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Abstract. The Law of Iterated Logarithm for dynamically semi-regular mero-
morphic mappings and loosely tame observables is established. The equilib-
rium states of tame potentials are compared with an appropriate one-parameter
family of generalized Hausdorff measures. The singularity/absolute continuity
dichotomy is established. Both results utilize the concept of nice sets and the
theory of infinite conformal iterated function systems.

1. Introduction

It is one of the most urging questions in the ergodic theory of dynamical systems
to find out how mixing and how random is a given dynamical system preserving a
probability measures. There is an enormous literature on the subject establishing
fast, desirably exponential, decay of correlations, the Central Limit Theorem, and
the Law of Iterated Logarithm. The classical results concern Bernoulli shifts,
Markov chains, and Gibbs states of Hölder continuous potentials for dynamical
systems exhibiting some sort of hyperbolic behavior. Strong stochastic laws such as
exponential decay of correlations and the Central Limit Theorem were established
in [8] for the class of dynamically semi-regular meromorphic functions. As was
shown in [7] and [8] this is a large class of functions indeed and its ergodic theory
and thermodynamic formalism was well developed and understood. What was
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missing there was the Law of Iterated Logarithm. Some attempt to fill this gap was
undertaken in [1]. In the present paper we establish the Law of Iterated Logarithm
in full. This means, for all loosely tame observables that in particular include
all bounded Hölder continuous observables. Our approach is based on the one
hand on our observation that under relatively mild conditions the Law of Iterated
Logarithm for an induced (first return) map entails this law for the original system,
and on the other hand, on the fact (see [3], [11], and [13]) that each dynamically
semi-regular function, as a matter of fact each tame meromorphic function, admits
first return maps that form a very well understood class of conformal iterated
function systems (see [6]). For this class of system all mentioned above stochastic
laws are known ([6]).

Sticking to the realm of dynamically semi-regular meromorphic functions, the sec-
ond theme of our paper is the issue of comparing the equilibrium states of tame
potentials with an appropriate one-parameter family of generalized Hausdorff mea-
sures. This circle of investigations goes back to the fundamental work [4] of N.
Makarov in potential theory (harmonic measure) and its dynamical counterpart
[10]. The dichotomy phenomenon of singularity/absolute continuity observed in
[10] has been afterward also detected in the context of parabolic Jordan curves
([2]) and conformal iterated function systems (see [14], comp [6]). In this paper
we exhibit it in the realm of meromorphic functions. As for the Law of Iterated
Logarithm our approach here utilizes the concept of nice sets that generate infinite
conformal iterated function systems in the sense of [6]. For them, as already men-
tioned, the dichotomy is known (see [14], comp [6]). It is then an easy observation
that it also holds for original meromorphic functions. The key technical issues
in here are to conclude that the asymptotic variance of an appropriate function
related to the induced system (IFS) is positive (this links our first them with the
second) and that these functions have finite moments of all orders.

2. Preliminaries

Let f : C→ Ĉ be a meromorphic function. The Fatou set of f consists of all points
z ∈ C that admit an open neighborhood Uz such that all the forward iterates fn,
n ≥ 0, of f are well-defined on Uz and the family of maps {fn|Uz : Uz → C}∞n=0

is normal. The Julia set of f , denoted by Jf , is then defined as the complement
of the Fatou set of f in C. By Sing(f−1) we denote the set of singularities of f−1.

We define the postsingular set of f : C→ Ĉ as

PS(f) =
∞⋃
n=0

fn(Sing(f−1)).
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Given a set F ⊂ Ĉ and n ≥ 0, by Comp(f−n(F )) we denote the collection of
all connected components of the inverse image f−n(F ). A meromorphic function

f : C→ Ĉ is called tame if its postsingular set does not contain its Julia set. This
is the primary object of our interest in this paper.

We make heavy use of the concept of a nice set which J. Rivera–Letelier introduced
in [11] in the realm of the dynamics of rational maps of the Riemann sphere. In

[3] N. Dobbs proved their existence for tame meromorphic functions from C to Ĉ.
We quote now his theorem.

Theorem 2.1. Let f : C → Ĉ be a tame meromorphic function. Fix z ∈ J (f) \
P(f), L > 1 and K > 1. Then there exists κ > 1 such that for all r > 0 sufficiently
small, there exists an open connected set U = U(z, r) ⊂ C \ P(f) such that

(a) If V ∈ Comp(f−n(U)) and V ∩ U 6= ∅, then V ⊂ U .
(b) If V ∈ Comp(f−n(U)) and V ∩ U 6= ∅, then, for all w,w′ ∈ V,

|(fn)′(w)| > L and
|(fn)′(w)|
|(fn)′(w′)|

< K.

(c) B(z, r) ⊂ U ⊂ B(z, κr) ⊂ C \ P(f).

