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Abstract. Let f : Ĉ→ Ĉ be an arbitrary rational map of degree larger than 1. Denote
by J(f) its Julia set. Let φ : J(f) → R be a Hölder continuous function such that
P (φ) > sup(φ). It is known that there exists a unique equilibrium measure µφ for this
potential. We introduce a special inducing scheme with fine recurrence properties. This
construction allows us to prove three results. Dimension rigidity, i.e. we characterize
all maps and potentials for which HD(µφ) = HD(J(f). As its fairly straightforward
consequence we obtain that HD(µφ) = 2 if and only if both the function φ : J(f) → R
is cohomologous to a constant in the class of continuous functions on J(f), and the
rational function f : Ĉ → Ĉ is a critically finite rational map with a parabolic orbifold.
Real analyticity of topological pressure P (tφ) as the function of t. Exponential decay of
correlations, and, as its consequence, the Central Limit Theorem and the Law of Iterated
Logarithm for Hölder continuous observables. Finally, the Law of Iterated Logarithm for
all linear combinations of Hölder continuous observables and the function log |f ′|, and its
geometric consequences that allow us to compare equilibrium states with the appropriate
generalized Hausdorff measures in the spirit of [PUZ].

1. Introduction. Statement of results.

Let f : C→ C be a rational map of degree deg(f) ≥ 2. The Julia set of the map f : C→ C
is denoted by J(f). Let ϕ : J(f) → R be a continuous function, in the sequel frequently
referred to as a potential. By P (φ) we denote the (classical) topological pressure of the
potential φ with respect to the dynamical system f : J(f) → J(f). Its definition and
a systematic account of properties can be found for example in [PU]. If µ is a Borel
probability f -invariant measure on J(f), we denote by hµ(f) its Kolmogorov–Sinai metric
entropy. The relation between pressure and entropy is given by the following celebrated
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Variational Principle.

(1) P(ϕ) = sup

{
hµ(f) +

∫
ϕdµ

}
,

where the supremum is taken over all Borel probability f -invariant measures µ, or equiv-
alently, over all Borel probability f -invariant ergodic measures µ. The measures µ for
which

hµ(f) +

∫
φ dµ = P(φ)

are called equilibrium states for the potential φ. In [Ly] M. Lyubich proved that each
continuous potential φ : J(f)→ R admits an equilibrium state. The potential φ : J(f)→
R is said to have a pressure gap if

P (ϕ) > sup(ϕ).

Obviously, the function φ = 0 has a pressure gap, as in this case P (φ) = htop(f) =
log(deg(f)) > 0. Likewise, each constant potential φ has a pressure gap. Furthermore,
it immediately follows from the Variational Principle (1) that every Hölder continuous
function φ satisfying sup(φ) − inf(φ) < log d has a pressure gap. It was proved in [DU1]
(comp. also [Pr1]) that each Hölder continuous potential with a pressure gap admits
exactly one equilibrium state; denote it by µϕ. Some of its ergodic properties have been
investigated therein.

The goal of this article is to answer the geometric and stochastic questions that have been
attracting the attention of the experts in the field ever since the papers [PUZ], [DU1], and
[Z1] have been written. As our main tool, we introduce in this article the method of fine
inducing which results in a construction of a conformal iterated function system fitting
into the setting of [MU1] and [MU2]. Armed with this inducing scheme and the theory of
conformal iterated function systems, we further investigate finer geometric and stochastic
properties of the equilibrium measure µϕ as well as regularity properties of the pressure
function R 3 t 7→ P (tϕ). We now describe them in this order.

We recall that two functions g, k : J(f)→ R cohomologous in a subclass C of real-valued
functions defined on J(f) if there is u ∈ C such that

k − g = u− u ◦ f.
We put

Pf =
∞⋃
n=1

fn(Crit(f)

and call Pf the postcritical set of f .

A point z ∈ J(f) is called conical for f if there exist θ > 0 and an infinite increasing
sequence nk ≥ 1 of positive integers such that for each k there exists f−nkz , a holomorphic
inverse branch of fnk , which is defined on the disk B(fnk(z), θ) and sends the point fnk(z)
to z. The set of all conical points of f will be denoted by Jc(f). The hyperbolic dimension
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hD(J(f)) is defined to be the supremum of Hausdorff dimensions of all hyperbolic subsets
of J(f). Given a Borel probability measure µ on a compact metric space X by HD(µ), the
Hausdorff dimension of measure µ, we understand the number

inf{HD(Y ) : µ(Y ) = 1}.
The dynamical dimension DD(J(f)) is defined as

DD(J(f)) = sup{HD(µ)},
where the supremum is taken over all ergodic invariant measures of positive entropy. Fix
t ≥ 0. A Borel probability measure m on J(f) is said to be t–conformal for the rational

map f : Ĉ→ Ĉ, if m(J(f)) = 1 and

m(f(A)) =

∫
A

|f ′|t dm

for every Borel set A ⊂ J(f) such that f |A is injective. The number δ(f) is defined to be
the minimal exponent for which a conformal measure exists. The following theorem (see
[DU2] and [U1]) gives a full answer to the question of how all these four numbers defined
above are related one to each other.

Theorem 1. For all rational functions f : Ĉ→ Ĉ we have that

HD(Jc(f)) = DD(J(f)) = hD(J(f)) = δ(f).

Proof. The equality of the last three numbers above originated with the paper [DU2]. Its
extensive discussion can be found in [U1]. The inequality hD(J(f)) ≤ HD(Jc(f)) holds
since every point of a hyperbolic subset of J(f) is a conical point. Finally the inequality
HD(Jc(f)) ≤ δ(f) follows from the left-hand side of formula (1.2) in [U1]. �

The first main results of the present paper are these.

Theorem (Refined Dimension Rigidity). Let f : Ĉ→ Ĉ be a rational map, let φ : J(f)→
R be a Hölder continuous potential such that sup(φ) < P (φ). Let µφ be a unique equilibrium
state corresponding to this potential. Then the following are equivalent.

(1) HD(µφ) = DD(J(f)),
(2) HD(µφ) = HD(J(f)),
(3) The intersection Pf ∩J(f) consists of at most four points, there are no other points

in Pf ∩ J(f) and also the potential φ : J(f) → R is modulo constant cohomolo-
gous to −DD(J(f)) log |f ′| in the class of continuous functions on J(f) \ Pf . The
cohomology constant is equal to P (φ).

(4) The intersection Pf ∩ J(f) consists of at most four points, it is equal to Pf ∩
J(f), and also the potential φ : J(f) → R is cohomologous modulo constant to
−HD(J(f)) log |f ′| in the class of continuous functions on J(f) \ Pf . The coho-
mology constant is equal to P (φ).
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In addition, if the closure of the postcritical set Pf is disjoint from J(f), which equivalently
means that the restriction f|J(f) : J(f) → J(f) is then expanding, and the potential φ :
J(f) → R is cohomologous modulo constant to −HD(J(f)) log |f ′| in the class of Hölder
continuous functions on J(f).

and

Corollary. Let f : Ĉ→ Ĉ be a rational map and let φ : J(f)→ R be a Hölder continuous
potential such that sup(φ) < P (φ). If µφ is a unique equilibrium state corresponding to this
potential, then HD(µφ) = 2 if and only if both the function φ : J(f)→ R is cohomologous to

a constant in the class of continuous functions on J(f), and the rational function f : Ĉ→ Ĉ
is a critically finite rational map with a parabolic orbifold.

