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Abstract. In this paper, we extend the theory of simultaneous Diophantine approxima-
tion to infinite dimensions. Moreover, we discuss Dirichlet-type theorems in a very general
framework and define what it means for such a theorem to be optimal. We show that
optimality is implied by but does not imply the existence of badly approximable points.

1. Introduction

Definition 1.1. A Diophantine space is triple (X,Q, H), where X is a complete metric
space, Q is a dense subset of X, and H : Q → (0,+∞).

The prototypical example is the triple (Rd,Qd, Hstd), where Hstd is the standard height
function on Qd, i.e. Hstd(p/q) = q assuming that gcd(p1, . . . , pd, q) = 1. Other (mostly
implicit) examples may be found in [2, 3, 4, 5, 6, 7, 10] and the references therein.

This paper has two goals. The first is to clarify the theory of Dirichlet-type theorems
on an abstract Diophantine space. Until now, it seems that there is no generally accepted
definition of what it means for a Dirichlet-type theorem to be optimal; in each case where a
Dirichlet-type theorem is proved, its optimality is demonstrated by producing points which
are badly approximable with respect to the approximation function of the Dirichlet-type
theorem. However, in Section 2 we make a case for a wider notion of optimality, which is
implied by but does not imply the existence of badly approximable points.

The second goal of this paper is to provide a complete theory of Diophantine approxi-
mation in the Diophantine space (X,QΛ, Hstd), where X is a Banach space, Λ ≤ X is a
lattice, and Hstd is the standard height function on QΛ (precise definitions given below).
This is related to the first goal since it turns out that when Λ is a non-cobounded lattice,
the optimal Dirichlet function of (X,QΛ, Hstd) does not possess badly approximable points.
Thus the theory of Diophantine approximation in Banach spaces gives a natural example
of optimality failing to imply the existence of badly approximable points, justifying the
clarification made in the first part.

Convention 1. In the introduction, propositions which are proven later in the paper
will be numbered according to the section they are proven in. Propositions numbered as
1.# are either straightforward, proven in the introduction, or quoted from the literature.

Convention 2. xn −→
n
x means xn → x as n→ +∞.

Convention 3. HD(S) is the Hausdorff dimension of a set S. Hf (S) is the Hausdorff
f -measure of a set S.
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1.1. Dirichlet-type theorems on Diophantine spaces.

Definition 1.2. A Dirichlet-type theorem on a Diophantine space (X,Q, H) is a statement
of the form

∀x ∈ X ∃Cx > 0 ∃(rn)∞1 in Q such that

{
rn −→

n
x and

d(x, rn) ≤ Cxψ ◦H(rn) ∀n ∈ N
,

where ψ : (0,+∞)→ (0,+∞). The function ψ is called a Dirichlet function. If the constant
Cx can be chosen to be independent of x, then the function ψ is called uniformly Dirichlet.1

The prototypical example is Dirichlet’s theorem, which states that for the Diophantine
space (Rd,Qd, Hstd), the function ψ(q) = q−(1+1/d) is uniformly Dirichlet (the constant Cx

is 1 for every x ∈ Rd).
Dirichlet-type theorems are common in treatments of various Diophantine spaces; cf.

the references given above. However, a Dirichlet-type theorem is usually not considered
important unless it is optimal, or unable to be improved by more than a constant factor.
The optimality of a Dirichlet function is usually established by demonstrating the existence
of badly approximable points.

Definition 1.3. Let (X,Q, H) be a Diophantine space, and let ψ : (0,+∞) → (0,+∞).
A point x ∈ X is said to be badly approximable with respect to ψ if

(1.1) ∃ε > 0 ∀r ∈ Q d(r,x) ≥ εψ ◦H(r).

The set of points in X which are badly approximable with respect to ψ will be denoted
BAψ, and its complement will be denoted WAψ.

The intuitive reason that the existence of badly approximable points implies optimality
is that “if there were a Dirichlet-type theorem which improved the Dirichlet-type theorem
corresponding to ψ by more than a constant, it would contradict the existence of badly
approximable points”. We can make this intuition into a theorem, specifically the following
theorem:

Theorem 2.6. Let (X,Q, H) be a Diophantine space. If ψ : (0,+∞) → (0,+∞) is any
nonincreasing function and if BAψ 6= � and if φ : (0,+∞)→ (0,+∞) satisfies

(2.4)
φ

ψ
→ 0,

then φ is not a Dirichlet function.

In this paper, we take the point of view that the conclusion of Theorem 2.6 rather than
its hypothesis is the true definition of optimality of a Dirichlet function in a Diophantine
space. In other words, a Dirichlet function ψ : (0,+∞)→ (0,+∞) is optimal if there is no
Dirichlet function φ : (0,+∞)→ (0,+∞) satisfying (2.4). The inequivalence of optimality
and the existence of badly approximable points will be demonstrated in Theorem 3.5 below.
However, their equivalence in the case where X is σ-compact will be demonstrated in
Proposition 2.7.

1Most known Dirichlet functions are uniformly Dirichlet; however, a Dirichlet function which is not
uniformly Dirichlet will be discussed in [4].
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One could also conceivably define a Dirichlet-type theorem to be optimal if it implies all
other Dirichlet-type theorems. This notion will be made rigorous in Section 2; however, it
turns out to be too strong, and even in (R,Q, Hstd) there are no Dirichlet functions which
satisfy this strong notion of optimality. However, the notion can be refined by requiring
that ψ and φ lie in a Hardy field (see §2.2); in this case, the notion turns out to be equivalent
to the notion of optimality defined above.

1.2. The four main questions in Diophantine approximation. Given any Diophan-
tine space (X,Q, H), we will be interested in the following questions:

1. (Dirichlet-type theorem) Find an optimal Dirichlet function for the Diophantine
space. Is the set of badly approximable points for this Dirichlet function nonempty?

