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Abstract. We consider singular integrals associated to homogeneous kernels on self
similar sets. Using ideas from Ergodic Theory we prove, among other things, that in
Euclidean spaces the principal values of singular integrals associated to real analytic,
homogeneous kernels fail to exist a.e. on self similar sets satisfying some separation
conditions. Furthermore in general metric groups, using similar techniques, we generalize
a criterion of L2-unboundedness for singular integrals on self similar sets.

1. Introduction

The singular integrals, with respect to the Lebesgue measure in Rd,

T (f)(x) =

∫
Ω(x− y)

|x− y|d
f(y)dy

where Ω is a homogeneous function of degree 0 have been studied extensively, see e.g. [St],
being one of the standard topics in classical harmonic analysis. On the other hand if the
singular integral is acting on general lower dimensional measures the situation is much
more complicated even when one considers the simplest of kernels. The topic is deeply
connected to geometric measure theory as it turns out that basic properties of singular
integrals such as boundedness in L2 and a.e. existence of principal values depend on the
geometric structure of the underlying measure.

In a series of innovative works, see e.g. [DS1] and [DS2], David and Semmes developed
the theory of uniform rectifiability for the geometric study of singular integrals in Rd on
Ahlfors-David regular (AD-regular, for short) measures, that is, measures µ satisfying

rn

C
≤ µ(B(z, r)) ≤ Crn for z ∈ sptµ and 0 < r < diam(spt(µ)),

for some fixed constant C. Roughly speaking, given a sufficiently nice kernel k David and
Semmes intended to find geometric conditions that characterize the AD-regular measures
µ for which the singular integrals Tk,µ are bounded in L2(µ). To this end they introduced
the novel concept of uniform rectifiability which can be realized as rectifiability with some
quantitative conditions. Recall that n-rectifiable sets in Rd are contained, up to an Hn-
negligible set, in a countable union of n-dimensional Lipschitz graphs. Here Hn stands
for the n-dimensional Hausdorff measure.

When one assumes that the measure µ has sufficiently nice structure the situation is
pretty well understood. David in [D1] proved that if µ is n-uniformly rectifiable any
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convolution kernel k : Rd \ {0} → R such that for all x ∈ Rd \ {0},

(1.1) k(−x) = −k(x) and
∣∣∇jk(x)

∣∣ ≤ cj |x|−n−j , for j = 0, 1, 2, . . .

defines a bounded operator in L2(µ). Later on, Tolsa in [T] relaxed the smoothness
assumption up to j = 2. Furthermore Verdera in [V] proved that if the measure µ is
n-rectifiable the principal values with respect to any odd kernel satisfying (1.1) exist
µ-a.e.

On the other hand, much less is known when one assumes L2-boundedness or µ-a.e exis-
tence of principal values and wishes to derive information about the geometric structure of
µ. David and Semmes in [DS1] proved that the L2(µ)-boundedness of all singular integrals
in the class described above forces the measure µ to be n-uniformly rectifiable. Naturally
one might ask what happens if in contrast to the previously mentioned result we only
assume the boundedness of a single operator. Even for the n-dimensional Riesz kernels,
x/|x|n+1, x ∈ Rd \{0}, the question, which is frequently referred to as the David-Semmes
conjecture, remains partially unresolved.

In [MMV], Mattila, Melnikov and Verdera settled the David and Semmes question in
the case of the Cauchy transform, that is for n = 1. It is a remarkable fact that their proof
depends crucially on a special subtle positivity property of the Cauchy kernel related to
an old notion of curvature named after Menger. Recently, in a very deep work, Nazarov,
Tolsa and Volberg [NToV], gave an affirmative answer to the David-Semmes conjecture
in the case of the (d − 1)-dimensional Riesz kernels. The conjecture remains open for
1 < n < d− 1.

Very little is known for other homogeneous kernels. In [CMPT] the kernels Re(z)2n−1/|z|2n,
z ∈ C, n ∈ N, were considered and it was proved that the L2-boundedness of the operators
associated with any of these kernels implies rectifiability. Recently in [CP] the aforemen-
tioned result was extended to Euclidean spaces of arbitrary dimension. By now, these are
the only known examples of convolution kernels not directly related to the Riesz kernels
with this property. It is of interest that there exist some examples of homogeneous kernels
in the plane whose boundedness does not imply rectifiability, see [H2] and [JN].

Mattila and Preiss proved in [MP] that the µ-a.e. existence of the principal values
of the n-dimensional Riesz transforms implies n-rectifiability. Huovinen in [H1] consid-
ered the vectorial kernels z2n−1/|z|2n, z ∈ C, n ∈ N, and proved that the µ-a.e. exis-
tence of their principal values implies rectifiability. The same holds true for the kernels
Re(z)2n−1/|z|2n, z ∈ C, n ∈ N, considered in [CMPT].

