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Abstract. We prove the form of dynamical rigidity of transcendental mero-
morphic functions which asserts that if two tame transcendental meromorphic
functions restricted to their Julia sets are topologically conjugate via a locally
bi–Lipschitz homeomorphism, then they, treated as functions defined on the
entire complex plane C, are topologically conjugate via an affine map, i.e. a
map from C to C of the form z 7→ az + b. As an intermediate step we show
that no tame transcendental meromorphic function is essentially affine.

1. Introduction

Let X and Y be arbitrary metric spaces. We say that a homeomorphism
H : X → Y is locally bi-Lipschitz if each point x ∈ X has some open neigh-
borhood Ux such that both the restriction H|Ux : Ux → H(Ux) and its inverse(
H|Ux

)−1
: H(Ux)→ Ux are Lipschitz continuous. The main goal of this paper

is to show that if two tame transcendental meromorphic functions restricted to
their Julia sets are topologically conjugate via a locally bi–Lipschitz homeomor-
phism, then they, treated as functions defined on the entire complex plane C,
are topologically conjugate via an affine map, i.e. a map from C to C of the
form z 7→ az + b. As an intermediate step we show that the iterated function
system corresponding to any nice set of a transcendental meromorphic function
is not essentially affine.

Our work stems from D. Sullivan article [12] treating among others the dy-
namical rigidity of conformal expanding repellers. Its systematical account can
be found in [8]. We make also an essential use of the rigidity result for confor-
mal iterated function systems from [6]. The case of tame rational functions is
actually done in [7].

The structure of our argument is this. First we make use of the existence
of nice sets for tame transcendental meromorphic functions as proved in [2].
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This means we canonically associate, as in [11], to each nice set U a confor-
mal iterated function system SU in the sense of [4] and [5]. Then we show
(Proposition 3.3) that no such systems SU are essentially affine. Having this we
strengthen the dynamical rigidity result from [6] to conclude that any locally
bi–Lipschitz conjugacy between two tame transcendental meromorphic func-
tions yields conformal conjugacy on some neighborhoods of the closures of the
limit sets of the associated (via nice sets) iterated function systems. As the last
step we prove that such conjugacy extends holomorphically to a holomorphic
automorphism of the complex plane C. It thus must be an affine map z 7→ az+b.

Acknowledgement. The authors would like to thank both referees for their
comments and suggestions that considerably improved and corrected the orig-
inal version of the paper. We especially thank them for pointing out to us a
possibility of shortening the proof of Lemma 3.2 by using the work of Ritt [9]
and Baker [1].

2. Preliminaries

Let f : C → Ĉ be a meromorphic function. The Fatou set of f consists
of all points z ∈ C that admit an open neighborhood Uz such that all the
forward iterates fn, n ≥ 0, of f are well-defined on Uz and the family of maps
{fn|Uz : Uz → C}∞n=0 is normal. The Julia set of f , denoted by Jf , is then
defined as the complement of the Fatou set of f in C. By Sing(f−1) we denote

the set of singularities of f−1. We define the postsingular set of f : C→ Ĉ as

PS(f) =
∞⋃
n=0

fn(Sing(f−1)).

Given a set F ⊂ Ĉ and n ≥ 0, by Comp(f−n(F )) we denote the collection of all
connected components of the inverse image f−n(F ). A meromorphic function

f : C → Ĉ is called tame if its postsingular set does not contain its Julia set.
This is the primary object of our interest in this paper.

We make a heavy use of the concept of a nice set which J. Rivera–Letelier
introduced in [10] in the realm of the dynamics of rational maps of the Riemann
sphere. In [2] N. Dobbs proved their existence for some meromorphic functions

from C to Ĉ. The following theorem follows directly from Lemma 11 from [2].

Theorem 2.1. Let f : C → Ĉ be a tame meromorphic function. Fix z ∈
Jf \ PS(f), K > 1 and κ > 1. Then there exists L > 1 such that for all r > 0
sufficiently small, there exists an open connected set U = U(z, r) ⊂ C \ PS(f)
such that, for all n > 0,

(a) if V ∈ Comp(f−n(U)) and V ∩ U 6= ∅, then V ⊂ U ,
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(b) if V ∈ Comp(f−n(U)) and V ∩ U 6= ∅, then, for all w,w′ ∈ V,

|(fn)′(w)| ≥ L and
|(fn)′(w)|
|(fn)′(w′)|

≤ K,

(c) B(z, r) ⊂ U ⊂ B(z, κr) ⊂ C \ PS(f).