2. (Jarńık-Schmidt type theorem) Given ψ : (0,+∞) → (0,+∞), what is the Haus-
dorff dimension of BAψ?

3. (Jarńık-Besicovitch type theorem) Given ψ : (0,+∞) → (0,+∞), what is the
Hausdorff dimension of WAψ?

4. (Khinchin-type theorem) Given ψ : (0,+∞) → (0,+∞), what are the measures of
BAψ and WAψ?

Note that the last question assumes the existence of a natural measure on the space X.
We will usually be satisfied if questions 2-4 can be answered for functions ψ satisfying

reasonable hypotheses, e.g. for ψ in a Hardy field (see §2.2).

Remark 1.4. One can also ask whether BAψ or WAψ is generic in a topological sense, i.e.
comeager. However, the question is trivial, as shown by the following proposition:

Proposition 1.5. Let (X,Q, H) be a Diophantine space. Then for any function ψ :
(0,+∞)→ (0,+∞), WAψ is comeager.

Proof. By writing

WAψ =
∞⋂
n=1

⋃
r∈Q

B

(
r,

1

n
ψ ◦H(r)

)
,

we see that WAψ is the intersection of countably many open dense sets. �

Remark 1.6. An example of a Diophantine space with no (reasonable) optimal Dirichlet
function will be given in [6]. Even if an optimal Dirichlet function exists, we should not
expect it to be unique without additional constraints; cf. Remark 2.11.

1.3. Diophantine approximation in Banach spaces.

Definition 1.7. Let X be a Banach space. A lattice in X is a subgroup Λ ≤ X such that

(I) Λ is (topologically) discrete, or equivalently,

εΛ := min
p∈Λ\{0}

‖p‖ > 0, and

(II) RΛ is dense in X, or equivalently, no proper closed subspace of X contains Λ.

If Λ ≤ X is a lattice, the standard height function Hstd : QΛ→ X is the function

Hstd(r) = min{q ∈ N : qr ∈ Λ},
i.e. Hstd(p/q) = q if p/q is in reduced form.
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Remark 1.8. Suppose that X is separable. Then for a closed subgroup Λ ≤ X, the
following are equivalent (see [1, Theorem 1.1]):

(A) Λ is discrete,
(B) Λ is locally compact and does not contain any one-dimensional subspace of X,
(C) Λ is countable,
(D) Λ is isomorphic to a (finite or infinite) direct sum of copies of Z,
(E) Λ is a free abelian group.

Clearly, if Λ ≤ X is a lattice then (X,QΛ, Hstd) is a Diophantine space. If X = Rd

and Λ = Zd, then this Diophantine space is just the usual space (Rd,Qd, Hstd) studied in
simultaneous Diophantine approximation. This example generalizes to infinite dimension
in several different ways:

Example 1.9. Fix 1 ≤ p <∞. Then Z∞ := {p ∈ ZN : pi = 0 for all but finitely many i ∈ N}
is a lattice in `p(N).

Remark 1.10. In Example 1.9, we are not approximating a point x ∈ `p(N) by an arbitrary
rational point r ∈ QN ∩ `p(N); rather, we are only approximating x by those rational
points with only finitely many nonzero coordinates. The reason for this is that there is no
appropriate analogue of the “LCM of the denominators” for a rational point with infinitely
many nonzero coordinates.

Note that for p =∞, Z∞ is not a lattice in `∞(N), since it is contained in c0(N), the set
of all sequences in `∞(N) which tend to zero, which is a proper closed subspace of `∞(N).
To get an example in `∞(N), we have two options: shrink the space or expand the lattice.

Example 1.11. Z∞ is a lattice in c0(N).

Example 1.12. ZN is a lattice in `∞(N).

We remark that although the space `∞(N) is not separable, this does not cause any
additional complications in our arguments, which apply equally well to separable and non-
separable Banach spaces.

It turns out that the theory of Diophantine approximation in (X,QΛ, Hstd) depends on
one crucial dichotomy: whether or not the lattice Λ is cobounded. A lattice Λ ≤ X is
cobounded if its codiameter

codiam(Λ) := sup{d(x,Λ) : x ∈ X}
is finite. In the above, Examples 1.11 and 1.12 are cobounded, whereas Example 1.9 is not
cobounded.

1.3.1. Prevalence. It is not clear what measure would be natural on an infinite-dimensional
Banach space. In [9], B. R. Hunt, T. D. Sauer, and J. A. Yorke argued that asking for a
measure is too much, and one should be satisfied with being able to give a good definition
of “full measure” and “measure zero”. They introduced the notions of shy and prevalent
subsets of a Banach space:

Definition 1.13. Let X be a Banach space. A measure µ is transverse to a set S ⊆ X
if µ(S + v) = 0 for all v ∈ X. S is said to be shy if it is transverse to some compactly
supported probability measure, and prevalent if its complement is shy.
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If X is finite-dimensional, then a set is shy if and only if it has Lebesgue measure zero;
it is prevalent if and only if its complement has Lebesgue measure zero. Moreover, the set
of shy sets form a σ-ideal (i.e. the countable union of shy sets is shy, and any set contained
in a shy set is shy). These facts together with several others (see [9]) give support to the
idea that “shy” is the appropriate analogue of “measure zero” in infinite dimensions and
that “prevalent” is the appropriate analogue of “full measure”.

In the sequel we will need the following proposition:

Proposition 1.14. Non-shy sets (and in particular prevalent sets) have Hausdorff dimen-
sion +∞.