Let U be the collection of all nice sets of f : C → Ĉ, i.e. all the sets U satisfying
the above proposition with some z ∈ Jf \ PS(f) and some r > 0. Note that
if U = U(z, r) ∈ U and V ∈ Comp(f−n(U) satisfies the requirements (a), (b)
and (c) from Theorem 2.1 then there exists a unique holomorphic inverse branch
f−nV : B(z, κr)→ C such that f−nV (U) = V . As noted in [13] the collection S = SU
of all such inverse branches forms obviously an iterated function system in the
sense of [5] and [6]. In particular, it clearly satisfies the Open Set Condition. We
denote its limit set by JS . We have just mentioned [5] and [6]. In what concerns
iterated function systems we try our concepts and notation to be compatible with
that of [6].

Keep f : C → Ĉ a meromorphic function. The function f is called topologically
hyperbolic if

distEuclid(Jf ,PS(f)) > 0,

and it is called expanding if there exist c > 0 and λ > 1 such that

|(fn)′(z)| ≥ cλn

for all integers n ≥ 1 and all points z ∈ Jf \ f−n(∞). Note that every topolog-
ically hyperbolic meromorphic function is tame. A topologically hyperbolic and
expanding function is called hyperbolic. The meromorphic function f : C → Ĉ is
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called dynamically semi-regular if it is of finite order, denoted in the sequel by ρ,
and satisfies the following rapid growth condition for its derivative.

(2.1) |f ′(z)| ≥ κ−1(1 + |z|)α1(1 + |f(z)|)α2 , z ∈ Jf ,

with some constant κ > 0 and α1, α2 such that α2 > max{−α1, 0}. Let h : Jf → R
be a weakly Hölder continuous function (frequently referred to as a potential) in
the sense of [8]. In particular each bounded, uniformly locally Hölder function
h : Jf → R is weakly Hölder. Fix τ > α2 as required in [8]. Let

φt = −t log |f ′|τ + h

where |f ′(z)|τ is the norm, or, equivalently, the scaling factor, of the derivative of
f evaluated at a point z ∈ Jf with respect to the Riemannian metric |dτ(z)| =
(1 + |z|)−τ |dz|. Let Lt : Cb(Jf ) → Cb(Jf ) be the corresponding Perron-Frobenius
operator given by the formula

Ltg(z) =
∑

w∈f−1(z)

g(w)eφt(w).

It was shown in [8] that for every z ∈ Jf the limit

lim
n→∞

1

n
logLt11(z)

exists and takes on the same common value, which we denote by P(t) and call the
topological pressure of the potential φt. The following theorem was proved in [8].

Theorem 2.2. If f : C→ Ĉ is a dynamically semi-regular meromorphic function
and h : Jf → R is a weakly Hölder continuous potential, then for every t > ρ/α
(α := α1 + α2) there exist uniquely determined Borel probability measures mt and
µt on Jf with the following properties.

(a) L∗tmt = mt.
(b) P(t) = sup{hµ(f) +

∫
φt dµ : µ ◦ f−1 = µ and

∫
φt dµ > −∞}.

(c) µt ◦ f−1 = µt,
∫
φt dµt > −∞, and

hµt(f) +

∫
φt dµt = P(t).

(d) The measures µt and mt are equivalent and the Radon–Nikodym derivative
dµt
dmt

has a nowhere vanishing Hölder continuous version which is bounded
above.
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3. The Law of Iterated Logarithm; Abstract Setting

In this section we deal with issues related to the Law of Iterated Logarithm in the
setting of general measure preserving transformations. Let (X,µ) be a probability
space and let T : X → X be a measurable map preserving measure µ. Let
g : Y → R be a square integrable function. We put

σ2
T (g) := lim sup

n→∞

1

n

∫
X

(Sn(g)− nµ(g))2 dµ

and

σ2
T (g) := lim inf

n→∞

1

n

∫
X

(Sn(g)− nµ(g))2 dµ.

In the case when these two numbers are equal, we denote by σ2
T (g) their common

value and call it the asymptotic variance of g.
Let us now briefly recall the Rokhlin’s natural extension of the dynamical system

(T, µ). The phase space is

X̃ = {(xn)n≤0 : T (xn) = xn+1 ∀n ≤ −1}

The transformation T̃ : X̃ → X̃ is determined by the the property that(
T̃
(
((xn)n≤0

))
k

= T (xk)

Let π0 : X̃ → X be the canonical projection onto the 0th coordinate, i.e,

π0

(
(xn)n≤0

)
= x0.

It is well-known (see [9] for example) that there exists a unique probability T̃ -
invariant measure µ̃ on X̃ such that

µ̃ ◦ π−1
0 = µ.

The dynamical system (T̃ , µ̃) is a measure-preserving automorphism and

π0 ◦ T̃ = T ◦ π0.