The proof of this theorem is provided in Section 5. As mentioned above, our main method
of its proof is a special, called fine, inducing scheme. This theorem has been proved by
Anna Zdunik in [Z1] for the case of φ = 0, where even more exceptional set of rational
functions has emerged. The idea of her proof was entirely different than ours, based on
somewhat complicated regularization process, canonical conditional measures, Rokhlin’s
natural extension and a heavy use of the Central Limit Theorem. Developing Anna’s
Zdunik approach Feliks Przytycki has proved in [Pr2] this theorem for all Hölder continuous
potential with a pressure gap. He has however not investigated in detail the exceptional
set of maps and potentials; he has just required that φ : J(f)→ R is not, modulo constant,
cohomologous to −DD(J(f)) log |f ′| in L2(µφ). Our present proof of this theorem avoids
painful regularization, stochastic laws and conditional measures, and, at least to our taste,
appears to be substantially simpler.

In Section 8, also endowed with the fine inducing scheme and the corresponding iterated
function system, by using a tower method introduced in [LSY], we deduce stochastic prop-
erties of the measure–preserving dynamical system (f, µϕ) from the stochastic properties
of the corresponding iterated function system constructed out of the fine inducing scheme.
A crucial estimate here is an exponentially small, with respect to n, bound on the measure
of points for which the order of the iteration of the original map, appearing in the induced
iterated function system, is larger than n. We prove the following.

Theorem. For the equilibrium measure µφ the following hold.

(1) For every 0 < α ≤ 1, every Hölder continuous function ϕ : J(f)→ R with exponent
α, and every bounded measurable function ψ : J(f)→ R, we have∣∣∣∣ ∫ ψ ◦ fn · ϕdν −

∫
ϕdν

∫
ψdν

∣∣∣∣ = O(κn)

with some 0 < κ < 1, depending on α.
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(2) If ϕ : J(f)→ R is a Hölder continuous function not cohomologous to a constant in
L2(µφ), i.e. if there is no square integrable function η for which ϕ = const+η◦f−η,
then the Central Limit Theorem holds. This means that there exists σ > 0 such
that

1√
n

n−1∑
j=0

ϕ ◦ f j → N (0, σ)

in distribution. N (0, σ) is here the normal distribution with 0 mean and variance
σ.

(3) The Law of Iterated Logarithm holds for every Hölder continuous function g :
J(f) → R that is not cohomologous to a constant in L2(µφ). This means that
there exists a real positive number Ag such that µφ almost everywhere

lim sup
n→∞

Sng − n
∫
gdµ√

n log log n
= Ag.

Item (1) of this theorem is formulated in [Ha] and item (2) was proved in [DPU]; both
using entirely different methods than ours. Item (3), a long standing open problem, is
completely new.

The above theorem holds not only for Hölder continuous observable. In fact, we prove
the following two results involving the logarithm of the modulus of derivative, a function
usually with singularities.

Theorem. Let ψ = aφ+ b log |f ′| : J(f)→ R, a, b ∈ R. Then the function ψ : J(f))→ R
satisfies the Law of Iterated Logarithm with respect to the dynamical system (f, µφ), provided
that ψ∗ is not cohomologous to a constant in L2(µφ∗).

Theorem. If the pair (f, φ) fails to satisfy condition (1) of Theorem 43, then the function
ψ := φ + HD(µφ) log |f ′| : J(f) → R satisfies the Law of Iterated Logarithm with respect
to the dynamical system (f, µφ). This means that there exists a real positive constant Aψ
such that µφ almost everywhere

lim sup
n→∞

Snψ − n
∫
ψdµ√

n log log n
= Aψ.

As an important geometric consequence of this latter theorem, we get the following.

Theorem. Suppose that the pair (f, φ) fails to satisfy condition (1) of Theorem 43. Let
cφ = Aφ+HD(µφ) log |f ′| > 0 and let κ := HD(µφ). Then

• µφ is absolutely continuous with respect to Hgκ,c for all 0 < c <
√
cφ/χµφ, where

the generalized Hausdorff measures Hgκ,c were defined at the very end of our paper.



6 MICHA L SZOSTAKIEWICZ, MARIUSZ URBAŃSKI, AND ANNA ZDUNIK

• µφ is singular with respect to Hgκ,c for all c >
√
cφ/χµφ.

• µφ is singular with respect to the ordinary Hausdorff measure Htκ.

The part (3) of this theorem was proved with different methods in [Z1] in the case when
the potential φ is identically equal to zero. This theorem was proved in [PUZ] for measures
that can be represented as projections of equilibrium states of Hölder continuous potentials,
via a coding tree, from an associated symbol space. The question of whether it is true for
equilibrium states of Hölder continuous potentials on the Julia set itself, as a matter of fact,
the collection of most natural measures there, has been known ever since. We positively
answer it now.

In order to set up the next theorem let ∆φ be the set of all those parameters t ∈ R for
which the potential tφ is admissible. Note that ∆φ is an open subset of R containing the
point 1. In Section 6 we prove the following.

Theorem. The topological pressure function

∆φ 3 t 7→ P (tφ) ∈ R

is real-analytic.

This theorem is classical in the case when the rational function f : Ĉ → Ĉ is hyperbolic,
the proof goes back to Ruelle (see [Rue]). Juan Rivera-Letelier has explained to us that it
follows from [HP] for all Collet-Eckmann rational functions and asked about the general
case. We answer his question now. We heavily use our fine inducing scheme and the
appropriate parts of the theory of iterated function systems, see [MU2] and [U2].

Finally, the fine inducing scheme leading to the construction of the conformal iterated
function system, which constitutes the main tool of our investigations, is presented in
Sections 2 and 3.

2. Fine Inducing Scheme – Preliminaries

We collect here the properties of the measure µφ which will be used in the sequel. For the
proofs, we refer to [DU1] and [DPU].

Proposition 2. Let φ : J(f) → R be a Hölder continuous function. Assume also that
sup(φ) < P (φ). Then there exists a unique equilibrium measure µφ, i.e µφ satisfies the
equality

P (φ) = hµφ +

∫
φ dµφ.
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. In addition, if L : C(J(f))→ C(J(f)) is the corresponding Perron-Frobenius operator

L(ζ)(x) =
∑

y∈f−1(x)

expφ(y)ζ(y),

then

(a) The spectral radius of the Perron-Frobenius operator L : C(J(f)) → C(J(f)) is
equal to λ = eP (φ).

(b) The spectral radius λ is an eigenvalue of both, the Perron-Frobenius operator L :
C(J(f))→ C(J(f)) and its conjugate operator L∗ : C∗(J(f))→ C∗(J(f)).

(c) There exists a unique probability eigenmeasure mφ corresponding to the eigenvalue
λ of the conjugate operator L∗ : C∗(J(f)) → C∗(J(f)). This measure is in the
contemporary literature frequently refereed to as a conformal measure for φ.

(d) There exists a unique continuous, non-negative eigenfunction ρφ : J(f)→ R corre-
sponding to the eigenvalue λ of the Perron-Frobenius operator L which is normalized
so that

∫
ρφdmφ = 1

(e) The function ρφ : J(f)→ R is Hölder continuous and everywhere positive.