It becomes clear that our knowledge restricts to a few particular examples of kernels.
Our goal in this paper is to prove, under certain restrictions, a general result. The
idea is that given any sufficiently nice kernel it should behave badly on measures with
sufficiently irregular geometric structure. In Theorem 3.5 we prove that given any s-
homogeneous real analytic kernel its principal values do not existHs-a.e. in C ⊂ Rd if C is
a strongly separated, rotation free s-dimensional self-similar set. Furthermore in Theorem
3.4, without even assuming strong separation for C, we prove that the corresponding
maximal operator is unbounded in L∞(HsbC). As a toy example the reader can have
in mind the action of any kernel of the form P (x)/|x|n+1, x ∈ R2, where P is an n-
homogeneous polynomial, on the 1-dimensional 4-corners Cantor set in the plane.
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In our proofs we make use of the fact that the zero set of any non-trivial real analytic
function in Rd is contained in a countable union of C1 manifolds of dimension at most d−1.
Combined with Mattila’s geometric rigidity theorem for self similar sets, see Theorem 3.2,
it allows us to prove that certain truncated integrals with respect to real analytic kernel do
not vanish on a set of positive Hs-measure. A key and novel ingredient in our proof is the
use of ideas and tools from Ergodic theory, especially suitable applications of Birkhoff’s
Ergodic Theorem. To our knowledge this is the first time that Birkhoff’s Ergodic Theorem
is being used in the context of singular integral operators.

Furthermore we use again Birkhoff’s Ergodic Theorem in order to prove a criterion for
unboundedness of homogeneous singular integrals on self similar sets of metric groups.
This criterion was first obtained in [CM], with a quite different argument, under stronger
separation conditions for the similarities. Motivation for the study of singular integrals in
metric groups comes from the study of removable sets for Lipschitz L-harmonic functions
in Carnot groups, where L is the sub-Laplacian. It was proved in [CM] that the critical
dimension for such removable sets in the Heisenberg group Hn is 2n+ 1 and the criterion
for unboundedness was employed to prove the existence of removable self-similar sets with
positive and finite H2n+1-measure.

The paper is organised as follows. In Section 2 we lay down all the necessary notation
and definitions regarding self similar iterated functions sytems and singular integrals in the
general framework of complete metric groups. In Section 3 we consider singular integrals
with respect to real analytic kernels in Euclidean spaces. In Section 4 we prove a criterion
for unboundedness of singular integrals on self similar sets of metric groups. Finally in
Section 5 we prove in Euclidean spaces the collection of homogeneous kernels that define
unbounded operators on self similar sets is dense in the Cr topology of homogeneous
kernels.

2. Notation and Setting

Let (G, d) be a complete metric group with the following properties:

(i) The left translations τq : G→ G,

τq(x) = q · x, x ∈ G,

are isometries for all q ∈ G.
(ii) There exist dilations δr : G → G, r > 0, which are continuous group homomor-

phisms for which,
(a) δ1 = identity,
(b) d(δr(x), δr(y)) = rd(x, y) for x, y ∈ G, r > 0,
(c) δrs = δr ◦ δs.

It follows that for all r > 0, δr is a group isomorphism with δ−1
r = δ 1

r
.

The closed and open balls with respect to d will be denoted by B(p, r) and U(p, r). By
diam(E) we will denote the diameter of E ⊂ G with respect to the metric d.

Let E be a finite set called in the sequel an alphabet. Without loss of generality we
can assume that E = {1, . . . , N} for some N ∈ N. Let

σ : EN → EN
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be the shift map, i.e. cutting off the first coordinate. It is given by the formula

σ((wn)∞n=1) = ((wn+1)∞n=1).

We also set

E∗ =
∞⋃
n=0

En.

For every w ∈ E∗, by |w| we mean the only integer n ≥ 0 such that w ∈ En. We call |w|
the length of w. If v ∈ E∗, w ∈ EN and n,m ≥ 1, we put

w|n = w1 . . . wn ∈ En,

w|m,...,m+n = wm+1 . . . wm+n ∈ En,

vw = (v1, . . . , v|v|, w1, . . . ) ∈ EN,

vn = (v1, . . . , v|v|, . . . . . . , v1, . . . , v|v|) ∈ En,

v∞ = vv · · · ∈ EN.

For every v ∈ E∗, we denote the corresponding cylinder by

[v] := {τ ∈ EN : τ||v| = v},

and if A ⊂ EN we put

v ◦ A = {vα : α ∈ A}.
Let S = {Si}i∈E, be an iterated function system (IFS) of similarities. This means that

(2.1) d(Si(x), Si(y)) = rid(x, y)

with some ri ∈ (0, 1) for all i ∈ E. The self-similar set C is the invariant set with respect
to S, that is, the unique non-empty compact set such that

C =
⋃
i∈E

Si(C).

We say that S satisfies the open set condition (OSC) if there exists some non-empty
open set O such that

(i) Si(O) ⊂ O for all i ∈ E,
(ii) Si(O) ∩ Sj(O) = ∅ for all i 6= j ∈ E.

If furthermore O ∩ C 6= ∅ we say that S satisfies the strong open set condition (SOSC).
Finally S is called separated if Si(C) ∩ Sj(C) = ∅ for all i, j ∈ E with i 6= j. This
equivalently means that there exists some non-empty open set O satisfying (i) and (ii)
and also (ii) with O replaced by the closure of O.

Given any word w = (w1, . . . , wn) ∈ E∗ we adopt the following conventions:

Sw := Sw1 ◦ · · · ◦ Swn and Cw = Sw(C).