Proof. Let S ⊆ X be a non-shy set. Fix n ∈ N, let Xn ⊆ X be an n-dimensional subspace,
and let µn be Lebesgue measure on the unit ball of Xn. Since S is not shy, there exists
v ∈ X such that µn(S + v) > 0. Since µn gives measure zero to any set of Hausdorff
dimension strictly less than n, we have HD(S) = HD(S + v) ≥ n. Since n was arbitrary,
HD(S) = +∞. �

1.4. Main theorems. We now present the theory of Diophantine approximation in the
space (X,QΛ, Hstd), where X is a Banach space and Λ ≤ X is a lattice. The theory
breaks down into three major cases: finite-dimensional, infinite-dimensional cobounded,
and infinite-dimensional non-cobounded. (In finite dimensions, every lattice is cobounded.)

Notation 1.15. For s ≥ 0, let

ψs(q) = q−s.

1.4.1. Finite-dimensional case. Assume that Λ is a lattice in a d-dimensional Banach space
X, with d < +∞. Then there exists a linear isomorphism T : Rd → X such that T [Zd] = Rd.
This demonstrates that the classical results quoted below hold for any lattice in any finite-
dimensional Banach space, not just for Zd ≤ Rd.

Theorem 1.16 (Dirichlet 1842 (d ∈ N); optimality by Liouville 1844 (d = 1), Perron 1921
(d ∈ N)). For every x ∈ X and Q ∈ N, there exists p ∈ Λ and q ≤ Q such that∥∥∥∥x− p

q

∥∥∥∥ ≤ C

qQ1/d
,

where C > 0 is independent of x. In particular, the function ψ1+1/d is uniformly Dirichlet,
and in fact, ψ1+1/d is optimal.

Theorem 1.17 (Jarńık 1928 (d = 1), Schmidt 1969 (d ∈ N)). HD(BAψ1+1/d
) = d.

Theorem 1.18 (Jarńık 1929 (d = 1), Jarńık 1931 (d ∈ N), Besicovitch 1934 (d = 1)). For
all s ≥ 1 + 1/d, we have HD(WAψs) = (d+ 1)/s.

Theorem 1.19 (Khinchin 1924 (d = 1), Khinchin 1926 (d ∈ N), Groshev 1938 (d ∈ N)). If
q 7→ qdψ(q) is nonincreasing, then WAψ is of full Lebesgue measure if the series

∑∞
q=1 q

dψ(q)
diverges; if the series converges, then WAψ is of Lebesgue measure zero.
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1.4.2. Infinite-dimensional non-cobounded case. Assume that Λ is a non-cobounded lattice
in an infinite-dimensional Banach space X.

Theorem 3.5 (Dirichlet-type theorem). The function ψ0 ≡ 1 is an optimal uniformly
Dirichlet function. However, BAψ0 = �.

Theorem 3.1 (Khinchin-type theorem, Jarńık-Schmidt type theorem). For any function
ψ → 0, BAψ is prevalent. In particular, HD(BAψ) = +∞.

To state the Jarńık-Besicovitch type theorem in the non-cobounded case, we introduce
the notion of strong discreteness.

Definition 1.20. A lattice Λ ≤ X is strongly discrete if

#(Λ ∩B(0, C)) < +∞ ∀C > 0.

All three of the examples given in §1.3 are strongly discrete.

Theorem 3.6 (Jarńık-Besicovitch type theorem).

(i) For any s ≥ 0, we have HD(WAψs) = +∞.
(ii) Suppose that Λ is not strongly discrete. Then for any nonincreasing function ψ → 0,

HD(WAψ) = +∞. In fact, for any nondecreasing function f : (0,+∞)→ (0,+∞),
Hf (WAψ) = +∞.

1.4.3. Infinite-dimensional cobounded case. Assume that Λ is a cobounded lattice in an
infinite-dimensional Banach space X.

Theorem 4.5 (Dirichlet-type theorem). Fix ε > 0. For every x ∈ X and for every q ∈ N,
there exists p ∈ Λ such that ∥∥∥∥x− p

q

∥∥∥∥ ≤ codiam(Λ) + ε

q
·

In particular, the function ψ1(q) = 1/q is uniformly Dirichlet, and in fact, ψ1 is optimal.

Theorem 4.6 (Jarńık-Besicovitch type theorem). For any nonincreasing function ψ →
0, HD(WAψ) = +∞. In fact, for any nondecreasing function f : (0,+∞) → (0,+∞),
Hf (WAψ) = +∞.

Theorem 4.1 (Khinchin-type theorem, Jarńık-Schmidt type theorem). BAψ1 is prevalent.
In particular, HD(BAψ1) = +∞.

Remark 1.21. Based on the finite-dimensional case, it is natural to expect that ψ1(q) =
1/q is an optimal Dirichlet function in the infinite-dimensional case, as it is the limit of
the optimal Dirichlet functions ψ1+1/d of the finite-dimensional cases. However, according
to the theorems above this is only true if the lattice is cobounded, whereas if the lattice
is not cobounded then ψ0 ≡ 1 is the optimal Dirichlet function. A possible explanation
for this can be found in the fact that in Rd, the function ψ1+1/d is uniformly Dirichlet with
the constant Cd = 1 if Rd is equipped with the `∞ norm; this suggests that if the `∞ norm
is used, then there can be stability as d → ∞. If an `p norm is used with 1 ≤ p < ∞,
then the constant Cd will degenerate as d → ∞, and the limit function will no longer be
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Dirichlet. (To look at in another way, in order to “take the limit of Dirichlet’s theorem”
one would need to take the limit of the functions Cdψ1+1/d as d→∞, and if Cd −→

d
∞ fast

enough, then this sequence does not converge.)