This system is referred to as the Rokhlin’s natural extension of (T, µ).
We say that two functions g1 : X → R and g2 : X → R are cohomologous in a

class C of function from X to R if there exists a function u ∈ C such that

g2 − g1 = u− u ◦ T

Any function cohomologous to the zero function is called a coboundary.
We shall prove the following generalization and extension of Lemma 53 in [15].
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Lemma 3.1. Let (X,µ) be a probability space and let T : X → X be a measurable
map preserving measure µ. Fix A, a measurable subset of X with positive measure
µ. Let τ : A → N be the first return time to A and let TA = T τA : A → A be the
corresponding first return map. Assume that

µ(τ−1
A ([n,+∞))) ≤ constn−α,

for some α > 8 and all n ≥ 1. For every function g : X → R let ĝ : A → R be
defined by the formula

ĝ(x) =

τA(x)−1∑
j=0

g ◦ T j(x).

If g ∈ L4(µ), σ2
S(g) > 0 and µ(g) = 0, then ĝ : A→ R is not a coboundary in the

class of bounded measurable functions on A.

Proof. Seeking contradiction suppose that ĝ : A→ R is such a coboundary, i.e.

(3.1) ĝ = u− u ◦ TA
with some bounded measurable function u : A → R. Replace first the dynamical
system (T, µ) by its Rokhlin’s natural extension (T̃ , µ̃), the set A by π−1

0 (A), the
function g by g ◦ π0 and the function u by u ◦ π0. Then note that after such
replacements the equation (3.1) will remain true and the set τ−1

A (n) (the set of
points with first return time n) will be mapped to the sets π0

(
τ−1
A (n)

)
. In particular

they will have the same measures, respectively µ and µ̃. In conclusion, we may
assume without loss of generality that the dynamical system (T, µ) is a measure-
preserving automorphism. For every n ≥ 0 let

An = {x ∈ A : τA(x) ≥ n}.

Fix an integer n ≥ 1. For all x ∈ A let

i = i(x) := min{0 ≤ l ≤ n : T l(x) ∈ A}.

If no such l exists, set i = n. Let

j = j(x) := max{0 ≤ l ≤ n : T l(x) ∈ A}.

If no such l exists, set j = 0. We have,

0 ≤ i ≤ j ≤ n

and there exists a unique integer 0 ≤ k ≤ j − i such that

T j−i(T i(x)) = T kA(T i(x)).

Hence we can write

Sng(x) = Sig(x) + STAk (ĝ)(T i(x)) + Sn−jg(T j(x)) = a(x) + b(x) + c(x).
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In order to show that σ2
T (g) = 0, we shall estimate

(3.2)

(∫
(Sn(g))2dµ

) 1
2

= ||(Sn(g))||2 ≤ ||a||2 + ||b||2 + ||c||2.

We shall deal with each of these three L2 norms separately. Since b(x) = STAk (ĝ)(T i(x))

and |STAk (ĝ)(T i(x))| ≤ 2||u||∞, we get immediately that

(3.3) ||b||2 ≤ 2||u||∞.

Next, we estimate ||a||2. We have

a(x) =
n∑
l=0

11i−1(l)(x)Slg(x).

Applying Cauchy-Schwarz inequality, we therefore get

(3.4)

||a||2 ≤
n∑
l=0

||11i−1(l)Slg||2 =
n∑
l=0

(∫
11i−1(l)(Slg)2dµ

) 1
2

≤
n∑
l=0

(∫
11i−1(l)dµ

) 1
4
(∫

(Slg)4dµ
) 1

4

=
n∑
l=0

(µ(i−1(l)))
1
4

(∫
(Slg)4dµ

) 1
4

=
n∑
l=0

(µ(i−1(l)))
1
4 ||Slg||4

=
n∑
l=0

(µ(i−1(l)))
1
4

∥∥∥∥∥
l−1∑
s=0

g ◦ T s
∥∥∥∥∥

4

≤
n∑
l=0

(µ(i−1(l)))
1
4

l−1∑
s=0

||g ◦ T s||4

=
n∑
l=0

(µ(i−1(l)))
1
4

l−1∑
s=0

||g||4

= ||g||4
n∑
l=1

l(µ(i−1(l)))
1
4 .

Now notice that for µ almost every x ∈ X, there exist x′ ∈ A and an integer k ≥ 1
such that T k(x′) = x and τA(x′) ≥ k + i(x) (the strict inequality can hold only if
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i(x) = n and T n(x) /∈ A). Hence,

i−1(l) ⊂
∞⋃
k=1

T k(τ−1
A (k + l)).