Let U be the collection of all nice sets of f : C→ Ĉ, i.e. all the sets U satisfying
the above proposition with some z ∈ Jf \ PS(f) and some r > 0. Note that if
U = U(z, r) ∈ U and V ∈ Comp(f−n(U) satisfies the requirements (a), (b) and
(c) from Theorem 2.1 then there exists a unique holomorphic inverse branch
f−nV : B(z, κr) → C such that f−nV (U) = V . As noted in [11] the collection SU
of all such inverse branches forms obviously an iterated function system in the
sense of [4] and [5]. In particular, it clearly satisfies the Open Set Condition. We
denote its limit set by JU . We have just mentioned [4] and [5]. In what concerns
iterated function systems we try our concepts and notation to be compatible
with that of [5].

3. Essential Affinity

In this section we prove that the iterated function system corresponding to
any nice set of a transcendental meromorphic function is not essentially affine.
An important step in this proof is provided by Lemma 3.2. Toward this direction
let us recall first the following proposition which follows from a theorem of I. N.
Baker in [1].

Proposition 3.1. Let ψ : C→ Ĉ be a meromorphic function and let Aj : C→
C, j = 1, 2, be two affine maps such that for all z

(3.1) ψ(A1(z)) = ψ(A2(z)).

Then there is a root of unity λ ∈ C such that

A−1
2 ◦ A1(z) = λz + β.

It follows that there exists l ≥ 1 such that

(3.2) (A−1
2 ◦ A1)

l = Tb,

where Tb(z) = z + b.

Lemma 3.2. Let f : C→ Ĉ be a transcendental meromorphic function and let
Aj : C → C, j = 1, 2, be two affine maps, A1(z) = a1z and A2(z) = a2z + b2
such that 0 < |aj| < 1 and Ak2 6= Ak1 for all integers k ≥ 1. Let U ⊂ C be

an open connected set such that Aj(U) ⊂ U for j = 1, 2. If ψ : U → Ĉ is a
non-constant meromorphic function, then there is no integer q ≥ 1 such that

ψ(z) = f q ◦ ψ ◦ Aj(z)
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for j = 1, 2 and all z ∈ U .

As the first step of our proof of this lemma, we shall demonstrate the following
claim.

Claim. Suppose that

(3.3) ψ(z) = f q ◦ ψ ◦ Aj(z)

for some q ≥ 1, all j = 1, 2 and all z ∈ U with U , ψ, f : C → Ĉ as in
Lemma 3.2. Then the function ψ : U → Ĉ has a unique meromorphic extension
to all of C such that (3.3) holds for j = 1, 2 and all z ∈ U .

Proof of Claim. First note that in order to prove the claim all what we need
to show is that ψ : U → Ĉ has a meromorphic extension onto C. We shall
show by induction that for every n ≥ 0 the map ψ has a unique meromorphic
extension to A−n1 (U) such that (3.3) holds on A−n1 (U). Indeed, for n = 0 this is
our seeking contradiction assumption. For the inductive step suppose it holds

for some n ≥ 0. Define then the function ψ∗ : A
−(n+1)
1 (U)→ Ĉ as

(3.4) ψ∗(z) = f q ◦ ψ ◦ Aj(z).

Note that A−n1 (U) ⊂ A
−(n+1)
1 (U) and, by our inductive assumption, ψ∗(z) =

ψ(z) for all z ∈ A−n1 (U). Renaming then ψ∗ to ψ, (3.4) holds for all z ∈
A
−(n+1)
1 (U). The uniqueness part follows from the fact that two meromorphic

functions defined on the open connected set A−n1 (U) and coinciding on its open
subset U , are equal. The inductive proof is finished. Since

⋃∞
n=0A

−n
1 (U) = C,

the claim is proved. �

Proof of Lemma 3.2. Seeking contradiction, we suppose that (3.3) holds. It
follows from Claim that ψ = f q ◦ ψ ◦ A1 = f q ◦ ψ ◦ A2 on C, and therefore
ψ ◦ A−1

1 = f q ◦ ψ = ψ ◦ A−1
2 . This yields

(3.5) ψ = ψ ◦ (A−1
2 ◦ A1).