2. Optimal Dirichlet functions

In this section we discuss and motivate the notion of an optimal Dirichlet function
introduced in §1.1. We begin with the following observation:

Observation 2.1. Let (X,Q, H) be a Diophantine space. Suppose that ψ ≤ Cφ, with ψ
Dirichlet. Then φ is Dirichlet.

Based on this observation, one is tempted to say that a Dirichlet function ψ is optimal
if it is maximal in the partial order on Dirichlet functions defined by

ψ � φ ⇔ ∃C > 0 ψ ≤ Cφ,

or equivalently, if every other Dirichlet function φ can be proved to be Dirichlet as a result
of applying Observation 2.1.

Definition 2.2. A Dirichlet function ψ is strongly optimal if ψ � φ for every Dirichlet
function φ.

This definition makes rigorous the idea that a Dirichlet-type theorem is optimal if it
“implies all other Dirichlet-type theorems (via Observation 2.1)”. However, the definition
is too strong even for the most canonical Diophantine space (R,Q, Hstd). Indeed, we have
the following:

Proposition 2.3. There is no strongly optimal Dirichlet function on (R,Q, Hstd). In par-
ticular, the Dirichlet function ψ2 is not strongly optimal on (R,Q, Hstd).

Proof.

Lemma 2.4. For any sequence Q = (Qn)∞1 increasing to infinity, the function

(2.1) ψQ(q) =
1

qQ(q)
,

where
Q(q) = min{Qn : Qn ≥ q}

is uniformly Dirichlet for (R,Q, Hstd).

Proof. Fix x ∈ R and let C = 1. By Theorem 1.16, for each n ∈ N there exists rn = pn/qn ∈
Q with qn ≤ Qn such that

(2.2) |x− rn| ≤
1

qnQn

·

Since Qn ≥ qn, we have
Q(qn) ≤ Qn

and thus

(2.3) |x− rn| ≤
1

qnQ(qn)
= ψ(qn).
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Since Qn −→
n

+∞, (2.2) implies that rn −→
n
x. Thus the function (2.1) is uniformly Dirichlet.

/

To complete the proof, we will find two sequences Q0 = (Q
(0)
n )∞1 and Q1 = (Q

(1)
n )∞1 such

that the minimum of the two functions ψQ0 and ψQ1 is not a Dirichlet function. We choose
the sequences

Q(i)
n = 222n+i

, i = 1, 2

and leave it to the reader to verify that the function φ = min(ψQ0 , ψQ1) satisfies

φ ≤ ψ3.

(It suffices to check the inequality for the worst-case scenario q ∈ Q0 ∪Q1.) Now suppose
that ψ is an optimal Dirichlet function for (R,Q, Hstd). Then since ψQ0 and ψQ1 are
Dirichlet, we have ψ ≤ CψQi

for some C > 0. Thus ψ ≤ Cφ ≤ Cψ3, so by Observation

2.1, ψ3 is Dirichlet. This contradicts the optimality of ψ2, since ψ3

ψ2
→ 0. �

Having ruled out strong optimality as a notion of optimality, we turn to the weaker
notion of optimality given in §1.1. We repeat it here for convenience:

Definition 2.5. A Dirichlet function ψ is optimal (with respect to a Diophantine space
(X,Q, H)) if there is no Dirichlet function φ satisfying

(2.4)
φ

ψ
→ 0.

How do we know that this is the “correct” definition? We give two reasons:

1. In the case of a σ-compact Diophantine space, for example a finite-dimensional
Banach space, our new definition agrees with the more classical criterion of the ex-
istence of badly approximable points. Even in the non σ-compact case, the existence
of badly approximable points implies optimality.

2. The notion of optimality agrees with the notion of strong optimality if the class of
functions is restricted to a suitable class of “non-pathological” functions.

We now proceed to elaborate on each of these reasons.

2.1. Optimality versus BA. Traditionally, the existence of badly approximable points
has been thought to demonstrate that Dirichlet’s function is optimal (up to a constant).
In our terminology, this intuition becomes a theorem:

Theorem 2.6 (Existence of BA implies optimality). Let (X,Q, H) be a Diophantine space.
If ψ : (0,+∞) → (0,+∞) is any nonincreasing function and if BAψ 6= � and if φ :
(0,+∞)→ (0,+∞) satisfies (2.4), then φ is not a Dirichlet function.

Proof. Fix x ∈ BAψ. If φ is Dirichlet, then there exist Cx > 0 and a sequence (rn)∞1 such
that

d(rn,x) ≤ Cxφ(qn) and rn −→
n

x,

where qn := H(rn). Combining with (1.1) gives

εψ(qn) ≤ Cxφ(qn);
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rearranging yields

(2.5)
φ(qn)

ψ(qn)
≥ ε

Cx

> 0.

On the other hand, we have
εψ(qn) ≤ d(rn,x) −→

n
0;

since ψ is positive and nonincreasing this implies that qn −→
n

+∞. Together with (2.5), this

contradicts (2.4). �

The converse to Theorem 2.6 does not hold in such generality (cf. Theorem 3.5), but
rather holds only under the hypothesis that the underlying Diophantine space is σ-compact.

Proposition 2.7 (Optimality implies existence of BA). Let (X,Q, H) be a σ-compact
Diophantine space. Then if ψ is a bounded optimal Dirichlet function, then BAψ 6= �.

Proof. Let (Kn)∞1 be an increasing sequence of compact sets whose union is X.
Suppose by contradiction that BAψ = �. Then for each n ∈ N and for each x ∈ X,

there exists r ∈ Q such that

d(r,x) <
1

n
ψ ◦H(r).