Thus, as T : X → X is an automorphism, we get that

µ(i−1(l)) ≤
∞∑
k=1

µ
(
T k(τ−1

A (k + l))
)

=
∞∑
k=1

µ
(
τ−1
A (k + l)

)
= µ(Al+1)

Inserting this to (3.4), we obtain

(3.5)

||a||2 ≤ ||g||4
n∑
l=0

l(µ(Al+1))
1
4 ≤ const||g||4

n∑
l=1

l(l + 1)−α/4

≤ const||g||4
∞∑
l=1

l1−
α
4

< +∞,
where the last inequality was written since α > 8. The upper estimate of ||c||2 can
be done similarly. Indeed, exactly as (3.4), we obtain the following.

(3.6) ||c||2 = ||Sn−jg ◦ (T j)||2 = ||Sn−jg||2 ≤ ||g||4
n∑
l=0

(n− l)(µ(j−1(l))
1
4

Now notice that if T i(x)(x) /∈ A, then c(x) = 0 and otherwise T j(x)(x) ∈ A and
τA(T j(x)(x)) > n− j(x). So,

j−1(l) ⊂ T−l(An−l+1) ⊂ T−l(An−l)

Inserting this to (3.6), we thus get

(3.7)

||c||2 ≤ ||g||4
n∑
l=0

(n− l)(µ(An−l))
1
4v = ||g||4

n−1∑
l=0

(n− l)(µ(An−l))
1
4

= ||g||4
n∑
l=1

l(µ(Al))
1
4 ≤ ||g||4

n∑
l=1

lconstl−α/4

≤ ||g||4
∞∑
l=1

≤ const||g||4
∞∑
l=1

l1−
α
4

< +∞,
where the last inequality was written since α > 8. Combining this, (3.3), (3.5),
and inserting them to (3.2), we see that the integrals

∫
(Sng)2dµ remain uniformly

bounded as n → ∞. This obviously implies that σ2
T (g) = 0. This contradiction

finishes the proof. �
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We shall now show that under mild conditions if a first return map satisfies the
Law of Iterated Logarithm, then so does the original map. Precisely, we say that
a µ-integrable function g : X → R satisfies the Law of Iterated Logarithm if there
exists a positive constant Ag such that

lim sup
n→∞

Sng − n
∫
gdµ√

n log log n
= Ag.

From now on we assume without loss of generality that

µ(g) =

∫
gdµ = 0.

Keep a measurable set A ⊂ X with µ(A) > 0. Given a point x ∈ A, the sequence
(τn(x))∞n=1 is then defined as follows.

τ1(x) := τA(x) and τn(x) = τn−1(x) + τ(T τn−1(x)(x)).

What we were up to is the following theorem. Its proof can be also found in [15].

Theorem 3.2. Let T : X → X be a measurable dynamical system preserving a
probability measure µ on X. Assume that the dynamical system (T, µ) is ergodic.
Fix A, a measurable subset of X having a positive measure µ. Let g : X → R be a
measurable function such that the function ĝ : A→ R satisfies the Law of Iterated
Logarithm with respect to the dynamical system (TA, µA). If in addition,

(3.8)

∫
|ĝ|2+γdµ <∞

for some γ > 0, then the function g : X → R satisfies the Law of Iterated Logarithm
with respect to the original dynamical system (T, µ) and Ag = Aĝ.

Proof. Since the Law of Iterated Logarithm holds for a point x ∈ X if and only
if it holds for T (x), in virtue of ergodicity of T , it suffices to prove our theorem
for almost all points in A. By our assumptions there exists a positive constant Aĝ
such that

lim sup
n→∞

Sτng(x)√
n log log n

= Aĝ.

for µA-a.e. x ∈ A. Since, by Kac’s Lemma,

(3.9) lim
n→∞

τn
n

=

∫
X

τdm =

∫
A

τdm = 1,

µA-a.e. on A, we thus have

(3.10) lim sup
n→∞

Sτng√
n log log n

= lim sup
n→∞

Sτng√
τn log log τn

= Aĝ.
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µA-a.e. on A. Now, for every n ∈ N and (almost) every x ∈ A let k = k(x, n) be
the positive integer uniquely determined by the condition that

τk(x) ≤ n < τk+1(x).

Since

Sng(x) = Sτk(x)g(x) + Sn−τk(x)g(T τk(x)(x)),

we have that

(3.11)
Sng(x)√
n log log n

=
Sτk(x)g(x)√
n log log n

+
Sn−τk(x)g(x)√
n log log n

Since by (3.9)

lim
n→∞

τk+1(x)

τk(x)
= 1,

we get from (3.10) that,

lim sup
n→∞

Sτkg(x)√
n log log n

= lim sup
n→∞

Sτkg(x)√
k log log k

= Aĝ.

Because of this and because of (3.11), we are only left to show that

(3.12) lim
n→∞

Sn−τk(n)
g(x)

√
n log log n

= 0.

µA-a.e. on A. To do this, note first that

Sτk+1−τk |g|(T τk(x))
√
k log log k

=
|ĝ|(T kA(x))√
k log log k

.