(f) ρφ =
dµφ
dmφ

, i.e. ρφ is the Radon-Nikodym derivative of µφ with respect to mφ,

(g) The normalized Perron-Frobenius operator λ−1L : C(J(f)) → C(J(f)), is almost
periodic.

Notation. Abbreviate the Julia set J(f) of the map f to J . Let φ : J → R be a Hölder-
continuous function, with some Hölder exponent α, such that sup(φ) < P (φ). Since adding
to φ any constant does not change the equilibrium measure µφ, subtracting P (φ) from φ,
we may in the sequel assume without loss of generality that P (φ) = 0. We now define the
function

φ̃ = log ρφ − log ρφ ◦ f + φ− P (φ).

Since adding a coboundary does not alter pressure and the set of equilibrium measures,
P (φ̃) = 0, and the potential φ̃ has also a unique equilibrium measure which is equal to µφ.
What we achieved is that the Jacobian of the map f : J → J with respect to the invariant
measure µφ is equal to exp(−φ̃).

For the sake of simplicity, in what follows we shall write shortly µ for µφ.

Notation. Given q ∈ N, we denote

φq = φ+ φ ◦ f + φ ◦ f 2 + · · ·+ φ ◦ f q−1,

φ̃q = φ̃+ φ̃ ◦ f + φ̃ ◦ f 2 + · · ·+ φ̃ ◦ f q−1
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and by Snφ̃q we denote the sum

Snφ̃q = φ̃q + φ̃q ◦ f q + · · ·+ φ̃q ◦ f (n−1)q.

From now on, the iterate f q will be denoted by g. In this notation

Snφ̃q = φ̃q + φ̃q ◦ g + · · ·+ φ̃q ◦ gn−1

We also put

φqr = Srφq

and

φ̃qr = Srφ̃q.

Let

θ̃ = P (φ)− sup(φ) and θ =
θ̃

4
.

Notation. From now on, we shall always use the normalized Perron-Frobenius operator

Lgη(x) =
∑

y∈g−1(x)

η(y) exp φ̃q(y).

Note that Lg(1) = 1. Similarly, if h = gr is an iterate of g, then

Lhη(x) = Lrgη(x) =
∑

z∈h−1(x)

η(z) expSrφ̃q(z)

Note that, with M = 2|| log ρ||∞, we have

(2) φ̃q = log ρ− log ρ ◦ f q−1 + (φ+ φ ◦ f + · · ·+ φ ◦ f q−1)− qP (φ) < −qθ̃ +M <
θ̃

2
q

for all q ≥ 1 large enough, and consequently,

(3) Snφ̃q < −nq
θ̃

2
= −2nqθ

for all such q ≥ 1. From now on, we assume that q ≥ 1 is large enough to satisfy (2), and
in particular (3) holds.

For the construction of our inducing scheme, we need the following.

Lemma 3. Let G be a union of small discs around critical periodic orbits (if they exist).
For every γ ∈ (0, 1) there exists an integer q = q(γ) ≥ 1 such that, if U ⊂ Gc is an open
topological disc with piecewise smooth boundary, which contains no critical values of f q,
then for every n ≥ 0 there exists a family Wn of connected components of f−qn(U) such
that W0 = {U} and the following hold.

(an) if V ∈ Wn+1, then f q(V ) ∈ Wn and
(bn) if V ∈ Wn, then the map f qn|V is univalent.

(cn) max{diamV : V ∈ Wn} ≤ Cqγ
n
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(dn) Let Zn be the family of all connected components of f−q(V ), V ∈ Wn−1. If we put

Bn(x) =
∑

V ∈Zn\Wn

∑
y∈f−qn(x)∩V

expSnφ̃q(y),

then

Bn(x) ≤ exp(−nqθ),

where, we recall, θ = θ̃
4
.

In item (cn) above the number Cq > 0 is a constant depending on q and on the disc U but
it is independent of n.

Proof. The proof of this lemma is a simplification of the combined proofs of Lemma 4 in
[DU] and Lemma 3.6 in [UZ]. We shall quote a part of this proof, the estimate of Bn(x) from
above. The reason is that it is of critical importance for the further steps of our construction
of the induced scheme. And indeed, in order to calculate Bn(x), one has to calculate the

total sum of the terms exp
(
Snφ̃q(y)

)
over all those inverse images y ∈ f−q(x) that are in

”bad” components, namely y ∈ V and V ∈ Zn \Wn. It follows from the construction that
the maps f qn|V are univalent, and the elements of Zn \Wn are exactly those components
that either intersect the set of critical values of f q (its cardinality is bounded above by
Nq for some constant N , or their area is large (area(V ) > γ2n)1 Obviously, the number
of components in Zn \ Wn is thus bounded above by γ−2n + Nq, and, since each such
component contains exactly one preimage of x, we have

(4)

Bn(x) ≤ (γ−2n +Nq) exp

(
−nq θ̃

2

)

= exp

(
−nq

(
θ̃

2
+

2 log γ

q

))
+Nq exp

(
−nq θ̃

2

)
≤ exp(−nqθ)

if, we recall, θ = θ̃/4 and q ≥ 1 is large enough.
�

Remark 4. We fix the values q and θ at this step.

1As David Simmons has pointed out, there was an inaccuracy in the proof of Lemma 4 in [DU] which
can be traced back to Mane’s paper [Ma2]. The point is that the closures of inverse images of the set U
under fq need not be closed topological discs. However, one should then consider connected components
of inverse images of small open neighborhoods of these closures. The bounded distortion would follow by
taking chains of holomorphic inverse branches along these neighborhoods. This is needed to conclude that
small area implies small diameter. Since the collections of all these components of the same order will
have bounded above multiplicity, the number of them thrown away because of containing critical values,
will be still bounded above by Nq with some appropriate constant N .
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Corollary 5. There exists a constant C̃q (depending on q and on the disc U) such that for
all n ≥ 1, all V ∈ Wn and all x, y ∈ W ,

(5)
expSnφ̃q(x)

expSnφ̃q(y)
< C̃q

Proof. Since φ : Ĉ → R is Hölder continuous, the function φq : Ĉ → R is also Hölder
continuous, with the same exponent ω. Denote by Hq the Hölder constant for φq. If
x, y ∈ Wn then dist(gi(x), gi(y)) < Cqγ

n−i, so |Snφq(x) − Snφq(y)| ≤ Hq

∑n
i=0 γ

(n−i)ω.

Since Snφ̃q = Snφq − log ρ ◦ gn + log ρ and ρ is bounded both from above and from below,
the result follows �

Let

B̃k(x) =
∑

(k−1)r<n≤kr

Bn(x)

It follows from the previous lemma that

B̃k ≤ e−(k−1)rθq + e−((k−1)r+1)θq + · · ·+ e−krθq ≤ re−(k−1)rθq.

Remark 6. In the calculations below we shall use the important property that Lg(1) = 1,
therefore, for every l and for every y∑

z∈g−l(y)

expSlφ̃q(z) = 1.

Denote

W̃k = Wkr.