Then by Proposition 3.1 we can write

(A−1
2 ◦ A1)

l = Tb,

where Tb(z) = z + b with some b ∈ C \ {0}. Formula (3.5) then yields

ψ = ψ ◦ (A−1
2 ◦ A1)

l = ψ ◦ Tb.

This just means that the function ψ is periodic. Having this we are ready to
show that our equation equation,

(3.6) ψ(mz) = f q(ψ(z)),
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where m = a−1
1 , leads to a contradiction. Such equations were studied in [9].

Although, Ritt treated the case of a rational function R instead of a transcen-
dental function f q, his arguments do not depend on a particular form of R.

Let R be a fundamental domain for ψ. Then the map f q ◦ ψ|R is infinite-to-
one, since f q is transcendental. But if ψ is doubly periodic (so R is bounded),
then obviously the map R 3 z 7→ ψ(mz) is finite-to-one map, generating a
contradiction. So, assume instead that ψ is simply periodic. We claim that if h
is any period of ψ, then so is mh. Indeed, by (3.6), we get

ψ(z +mh) = ψ(m(z/m+ h)) = f q(ψ(z/m+ h)) = f q(ψ(z/m)) = ψ(z).

Thus m has to be a real number. Using now Section III and IV of [9] literally,
we get that ψ is at most two-to-one on the fundamental stripe R. Since m is
real, so is the map R 3 z 7→ ψ(mz). This contradiction finishes the proof. �

Let S = {φe : X → X}e∈E, X ⊂ C, be an arbitrary conformal iterated function
system whose phase space X is contained in the complex plane C. We require at
the moment that X is a bounded set equal to the closure of its interior and it is
contained in an open connected set W ⊂ C such that each map φe extends to W
and maps W into itself. Recalling from [6] we say that the system S is essentially
affine if the conformal structure on JS admits a Euclidean isometries refinement
so that all the maps φe, e ∈ E, become affine conformal. More precisely, there
exists an atlas {ψt : Ut → C}t∈T with some parameter set T and some open
connected simply connected sets Ut, t ∈ T , consisting of conformal univalent
maps, such that

(a)
⋃
t∈T Ut ⊃ JS and

⋃
t∈T Ut ⊂ W .

(b) All the sets Ut ∩ Us and Ut ∩ φe(Us), s, t ∈ T , e ∈ E, are connected.
(c) The compositions ψt ◦ ψ−1

s and ψt ◦ φe ◦ ψ−1
s , defined respectively on

ψs(Ut ∩ Us) and ψs ◦ φ−1
e (Ut ∩ φe(Us)), s, t ∈ T , e ∈ E, are all affine (of

the form z 7→ az + b) with |(ψt ◦ ψ−1
s )′| = 1.

Our application of Lemma 3.2 to tame meromorphic functions is this.

Proposition 3.3. If f : C→ Ĉ is a tame transcendental meromorphic function
and U ⊂ C is a nice set for f , then the corresponding iterated function system
SU = {φe}e∈E is not essentially affine.

Proof. Suppose on the contrary that the iterated function system SU is essen-
tially affine and let {ψt : Ut → C}t∈T be the corresponding conformal atlas.
Take an element ψs : Us → C from this atlas such that US ∩ JS 6= ∅. Let us
recall that two words ω, τ ∈ E∗, where E∗ is the set of all finite words, are
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incomparable, if neither ω nor τ is an extension of the other. Take then two
incomparable words ω, τ ∈ E∗ such that xω, xτ ∈ Us, where xω and xτ are
the unique fixed points respectively of φω and φτ . Taking the words ω and τ
sufficiently long, we may further assume that

φω(Us) ⊂ Us and φτ (Us) ⊂ Us.

Let k = ||ω|| and l = ||τ ||, i.e. fk ◦ φω = Id and f l ◦ φτ = Id. We then have

φωl(Us) ⊂ Us and φτk(Us) ⊂ Us.