Let Ur,n be the set of all x satisfying the above; then for each n ∈ N, (Ur,n)r is an open
cover of X, and in particular an open cover of Kn. Let (Ur,n)r∈Fn be a finite subcover, and
let Qn = maxFn(H). Let

φ(q) = ψ(q) max{1/n : q ≤ Qn}.
Clearly φ(q)/ψ(q) −→

q
0. We claim that φ is a Dirichlet function. Indeed, fix x ∈ X, and

let Cx = 1. For all n ∈ N sufficiently large, we have x ∈ Kn. Fix such an n, and choose
rn ∈ Fn so that x ∈ Urn,n. Then qn := H(rn) ≤ Qn. It follows that

φ(qn) ≥ 1

n
ψ(qn) > d(rn,x).

Since ψ is bounded, this implies that rn −→
n

x. Thus x is φ-approximable. Thus φ is a

Dirichlet function, and so ψ is not an optimal Dirichlet function.
�

2.2. Hardy fields. One possible reaction to the phenomenon of Lemma 2.4 is to insist that
the functions ψQ defined in that lemma are pathological. One way to make this rigorous
is to consider the notion of a Hardy field.

Definition 2.8. A germ at infinity is an equivalence class of C∞ functions from [0,+∞)
to R, where two functions are considered equivalent if they agree on all sufficiently large
values.

A Hardy field is a field of germs at infinity which is closed under differentiation.

Remark 2.9. If ψ 6≡ 0 is an element of a Hardy field, then by definition, there is a C∞

function from [0,+∞) to R which agrees with 1/ψ on all sufficiently large values. This
implies that ψ 6= 0 on all sufficiently large values; since ψ is continuous, either ψ > 0 or
ψ < 0 on all sufficiently large values.
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A standard example of a Hardy field is the class of Hardy L-functions, which is the class
all functions which can be written using the symbols +,−,×,÷, exp and log together with
the constants and the identity function; cf. [8, Chapter III]. From now on, we will consider
functions to be “non-pathological” if their germs at infinity are elements of some fixed
Hardy field.

Observation 2.10. If the germs of ψ and φ are elements of the same Hardy field, then
either ψ ≺ φ of φ ≺ ψ. Moreover, ψ 6� φ if and only if φ

ψ
→ 0.

Proof. Both assertions follow from the well-known fact that limq→∞
φ
ψ

(q) exists. �

The second part of Observation 2.10 can be taken as a motivation for Definition 2.5.
Indeed, it shows that if a Hardy field is fixed and all functions are assumed to be elements
of that Hardy field, then the notions of strong optimality and optimality agree.

Remark 2.11. The first part of Observation 2.10 shows that if a Hardy field is fixed and
all functions are assumed to be elements of that Hardy field, then any two optimal Dirichlet
functions φ and ψ “agree up to a constant”, i.e. their ratio φ

ψ
is bounded from above and

below. If the restriction to a Hardy field is not made, then Lemma 2.4 can be used to
show that there are uncountably many optimal Dirichlet functions on (R,Q, Hstd), no two
of which are comparable. (The Dirichlet function ψQ is optimal because ψQ ≤ ψ2.)

Remark 2.12. Restricting to elements of a Hardy field is also useful in answering questions
2-4 of §1.2. To see this, note that the map ψ 7→ BAψ is order-preserving, i.e. ψ ≺ φ implies
BAψ ⊆ BAφ. Similarly, the map ψ 7→ WAψ is order-reversing. Since in a Hardy field, ≺
is a total order (Observation 2.10), it is possible to prescribe the values of HD(BAψ) and
HD(WAψ) on all ψ in a Hardy field by prescribing the values of HD(BAψ) and HD(WAψ)
for a relatively small collection of ψs. Using this principle, in the case of Banach spaces it
is possible to answer questions 2-4 completely (except for question 3 in the case of strongly
discrete lattices) based on the information given in §1.4. Details are left to the reader.

3. Infinite-dimensional non-cobounded case

In this section, we assume that Λ is a non-cobounded lattice in an infinite-dimensional
Banach space X, and we consider the Diophantine space (X,QΛ, Hstd). We begin by
proving the following:

Theorem 3.1 (Khinchin-type theorem, Jarńık-Schmidt type theorem). For any function
ψ → 0, BAψ is prevalent. In particular, HD(BAψ) = +∞.

Proof. We will need the following lemma:

Lemma 3.2. For any 0 < ε < R < +∞, there exists w ∈ X so that w = R and

d(w,Λ) ≥ R− ε.

Proof. Since Λ is not cobounded, there exists x ∈ X such that S := d(x,Λ) ≥ R. By the
definition of distance, there exists p ∈ Λ such that

(3.1) S ≤ ‖x− p‖ ≤ S + ε.
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Let

w = R
x− p

‖x− p‖
.

Clearly ‖w‖ = R. On the other hand,

d(w,Λ) ≥ d (x− p,Λ)− d(w,x− p)

= S − ‖x− p‖
∣∣∣∣1− R

‖x− p‖

∣∣∣∣
= S −

∣∣‖x− p‖ −R
∣∣

≥ S − |S −R| − ε (by (3.1))

= R− ε. (since S ≥ R)

/

Let (ρn)∞1 be the unique sequence satisfying ρ1 = 1 and

(3.2) ρn+1 =
ρn

2n+5
·

For each n ∈ N, let Nn ∈ N be large enough so that

(3.3) ψ(q) ≤ ρn+1

8
∀q ≥ Nn.

Let
Mn = 2nNn!

By Lemma 3.2, there exists wn ∈ X be such that ‖wn‖ = Mn and

(3.4) d(wn,Λ) ≥Mn − ρn/4.
Let vn = ρn

Mn
wn, so that ‖vn‖ = ρn.

Claim 3.3. For each n ∈ N and for each x ∈ X,

#

{
i = 0, . . . , 2n − 1 : B(x + ivn, ρn/4) ∩ Λ

Nn!
6= �

}
≤ 1.