In particular, W̃1 = Wr is the family of ”good” components, i.e. ”good” preimages of
U under f qr. Note that W̃k is a subfamily of the family of connected components of
h−k(U). The components in W̃k will be called good. Thus, denoting by Z̃k the family of
all connected components of h−1(Ṽ ), over all Ṽ ∈ W̃k−1, we see that

(6)

B̃k(x) =
∑

(k−1)r<n≤kr

Bn(x) =
∑

(k−1)r<n≤kr

 ∑
V ∈Zn\Wn
y∈g−n(x)∩V

expSnφ̃q(y)


=

∑
(k−1)r<n≤kr

 ∑
V ∈Zn\Wn
y∈g−n(x)∩V

expSnφ̃q(y)
∑

z∈g−(kr−n)(y)

expSkr−nφ̃q(z)


=

∑
Ṽ ∈Z̃k\W̃k

∑
z∈h−k(x)∩Ṽ

expSkrφ̃q(z)
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In particular, the only bound, a weak one, we obtain out of this and (4) for B̃1 is r exp(−qθ),
but the bounds for B̃2, B̃3, . . . become much better:

(7) B̃k(x) =
∑

(k−1)r<n≤kr

Bn(x) ≤ r exp(−rq(k − 1)θ).

In the sequel, we will need the following simple general observation.

Lemma 7. Assume that Q ⊂ Ĉ is a set with the following property: there exists β > 0
such that

(8) Lh(1Q)(x) > β

for almost every x ∈ J(f). Then there exist α ∈ (0, 1), an integer n0 ≥ 0, and δ > 0, all
three depending on β only, such that for all n ≥ n0

(9) µ(Bn
α) < exp(−δn),

where

(10) Bn
α =

{
x : #

{
0 ≤ i ≤ n : hi(x) ∈ Q

}
≤ αn

}
.

Proof. Since

µ(Bn
α) =

∫
1Bnα =

∫
Lnh(1Bnα),

it suffices to estimate Ln(1Bnα) uniformly from above. For every set K ⊂ {0, 1, 2 . . . n− 1}
with #K > (1− α)n, let

Bn
α,K = {x : hi(x) /∈ Q ⇔ i ∈ K}

The sets Bn
α,K are mutually disjoint and their union is equal to Bn

α. It is now clear that

Lnh(1Bnα,K ) ≤ (1− β)k,

where k = #K ≥ (1− α)n. Thus, summing over all possible choices of the set K, we get

(11) Lnh(1Bnα) ≤
∑

(1−α)n≤k≤n−1

(
n

k

)
(1− β)k.
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The remaining part of the proof relies on a standard application of Stirling’s formula. We
shall estimate the first summand in (11):

(12)

(
n

(1− α)n

)
=

n!

((1− α)n)!
(1− β)(1−α)n

� nn+ 1
2

((1− α)n)((1−α)n+ 1
2 (αn)αn+ 1

2

(1− β)(1−α)n

= (α(1− α))−1/2 1

n
1
2

(1− β)(1−α)n

(1− α)(1−α)nααn

= (α(1− α))−1/2 1

n
1
2

(
(1− β)(1−α)

(1− α)(1−α)αα

)n
.

Now, for α sufficiently small (but depending on β only), we have

(1− β)(1−α)

(1− α)(1−α)αα
< δ̃α < 1

and δ̃α → 1− β as α→ 0. Now, it is straightforward to check that, for all k ≥ (1− α)n,(
n

k + 1

)
(1− β)k+1 <

(
n

k

)
(1− β)k

if only α < 1/2. Therefore, we can estimate (11) from above by αn exp(−δ̃n) ≤ exp(−δn)

for all n ≥ 1 large enough, where δ = δ̃/2. �

We now want to use Lemma 7 for h = gr = f qr (where r is not determined yet), and

Q = Q(r) =
⋃

V ∈Wr

V =
⋃

V ∈W̃1

V

It is important that in Lemma 7 the constants α and δ depend only on β. The following
Proposition says that so defined set Q satisfies the assumptions of Lemma 7.

Proposition 8. If the disc U in Lemma 3 is chosen so that µφ(U) = 1 then there exists
β ∈ (0, 1) independent of r such that for

Q = Q(r) =
⋃

V ∈Wr

V

and for every x ∈ J ∩ U (whence for µφ-almost every x ∈ J)

(13) Lh(1Q)(x) > β,

where, as before, h = gr.
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Its proof is a direct application of Lemma 4 in [DU1] and Corollary 5. The next lemma
will be used for our construction of an appropriate disc U (see Proposition 11 below).

Lemma 9. For every integer λ ≥ 1 large enough the following holds. Let µ be a probability
Borel measure in R2. Let x0 ∈ R2. For every α ∈ [0, 2π) let lα be the open ray emanating
from x0 and forming the angle α with the positive x axis. Then for every interval I ⊂ [0, 2π)
there exists a subset I ′ ⊂ I such that Leb(I ′) > |I|(1−3( 1

λ
+ 1
λ2 +. . . )) and for every α0 ∈ I ′,

µ
(
L(x0; (α0 − |I|λ−3n, α0 + |I|λ−3n))

)
< λ−n,

where L(x0, A) =
⋃
{lα : α ∈ A}.

Proof. Let us partition the interval I into λ2 subintervals J ’s of length |I|λ−2. Let B1 be
the family of intervals J of this partition for which µ(L(x0; J)) < λ−1. Obviously, there
are at most λ intervals in Bc

1, thus

#B1 > λ2 − λ = λ2

(
1− λ

λ2

)
and

Leb
(⋃
{J : J ∈ B1}

)
≥ |I|

(
1− λ

λ2

)
= |I|

(
1− 1

λ

)
Next, each interval in B1 is divided into λ2 subintervals with disjoint interiors and of length
|I| 1

(λ2)2 , and we remove those subintervals for which µ(L(x0; I)) ≥ λ−2. Denoting by B2

the family of remaining intervals, we see that

#B2 ≥ (λ2)2

(
1− λ

λ2

)
− λ2 = (λ2)2

(
1− 1

λ
− 1

λ2

)
and

Leb
(⋃
{J : J ∈ B2}

)
≥ |I|

(
1− 1

λ
− 1

λ2

)
Proceeding inductively, we partition the interval I into disjoint intervals of length |I| 1

(λ2)n
.

Next, we define in the same way the family Bn. It is formed by the intervals J of this
partition of n’th generation, which are contained in some interval of the family Bn−1 and
for which µ(J) < 1

λn
. Then

Leb
(⋃
{J : J ∈ Bn}

)
≥
(

1− 1

λ
− 1

λ2
− · · · − 1

λn

)
|I|.

For any α ∈ I let Jn = Jn(α) be the interval of the n’th partition such that α ∈ Jn.
Thus, for α ∈

⋂∞
i=1

⋃
Jn∈Bn Jn, we have that Jn(α) ∈ Bn. Consequently, for all α ∈⋂∞

i=1

⋃
Jn∈Bn Jn, it holds µ(L(x0; Jn(α)) < λ−n for all n. Let now

Cn = {α ∈ I : [α− |I|λ−3n, α + |I|λ−3n] ⊂ Jn(α)}.
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It is easy to see that Leb(Cc
n) < 2 |I|

λn
, and, therefore,

Leb
(⋂

Cn

)
> |I|

(
1− 2

(
1

λ
− 1

λ2
− . . .

))
.