The periodic points of S are exactly those x ∈ C such that Sw(x) = x for some w ∈ E∗.
In this case

{x} =
∞⋂
k=1

Swk(C).
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We also define the coding map π : EN → C by

{π(w)} = ∩∞n=1Sw|n(C).

We denote by Hs, s ≥ 0, the s-dimensional Hausdorff measure obtained from the metric
d, i.e. for E ⊂ G and δ > 0, Hs(E) = supδ>0Hs

δ(E), where

Hs
δ(E) = inf

{∑
i

diam(Ei)
s : E ⊂

⋃
i

Ei, diam(Ei) < δ

}
.

It follows by a general result of Hutchinson in [Hut] that whenever S is a finite set of
similarities in Rd which satisfies the OSC,

0 < Hs(C) <∞ for
N∑
i=1

rsi = 1,

and the measure HsbC is s-AD regular. Here HsbC stands for the restriction of the s-
dimensional Hausdorff measure on C. The real number s is frequently called the similarity
dimension of S. In complete metric spaces the OSC does not always imply that the limit
set has positive and finite Hs measure. Nevertheless it holds true under some extra
assumptions on the group G, see Section 4.1 for more details. We also remark that if S
is separated it always generates a limit set with 0 < Hs(C) <∞.

From now on, unless otherwise stated, we will denote µ = Hs(C)−1HsbC. It follows,
see e.g. [Hut] that

µ = µ̃ ◦ π−1

where µ̃ is the canonical product measure in EN,

µ̃ = ⊗N

(∑
i∈E

rsi εi

)
where εi denotes the Dirac measure at i ∈ E.

We will consider the following class of kernels.

Definition 2.1. For s > 0 the s-homogeneous kernels are of the form,

k(x, y) =
Ω(x−1 · y)

d(x, y)s
, x, y ∈ G \ {(x, y) : x = y},

where Ω : G→ R is a not identically vanishing, continuous and homogeneous function of
degree zero, where 0-homogeneity means that,

Ω(δr(x)) = Ω(x) for all x ∈ G, r > 0.

The truncated singular integral operators associated to µ and k are defined for f ∈ L1(µ)
and ε > 0 as,

Tε(f)(y) =

∫
G\B(x,ε)

k(x, y)f(y)dµ(y),

and the maximal singular integral is defined as usual,

T ∗(f)(x) = sup
ε>0
|Tε(f)(x)|.



6 VASILIS CHOUSIONIS AND MARIUSZ URBAŃSKI

We say that the principal values with respect to k and µ exist for x ∈ sptµ if the limit

pv T (x) := lim
ε→0

∫
G\B(x,ε)

k(x, y)dµ(y)

exists and it is finite.
We also introduce symbolic principal values and symbolic maximal singular integral

operators.

Definition 2.2. Let S be a set of separated similarities and let C be the corresponding
s-dimensional self similar set. We say that the symbolic principal values with respect to
a kernel k and µ = HsbC exist for w ∈ EN if the limit

pvsy T (π(w)) := lim
k→∞

∫
C\Cw|k

k(π(w), y)dµ(y)

exists and it is finite.

Definition 2.3. Let S be a set of similarities satisfying the open set condition which
generats a limit set C such that 0 < Hs(C) < ∞. We define the symbolic maximal
singular operator with respect to k and µ = HsbC as

T ∗sy(f)(w) = sup
m<n
m,n∈N

∣∣∣∣∣
∫ ∗
Cw|m\Cw|n

k(π(w), y)f(y)dµ(y)

∣∣∣∣∣
for f ∈ L1(µ). Here we denote

∫ ∗
gdµ =

{∫
gdµ if

∫
gdµ <∞

0 otherwise
.

Remark 2.4. Notice that if S generates a separated self-similar set
∫ ∗

can be replaced
by
∫

in the above definition.

3. Real analytic kernels and self similar sets in Rd

In this section (G, d) ≡ (Rd, dE), where dE is the Euclidean metric, we focus our
attention on the following class of kernels.

Definition 3.1. For s > 0, we say that k ∈ Gs if it is of the form,

k(x, y) =
Ω(x− y)

|x− y|s
, x ∈ Rd \ {0},

where Ω : Rd \ {0} → R is a non-trivial real analytic and homogeneous function of degree
zero.

Mattila in [M1] proved the following geometric rigidity theorem for self similar sets.

Theorem 3.2 ([M1]). If S is a set of similarities satisfying the open set condition and
C is their corresponding s-dimensional limit set then either C lies on an n-dimensional
affine subspace for some n ≤ d or Hs(C ∩M) = 0 for any t-dimensional C1 submanifold
M where t can be any number in (0, d).
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If there exists some n ∈ N such that C ⊂ Vn where Vn is an n-dimensional affine
subspace and 0 < Hn(C) <∞ we will call the self-similar set C flat. In this case we can
assume that the ambient space is Rn and it follows that whenever C is flat it has interior
points and forms a local tiling, see [S1].