Proof. By contradiction, suppose there exist 0 ≤ i1 < i2 < 2n and x1,x2 ∈ X such that

xj ∈ B(x + ijvn, ρn/4) ∩ Λ

Nn!
, j = 1, 2.

Thus
ρn
2
≥ ‖(x2 − x− i2vn)− (x1 − x− i1vn)‖

= ‖(x2 − x1)− (i2 − i1)vn‖

≥ d

(
(i2 − i1)vn,

Λ

Nn!

)
=

1

Nn!
d
(
(i2 − i1)Nn!vn,Λ

)
=

1

Nn!
d

(
(i2 − i1)Nn!

ρn
Mn

wn,Λ

)
.
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Now

(i2 − i1)Nn!
ρn
Mn

= (i2 − i1)
ρn
2n
≤ ρn ≤ 1,

and so by the triangle inequality

Nn!
ρn
2
≥ d

(
(i2 − i1)Nn!

ρn
Mn

wn,Λ

)
≥ d(wn,Λ)−

∥∥∥∥wn − (i2 − i1)Nn!
ρn
Mn

wn

∥∥∥∥
≥ (Mn − ρn/4)− (Mn − (i2 − i1)Nn!ρn) (by (3.4))

≥ (Nn!− 1/4)ρn, (since i2 − i1 ≥ 1)

a contradiction. /

For each n ∈ N, let

µn =
1

2n

2n−1∑
i=0

δivn ;

then µn is a compactly supported probability measure on B(0, 2nρn). Define

Σ :
∞∏
n=1

B(0, 2nρn)→ X

by

(3.5) Σ((xn)∞1 ) =
∞∑
n=1

xn,

and let µ = Σ[
∏∞

n=1 µn]. Note that if Kn is the support of µn, then µ gives full measure to
Σ(
∏∞

n=1Kn), which is compact, so µ is compactly supported.
To complete the proof, we will show that µ is transverse to WAψ. To this end, fix v ∈ X,

and we will show that µ(WAψ + v) = 0.

Fix n ∈ N; for each sequence (xj)
n−1
1 , applying Claim 3.3 with x =

∑n−1
j=1 xj − v shows

that

µn

{
xn : B

(
n∑
j=0

xj − v, ρn/4

)
∩ Λ

Nn!
6= �

}
≤ 1

2n
,

and Fubini’s theorem gives(
∞∏
j=1

µj

){
(xj)

∞
1 : B

(
n∑
j=0

xj − v, ρn/4

)
∩ Λ

Nn!
6= �

}
≤ 1

2n
·

Thus by the easy direction of the Borel-Cantelli lemma, the set

N =

{
(xj)

∞
1 : ∃∞n ∈ N B

(
n∑
j=0

xj − v, ρn/4

)
∩ Λ

Nn!
6= �

}
is a

∏∞
j=1 µj-nullset. So to complete the proof, it suffices to show the following:
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Claim 3.4. Σ−1(WAψ + v) ⊆ N , i.e. if a sequence (xn)∞1 ∈
∏∞

n=1B(0, 2nρn) satisfies

x =
∞∑
n=0

xn ∈WAψ + v,

then there exist infinitely many n ∈ N for which

(3.6) B

(
n∑
j=0

xj − v, ρn/4

)
∩ Λ

Nn!
6= �.

Proof. Let (rk)
∞
1 be a sequence of rational points whose limit is x− v and which satisfy

‖x− v − rk‖ ≤ ψ(qk),

where qk = Hstd(rk).
Fix k ∈ N, and let n = nk be minimal so that Nn ≥ qk. Then Nn−1 < qk, and so by

(3.3),

ψ(qk) ≤
ρn
8
·

On the other hand, by (3.2), ∥∥∥∥∥
∞∑

j=n+1

xj

∥∥∥∥∥ ≤
∞∑

j=n+1

2jρj ≤
ρn
8
·

Combining the three preceding equations gives∥∥∥∥∥
n∑
j=0

xj − v − rk

∥∥∥∥∥ ≤ ρn
4
,

i.e.

rk ∈ B

(
n∑
j=0

xj − v, ρn/4

)
∩ Λ

Nn!
·

Since the sequence (nk)
∞
1 is clearly unbounded, this demonstrates that (3.6) holds for

infinitely many n. /

Thus µ is transverse to WAψ and so BAψ is prevalent; thus HD(BAψ) = +∞ by Propo-
sition 1.14. �

Next, we deduce Theorem 3.5 as a corollary of Theorem 3.1.

Theorem 3.5 (Dirichlet-type theorem). The function ψ0 ≡ 1 is an optimal uniformly
Dirichlet function. However, BAψ0 = �.

Proof. The fact that ψ ≡ 1 is a Dirichlet function which has no badly approximable points
is true of every Diophantine space, simply because Q is dense in X. It remains to show
optimality. Let φ : [0,+∞)→ (0,+∞) be a function such that φ

ψ
= φ→ 0. Then

√
φ→ 0,

and so by Theorem 3.1, the set BA√φ is prevalent and in particular nonempty. Then by

Theorem 2.6, the function φ cannot be a Dirichlet function, since φ√
φ
→ 0. �

Finally, we prove the infinite-dimensional version of the Jarnḱ-Besicovitch theorem.
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Theorem 3.6 (Jarńık-Besicovitch type theorem).

(i) For any s ≥ 0, we have HD(WAψs) = +∞.
(ii) Suppose that Λ is not strongly discrete. Then for any nonincreasing function ψ → 0,

HD(WAψ) = +∞. In fact, for any nondecreasing function f : (0,+∞)→ (0,+∞),
Hf (WAψ) = +∞.

Remark 3.7. In this theorem, the hypothesis that Λ is not cobounded is not used; cf.
Theorem 4.6.