Finally, the set
⋂∞
i=1

⋃
J∈Bn Jn ∩

⋂
Cn is the set which satisfies our requirements. �

The next proposition follows from the special properties of our equilibrium measure mea-
sure µφ.

Lemma 10. There exist τ > 0 and r0 > 0 such that for every point p ∈ Ĉ and all
0 < r < r0, we have that µφ(B(p, r)) < rτ .

Proof. We start with an obvious observation. There exist η > 0 and ξ > 0 such that

(1) if D ∩B(Crit(g), η) 6= ∅ and diam(D) < ξ then diamg(D) ≤ diam(D).
(2) if D ∩B(Crit(g), η) = ∅ and diam(D) < ξ then g|D is one-to-one.

Now, take r > 0 and a ball Br of radius r. If Br does not intersect the Julia set, we are
done as µφ(Ĉ \ J)) = 0. Otherwise, there exists the least integer n = n(r) ≥ 0 such that
diam

(
gn(Br)

)
> ξ. Next, let 0 ≤ k ≤ n(r) be the number of integers j ∈ {0, 1, . . . , n(r)}

such that (2) occurs for D = gj(Br). Observe that

ξ ≤ (2r)Lk

where L is the Lipschitz constant for the map g : Ĉ→ Ĉ. Equivalently,

k ≥ log ξ − log(2r)

logL
.

At each step when (2) occurs we have

µφ(g(gj(Br))) ≥ eθqµφ(gj(Br))

(see (2)) while, if (1) occurs, we have

µφ(g(gj(Br))) ≥ µφ(gj(Br))

as µφ is an invariant measure. So, µφ(Br) ≤
(
eθq
)k

. This is suffices to conclude that

µ(Br) ≤ Crτ
′

for some constants C and τ ′ independent of the ball. Now, taking τ slightly
smaller than τ ′ and r0 > 0 sufficiently small, we can write µ(Br) < rτ for all 0 < r < r0. �

Making use of these two lemmas we now are in a position to prove the following.

Proposition 11. There exist λ > 1, s > 1, and a topological disc U contained in Gc with
piecewise smooth boundary such that µφ(U) = 1, U contains no critical values of f q and,
for all n ≥ 0,

(14) µφ(B(∂U, λ̃−n)) < λ−n,
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where λ̃ = λs.

Proof. The idea of the proof is natural. We outline one of its possible materializations.
Let x1, . . . , xm be the set of all critical values of f q. One can assume without loss of
generality that all the points xi are in C. Let W1 = conv(x1, . . . , xm) be their convex
hull. Let x1, . . . xs be those critical values that lie in ∂W1. After a possible relabeling. we
may assume without loss of generality that they ordered clockwise. Consider the interval
[xi, xi+1] and the unique ray lα with the initial point xi, containing xi+1. We call it good
if there exists a constant C > 0 such that

(15) µφ
(
L(xi; (α− Cλ−3n, α + Cλ−3n))

)
< λ−n

with the notation introduced in Lemma 9. If the interval is not good, then, using Lemma 9,
we replace it by the union of two intervals

[xi, y] ∪ [y, xi+1]

such that y /∈ W1 and for the corresponding rays with initial points xi and xi+1 the
statement of Lemma 9 holds. So, we obtain a new domain W ′

1, bounded by a polygonal
line such that every edge is a piece of a ray lα with an initial point xi and every ray selected
for the construction satisfies (15) for a common constant C1. In the next step, we consider
the set W2 = conv(xs+1, . . . , xm). Obviously, W2 ⊂ intW1 ⊂ intW ′

1. In the same way,
one can modify the convex polygon ∂W2, which now bounds the region W ′

2 ⊂ intW1 so
that each edge of ∂W ′

2 is a piece of a ray for which the initial point is one of the points
(xs+1, . . . , xm), and for all these selected rays (15) holds with some common constant C2.

Proceeding inductively, we obtain a finite family of regions W ′
i , bounded by polygonal

lines, such that W ′
i+1 ⊂ intW ′

i all the points x1, . . . xm are in
⋃
∂W ′

i , each edge of W ′
i is

a ray Lα with some xj as an initial point, and for all the rays selected, the formula (15)
holds with some common constant C.

The final domain U is constructed in the following way. First, we remove one of the
edges of W ′

1, thus the remaining part is a curve γ1 homeomorphic to the interval [0, 1]. Let
z1 be one of its endpoints. Consider all rays lα emanating from the point z1 that intersect
W ′

2. The corresponding set of α’s has a non-empty interior, so one can, again choose a
ray satisfying (15) with some constant C. Let z2 be the first point of intersection of this
ray with W ′

2. The interval [z1, z2] connects ∂W ′
1 and ∂W ′

2. Next, we remove a piece of the
edge in the boundary of ∂W ′

2, an interval joining z2 with one of the vertices of W ′
2. The

remaining part is a curve γ2 homeomorphic to the interval [0, 1]. So, γ1∪ [z1, z2]∪γ2 is also
homeomorphic to the interval. Proceeding inductively in the same way, we get a curve Γ,
homeomorphic to the interval [0, 1], and containing all critical values of f q. We set

U = Ĉ \ Γ.

This is the required set if f has no critical periodic points. If there are periodic critical
points, and G is their neighborhood one has to modify U again, in an analogous way to get
a set U which is contained in C \ G. We omit the details. So, ∂U is a union of intervals,
each of which satisfies (15) with some common constant C. Invoking also Lemma 10 leads
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us to
µφ(B(∂U,Cλ̃−n)) < λ−n

with λ̃ = λs, s = max(3, 1/τ) and all λ > 1 large enough. Enlarging λ if necessary and
taking s slightly larger, we can eventually write

µφ(B(∂U, λ̃−n) < λ−n

as required. �

Remark 12. At this step we fix several constants and we formulate the first condition on
r which produces the map h = gr. Namely, we first fix λ > 1 for which the statement of
Proposition 11 is satisfied. We fix the topological disc U whose existence is guaranteed by
this same Proposition 11. Having fixed the domain U , we have the constants Cq and C̃q,
guaranteed by Lemma 3. Since, obviously, one can replace λ in the equation (14) by its
power with an exponent larger than 1, we can now require λ to be as large as we wish. We
thus demand, for future use in Lemma 16, that

(16) C̃qλ = λ′ > 1

and

(17) λ′′ =
1

4
(λ′)

α
2 > 1,

where α, ascribed to β produced in Proposition 8, comes from Lemma 7. Having U , and
thus also Cq, C̃q, λ and λ̃ fixed, we formulate the first condition on the integer r. Namely,
r should be so large that

Cqγ
r ≤ λ̃−2.

Note that because of Lemma 3(cn), this implies that all the good components V of

h−n(U) = g−rn(U) have diameters smaller than (λ̃)−2n for all n ≥ 1.

Definition 13. Given an integer n ≥ 0, a pullback is a sequence of components of h−k(U),
(Vk)0≤k≤n such that h(Vk+1) = Vk. A pullback is called good if Vn is a good component,

i.e. if Vn ∈ W̃n. In particular, hn : Vn → U is univalent and, by the construction, all
components Vk, k ≤ n are then in W̃k).

Definition 14. A good pullback (Vk)k≤n is called very good if in addition

dist(Vk, ∂U) ≥ 1

2
λ̃−k

for all k = 1, 2, . . . , n. In particular, Vk ⊂ U .