We will be interested in non-flat self similar sets whose generating similarities are sep-
arated and do not contain rotations. The latter means that S = {Si}i∈E, is a set of
similarities of the form

(3.1) Si = τqi ◦ δri
where qi ∈ Rd, ri ∈ (0, 1) and i = 1, . . . , N . Here as usual δr(x) = rx, x ∈ Rd, r > 0 and
τq(x) = q + x, q, x ∈ Rd, denote respectively the dilations and translations in Rd.

Theorem 3.3. Let S be a set of separated, rotation-free similarities which generates an
s-dimensional self similar set C and a kernel k ∈ Gs. Then

(i) the symbolic principal values with respect to k and µ = HsbC do not exist µ̃-a.e.
in EN,

(ii) the symbolic maximal operator T ∗sy is unbounded in L∞(µ̃).

Proof. Let
C1 := S1(C) = π([1]).

The function f : (C \ C1)c → R defined by

f(x) =

∫
C\C1

k(x, y)dµ(y)

is real analytic in (C \C1)c. Furthermore f is not identically equal to zero. To see this fix
y0 ∈ C \C1. Then there exists x0 ∈ ∂B(y0, 2 diam(C)) such that Ω(x0−y0) := η0 6= 0 and
without loss of generality we can assume that η0 > 0. Hence, there exists some cylinder
[α] such that

Ω(x0 − y) > 0 for all y ∈ Cα.
Notice also that for all w ∈ E∗, since S does not contain rotations, we have

(3.2) Ω(Sw(x)− Sw(y)) = Ω(x− y) for all x, y ∈ Rd.

Therefore,

0 <

∫
Cα\Sα(C1)

Ω(x0 − y)

|x0 − y|s
dµ(y) =

∫
C\C1

Ω(Sα(S−1
α (x0))− Sα(z))

|Sα(S−1
α (x0))− Sα(z)|s

|S ′α|dµ(z)

=

∫
C\C1

Ω(S−1
α (x0)− z)

|S−1
α (x0)− z|s

dµ(z)

= f(S−1
α (x0)),

after changing variables y = Sα(z). Hence f(S−1
α (x0)) > 0. Since x0 /∈ C it follows that

S−1
α (x0) /∈ C and f : (C \ C1)c → R is not identically equal to zero. Let

Zf = {x ∈ (C \ C1)c : f(x) = 0}.
It follows by Lojasiewicz’s Structure Theorem, see e.g. [K] , that Zf is a countable union
of real analytic submanifolds whose dimension does not exceed d−1. Since S is separated
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the limit C is non-flat. This follows for example from [S1, Corollary 2.3]. We therefore
deduce from Theorem 3.2 that

µ(C1 ∩ Zf ) = 0.

Without loss of generality we can thus assume that there exists some x1 ∈ C1 such that
f(x1) > 0. Hence by the continuity of f there exists some relatively open neighborhood
A1 ⊂ C1 of x1 (so µ(A1) > 0) and

(3.3) f(x) > η for all x ∈ A1 and some η > 0.

The shift σ : EN → EN is a measure preserving and ergodic transformation with respect
to the measure µ̃. Since µ̃(π−1(A1)) = µ(A1) > 0, Birkhoff’s Ergodic Theorem yields

lim
n→∞

1

n

n−1∑
k=0

χπ−1(A1)(σ
k(w)) = µ̃(π−1(A1)) > 0

for µ̃-a.e. w ∈ EN. Therefore if

W = {w ∈ EN : there exist infinitely many k’s such that σk(w) ∈ π−1(A1)},

we see that µ̃(W ) = 1. Let w ∈ W . Let x = π(w), and define

Gw = {k ∈ N : σk(w) ∈ π−1(A1)}.

Now if k ∈ Gw then σk(w) ∈ [1], that is wk+1 = 1, and after a change of variables we get

(3.4)

∫
Cw|k\Cw|k+1

k(x, y)dµ(y) =

∫
Cw|k\Cw|k1

k(x, y)dµ(y)

=

∫
C\C1

k(x, Sw|k(y))(rw1 . . . rwk)
sdµ(y).

Let x′ = π(σk(w)). Then

Sw|k(x
′) = Sw|k(π(σk(w))) = π(w|kσk(w)) = π(w) = x.

Furthermore by the choice of w and k it follows that x′ ∈ A1. Hence by (3.3) and (3.4)∫
Cw|k\Cw|k+1

k(x, y)dµ(y) =

∫
C\C1

k(Sw|k(x
′), Sw|k(y))(rw1 . . . rwk)

sdµ(y)

=

∫
C\C1

Ω(Sw|k(x
′)− Sw|k(y))

d(Sw|k(x
′), Sw|k(y))s

(rw1 . . . rwk)
sdµ(y)

=

∫
C\C1

Ω(x′ − y)

d(x′, y)s
dµ(y)

= f(x′) > η.

Hence we have shown that for µ̃ a.e. w ∈ EN there exists a sequence Gw = {ki}i∈N such
that

(3.5)

∫
Cw|ki

\Cw|ki+1

k(π(w), y)dµ(y) > η.
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Therefore for µ̃ a.e. w ∈ EN the symbolic principal values fail to exist. Hence we have
proven (i).