Proof of Theorem 3.6.

(i) For each d ∈ N, let Xd ⊆ X be a subspace of dimension d such that Xd ∩ Λ is a
lattice in Xd. Then by Theorem 1.18,

HD(WAψs(Xd,QΛ ∩Xd, Hstd)) =
d+ 1

s
·

But clearly WAψs(X,QΛ, Hstd) ⊇WAψs(Xd,QΛ ∩Xd, Hstd), whence

HD(WAψs(X,QΛ, Hstd)) ≥ d+ 1

s
−→
d

+∞.

(ii) Let ψ → 0 be a nonincreasing function, and let f : (0,+∞) → (0,+∞) be a
nondecreasing function. Let εΛ = minp∈Λ\{0} ‖p‖ > 0, and let CΛ > 0 be larve
enough so that #(Λ ∩ B(0, CΛ)) = +∞. Choose a sequence (qn)∞1 by induction
as follows: Let q0 = 1, and if qn has been chosen, let qn+1 ∈ qnN \ {qn} be large
enough so that 2CΛ/qn+1 ≤ min(ψ(qn)/n, εΛ/(3qn)). Let S = Λ ∩ B(0, CΛ), and
define π : SN → X by

π((pn)∞1 ) =
∑
n∈N

pn
qn
·

Claim 3.8. π(SN) ⊆WAψ.

Proof. Fix (pn)∞1 ∈ SN, and let x = π((pn)∞1 ) =
∑

n∈N pn/qn. Then for each N ∈ N∥∥∥∥∥x−∑
n≤N

pn
qn

∥∥∥∥∥ ≤∑
n>N

‖pn‖
qn
≤ CΛ

∑
n>N

1

qn
≤ 2CΛ

qn+1

≤ ψ(qn)/n.

On the other hand, since q1 | q2 | · · · | qN , we have

Hstd

(∑
n≤N

pn
qn

)
≤ qN ,

and so since ψ is nonincreasing, we have∥∥∥∥∥x−∑
n≤N

pn
qn

∥∥∥∥∥ ≤ 1

n
ψ ◦Hstd

(∑
n≤N

pn
qn

)
and thus x ∈WAψ. /
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Claim 3.9. If C is any collection of subsets of X of diameter less than εΛ/3 which
covers π(SN), then C contains an infinite collection of sets whose diameters are
bounded from below.

Proof. By contradiction, suppose not; then for each n, the set

Cn := {A ∈ C : εΛ/(3qn+1) ≤ diam(A) < εΛ/(3qn)}
is finite. We now choose a sequence (pn)∞1 in SN by induction. If p1, . . . ,pN−1 have
been chosen, then for each p ∈ S let

CN,p =
∑
n<N

pn
qn

+
p

qN
+B(0, εΛ/(3qN)).

The sets (CN,p)p∈S are disjoint; in fact, the distance between CN,p and CN,p̃ for
p 6= p̃ is always at least εΛ/(3qN). Thus each A ∈ CN can intersect at most one of
the sets CN,p, so since #(S) = +∞ there exists pN ∈ S such that CN,pN

is disjoint
from

⋃
(CN). This completes the inductive step.

Calculation (based on the inequality 2CΛ/qN+1 ≤ εΛ/(3qN)) shows that the point
x = π((pn)∞1 ) is in each of the sets CN,pN

, and so it is not in any of the sets
⋃

(CN).
This contradicts that C covers π(SN). /

Now if f : (0,+∞)→ (0,+∞) is nondecreasing, then the equation Hf (π(SN)) =
+∞ is evident from the claim. Finally, setting f(t) = ts with s arbitrary shows
that HD(WAψ) = +∞.

�

4. Infinite-dimensional cobounded case

In this section, we assume that Λ is a cobounded lattice in an infinite-dimensional Banach
space X, and we consider the Diophantine space (X,QΛ, Hstd). We begin by proving the
following:

Theorem 4.1 (Khinchin-type theorem, Jarńık-Schmidt type theorem). BAψ1 is prevalent.
In particular, HD(BAψ1) = +∞.

The proof will follow the same lines as the proof of Theorem 3.1, but with some modifi-
cations.

Proof of Theorem 4.1.

Lemma 4.2. There exists a sequence of unit vectors (ei)
∞
1 satisfying

(4.1) ‖ej − ei‖ ≥ 1 whenever i 6= j.

Proof. We construct the sequence (ei)
∞
1 by induction. Suppose that (ei)

n−1
1 have been

defined, and let V =
∑n−1

i=1 Rei. Let w be a unit vector in X/V , and let en ∈ X be a unit
vector representing w. Then for all i < n,

‖en − ei‖ ≥ d(en, V ) = ‖w‖ = 1.

This demonstrates (4.1). /
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Let εΛ = minp∈Λ ‖p‖ > 0, let λ = 16, and for each n ∈ N and i = 1, . . . , λ2n let

vi,n =
εΛei
4λn
·

Claim 4.3. For any point x ∈ X,

(4.2) #

{
i = 1, . . . , λ2n : B

(
x + vi,n,

εΛ

16λn

)
∩

(
λn⋃
q=1

Λ

q

)
6= �

}
≤ λn.

Proof. Fix q = 1, . . . , λn, and by contradiction suppose there exist 1 ≤ i1 < i2 ≤ λ2n such
that B

(
x + vi,n,

εΛ
16λn

)
∩ Λ

q
6= �. Then there exist p1,p2 ∈ Λ so that∥∥∥∥vij ,n + x− pj

q

∥∥∥∥ ≤ εΛ

16λn
,

which implies that

‖vi1,n − vi2,n‖ −
εΛ

8λn
≤ 1

q
‖p1 − p2‖ ≤ ‖vi1,n − vi2,n‖+

εΛ

8λn
·

By (4.1) we have
εΛ

4λn
≤ ‖vi1,n − vi2,n‖ ≤

εΛ

2λn
,

and so
εΛ

8λn
≤ 1

q
‖p1 − p2‖ ≤

5εΛ

8λn
.