Let

Z =
∞⋂
k=0

h−k(U).

Given x ∈ Z let (Vk)k≤n be the only pullback of length n such that x ∈ Vn. This pullback
will be denoted by V x

n . Abusing slightly notation, we will frequently denote by V x
n also
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the last element of this pullback, i.e. the set Vn. Let Q = Q(r) be the set defined in
Proposition 8.

Lemma 15. Let Zn be the set of all points x ∈ Z such that

#
{
i ≤ n : hi(x) ∈ Q

}
> αn

(we already know that µφ(Z \ Zn) < exp(−δn) and that the estimate is independent of r,
h = gr). Let

Zn ⊃ Yn :=
{
x ∈ Zn : #{0 ≤ j ≤ n : the pullback V x

j is good} < (α/2)n
}
.

Then with r ≥ 1 sufficiently large, which will be fixed in this proof, we have that

µφ(Yn) < e−
α
8
nrθq.

Proof. For every x ∈ Yn consider a piece of trajectory

x, h(x), h2(x), . . . , hn−1(x).

Starting form j = n− 1, and counting backward, we mark the indices j as follows

(1) j is marked with ∗ if either hj−1(x) ∈ Q and the pullback V x
j is good, or if hj−1(x) /∈

Q.
(2) j is marked with � if hj−1(x) ∈ Q but the pullback V x

j is not good.

Let m1 ≤ n − 1 be the largest integer ≤ n − 1 which is marked with �. Note that, since
there are at most α

2
n good pullbacks and the frequency of visiting Q is at least αn, the

number m1 cannot be smaller than α
2
n. Since m1 is marked with �, the pullback V m1

x is
not good, which means that there exists m′1 < m1 such that

Vm1−m′1(fm
′
1(x)) ∈ Z̃m1−m′1 \ W̃m1−m′1 .

Note that, by the rule of marking with squares �, hm1−1(x) ∈ Q. Thus, m′1 < m1−1. The
index m′1 is now our new starting point; again we mark indices with ∗’s and �’s. Now,
let m2 ≤ m′1 be the largest integer ≤ m′1, which is marked with � and m′2 < m2 − 1 such
that Vm2−m′2(fm

′
2(x) ∈ Z̃m2−m′2 \W̃m2−m′2 . Proceeding inductively, we divide in this way the

whole trajectory x, h(x), . . . hn(x) into blocks (m′i,mi] and ”gaps” between them. Since,
by the construction, every j in the ”gap” is marked with ∗, the total length of ”gaps” is
less than (1− α

2
)n. Therefore,

(18)
∑
i

(mi −m′i) >
α

2
n.

In this way, to every x ∈ Yn we attribute a sequence (m(x)) = m1,m
′
1,m2,m

′
2, . . . ,mi,m

′
i.

Fix such a sequence (m) and let

Y (m)
n = {x ∈ Yn : (m(x)) = (m)}.
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Then, using the upper bound on B̃n established in (7), we have

B̃mi−m′i(x) ≤ r exp(−rq(mi −m′i − 1)θ) < r exp

(
−rq(mi −m′i)

θ

2

)
as mi −m′i ≥ 2. Having this and using the fact that Lh(1) = 1, the crucial observation is
now that

Lnh(1
Y

(m)
n

(x)) ≤
∏
i

re−(mi−m′i)r
θ
2
q.

Invoking (18), it gives

Lnh(1Y (m)mn) < rne−
α
4
nrθq.

Summing over all possible choices of sequences (m), we can estimate the above by

Lnh(1Yn) < 2nrne−
α
4
nrθq < e−

α
8
nrθq

if r has been selected so large that r
log 2r

> 8
αθq

. This is our second condition on the integer

r. So, finally, we fix r at this step. Since µφ(Yn) =
∫
Yn

1dµφ =
∫

1Yn dµφ =
∫
Lnh(1Yn) dµ,

we conclude that
µφ(Yn) < e−

α
8
nrθq

�

For our construction of the induced system, we will need only the pullbacks which do not
intersect the boundary of the disc U along their backward trajectories. Recall that λ′′ > 1
was defined in the formula (17).

Lemma 16. Let Rn ⊂ Z be the set of points x satisfying the following.

(1) x /∈ Yn, i.e. the points in Rn have at least α
2
n good pullbacks, but

(2) No good pullback V x
m with m ≤ n, is very good.

Then
µφ(Rn) < (λ′′)−n.

Proof. As before, we shall estimate Lnh(1Rn). Let x ∈ Rn and let 0 ≤ m1 ≤ n be the largest
integer ≤ n such that the pullback from hm1(x) to x is good. Then m1 ≥ α

2
n. However, by

our assumption, this pullback is not very good, i.e. there exists m′1 < m1, an ”obstacle”,
such that the corresponding preimage of U lands too close to ∂U , meaning that

dist

(
V
hm
′
1 (x)

m1−m′1
, ∂U

)
≤ 1

2
λ̃−(m1−m′1).

Let nowm2 be the largest integer≤ m′1 such that the pullback from hm2(x) to x is good, and
let m′2 < m2 be the ”obstacle”, i.e., m′2 is the largest integer for which the corresponding
pullback, sending hm2(x) to hm

′
2(x) fails to be very good. Proceeding inductively, define in

this way consecutive blocks

m1 > m′1 ≥ m2 > m′2 ≥ m3 > m′3 . . . .
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We have thus divided the whole trajectory x, h(x), . . . , hn(x) into ”blocks” (m′j,mj] and

”gaps” between them. Since for every k in a gap the pullback from hk(x) to x is not good,
the total length of gaps is smaller than (1− α

2
)n.

Let now a configuration M of such blocks be fixed and let us consider RM
n , the subset of

Rn consisting of all the points producing the configuration M . We estimate the measure
of RM

n in the same way as in the previous lemma.

µφ(RM
n ) =

∫
1RMn =

∫
Lnh(1RMn )(y) dµφ(y).

Recall that

Lnh(1RMn )(y) =
∑

w∈h−n(y)∩RMn

expSnrφ̃q(w).

Again, it is important that here we consider the normalized Perron-Frobenius operator
with respect to the invariant measure µφ, so that Lnh(1)(y) = 1 for every y ∈ J(f). Next,
let us denote by GBn(z) the sum ∑

w

expSnrφ̃q(w),

where the summation is taken over over all points w ∈ h−n(z) that belong to a good
component Vn of h−n(U), i.e. to an element of W̃n, but this component is not very good.

Since, by the definition of good and (not) very good components, diam(Vn) < (λ̃)−2n and

dist(Vn, ∂U) < 1
2
λ̃−n, we conclude that

Vn ⊂ B(∂U, λ̃−n).

It then follows from Proposition 11 and Corollary 5 that

(19)

λ−n ≥ µφ(B(∂U, λ̃−n)) =

∫
1B(∂U,λ̃−n)dµφ =

∫
Lnh(1B(∂U,λ̃−n))dµφ

≥
∫
GBn(z)dµφ(z) ≥ C̃−1

q sup
U
GBn.

So,

(20) sup
U
GBn(z) ≤ C̃qλ

−n < (λ′)−n

since λ and λ′ have been selected so large that (C̃q)
−1λ > λ′ > 1. Finally, we estimate:

Lnh(1RMn )(x) ≤ Ln−m1
h (1)(x) sup

U
GBm1−m′1 · sup

U
GBm2−m′2 · . . . · sup

U
GBmi−m′i · . . .