For the proof of (ii) let u ∈ E∗ such that Cu ⊂ A1 where A1 is as in (3.3). We now define
a sequence of maps {Φk}k∈N, Φk : Rd → Rd, by

• Φ0 = Id
• Φk = Suk for all k ≥ 1.

We denote

x1 = π(u∞) ∈ Cu.
Obviously g : C → R defined by

g(y) =

{
χC\C1(Φ

−1
k (y)) if y ∈ Φk(C) \ Φk(C1)

0 otherwise

belongs to L∞(µ). Then for all m ∈ N,

(3.6)

∫
C\Φm(C1)

g(y)ks(x1, y) dµ(y) =
m∑
k=0

∫
Φk(C)\Φk(C1)

g(y)k(x1, y) dµ(y)

Using the change of variables y = Φk(z) we have for all k ∈ N∫
Φk(C)\Φk(C1)

g(y)k(x1, y)dµ(y) =

∫
Φk(C)\Φk(C1)

χC\C1(Φ
−1
k (y))k(x1, y)dµ(y)

=

∫
C\C1

χC\C1(z)k(x1,Φk(z))|Φ′k|sdµ(z)

=

∫
C\C1

Ω(Φk(Φ
−1
k (x1))− Φk(z))

|Φk(Φ
−1
k (x1))− Φk(z)|s

|Φ′k|sdµ(z)

=

∫
C\C1

k(Φ−1
k (x1), z)dµ(z)

=

∫
C\C1

k(x1, z)dµ(z)

= f(x1) > η

(3.7)

by (3.3) because x1 ∈ Cu ⊂ A1. Now let M > 0 be an arbitrary number and let m ∈ N
such that mη > M . Then by (3.6) and (3.7),∫

C\Φm(C1)

g(y)k(x1, y)dµ(y) > M.

By continuity of k there thus exists some m′ > m such that∫
C\Φm(C1)

g(y)k(x, y)dµ(y) > M

for all x ∈ Φm′(C). Therefore we have shown that there exists a word v ∈ EN, which is
just v = u∞, such that for all M > 0 there exist m1,m2 ∈ N, which depend on M , such
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that

(3.8)

∫
EN\[v|m1 ]

g(π(θ))k(π(w), π(θ))dµ̃(θ) > M

for all w ∈ [v|m1+m2 ]. Now let

V = {w ∈ EN : there exist n ≥ 0 such that σn(w) ∈ [v|m1+m2 ]}.

Applying Birkhoff’s Ergodic Theorem as in (i) we obtain that µ̃(V ) = µ̃(EN). Let w ∈ V
and let n := n(w) ≥ 0 be such that σn(w) ∈ [v|m1+m2 ]. Then using the change of variables
τ = w|nθ we get∫

[w|n]\[w|n+m1 ]

g(π(σn(τ)))k(π(w), π(τ))dµ̃(τ) =

=

∫
EN\[w|n,...,n+m1 ]

g(π(σn(w|nθ)))k(π(w), π(w|nθ))|S ′w|n|
sdµ̃(θ)

=

∫
EN\[v|m1 ]

g(π(θ))k(Sw|n(π(σn(w)), Sw|n(π(θ)))|S ′w|n|
sdµ̃(θ)

=

∫
EN\[v|m1 ]

g(π(θ))k(π(σn(w), π(θ))dµ̃(θ) > M

by (3.8) because σn(w) ∈ [v|m1+m2 ]. Hence we have shown that for µ̃-a.e. w ∈ EN there
exists some n(w) ≥ 0 such that T ∗sy(g ◦ π ◦ σn(w))(w) > M . Therefore there exists some

n0 and some Bn0 ⊂ EN with µ̃(Bn0) > 0 such that

T ∗sy(g ◦ π ◦ σn0)(w) > M

for all w ∈ Bn0 . Thus ‖T ∗sy(g ◦ π ◦ σn0)‖L∞(µ̃) > M while on the other hand ‖g ◦ π ◦
σn0‖L∞(µ̃) ≤ 1. Since M was arbitrary we have shown that T ∗sy is not bounded in L∞(µ̃).

�

The following theorem follows immediately from (ii) of Theorem 3.3 and [CM, Lemma
2.4].

Theorem 3.4. Let S be a separated and rotation free set of similarities which generates
the s-dimensional self similar set C. If k ∈ Gs, then the maximal singular integral with
respect to k and µ = HsbC is unbounded in L∞(µ).

We say that a set of similarities S is strongly separated if the corresponding self similar
set C satisfies

min
i∈E

dist(Si(C), C \ Si(C)) ≥ max
i∈E

diam(Ci).

As another immediate corollary of Theorem 3.3, we have the following theorem.

Theorem 3.5. Let S be a strongly separated and rotation free set of similarities which
generates an s-dimensional self similar set C. If k ∈ Gs, then the principal values with
respect to k and µ = HsbC do not exist µ-a.e..
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Proof. Since S is strongly separated, for all v = (i1, . . . , i|v|) ∈ E∗,
dist(Cv, Cv||v|−1

\ Cv) = dist(Sv||v|−1
(Si|v|(C)), Sv||v|−1

(C \ Si|v|(C)))

= rv1 . . . rv|v|−1
dist(C,C \ Si|v|(C))

≥ rv1 . . . rv|v|−1
diam(Si|v|(C))

= rv1 . . . rv|v| diam(C)

= diam(Cv).

