i(a)l

<23 Wil - all
j=1
— 2QnB(1 — #B)ld’ — al|uc

< lla" = al|,

where the last equality followed from the assumption (see (p4)) that x5 < 1/3.
This contradiction finishes the proof of Claim 1. OJ

In the same vein let us prove now the existence and estimate the norm of of the
partial derivative D, F'(a) at every point a € GF. Indeed, it again follows from
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(5.2)), (p4), and linearity of both A, ;a+1 and A @+, that
(5.5)
HDng(G)H =
= H ZA j+0 © Doy (P 0 S7)( ZA i+ © Dy (prr 0 57)(a )H
j=1

< QZHJ'HDS;’;HOO < 2Z(ﬂﬁ)j
. —

2/@6
Tl /iﬁ
i. e. D,y F(a) exists and (5.5) Aholds. So, because of the special form ([5.3), we now
conclude that the map H : GF — R? x GF\M“1} is non-singular with respect to
the measure £, and its Jacobian is given by the formula

1—kp
So, if we consider the measure £, on H(G") but the measure \§ on G*, then
Ji-1(a), the corresponding Jacobian of the map H~' : H(GF) — G, is

Ji(a) = |det(IdRq +Dw/1F(a))| > (1-— HD%F(CL)H)q > (1 B 2K >‘1.

1 268 \1\ '
—J5 () < v = N(G) [ 1—
w0 =7= (o) (1-725) )
for all b € H(GF). Therefore, we can single out the inner integral in (5.1)) to get
d)\E
L) = [ ol :
H-1(H(GE)) HA (k+1)(w,)) (k+1)(7_,)) H

Jg-1 (b) =

(z,a) - ﬂ.(:r,a)

_ / )y )

CdA(Y) B\
dhge "1 (b),
/,)(Hm/p,p* ||A y[Ee

where p, : (R9)F — (R?)P\1} is the canonical projection onto (R?)PM«i} i,
e. pu((be)eer = ((be)ecm\ w3, and, we recall, p,; : (R?)® — R? is the canonical
projection onto w/th coordinate. Now, if a € G¥, then

I(H(a))w |l = llaw;, — ary + F(a)|| < [law || + [lax ]| + |[F(a)]]
< 2R¢q + Rgli<1 — ,"i)i1
=2+ k(1 —x) Re,

where the estimate ||F(a)|| < Rgr(1 — k)™! is a simplification of the calculation
from (5.4). Therefore, for every b € p.(H(G)), we have that p. (p;' (b)) C
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B(0, (2 + £(1 — k)Y Rg). So, by virtue of Lemma [3.2] there exists a constant
C > 0 such that

d\ o
() < / / (Y )td/\g\{ Do)
(1(GE)) JBO,24+s(1-m)-DRe) ApW)]]

S d)\E\{wl}
Oét(Ap) /*( H(GE))
C B\ B
= Ao (po(H
Oét(Ap) G (p ( (G )))
< C
N O‘t(Ap).

Therefore,

/ / d\E(a) dm / / d,uz dm(z)
X JGE ||7T(x,a)( w) — 7T(a: a) GE ||7T(wa 7T(967a)(7_)||t

= /X I (w,7)dm(x)

< m /X dm(x)
_ /X L(w, 7) dm(z).

The proof of our lemma is complete. O

the proof of the following proposition goes, with almost no changes, as the proof

of Proposition 5.1 in [I]

Proposition 5.2. If S is an affine scheme and Hy(EY) < +o0, then H (J(4.q)) <
+00 for all x € X and all a € GF.