Inserting (20) to this inequality, we get

Lnh(1RMn )(x) ≤ (λ′)−
∑

(mi−m′i).

Since
∑

(mi −m′i) as the sum of lengths of all blocks is ≥ (α/2)n, we thus get that

(21) Lnh(1RMn )(x) ≤ (λ′)
−α

2
n
.
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Finally, we write

Rn =
⋃
M

RM
n

where the summation is over all possible configurations M of blocks (m′i,mi]. Since the
total number of such configurations is bounded above by 4n, inequality (21) gives

Lnh(1Rn)(x) < 4n (λ′)
−α

2
n
< (λ′′)

−n

as λ′′ has been chosen in (17) so large that λ′′ = 1
4
(λ′)

α
2 > 1.

�

3. Construction of the induced system

In the previous section, we have constructed a topological disc U with several special
properties. Recall that µφ(U) = 1 and that Z =

⋂∞
i=0 h

−i(U). So, µφ(Z) = 1. We now
describe the construction of an induced map F . It follows from previous results that for
almost every point x ∈ Z there exists a pullback from hn(x) to x, which is good and very
good. We thus fix the smallest integer n ≥ 1 for which the pullback V x

n is good and very
good, and we define

F (x) = hn(x).

Note that, if y ∈ V x
n then this procedure, applied to y leads to the same component V x

n .
Indeed, by the definition of the induced map, we use the earliest very good pullback. Thus,
if F (y) 6= hn(y) then F (y) = hm(y) for some m < n. Let V y

m be the corresponding pullback.
Then V y

m ∩ V x
n 6= ∅ as y belongs to both of these sets, but V x

n * V y
m since x ∈ V x

n \ V y
m. Let

us consider hm(V y
m) = U and hm(V x

n ). The latter is an element of the pullback chosen for
x (a component of h−(n−m)(U)) and, since V x

n must intersect ∂V y
m, also hm(V x

n ) intersects
∂U . But this is impossible by the definition of very good pullbacks. Let D be the family
of all defined in this way sets V x

n . We have just shown that the function n : X → N is
constant on each disc D ∈ D, and so it can and will be treated as a function from D → N.
In particular, the map

F :
⋃
D∈D

→ U

is well-defined and its inverse branches F−1
D : U → D, D ∈ D, form an infinite conformal

iterated function systems, which, with a slight abuse of notation, will be also refereed to
as F . Keep in mind that

⋃
D∈DD is a dense subset of U with full measure µφ and mφ. Let

us record the following essential property of this induced system.

Lemma 17. If D1, D2 are two domains in D, F|D1 = hn, F|D2 = hm then for 0 ≤ s < n,
0 ≤ t < m either hs(D1) ∩ ht(D2) = ∅ or the closure of one of these sets is contained in
the other set.

Proof. This, again, follows from our definition of very good pullbacks. Indeed, if (m− t) =
(n − s) then the statement is clear since, in this case V1 = hs(D1) and V2 = ht(D2) are
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both very good pullbacks of the same order m − t = n − s and are therefore disjoint; it
may happen, however, that their closures intersect.

Now, assume without loss of generality that (m − t) > (n − s) and that V1 ∩ V2 =
hs(D1)∩ht(D2) 6= ∅. If V 2 * V1 then V 2 intersects ∂V1. Considering the sets hn−s(V1) = U
and hn−s(V2) = V ′2 , we see that V ′2 is in a very good pullback and its closure intersects ∂U .
This is impossible. Thus V 2 ⊆ V1 and we are done. �

Following the setting of [MU2], we parametrize the family D by an infinite countable set E
so that D = {De : e ∈ E}, and given e ∈ E, we let ϕe denote the branch of F−1 defined on
U and mapping U onto the disc De. Recall that the integer n(e) = n(De) ≥ 1 is uniquely
determined by the condition that

F |De = hn(e)|De .

It immediately follows from the construction of the system F , Lemma 7, Lemma 15, and
Lemma 16, that with some λ′′′ > 1 small, enough,

(22) mφ

(⋃
{De : n(e) = n}

)
≤ (λ′′′)−n

for all n ≥ 1. Let En be the set of all words of length n, and let E∗ =
⋃∞
n=1 E

n. Let E∞

be the space of all infinite words of the alphabet E. For every ω ∈ En, ω = (ω1, . . . , ωn)
let

ϕω = ϕω1 ◦ · · · ◦ ϕωn .
Denote respectively by diamhyp and disthyp the diameter and distance evaluated with re-
spect to the hyperbolic metric in U , and, as before, by diam, dist respectively the diameter
and distance evaluated with respect to the spherical metric.

Proposition 18. There exist constants C > 0 and 0 < τ < 1, such that, if ω ∈ En then

diamhyp(ϕω(U)), diam(ϕω(U)) ≤ Cτn.

If ω = (ω1, ω2, . . . , ωn, . . . ) ∈ E∞ then

∞⋂
n=1

ϕω1 ◦ · · · ◦ ϕωn(U)

is a singleton.

Proof. For every e ∈ E the map ϕe is an isometry in hyperbolic metrics in U and Di =
ϕe(U), respectively. We know that ϕe is an inverse branch of the iterate hn(e). Since

diam(De) < λ̃−2n(e) and dist(De, ∂U) > 1
2
λ̃−n(e), there exists a constant C1 > 0 such that

(23) diamhyp(De) ≤ C1

for all e ∈ E. The inclusion De → U , considered in hyperbolic metrics in De and U ,
respectively, is a contraction by some factor τ < 1 independent of e ∈ E. Therefore,
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ϕe : U → U is a contraction by some factor less than or equal equal to τ , with respect to
the hyperbolic metric in U . Thus, for every ω ∈ En−1, every set A ⊂ U ,

diamhyp(ϕω(A)) ≤ τn−1diamhyp(A).

Now, if ω = (ω1, . . . , ωn) ∈ En, then (ω1, . . . , ωn−1) ∈ En−1 and

ϕω(U) = ϕω1,...,ωn−1(ϕωn(U)).

But diamhyp(ϕ(D)) ≤ C1, and, so

(24) diamhyp(ϕω(D)) ≤ C1τ
n−1 = Cτn,

where C = C1

τ
. Since the diameter evaluated with respect to the hyperbolic metric in U is

larger than the spherical diameter, multiplied by some positive constant, we get from (24)
that

(25) diam(ϕω(D)) ≤ Cτn

with some modified constant C > 0. Moreover, since for every very good pullback Vk we
have V k ⊂ U , it follows that also that

ϕω1,...ωn(U) ⊂ ϕω1,...ωn−1(U)

This implies that the intersection

∞⋂
n=1

ϕω1...ωn(U) =
∞⋂
n=1

ϕω1...ωn(U). 6= ∅

As the diameters converge to zero, this intersection is a singleton. We are done. �

Let X be the limit set of the iterated function system F , i.e.

X =
∞⋂
n=1

⋃
ω∈En

ϕω(U).

AS µφ(U) = 1, guaranteed by Proposition 11, it immediately follows from (22) that

(26) µφ(X) = 1.