(3.9)

Furthermore C \ Cv = ∪|v|j=1Cv|j−1
\ Cv|j and this union is disjoint. Therefore using (3.9),

we get

dist(Cv, C \ Cv) = min
j=1,...,|v|

dist(Cv, Cv|j−1
\ Cv|j)

≥ min
j=1,...,|v|

dist(Cv|j , Cv|j−1
\ Cv|j)

≥ min
j=1,...,|v|

diam(Cv|j)

= diam(Cv).

In particular this implies that for all w ∈ EN and every k ∈ N

U(π(w), diam(Cw|k)) ∩ (C \ Cw|k) = ∅
and

µ(B(π(w), diam(Cw|k))) = µ(Cw|k).

Hence, as in the proof of Theorem 3.3, by (3.5), for µ̃-a.e. w ∈ EN there exists a sequence
{ki}i∈N such that∫

B(π(w),diam(Cw|ki
))\B(π(w),diam(Cw|ki+1

))

k(π(w), y)dµ(y)

=

∫
Cw|ki

\Cw|ki+1

k(π(w), y)dµ(y) = η > 0

and the principal values fail to exist for all such π(w). �

4. The OSC and singular integrals in metric groups

In the context of complete metric spaces Schief proved in [S2] that if S is a set of

similarities as in (2.1) generating the limit set C and
∑N

i=1 r
s
i = 1 then

(4.1) Hs(C) > 0 =⇒ SOSC.

If furthermore the space is doubling, that is there exists some N ∈ N such that for all x
and all r > 0 there exist {xi}Ni=1 such that

B(x, r) ⊂ ∪Ni=1B(xi, r/2),

Balogh and Rohner proved in [BR] that

(4.2) OSC ⇐⇒ 0 < Hs(C) <∞.
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We remark that if (G, d) is a locally compact metric group the left Haar measure λ on
G is doubling that is, there exist some constant C such that for all x ∈ G and r > 0,

λ(B(x, 2r)) ≤ Cλ(B(x, r)),

see e.g. [M3, Proposition 2.14]. By an observation of Coifman and Weiss in [CW] the
existence of a doubling measure on G forces the metric space to be doubling. Therefore
whenever S is a set of similarities in a locally compact metric group, (4.1) and (4.2) imply
that

OSC ⇐⇒ SOSC.

From now on (G, d) will be a doubling, complete metric group with dilations as in
Section 2 and S = {S1, . . . , SN}, N ≥ 2, will be an iterated function system of similarities
of the form

(4.3) Si = τqi ◦ δri
where qi ∈ G, ri ∈ (0, 1) and i = 1, . . . , N .

Theorem 4.1. Let S be an IFS as in (4.3) which satisfies the OSC and generates an s-
dimensional self similar set C. Let k an s-homogeneous kernel. If there exists a periodic
point xw, w ∈ E∗, such that xw ∈ O for some open set O for which S satisfies the SOSC,
and ∫

C\Cw
k(xw, y)dµ(y) 6= 0

then T ∗(1)(x) =∞ for µ-a.e. x.

The essential step in the proof of Theorem 4.1 is the following proposition.

Proposition 4.2. Let S be and IFS as in (4.3) which satisfies the OSC and generates an
s-dimensional self similar set C. Let k an s-homogeneous kernel. If there exists a periodic
point xw, w ∈ E∗, such that

(4.4)

∫
C\Cw

k(xw, y)dµ(y) 6= 0

then T ∗sy(1)(v) =∞ for µ̃-a.e. v ∈ EN.

Proof. For simplicity we denote x = xw. Without loss of generality we can assume that∫
C\Cw

k(x, y)dµ(y) = η > 0.

Notice that the homogeneity of Ω implies that for all v ∈ E∗,

(4.5) Ω(Sv(x)−1 · Sv(y)) = Ω(δri1 ...ri|v| (x
−1 · y)) = Ω(x−1 · y).

Hence

(4.6) k(Sv(x), Sv(y)) = k(x, y)(rv1 . . . v|v|)
s.
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Therefore for all k ∈ N, after changing variables y = Swk(z) and recalling that Swk(x) = x,

∫
C
wk
\C

wk+1

k(x, y)dµy =

∫
C
wk
\C

wk+1

Ω(x−1 · y)

d(x, y)s
dµ(y)

=

∫
C\Cw

Ω(x−1 · Swk(z))

d(x, Swk(z))s
(rw1 . . . rw|w|)

ksdµ(z)

=

∫
C\Cw

Ω(Swk(S
−1
wk

(x))−1 · Swk(z))

d(Swk(S
−1
wk

(x)), Swk(z))s
(rw1 . . . rw|w|)

ksdµ(z)

=

∫
C\Cw

Ω(S−1
wk

(x)−1 · z)

d(S−1
wk

(x), z)s
dµ(z)

=

∫
C\Cw

Ω(x−1 · z)

d(x, z)s
dµ(z)

= η.