Set
U ′ = ψs(Us) and ψ := ψ−1

s : U ′ → C.
It then follows from property (c) of essential affiness that

(3.7) A1 := ψ−1 ◦ φωl ◦ ψ : U ′ → U ′ and A2 := ψ−1 ◦ φτk ◦ ψ : U ′ → U ′

are affine maps. Write Aj(z) = aj(z) + bj, j = 1, 2. Replacing the atlas {ψt}t∈T
by {ψt−ψs(xω)}t∈T , we may assume without loss of generality that ψs(xω) = 0.
Then, by (3.7), b1 = 0. Now note that

|a1| = |A′1(ψ−1(xω))|
= |(ψ−1)′(φω(ψ(ψ−1(xω))))| · |φ′ωl(ψ(ψ−1(xω)))| · |ψ′(ψ−1(xω))|
= |(ψ−1)′(φω(xω))| · |φ′ωl(xω)||ψ′(ψ−1(xω))|
= |(ψ−1)′(xω)| · |φ′ωl(xω)| · |ψ′(ψ−1(xω))|
= |φ′ωl(xω)| < 1

and likewise
|a2| = |φ′τk(xτ )| < 1.

Also, for each integer n ≥ 1, the words (ωl)n and (τ k)n are extensions respec-
tively of ω and τ , and are therefore different. Hence

An1 = ψ−1 ◦ φnωl ◦ ψ = ψ−1 ◦ φ(ωl)n ◦ ψ 6= ψ−1 ◦ φnτk ◦ ψ = ψ−1 ◦ φ(τk)n ◦ ψ = An2 ,

and the the assumptions of Lemma 3.2 are verified. But it follows from (3.7)
that ψ ◦ A1 = φωl ◦ ψ, and applying fkl to both sides of this equality, we get
that fkl ◦ ψ ◦ A1 = fkl ◦ φωl ◦ ψ = ψ. Likewise fkl ◦ ψ ◦ A2 = ψ. This however
contradicts Lemma 3.2 and ends the proof of our proposition. �

4. Conjugacies of Conformal Iterated Function Systems

In this section we deal with bi-Lipschitz conjugacies of conformal iterated
function systems. We want to apply them to the systems generated by nice sets
of tame meromorphic functions. This however causes two difficulties that have
not been addressed in the literature yet. One is that, as noted in the proof of
Claim 1 in Theorem 5.1 of [11], the systems thus emerging do not have to satisfy



DYNAMICAL RIGIDITY OF TRANSCENDENTAL MEROMORPHIC FUNCTIONS 7

the Open Set Condition. The second difficulty is that they do not have to be
regular. Both of these difficulties are taken care of below to the extent which is
sufficient for our applications to meromorphic functions.

We call a conformal iterated function system S = {φe}e∈E of W type if there
exists a continuous map

FS :
⋃
e∈E

φe(JS)→ JS

such that
FS ◦ φe = IdJS

for all e ∈ E. The map FS then induces a conformal Walters expanding map as
defined in [3]. For all conformal iterated function systems and all real numbers
t ≥ 0 the topological pressure P(t) ∈ R is well-defined (though can take up the
value +∞), however the existence of eP(t)-conformal measures requires either the
Open Set Condition (see [4] and [5] or the W property). By an eP(t)-conformal
measure we mean a Borel probability measure mt on the limit set JS such that

(4.1) mt(φe(A)) = e−P(t)

∫
A

|φ′e|tdmt

for all e ∈ E and all Borel sets A ⊂ JS, and also that

(4.2) mt

(
φa(JS) ∩ φb(JS)

)
= 0

whenever a, b ∈ E and a 6= b. Applying (4.1) and (4.2) inductively gives

(4.3) mt(φω(A)) = e−P(t)|ω|
∫
A

|φ′ω|tdmt

for all ω ∈ E∗ and all Borel sets A ⊂ JS, and also that

(4.4) mt

(
φω(JS) ∩ φτ (JS)

)
= 0

whenever ω, τ ∈ E are incomparable. If an eP(t)-conformal measure exists, it is
unique and by µt or µS,t we denote the unique Borel probability measure on JS
that is absolutely continuous with respect to the measure mt and such that∑

e∈E

µt(φe(A)) = µt(A)

for all Borel sets A ⊂ JS. If the system S is of W type then this condition just
means that the measure µt is FS-invariant. We shall prove the following.

Proposition 4.1. If two conformal iterated function systems S = {φe}e∈E and
Q = {ψe}e∈E are bi-Lipschitz conjugate via a bi-Lipschitz map H : JS → JQ,
then

PQ(t) = PS(t)
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for all t ≥ 0. If in addition both systems either satisfy the Open Set Condition
or the W property, then

µQ,t = µS,t ◦H−1

for all t ∈ Fin(S) = Fin(Q) (the sets of t for which the pressure is finite).