Take an arbitrary ε ∈ (0, γ). Since

(3.13)

µ
(
{x ∈ A : |ĝ|(T kA(x)) ≥ ε

√
k log log k}

)
=

= µ
(
{x ∈ A : |ĝ|(x) ≥ ε

√
k log log k}

)
= µ

(
{x ∈ A : |ĝ|2+ε(x) ≥ ε2+ε(k log log k)1+ε/2}

)
≤

∫
|ĝ|2+εdµ

ε2+ε(k log log k)1+ε/2
,

using (3.8) we conclude that

∞∑
k=1

µ
(
{x ∈ A : |ĝ|(x) ≥ ε

√
k log log k}

)
<∞.

So, applying Borel-Cantelli lemma, (3.12) follows. We are done. �
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4. The Law of Iterated Logarithm; Meromorphic Functions

Let f : C→ Ĉ be a dynamically semi-regular meromorphic function and t > ρ/α.
Let S = {φe}e∈E be the iterated function system induced by some some nice
set U for f . Our first technical result, ultimately aiming at the Law of Iterated
Logarithm, is this.

Lemma 4.1. If f : C → Ĉ is a dynamically semi-regular meromorphic function
and t > ρ/α, then

lim sup
n→∞

1

n
log µt

( ⋃
|ω|≥n

φω(U)
)
< 0.

Proof. Noting that U ∩
⋃n−1
k=1 f

k(φω(U)) = ∅ and repeating the proof of Proposi-
tion 6.3 from [13], we show that

Pc(t) := lim sup
n→∞

1

n
log

∑
|ω|=n

exp
(
sup
(
Sn−1(φt ◦ f ◦ φω)

))
< P(t).

Hence,

lim sup
n→∞

1

n
logmt

( ⋃
|ω|=n

f(φω(U)
)
≤

≤ lim sup
n→∞

1

n
log

∑
|ω|=n

exp
(
sup
(
Sn−1(φt ◦ f ◦ φω)

)
− P(t)(n− 1)

)
= Pc(t)− P(t) < 0.

Since, see Theorem 2.2(d), the Radon–Nikodym derivative dµt
dmt

is uniformly bounded
above, we thus get that

lim sup
n→∞

1

n
log µt

(
f

( ⋃
|ω|=n

φω(U)

))
≤ Pc(t)− P(t).

Since the probability measure µt is f -invariant, we have

µt

(
f
( ⋃
|ω|=n

φω(U)
))
≥ µt

( ⋃
|ω|=n

φω(U)
)
,

and therefore,

lim sup
n→∞

1

n
log µt

( ⋃
|ω|=n

φω(U)

)
≤ Pc(t)− P(t).
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So, finally,

lim sup
n→∞

1

n
log µt

( ⋃
|ω|≥n

φω(U)
)
≤ Pc(t)− P(t) < 0.

The proof is complete. �

Because of Lemma 4.1 we obviously have some constant C > 0 such that

(4.1) µt

( ⋃
|ω|≥n

φω(U)
)
≤ Cn−9

for all n ≥ 1. For every e ∈ E let Ne ≥ 1 be the unique integer determined by the
property that fNe ◦ φe = Id. Let f̂ : JS → JS be the first return map on JS , i.e.
f̂ is defined by the formula

f̂(φe(z)) = fNe(φe(z)) = z

for all e ∈ E and all z ∈ JS . Ne is then the first return time to JS . Recall from
the previous section that given g : Jf → R, the function ĝ : JS : R is given by the
following formula.

ĝ(φe(z)) =
Ne−1∑
j=0

g ◦ f j(φe(z))

for all e ∈ E and all z ∈ JS . Let m̂t and µ̂t be the probability conditional measures
on JS respectively of mt and µt. The measure µ̂t is then f̂ -invariant. Moreover,
m̂t is the F -conformal measure for F , the summable Hölder family consisting of

functions {φ(e)
t }e∈E, defined by the following formula.

φ
(e)
t (z) = φ̂t(φe(z))− P(t)Ne.

In consequence, all the results proved in [6] for summable Hölder families apply, in
particular to measures m̂t and µ̂t. As an immediate consequence of Theorem 3.2,
we get the following.

Theorem 4.2. Let f : C→ Ĉ be a dynamically semi-regular meromorphic function
and fix t > ρ/α. Let g : Jf → R be a measurable function such that the function
ĝ : JS → R satisfies the Law of Iterated Logarithm with respect to the dynamical
system (f̂ , µ̂t). If in addition,

(4.2)

∫
Jf

|ĝ|2+γdµt <∞

for some γ > 0, then the function g : Jf → R satisfies the Law of Iterated Logarithm
with respect to the dynamical system (f, µt) and Ag = Aĝ.
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In order to be able to apply this theorem, we need a technical result establishing
(4.2) for a large class of functions from Jf to R. This is the content of the following
lemma.