Let M be an arbitrary positive number and choose m1 ∈ N such that m1η > M . Then

∫
C\Cwm1

k(x, y)dµ(y) =
m−1∑
i=0

∫
Cwi\Cwi+1

k(x, y)dµ(y) > M.

Therefore by the continuity of k away from the diagonal there exist m2 > m1, such that

(4.7)

∫
C\Cwm1

k(π(τ), y)dµ(y) > M for all τ ∈ [wm2 ].

Let

A = {v ∈ EN : there exists n ∈ N such that σn(v) ∈ [wm2 ]}

Then as in the proof of Theorem 3.3, Birkhoff’s Ergodic Theorem implies that µ̃(A) = 1.
For v ∈ A set

Gv = {n ∈ N : σn(v) ∈ [wm2 ]}.

Then Gv 6= ∅ and for n ∈ Gv we have∫ ∗
[v|n]\[v|n+m1|w|]

k(π(v), π(τ))dµ̃(τ) =

∫ ∗
v|n◦(EN\[v|n+1,...,n+m1|w|])

k(π(v), π(τ))dµ̃(τ)

=

∫ ∗
v|n◦(EN\[wm1 ])

k(π(v), π(τ))dµ̃(τ).
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The last equality follows because σn(v) ∈ [wm2 ] and m2 > m1. Hence after a change of
variables τ = v|nθ∫ ∗

[v|n]\[v|n+m1|w|]

k(π(v), π(τ))dµ̃(τ) =

∫ ∗
EN\[wm1 ]

k(π(v), π(v|nθ)) (rv1 . . . rvn)sdµ̃(θ)

=

∫ ∗
EN\[wm1 ]

k(Sv|n(π(σn(v))), Sv|n(π(θ))) (rv1 . . . rvn)sdµ̃(θ)

=

∫
EN\[wm1 ]

k(π(σn(v)), π(θ)) dµ̃(θ)

=

∫
C\Cwm1

k(π(σn(v)), y) dµ(y) > M

(4.8)

because σn(v) ∈ [wm2 ]. Since M was arbitrary we deduce that for µ̃-a.e. v ∈ EN

T ∗sy(1)(v) =∞.

�

Proof of Theorem 4.1. Let X = O. Then there exists n0 := n0(w) ∈ N and c0 := c0(w) >
0 such that for all m ∈ N

(4.9) dist(Swm+n0 (X), ∂Swm(X)) ≥ c0 diam(Swm(X))

To see this notice that as xw ∈ O there exists r = rw > 0 such that dist(B(xw, r), ∂X) > 0.
Therefore there exists some n0 := n0(w) ∈ N such that

dist(Swn0 (X), ∂X) := d0 > 0.

Let c0 := d0 diam−1(X). Then for all m ∈ N

dist(Swm(Swn0 (X)), ∂Swm(X)) = dist(Swm(Swn0 (X)), Swm(∂(X)))

= (rw1 . . . rw|w|)
m dist(Swn0 (X), ∂(X)) ≥ (rw1 . . . rw|w|)

mc0 diam(X)

= c0 diam(Swm(X)),

and (4.9) follows. Let M > 0 be arbitrary and let m2,m1 ∈ N be as in the proof of
Proposition 4.2, that is they satisfy (4.7). Let

A′ = {v ∈ EN : there exists n ∈ N such that σn(v) ∈ [wm2+n0 ]}

Then Birkhoff’s Ergodic Theorem implies that µ̃(A′) = 1. For v ∈ A′ set

G′v = {n ∈ N : σn(v) ∈ [wm2+n0 ]}.

Then exactly as in (4.8) we get that for all v ∈ A′ and for all n ∈ G′(v)

(4.10)

∫
Cv|n\Cv|n+m1|w|

k(π(v), y)dµ(y) =

∫
[v|n]\[v|n+m1|w|]

k(π(v), π(τ))dµ̃(τ) > M.
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Lemma 4.3. If v ∈ A′ and n ∈ G′v, then there exists a constant c1 := c(w) such that∣∣∣∣∣
∫
Cv|n\Cv|n+m1|w|

k(π(v), y)dµ(y)−
∫
B1\B2

k(π(v), y)dµ(y)

∣∣∣∣∣ ≤ c1,

where B1 = B(π(v), 2 diam(Cv|n)) and B2 = B(π(v), 2 diam(Cv|n+m1|w|
))

Proof. We have

Cv|n \ Cv|n+m1|w|
= (Cv|n \B2) ∪ ((B2 \ Cv|n+m1|w|

) ∩ Cv|n)

and
B1 \B2 = (B1 \ (Cv|n ∪B2)) ∪ (Cv|n \B2),

where the unions are disjoint. Hence∫
Cv|n\Cv|n+m1|w|

k(π(v), y)dµ(y) +

∫
B1\(Cv|n∪B2)

k(π(v), y)dµ(y)

=

∫
B1\B2

k(π(v), y)dµ(y) +

∫
(B2\Cv|n+m1|w|

)∩Cv|n
k(π(v), y)dµ(y)

and so, ∣∣∣∣∣
∫
Cv|n\Cv|n+m1|w|

k(π(v), y)dµ(y)−
∫
B1\B2

k(π(v), y)dµ(y)

∣∣∣∣∣
≤ ‖Ω‖L∞(µ)

(∫
B1\Cv|n

d(π(v), y)−sdµ(y) +

∫
B2\Cv|n+m1|w|

d(π(v), y)−sdµ(y)

)
:= ‖Ω‖L∞(µ)(I1 + I2).