Proof. Since the systems S and Q are bi-Lipschitz conjugate and ||φ′ω|| �
diam(φω(JS)), ||ψ′ω|| � diam(ψω(JQ)) for all ω ∈ E∗, we conclude that

C−1 ≤ ||ψ
′
ω||

||φ′ω||
≤ C

for some constant C ≥ 1 and all ω ∈ E∗. Therefore, Fin(S) = Fin(Q) and

(4.5) PQ(t) = lim
n→∞

1

n

∑
|ω|=n

||ψ′ω||t = lim
n→∞

1

n

∑
|ω|=n

||φ′ω||t = PS(t).

Now let t ∈ Fin(S) = Fin(Q). Assuming either the Open Set Condition or the
W property (so in particular conformal measures mQ,t and mS,t, as well as their
invariant versions µQ,t are well-defined), it follows from (4.5) and (4.3) that

C−tK−t ≤ mQ,t(ψω(JQ))

mS,t(φω(JS))
≤ CtKt

for all ω ∈ E∗. Thus the measures mQ,t and mS,t◦H−1 are equivalent (even with
Radon Nikodym derivatives bounded by (CK)t and (CK)−t respectively from
above and from below). Since also µQ,t � mQ,t and µS,t � mS,t, we therefore
conclude that the measures µQ,t and µS,t ◦ H−1 are equivalent. Since they are
ergodic (Theorem 2.2.9 and formula (3.10) in [5] if the Open Set Condition is
satisfied and Theorem 2.5(b) in [3] if the W property holds), they must coincide.
We are done. �

Now the proof of Theorem 3.1 in [6] goes through with Jacobians D̃φi replaced
by D̃tφi with respect to any measure µS,t with t ∈ (0,+∞) ∩ Fin(S). This
in turn permits to prove, with an analogous proof, the following refinement of
Theorem 4.2 in [6]. In the present paper we only need the implication (c) =⇒
(a).

Theorem 4.2. Let S = {φe}e∈E and Q = {ψe}e∈E be two complex plane con-
formal iterated function systems either of W type or satisfying the Open Set
Condition. If at least one of these two systems is not essentially affine and
they are topologically conjugate by a homeomorphism H : JS → JQ, then the
following conditions are equivalent.



DYNAMICAL RIGIDITY OF TRANSCENDENTAL MEROMORPHIC FUNCTIONS 9

(a) The conjugacy H : JS → JQ extends in a conformal manner to an open
neighborhood of JS.

(b) The conjugacy H : JS → JQ extends in a real–analytic manner to an
open neighborhood of JS.

(c) The conjugacy H : JS → JQ is bi-Lipschitz continuous.
(d) |ψ′ω(yω)| = |φ′ω(xω)| for all ω ∈ E∗, where xω and yω are the only fixed

points of φω and ψω respectively.
(e) ∃C ≥ 1 ∀ω ∈ E∗

C−1 ≤ diam(ψω(JQ))

diam(φω(JS))
≤ C.

(f) ∃D ≥ 1 ∀ω ∈ E∗

D−1 ≤ ||ψ
′
ω||

||φ′ω||
≤ D.

(g) For every t ∈ (0,+∞) ∩ Fin(S) the measures mQ,t and mS,t ◦H−1 are
equivalent.

(h) For every t ∈ (0,+∞) ∩ Fin(S), µQ,t = µS,t ◦H−1.
(i) There exists t ∈ (0,+∞) ∩ Fin(S) such that the measures mQ,t and

mS,t ◦H−1 are equivalent.
(j) There exists t ∈ (0,+∞) ∩ Fin(S) such that µQ,t = µS,t ◦H−1.

5. Conjugacies of tame Meromorphic Functions

Making use of the main results of the two previous sections we now shall
prove the following main result of our paper. We want to emphasize that in this
theorem we do not require the conjugacy to be defined on the whole complex
plane but merely on the Julia sets.

Theorem 5.1. If the restrictions to their Julia sets of two tame transcendental
meromorphic functions f : C→ Ĉ and g : C→ Ĉ are topologically conjugate by
a locally bi–Lipschitz homeomorphism H : Jf → Jg, then this conjugacy extends
to an affine linear (z 7→ az+b) conjugacy from C to C between the meromorphic

maps f, g : C→ Ĉ.