Lemma 4.3. Let ψ : Jf → R be a function, following [8] called loosely tame, of
the following form

ψ(z) = −s log |f ′(z)|τ + k(z),

where s ∈ R and h : Jf → R is a weakly Hölder continuous function. Then for
every γ > 0, ∫

JS

|ψ̂|γdm̂t < +∞.

Proof. Since the measure m̂t is proportional to mt on JS , our equivalent task is to
show that ∫

JS

|ψ̂|γdmt < +∞.

Fix ε > 0. Because of expanding properties of the function f : C→ Ĉ there exists
a constant C > 0 such that

|ψ(z)| ≤ C|f ′(z)ετ

for all z ∈ J(f). Therefor, for every e ∈ E and all z ∈ JS we get,

|ψ̂(φe(z))| =
∣∣∣∣Ne−1∑
j=0

ψ(f j(φe(z)))

∣∣∣∣ ≤ Ne−1∑
j=0

∣∣ψ(f j(φe(z)))
∣∣

≤ C
Ne−1∑
j=0

|f ′(f j(φe(z))|ετ ≤ C
Ne−1∏
j=0

|f ′(f j(φe(z))|ετ

= C|(fNe)′(φe(z))|ετ .

Thus
(4.3)

|ψ̂φe(z))|γmt(φe(JS)) �

� |ψ̂(φe(z))|γ exp
(
SNeφt(φe(z))− P(φt)Ne

)
≤ Cγ exp

(
γε log |(fNe)′(φe(z))|τ − t log |(fNe)′(φe(z))|τ + SNek(z))− P(φt)Ne

)
= Cγ exp

(
SNeφt−γε(φe(z))− P(φt)Ne

)
= Cγ exp

(
SNeφt−γε(φe(z))− P(φt−γε)Ne

)
exp
(
(P(φt−γε − P(φt))Ne

)
� Cγ exp

(
(P(φt−γε)− P(φt))Ne

)
mt−γε(φe(JS).
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Since, by Lemma 7.5 in [8], the function (t − δ1, t + δ1) 3 u 7→ P(φu) (δ1 > 0
sufficiently small) is real-analytic, we get a constant M > 0 such that for all ε > 0
sufficiently small, we have that

|P(φt−γε)− P(φt)| ≤Mε.

Formula (4.3) then yields

(4.4) |ψ̂(φe(z))|γmt(φe(JS) ≤ CγeMεNemt−γε(φe(JS)).

Now, for every k ≥ 1 let

U c
k =

k⋂
j=0

f−j(C \ U).

Fixing u > ρ/α2, we have for every n ≥ 1 that

(4.5)

mu

( ⋃
e∈E:Ne=n

φe(JS)

)
= mu

(
U ∩ f−1(U c

n−1) ∩ f−n(U)
)
≤ mu(f

−1(U c
n−1))

= mu(f
−1(11Ucn−1

)) = mu(11Ucn−1
◦ f)

= mu

(
e−P(φu)nLu

(
11Ucn−1

◦ f
))

= mu

(
e−P(φu)(n−1)Ln−1

u

(
e−P(φu)Lu

(
11Ucn−1

◦ f
)))

= mu

(
e−P(φu)(n−1)Ln−1

u

(
11Ucn−1

(e−P(φu)Lu11)
)

≤ C1mu

(
e−P(φu)(n−1)Ln−1

u

(
11Ucn−1

))
with some constant C1 > 0. Looking at this moment at the proof of Proposition 6.3
in [12] and taking into account continuity properties of the Perron-Frobenius op-
erator Lu, we conclude that there exist κ > 0 and c2 > 0 such that

mu

(
Ln−1
u

(
11Ucn−1

))
≤ C2e

−κneP(φu)(n−1)

for all u ∈ (t− δ, t+ δ) with some 0 < δ ≤ δ1 small enough and all integers n ≥ 1.
Substituting this to (4.5) we get that

(4.6) mu

( ⋃
e∈E:Ne=n

φe(JS)

)
≤ C1C2e

−κn
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for all ∈ (t− δ, t + δ). Fix 0 < ε < min{δ/γ, κ/(2M)}4. Inserting then (4.6) into
(4.4), we obtain

(4.7)

∫
|ψ̂|γdmt =

∞∑
n=1

∫
⋃
e∈E:Ne=n

φe(JS)

|ψ̂|γdmt =
∞∑
n=1

∑
Ne=n

∫
φe(JS)

|ψ̂|γdmt

≤
∞∑
n=1

∑
Ne=n

||ψ̂|φe(JS)||γ∞mt(φe(JS))

≤ Cγ

∞∑
n=1

eMεn
∑
Ne=n

mt−γε(φe(JS))

= Cγ

∞∑
n=1

eMεnmt−γε

( ⋃
Ne=n

φe(JS)

)

≤ CγC1C2

∞∑
n=1

eMεne−κn

≤ CγC1C2

∞∑
n=1

e−
1
2
κn.