The lower bound implies that p1 − p2 6= 0, so since p1 − p2 ∈ Λ we have ‖p1 − p2‖ ≥ εΛ;
thus

5εΛ

8λn
≥ εΛ

q
≥ εΛ

λn
,

a contradiction. Thus

#

{
i = 1, . . . , λ2n : B

(
vi,n + x,

εΛ

16λn

)
∩ Λ

q
6= �

}
≤ 1,

and summing over q = 1, . . . , λn yields (4.2). /

At this point, the proof follows much the same structure as the proof of Theorem 3.1.
For each n ∈ N, let

µn =
1

λ2n

λ2n∑
i=1

δvi,n
;

then µn is a compactly supported probability measure on B(0, εΛ/(4λ
n)). Let

Σ :
∞∏
n=1

B(0, εΛ/(4λ
n))→ X

be defined by (3.5), and let µ = Σ [
∏∞

n=1 µn]. As in the proof of Theorem 3.1, µ is compactly
supported; fix v ∈ X, and we will show that µ(WAψ + v) = 0.
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Fix n ∈ N; for each sequence (xj)
n−1
1 , applying Claim 3.3 with x =

∑n−1
j=1 xj − v shows

that

µn

{
xn : B

(
n∑
j=0

xj − v, εΛ/16λn

)
∩

(
λn⋃
q=1

Λ

q

)
6= �

}
≤ 1

λn
,

and Fubini and Borel-Cantelli imply that

N =

{
(xj)

∞
1 : ∃∞n ∈ N B

(
n∑
j=0

xj − v, εΛ/16λn

)
∩

(
λn⋃
q=1

Λ

q

)
6= �

}
is a

∏∞
j=1 µj-nullset. So to complete the proof, it suffices to show the following:

Claim 4.4. Σ−1(WAψ + v) ⊆ N , i.e. if a sequence (xn)∞1 ∈
∏∞

n=1 B(0, εΛ/(4λ
n)) satisfies

x =
∞∑
n=0

xn ∈WAψ + v,

then there exist infinitely many n ∈ N for which

B

(
n∑
j=0

xj − v,
εΛ

16λn

)
∩

(
λn⋃
q=1

Λ

q

)
6= �.

Proof. Let (rk)
∞
1 be a sequence of rational points whose limit is x− v and which satisfy

‖x− v − rk‖ ≤ ψ(qk)/k,

where qk = Hstd(rk).
Fix k ∈ N, and let n = nk be minimal so that λn ≥ qk. Then λn−1 < qk, and so,

ψ(qk) =
1

qk
≤ 1

λn−1k
·

On the other hand, by (3.2),∥∥∥∥∥
∞∑

j=n+1

xj

∥∥∥∥∥ ≤
∞∑

j=n+1

εΛ

4λj
≤ εΛ

2λn+1
·

Combining the three preceding equations gives∥∥∥∥∥
n∑
j=0

xj − v − rk

∥∥∥∥∥ ≤ 1

λn+1
max(εΛ, λ

2/k),

and if k ≥ λ2/εΛ, then ∥∥∥∥∥
n∑
j=0

xj − v − rk

∥∥∥∥∥ ≤ 1

λn+1
εΛ =

εΛ

16λ
.

i.e.

rk ∈ B

(
n∑
j=0

xj − v,
εΛ

16λn

)
∩

(
λn⋃
q=1

Λ

q

)
·
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Since the sequence (nk)
∞
1 is clearly unbounded, this demonstrates that (3.6) holds for

infinitely many n. /

�

Next, we deduce Theorem 4.5 as a consequence of Theorem 4.1.

Theorem 4.5 (Dirichlet-type theorem). Fix ε > 0. For every x ∈ X and for every q ∈ N,
there exists p ∈ Λ such that

(4.3)

∥∥∥∥x− p

q

∥∥∥∥ ≤ codiam(Λ) + ε

q
·

In particular, the function ψ1(q) = 1/q is uniformly Dirichlet, and in fact, ψ1 is optimal.

Proof. Note that

d(x,Λ/q) =
1

q
d(qx,Λ) ≤ codiam(Λ)

q
·

Thus for every ε > 0, there exists p/q = pq/q ∈ Λ/q such that (4.3) holds. Clearly
pq/q −→

q
x, which demonstrates that ψ1 is uniformly Dirichlet (with C = codiam(Λ) + ε).

Finally, Theorem 4.1 implies that ψ1 is optimal. �

We conclude by deducing Theorem 4.6 as a corollary of Theorem 3.6.

Theorem 4.6 (Jarńık-Besicovitch type theorem). For any nonincreasing function ψ →
0, HD(WAψ) = +∞. In fact, for any nondecreasing function f : (0,+∞) → (0,+∞),
Hf (WAψ) = +∞.

Proof. Since the proof of Theorem 3.6 did not assume that Λ was not cobounded, to
complete the proof it suffices to show that every infinite-dimensional cobounded lattice is
not strongly discrete. Suppose that Λ is a cobounded lattice, and let C = 5 codiam(Λ).
Letting (ei)

∞
1 be a sequence of unit vectors with the property (4.1), we see that the collection(

B(3Cei/4, C/4)
)∞
i=1

is a disjoint collection of subsets of B(0, C), and thus if Λ is strongly
discrete then there exists i ∈ N such that Λ ∩ B(3Cei/4, C/4) = �, which implies that
codiam(Λ) ≥ C/4, a contradiction. �
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