Proof. Since both sets PS(f)∩Jf and PS(g)∩Jg are nowhere dense respectively
in Jf and Jg, and since H : Jf → Jg is a homeomorphism, there thus exists a
point b ∈ Jf \ PS(f) such that H(b) /∈ PS(g) and b is not a periodic. Hence,
there in turn exists η > 0 so small that

(5.1) B(H(b), 4η) ∩ PS(g) = ∅ and |(gk)′(z)| > 4K
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whenever k ≥ 1, z ∈ B(H(b), η) and gk(z) = H(b). Here the constant K is
Koebe’s distortion constant on B(H(b), η). Now take η′ > 0 so small that the
following conditions are satisfied:

(i) the map H|Jf∩B(b,2η′) : Jf ∩B(b, 2η′)→ H(Jf ∩B(b, 2η′) is bi–Lipschitz,
(ii) H(Jf ∩B(b, 2η′)) ⊂ B(H(b), η).

By Theorem 2.1 there exist 0 < β ≤ η′ and a nice set U1, for the map f , centered
at the point b and such that

B(b, β) ⊂ U1 ⊂ B(b, η′).

Let SU1 = {φe}e∈E be the iterated function system induced by the nice set U1.
Then SU1 satisfies the Open Set condition and is of W type. For every e ∈ E
let ||e|| ≥ 1 be uniquely determined by the requirement that φe : U1 → U1 is
a holomorphic inverse branch of f ||e||. Furthermore, let φ∗e : B(H(b), 2η) → C
be the unique holomorphic inverse branch of g||e|| defined on B(H(b), 2η) and
sending H(b) to H(φe(b)). Note that in fact φ∗e is well defined and univalent on
the ball B(H(b), 4η).

Claim 1: S∗U1
= {φ∗e}e∈E is a conformal iterated function system of W type on

B(H(b), η) and it is bi–Lipschitz conjugate to SU1 .

Proof. By virtue of (ii) and (5.1) we get for every e ∈ E that

φ∗e
(
B(H(b), 4η)

)
⊂ B(H(b), η + diam

(
φ∗e
(
B(H(b), 4η)

))
⊂ B(H(b), η +K(8K)−18η)

= B(H(b), 2η).

So, S∗U1
is a conformal iterated function system on B(H(b), η), and by its very

definition and conjugation of f and g by H, S∗U1
is bi–Lipschitz conjugate to

SU1 . Thus in particular, since SU1 is of W type, so is S∗U1
. Claim 1 is proved.

By Proposition 3.3 the system SU1 is not essentially affine, and therefore, by
virtue of Theorem 4.2, there exist an open set JU1 ⊂ U∗1 ⊂ U1 and a conformal
map H1 : U∗1 → C such that

(5.2) H1|JU1
= H.

Now fix 0 < η′′ ≤ β so small that B(b, η′′) ⊂ U∗1 and

(iii) The map H1|B(b,η′′) is 1-to-1.

Take finally 0 < η′′′ ≤ η′′ so small that

(5.3) H(Jf ∩B(b, η′′)) ⊃ Jg ∩H1(B(b, η′′′)).
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At this moment apply Theorem 2.1 again to produce a nice set U2 for f , centered
at b, and such that

(5.4) U2 ⊂ B(b, η′′′).

As above, let SU2 = {φe}e∈E be the iterated function system induced by the
nice set U2. Let S∗U2

has the corresponding meaning as S∗U1
. Then Claim 1 holds

for S∗U2
too. As for U1, there exist an open set JU2 ⊂ U∗2 ⊂ U2 and a conformal

map H2 : U∗2 → C such that

(5.5) H2|JU2
= H.

Since JU2 ⊂ JU1 , we may assume without loss of generality that

(5.6) U := U∗2 ⊂ U∗1 .

Since JU2 is an uncountable subset of U2, and since H1 and H2 are holomorphic
functions, we conclude from (5.2) and (5.5) that H1|U = H2. Along with (5.6),
(5.4), (5.3), and (iii), this implies that

(5.7) H2(U \ Jf ) ⊂ C \ Jg.
For an ease of notation set from now on

H̃ := H2.

Fix e, an arbitrary element in E, and put n = ||e||. Then gn ◦ H̃ ◦φe|JU = H̃|JU ,

and as both maps gn ◦ H̃ ◦ φe : U → Ĉ and H̃ : U → Ĉ are holomorphic (the
former omits infinity on U \ Jf because of (5.7) and since the Fatou set of g
contains no inverse images of ∞ under any iterate of g, and on the Julia sets
we have topological conjugacy between f and g which respects inverse images
of ∞), we conclude that

(5.8) gn ◦ H̃ ◦ φe = H̃,

both maps defined on U . Let

E2(f) = Ĉ \
∞⋃
k=0

fk(U).