The proof is complete. �

Now we are in position to provide a short proof of the following theorem and its
corollary, both forming the main results of this sections.

Theorem 4.4. Let f : C → Ĉ be a dynamically semi-regular meromorphic func-
tion and fix t > ρ/α. Let ψ : Jf → R be a loosely tame function. Then the
asymptotic variance σ2

f (ψ) exists and, if σ2
f (ψ) > 0, equivalently if ψ : Jf → R is

not cohomologous to a constant in the class of Hölder continuous functions on Jf ,
then the function ψ : Jf → R satisfies the Law of Iterated Logarithm with respect

to the dynamical system (f, µt) with Aψ =
√

2σf̂ (ψ̂) > 0.

Proof. Adding a constant to ψ we may assume without loss of generality that∫
ψdµt = 0. The existence of the asymptotic variance σ2

f (ψ) was established in

Theorem 6.17 of [8]. The fact that σ2
f (ψ) > 0 if and only if ψ : Jf → R is not

cohomologous to a constant in the class of Hölder continuous functions on Jf is
the content of Proposition 6.21 in [8]. In view of Lemma 5.2 in [8] the function

ψ̂ is Hölder continuous, precisely its composition with the canonical projection
from EN onto JS is Hölder continuous. Along with Lemma 4.3 this implies (see
Lemma 2.5.6 in [6] and the beginning of the page 41 in [6]) that the asymptotic
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variance σ2
f̂
(ψ̂) exists and, in addition with Theorem 2.5.5 and Lemma 2.5.6 in [6],

both in [6], that the function ψ̂ satisfies the Law of Iterated Logarithm with respect

to the dynamical system (f̂ , µ̂t) (with Aψ̂ = σ2
f̂
(ψ̂)) provided that sg2

f̂
(ψ̂) > 0. But

since, by Lemma 7.11 in [8], the function ψ has all moments with respect to the
measure µt, we in particular have that ψ ∈ L4(µt). Then, using (4.1), Lemma 3.1

implies that ψ̂ is not a coboundary in the class of bounded measurable functions
on JS . It then directly follows from Lemma 4.8.8 that σ2

f̂
(ψ̂) > 0. Now, with the

help of Lemma 4.3, the application of Theorem 3.2 finishes the proof. �

As an immediate consequence of this theorem, with the help of Theorem 6.20 in
[8], we get the following.

Corollary 4.5. Let f : C → Ĉ be a dynamically semi-regular meromorphic
function and fix t > ρ/α. If ψ : Jf → R is a loosely tame function (ψ(z) =
−s log |f ′(z)|τ + k(z)) with s 6= 0, then the function ψ : Jf → R satisfies the
Law of Iterated Logarithm with respect to the dynamical system (f, µt) with Aψ =√

2σf̂ (ψ̂) > 0.

5. Equilibrium States versus Hausdorff Measures

Keep f : C → Ĉ a dynamically semi-regular meromorphic function and t > ρ/α.
Let

Dt := HD(µt),

let the function ζ : JS → (0,+∞) be defined by the formula

ζ(φe(z)) = − log |φ′e(z)|,

and let

χt :=

∫
ζdµt.

The number χt is called the Lyapunov exponent of the measure µt. Let h :
(a,+∞) → (0,+∞) (a > 0 small enough) be a non-decreasing function. This
function h is said to belong to to the lower class if∫ ∞

a

h(r)

r
exp
(
−1

2
(h(r)2

)
dr < +∞

and to the upper class if∫ ∞
a

h(r)

r
exp
(
−1

2
(h(r)2

)
dr = +∞.
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Associated to the function h is the function h̃ defined for all sufficiently small t > 0
by the following formula.

h̃(r) = rDt exp

(
σ(ψ̂)
√
χt
h(− log r)

√
− log r

)
.

Let finally Hh̃ be the Hausdorff measure on C induced by the gauge function h̃ and
let

ψt = φt +Dtζ − P(φt) = −(t−Dt) log |f ′|τ + (h− P(φt)).

Since the function ψ̂t : JS → R is Hölder continuous and since all the integrals
∈ |ψ̂t|γdµt (γ > 2) are finite (see Lemma 4.3 where this is proved for all γ > 0),
Theorem 4.8.3 in [6]) applies to give the following.

Theorem 5.1. Suppose that σ2(ψ̂t) > 0 and that h : (a,+∞) → (0,+∞) is a
slowly growing function. Then

(a) If h belongs to the upper class, then the measures µ̂t and Hh̃|JS are mutually
singular.

(b) If h belongs to the lower class, then µ̂t is absolutely continuous with respect
to Hh̃.

We shall now prove a sufficient condition for σ2(ψ̂t) to be positive. It is trivially
verifiable. Let Jr,f be the set of points in Jf that do not escape to infinity under

the action of the map : C→ Ĉ. It is called in the literature the radial (or conical)
Julia set of f .