Proof. Begin in the same way as in the proof of Proposition Fix § > 0 and
consider A, an arbitrary cover of EN by sets of diameters (with respect to the
metric p( )) < 0. For every I' € A let w, € £ be a longest word such that

I'c [wp].
Then of course
(5.6) diampg)(l“) < diampgp ([wr])

but, more importantly for us at the moment, there exist two elements 3,y € I’
such that B|wpj41 7# Vljwr)j+1- As also Bljwe]) = Vljjwr]s We thus get

diam, 0 (T) 2 i (8.7) = o' (Asr,) = @' (Auy) = diam o (fwr]).
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Along with (5.6)) this yields
(5.7) diampg,) (Jwr]) = diampg)(F)

Hence {[wr]}rc 4 is also a cover of EN by sets with diameter (with respect to the
metric pg) ) < 6. Therefore, for all z € X and all a € G¥ we have that

Jwa € | ¢(B

reA
But each set gbffr’a)(B) is contained in a rectangular box with sides of length
2diam(B)ay (Ay), 2diam(B)as(Ay), - . ., 2diam(B)a,(A,).

If k is the least integer greater than or equal to t, then each such box can be
divided into at most

. a1<Aw>> ( . OéQ(Aw>> ( . 052<Aw>>
4diam(B - | 4diam (B «...+ | 4diam(B .
(sam@ 1 P e P o)
- (4diam(B))7F+!
rectangular cubes with sides of length oy, that is of diameter ,/qay. There-

fore, fixing n > 0, there exists, because of (2.1) and (5.7), 6, > 0 such that
diam (¢, (B)) < n for all I € A. Hence,

H) (Joa) <
< 3 (im0 ) - (im0 ) - (st 555)

4d1am( ))q M /qay)!

>M

=< Z A a2 ) ...ak_l(AwF)af;(k*l) (AWF)
= Z
reA
Therefore,
H' (Jow) = Hp(EY).
So,
0 (Jiwa)) = I H, (Jo.a)) = lim H(E7) < oo.

The proof is complete. O

Now we can prove the main theorem of our paper.

Theorem 5.3. If S is an affine scheme on RY, then
HD(J(s4)) = min{g, FD(S)}.

for m-a.e. v € X and \E-a.e. a € GF.
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Proof. Because of the previous proposition we only have to prove that
HD(J(3,0)) = min{gq, FD(S)}.

for m-a.e. x € X and Ai-a.e. a € GF. Indeed, fix a non-integral number 0 < s <
min{q, FD(S)}. Take then arbitrary 0 < s < ¢ < min{q, FD(S)}. So, F'(E"Y) =
+00, and, by Lemma there is a finite Borel measure v on EV such that

(5.8) v([w]) < Ca'(Ay)

for all w € E*. Applying Lemma , formula (5.8), and the observation that
v ® v does not charge the diagonal we get

e L et s Ly
EN JEN JgE ||7T(a:a) - EN JEn  of w/\T

<N [ e e ae)

n=0 |y|=n WAT="5
(5.9) = ; ;_: a’(4,) v @v(A,)
<D et (AT
n=0 |r|=n
<D 0> at(A) (AR
n=0 |y|=n

Now, with k being the least integer greater than or equal to s and [ being the

least integer greater than or equal to t, we get
a' (A'Y)O‘S (Av)il = a1 (Ay)aa(Ay)ag-1(Ay) - ar(Ay)agi(4y) ... 04171<A’7>041(Av)til+1
Oél(Aw)il . 'O‘I;—ll(Av)O‘k(Av)ierkil
= Oék(Av)kisO‘kJrl(Av) ce O‘lfl(Av)O‘l(AvyilH-
Since t — [+ 1 > 0 and since k — s > 0, we further get
0 (A,)0" (A,) ™1 < ap(A)E < [JA, | < k90,
Hence, we can continue (5.9)) as follows.

]SCim(k_s)"Z C’Zﬁ —n = 01— KF) T < o0
n=0

[v[=n

Hence, for m-a.e. z € X and A\Z-a.e. a € GF, we have that

Lo ::/ / dv(w) dv(T) <o
B J v | (W) — T (T)]
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This means that

/ / d(vomyy)(2)d(vom,)(€) e
J(@,a) 7 I ’

|z = &ll°

z,a)

and this in turn (see [2], comp. [Ma]) implies that HD(J(; 4)) > s. Thus, HD(J(54)) >

min{q, FD(S)}, and the proof is finished. O
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