Montel’s Theorem tells us that the set E2(f) consists of at most two points.
Let Sing(f−1) and PS(f) be the set defined in Preliminaries. In order to apply
Kuratowski–Zorn Lemma, consider the family F of all open connected subsets
W of C \ E2(f) containing U for which there exists a holomorphic function

H̃W : W → Ĉ with the following two properties.

(a) H̃W |U = H̃.
(b) If z ∈ U and fn(z) ∈ W , then gn ◦ H̃(z) = H̃W ◦ fn(z).
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The family F is partially ordered by inclusion and, by (5.8), it contains U , so
F is not empty. If C is a linearly ordered subset of F , then H̃W2 |W1 = H̃W1

whenever W1,W2 ∈ C and W1 ⊂ W2. This is so since W1 ⊃ U and (a) holds.
Thus putting W =

⋃
{G : G ∈ C} and defining H̃W (z) = H̃G(z) if z ∈ G ∈ C,

we see that H̃W : W → Ĉ is a well-defined holomorphic function satisfying
the requirements (a) and (b). So, W is an upper bound of C. We therefore
conclude from Kuratowski–Zorn Lemma that F contains a maximal element,
and we denote it by G. We claim that

(5.9) G = C \ E2(f).

Indeed, seeking contradiction suppose that there exists a point w ∈ ∂G \E2(f).
Then there exist k ≥ 0 and ξ ∈ U such that fk(ξ) = w. Take R > 0 so small
that if Cξ(w,R) is the connected component of f−k(B(w,R)) containing ξ, then

(5.10) Cξ(w,R) ∩ f−k(w) = {ξ},

(5.11) Cξ(w,R) ⊂ U,

(5.12) E2(f) ∩B(w,R) = ∅,
and the map fk|Cξ(w,R) : Cξ(w,R)→ B(w,R) has no other critical points except
possibly ξ. Let l be an arbitrary closed line segment joining w and ∂B(w,R).
There then exists f−kl : B(w,R)\ l→ C, a holomorphic branch of f−k such that

f−kl
(
B(w,R) \ l

)
⊂ Cξ(w,R).

Define the holomorphic map H̃l : B(w,R) \ l→ C as

H̃l = gk ◦ H̃ ◦ f−kl .

Because of (5.11) and (b) applied to G, we have that

H̃l|G∩(B(w,R)\l) = H̃G|G∩(B(w,R)\l),

and therefore, if q is another closed line segment joining w and ∂B(w,R), then
H̃l and H̃q coincide on the uncountable set G∩ (B(w,R) \ (l ∪ q)). Hence, they

glue together to a single holomorphic map H̃w : B(w,R) \ {w} → C. In virtue
of (5.10), limz→w f

−k
l (z) = ξ and limz→w f

−k
q (z) = ξ. Therefore,

lim
z→w

H̃w(z) = gk(H̃(ξ)).

Consequently H̃w extends holomorphically to a function from B(w,R) to C.
Since H̃w and H̃G coincide on G ∩ B(w,R), they glue together to a single

holomorphic function Ĥ : Gw → C, such that

Ĥ|G = H̃G,
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where Gw = G ∪B(w,R). We shall prove that

Gw ∈ F .
Indeed, Gw is an open connected subset of C \ E2(f) containing U . Moreover,

property (a) holds since Gw ⊃ G ⊃ U and Ĥ|U = H̃G|U = H̃. We shall show
that (b) holds too. In order to prove it consider an integer n ≥ 0 and C, a
connected component of U ∩ f−n(Gw). If fn(C)∩G 6= ∅, then (b) holds for Gw

because it holds for G. So, we may assume without loss of generality that

fn(C) ∩G = ∅,
in particular

(5.13) fn(C) ⊂ B(w,R).

Let γ be a compact topological arc in B(w,R) joining fn(C) and G, and disjoint
from

⋃∞
j=0 f

j(Sing(f−1)). Let V∗ ⊂ B(w,R) be an open connected simply con-

nected neighborhood of γ disjoint from
⋃n
j=0 f

j(Sing(f−1)). Let f−n∗ : V∗ → C
be a unique holomorphic inverse branch of fn defined on V∗ and determined by
the condition that

f−n∗ (V∗ ∩ fn(C)) ⊂ C.