(4.11)

For all integers 0 ≤ l ≤ m1 we have

C \ Cv|n+l|w| ⊂
⋃

|τ |=n+l|w|
τ 6=v|n+l|w|

Sτ (C) ⊂
⋃

|τ |=n+l|w|
τ 6=v|n+l|w|

Sτ (X) ⊂ X \ Sv|n+l|w|(X).

Hence

dist(π(v), C \ Cv|n+l|w|) ≥ dist(π(v), X \ Sv|n+l|w|(X))

= dist(π(v), ∂Sv|n+l|w|(X))

= dist(Sv|n(π(σn(v))), Sv|n(∂Sv|n+1,...,n+l|w|(X)))

= (rv1 . . . rvn) dist(π(σn(v)), ∂Swl(X))

= (rv1 . . . rvn) dist(π(σn(v)), X \ Swl(X))

≥ c0(rv1 . . . rvn) diam(Swl(C))

= c0 diam(Sv|n+l|w|(C)),

(4.12)

where we used (4.9) and the fact that σn(v) ∈ [wm2+n0 ] ⊂ [wl+n0 ] as m2 > m1 ≥ l.
Applying (4.12) for l = 0 and for l = m1 we obtain that I1 + I2 ≤ c2 with some constant
c2 and the lemma follows by (4.11) with c1 := c2‖Ω‖L∞(µ). �
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Since M was an arbitrarily large number Theorem 4.1 follows by (4.10) and Lemma
4.3. �

5. Cr-perturbations of Kernels

Fix r ∈ {0, 1, 2, . . . ,∞}. Let Ω : Rd \ {0} → R be a non-trivial Cr and homogeneous
function of degree zero. Equivalently, and this will be more convenient throughout this
section, Ω can be treated as a Cr function Ω̂ from the unit sphere Sd−1 to R. Let F r be
collection of all such Ωs. Let S = {Si}i∈E be a separated IFS consisting of similarities.
Let w ∈ E∗ be a finite word and let ξw be the only fixed point of Sw. As in the previous
sections let s be the similarity dimension of the limit set C. We shall prove the following.

Proposition 5.1. Let S = {Si}i∈E be a separated IFS consisting of similarities which
generates an s-dimensional limit set C. For every r ∈ {0, 1, 2, . . . ,∞} and every finite
word w ∈ E∗ the subcollection F r(w) of F r consisting of all elements Ω such that

(5.1)

∫
C\Cw

Ω(x− ξw)

|x− ξw|s
dµ(x) 6= 0

is open in C0 topology, dense in Cr topology if r is finite, and in Ck topology for every
finite k if r =∞. In consequence F r(w) is open and dense respectively in Cr topology or
all Ck topologies.

Proof. The openess statement is obvious. So, let us deal with denseness. Fix Ω ∈ F r. Our
task is to find elements of F r arbitrarily close to Ω in Cr topology for which the integral
in (5.1) does not vanish. Fix z ∈ C \ Cw. Define the function H : Rd \ {0} → Sd−1 by

H(x) =
x− ξw
|x− ξw|

.

Consider U , an open ball contained in Sd−1 such that H(z) ∈ U . Given ε > 0, by the C∞

version of Urysohn’s Lemma there exists a C∞ function g : Sd−1 → R such that

g|Sd−1\U = 0, g|U > 0,

and all the derivatives of g from order 0 up to r are less than ε. Define Ω∗ : Rd \ {0} → R
by declaring that Ω̂∗ = Ω̂ + g. Then

Ω̂∗ ≥ Ω̂ on Sd−1 and Ω̂∗ > Ω̂ on U.

If ∫
C\Cw

Ω(x− ξw)

|x− ξw|s
dµ(x) 6= 0,

we are done; there is nothing to do. Otherwise, Ω∗ is ε-close to Ω in Cr and, as µ(H−1(U)\
Cw) > 0, we get ∫

C\Cw

Ω∗(x− ξw)

|x− ξw|s
dµ(x) >

∫
C\Cw

Ω(x− ξw)

|x− ξw|s
dµ(x) > 0.

The proof is complete. �
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As an immediate corollary of Proposition 5.1 and Theorem 4.1 we have the following.
Let Kr be the collection of s-homogeneous kernels k which are Cr-away from the origin
and let U r be the subcollection of Kr consisting of all kernels k such that T ∗k (1)(x) = ∞
for Hs-a.e.

Corollary 5.2. Let S = {Si}i∈E be a separated IFS consisting of similarities which
generates an s-dimensional limit set C. For every r ∈ {0, 1, 2, . . . ,∞} let Kr be the
collection of s-homogeneous kernels k which are Cr-away from the origin and let U r be
the subcollection of Kr consisting of all kernels k such that T ∗k (1)(x) = ∞ for Hs-a.e
x ∈ C. Then U r is open and dense in the Cr-topology of Kr.
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