Lemma 5.2. If t 6= HD(Jr,f ), then the function ψt = −(t−Dt) log |f ′|τ+(h−P(φt))
is not cohomologous to a constant in the class of Hölder continuous functions on
Jf and σ2(ψ̂t) > 0. In particular this is true for all t ≥ 2.

Proof. First observe that because of Theorem 8.1 (Volume Lemma) and Theo-
rem 6.25 (Variational Principle), both in [8], we have

(5.1)

∫
ψtdµt = −tχµt +

hµt(f)

χµt
χµt +

hµt
tχµt

+

∫
hdµt − P(φt)

= hµt(f)− tχµt +

∫
hdµt − P(φt)

= 0.

We already know that ψt is cohomologous to a constant in the class of Hölder
continuous functions on Jf if and only if σ2(ψ̂t) = 0. So, assume that ψt is
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cohomologous to a constant. By (5.1) ψt is then a coboundary. By Theorem 6.20
in [8], we get that

(5.2) t = Dt.

The fact that ψt is a coboundary equivalently means that the function −Dt log |f ′|τ
is cohomologous to φt − P(φt). But the topological pressure of the latter function
vanishes, whence P(−Dt log |f ′|τ ) = 0. Theorem 8.3 in [8] (Bowen’s Formula) then
implies that

(5.3) Dt = HD(Jr,f ).

This theorem is in fact in [8] formulated for dynamically regular functions only but
apart from dynamical semiregularity all what was needed there was the existence
of a zero of the pressure function of potentials −t log |f ′|τ . Combining (5.2) and
(5.3) yields t = HD(Jr,f ). To complete the proof we are thus only left to notice
that HD(Jr,f ) < 2. We are done. �

As an immediate consequence of Theorem 5.1 and Lemma 5.2 we get the following
main result of this paper.

Theorem 5.3. Let f : C→ Ĉ be a dynamically semi-regular meromorphic function
and for every t > ρ/α let φt = −t log |f ′|τ + h. Suppose that σ2(ψ̂t) > 0 (this is in
particular true if t 6= HD(Jr,f ), more particularly if t ≥ 2) and that h : (a,+∞)→
(0,+∞) is a slowly growing function. Then

(a) If h belongs to the upper class, then the measures µt and Hh̃|Jf are mutually
singular.

(b) If h belongs to the lower class, then µt is absolutely continuous with respect
to Hh̃.

Towards the end of the paper note that the function hc(t) = c
√

log log t, c ≥ 0,
belongs to the upper class if and only if c ≤

√
2. With the consistent notation

h̃c(r) = rDt exp

(
σ(ψ̂)
√
χt
hc(− log r)

√
− log r

)

= rDt exp

(
c
σ(ψ̂)
√
χt

√
log(1/r) log3(1/r)

)
,

we therefore immediately obtain the following consequence of Theorem 5.3.
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Theorem 5.4. Let f : C→ Ĉ be a dynamically semi-regular meromorphic function
and for every t > ρ/α let φt = −t log |f ′|τ + h. Suppose that σ2(ψ̂t) > 0; this is in
particular true if t 6= HD(Jr,f ), more particularly if t ≥ 2. Then

(a) The measures µt and Hh̃|Jf are mutually singular for all 0 ≤ c ≤
√

2.

(b) The measure µt is absolutely continuous with respect to Hh̃ for all c >
√

2.

Given κ > 0 let Hκ be the standard Hausdorff measure corresponding to the
parameter κ, i.e. Hκ = Hr 7→rκ with the notation introduced above. Taking in
Theorem 5.4 c = 0, we obtain the following.

Corollary 5.5. Let f : C → Ĉ be a dynamically semi-regular meromorphic func-
tion and for every t > ρ/α let φt = −t log |f ′|τ + h. Suppose that σ2(ψ̂t) > 0; this
is in particular true if t 6= HD(Jr,f ), more particularly if t ≥ 2. Then the measures
µt and HHD(µt)|Jf are mutually singular.
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[2] M. Denker, M. Urbański, Relating Hausdorff measures and harmonic measures on
parabolic Jordan curves, Journal für die Reine und Angewandte Mathematik, 450
(1994), 181-201. 1

[3] N. Dobbs, Nice sets and invariant densities in complex dynamics, Math. Proc. Cam-
bridge Philos. Soc., 150 (2011), 157–165. 1, 2

[4] N. Makarov, On the distortion of boundary sets under conformal mappings. Proc.
London Math. Soc. 51, (1985), 369–384. 1
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[12] B. Skorulski, M. Urbański, Dynamical Rigidity of Transcendental Meromorphic Func-
tions, Preprint 2011. 4



20 BART LOMIEJ SKORULSKI AND MARIUSZ URBAŃSKI
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