Now, fix a point y ∈ f−n∗ (γ ∩ G) \ E2(f). There then exist a point x ∈ U and
an integer k ≥ 0 such that fk(x) = y. Let V ⊂ V∗ be an open connected simply

connected neighborhood of γ disjoint from
⋃n+k
j=0 f

j(Sing(f−1)). Let f
−(n+k)
x :

V → C be a unique holomorphic inverse branch of fn+k defined on V and
sending fn(y) to x. Decreasing V if necessary, we may assume without loss of
generality that

f−nx (V ) ⊂ U.

The immediate observations are that

(1) fk ◦ f−(n+k)
x = f−n∗ |V ,

(2) f−kx := f
−(n+k)
x ◦ fn : f−n(V )→ V

is the unique holomorphic inverse branch of fk defined on f−n∗ (V ) and
sending y to x.

Furthermore,

(3) U ∩ f−(n+k)
x (G ∩ V ) 6= ∅ as x ∈ U ∩ f−(n+k)

x (G ∩ V )

and

(4) U ∩ f−kx (U ∩ f−n∗ (V )) 6= ∅
as

U ∩ f−n∗ (V ) ⊃ f−n∗ (V ∩ fn(C)), V ∩ fn(C) 6= ∅,
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and

f−kx (U ∩ f−n∗ (V )) ⊂ f−kx ◦ f−n∗ (V ) = f−(n+k)
x (V ) ⊂ U.

It follows from (3) that

H̃|G∩V = gn+k ◦ H̃ ◦ f−(n+k)
x |G∩V ,

whence
H̃|V = gn+k ◦ H̃ ◦ f−(n+k)

x .

And it follows from (4) that

H̃|U∩f−n∗ (V ) = gk ◦ H̃ ◦ f−kx |U∩f−n∗ (V ).

Therefore

Ĥ|fn(U∩f−n∗ (V )) = gn+k ◦ H̃ ◦ f−(n+k)
x |fn(U∩f−n∗ (V ))

= gn(gk ◦ H̃ ◦ f−kx |U∩f−n∗ (V ) ◦ f
−n
x |fn(U∩f−n∗ (V ))

= gn ◦ H̃ ◦ f−nx |fn(U∩f−n∗ (V )).

Thus
gn ◦ H̃|U∩f−n∗ (V ) = Ĥ ◦ fn|U∩f−n∗ (V ).

Since C ⊂ U , f−n∗ (V ) ⊃ f−n∗ (V ∩ fn(C)) 6= ∅, and f−n∗ (V ∩ fn(C)) ⊂ C, we
thus obtain that

gn ◦ H̃|C = Ĥ ◦ fn|C .
So, Gw ∈ F , contrary to maximality of G. Formula (5.9) is thus proved. Put

Ĥf := H̃C\E2(f) : C \ E2(f)→ C.
By the symmetry of the situation we also have now a holomorphic function
H−1
g : C \ E2(f) → C which extends H−1 : Jg → Jf from some neighborhood

of a point in Jg. But H−1
g ◦ Hf is a holomorphic function well-defined on the

set C \
(
E2(f)∪H−1

f (E2(g))
)
. We might have constructed H−1

g starting with a

nice set Ug such that H−1(Jg ∩ Ug) ⊂ Jf ∩ U . Then

H−1
g ◦Hf |

H−1
(
JUg

) = H−1
g |JUg ◦Hf |

H−1
(
JUg

) = Id
H−1
(
JUg

).
Thus,

(5.14) H−1
g ◦Hf = Id

C\
(
E2(f)∪H−1

f (E2(g))
).

In particular, Hf |C\
(
E2(f)∪H−1

f (E2(g))
) is one–to–one. Hence, Hf : C \E2(f)→ C

is one–to–one. Therefore E2(f) consists only of removable singularities of the
function Hf : C \ E2(f) → C. Consequently Hf extends holomorphically to
C. The same holds for H−1

g , and thus, because of (5.14), H−1
g ◦Hf = IdC. So,

Hf : C→ C is a holomorphic isomorphism and Hf ◦ f = g ◦Hf on C. But then
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the map Hf : C→ C must be affine linear, i.e. of the form C 3 z 7→ az+ b ∈ C.
The proof is complete. �
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