In virtue of Proposition 18 the map π : E∞ → X,

ω 7→
∞⋂
n=1

ϕω1 ◦ ϕω1 , ◦ · · · ◦ ϕωn(U)

is a well defined bijection. The proposition below follows directly from the definition of
the map π : E∞ → X and from Proposition 18.
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Proposition 19. Let ω, ω′ ∈ E∞. Assume that ω1 = ω′1. Let s = s(ω, ω′) ≥ 1 be the
largest integer such that (ω1, . . . , ωs) = (ω′1, . . . , ω

′
s). Then

dist(π(ω), π(ω′)) ≤ Cτ s(ω,ω
′)

and
disthyp(π(ω), π(ω)′) ≤ Cτ s(ω,ω

′).

As we have passed to induced system, we shall modify the potential φ accordingly to this
inducing process. First, if De ∈ D, e ∈ E is one of discs on which F is defined, and if
F|De = hn(e), then we put, for all x ∈ De,

φ(x) =

n(e)−1∑
k=0

φqr(h
k(x)).

Then, for all Borel sets A ⊂ De we have that,

mφ(F (A)) = mφ(hn(e)(A)) =

∫
A

exp

− n(e)−1∑
k=0

φqr ◦ hk
 dmφ =

∫
A

exp(−φ(x))dmφ(x).

Along with (26) this entails the following.

Lemma 20. The probability measure mφ is exp(−φ)-conformal for the map F : X → X.

For the sake of the next proposition, we need to extend the potential φ beyond the Julia
sets J(f).

Lemma 21. The function φ can be extended in a Hölder continuous manner, with the
same Hölder exponent, to the whole Riemann sphere Ĉ.

This lemma is well-known; a proof can be found in [UZ]. From now on, we assume that

the potential φ is defined and Hölder continuous in the whole Riemann sphere Ĉ. Having
Lemmas 20 and 21, the general theory of infinite iterated function systems, as developed
in [MU2] along with [MU3], gives the following.

Proposition 22. There exists a unique probability F -invariant measure µφ which is equiv-

alent to mφ. Moreover the Radon-Nikodym derivative ρ :=
dµφ
dmφ

is bounded above and

separated below from zero. This Radon-Nikodym derivative ρ has a continuous extension
ρ : U → (0; +∞) to the whole disc U and this extension is a fixed point of the following
transfer operator.

Lφ(v)(x) =
∑

y∈F−1(x)

expφ(y)v(y).
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This is a bounded linear operator acting on the Banach space Cb(U) of all bounded real-
valued continuous functions defined on U , and it is easy to see that this operator is almost
periodic.

4. A modified Iterated Function System

Let us prove the following.

Proposition 23. The function log |F ′| is integrable with respect to the measure mφ.

Proof. We check first that ∫
(log |F ′|)− dmφ < +∞.

Note that |F ′| may be arbitrarily close to 0 near the boundary of some components D ∈ D,
as the construction of good inverse branches starts from considering all components of
f−q(U) and some of them may have critical points of f q in their boundaries. However,
log |(f q)′| is integrable, by Lemma 10, and, by the same reason, log |h′| is integrable over
every component D of h−1(U) (D ∈ D), used for our construction, for which n(e) = 1,
i.e. F is defined as h. If e ∈ E, put Ve = hn(e)−1(De). Then it is easy to see from our
construction that

log |F ′|(z) ≥ −C + log |h′(hn−1)|(z)

for some constant C > 0 independent of e ∈ E, and for all z ∈ De. So, we can estimate as
follows. Then
(27)∫

De

(log |F ′|)−(z) dmφ(z) ≤
∫
De

(
C + (log |h′(hn(e)−1)|)−(z)

)
dmφ(z)

= Cmφ(De) +

∫
Ve

(log |h′|)−(z)Jacmφ
(
(hn(e)−1|De)

)−1
(z) dmφ(z)

Now

Jacmφ
(
(hn(e)−1|De)

)−1
(z) = exp

(
Sn(e)−1)φqr ◦ hn(e)−1|De)

)−1
(z)
)
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has a bounded distortion on Ve independent of e. So, picking an arbitrary point ze ∈ Ve,
we can write∫

Ve

(log |h′|)−(z)Jacmφ
(
(hn(e)−1|De)

)−1
(z) dmφ(z) ≤

≤ CJacmφ
(
(hn(e)−1|De)

)−1
(ze)

∫
Ve

(log |h′|)−(z) dmφ(z)

≤ C2

∫
Ve

(log |h′|)−(z) dmφ(z)
mφ(De)

mφ(Ve)

≤M−1
1 C2

∫
Ve

(log |h′|)−(z) dmφ(z)mφ(De)

≤M−1
1 C2

∫
J(f)

(log |h′|)−(z) dmφ(z)mφ(De)

= M−1
1 M2C

2mφ(De)

where M1 = min{mφ(Ve) : n(e) = 1} > 0 since the set {e ∈ E : n(e) = 1} is finite, and
M2 =

∫
J(f)

(log |h′|)− dmφ < +∞. It remains to check that
∫

log |F ′|+dµφ < ∞. Indeed,

since ||h′||∞ < +∞, we we have

log |F ′|+(z) ≤ log |(hn)′(z)|+ ≤ n log ||h′||∞

for all e ∈ En := {e ∈ E : n(e) = n} and all z ∈ Hn :=
⋃
e∈En De. Therefore, using (22),

we get ∫
X

log |F ′|+dmφ =
∞∑
n=1

∫
Hn

log |F ′|+dmφ ≤
∞∑
n=1

n log ||h′||∞(λ′′)n < +∞

We are done. �

In this section, rather for technical reasons, we modify our induced map in the following
way. Let D = De with some e ∈ E be such that n(e) = 1. We define F∗ : D → D as the
first return map under F (!) to the set D. In fact F∗ is then defined µφ almost everywhere,
thus also mφ-almost everywhere, on D. It is easy to see that, since F was an iterated
function system with non-overlapping domains, and D is one of these domains, the system
F∗ has also this property. More precisely, this new induced map F∗ is defined on a union of
pairwise disjoint (although their closures may touch each other) topological discs D̂ whose

closures are contained in D and such that mφ(
⋃
D̂) = mφ(D). Let X∗ be the limit set of

this new iterated function system F∗. Note that X∗ is not necessarily closed. Parametrize
the set of all discs D̂ by some countable set I and for every i ∈ I denote by ϕ̂i : D → D̂i the
corresponding branch of F−1

∗ , mapping D onto D̂i. Let the integer N(i) ≥ 1 be determined

by the property that F∗ = fN(i) on D̂i.



26 MICHA L SZOSTAKIEWICZ, MARIUSZ URBAŃSKI, AND ANNA ZDUNIK

Proposition 24. The induced system F∗ is expanding. Precisely, there exist constants
C > 0 and 0 < η < 1 such that, for every n ≥ 1, we have |(F n

∗ )′| > Cη−n everywhere in
the domain of F n

∗ .

Proof. By the construction, every map ϕ̂i : D → D̂i, i ∈ I, is the restriction to D of a
composition of several very good pullbacks, all defined on U . Since the closure of D is
contained in U , the inclusion D → U is a strict contraction in the hyperbolic metric in U .
Since the map ϕ̂i : U → D̂i is an isometry with respect to the hyperbolic metrics in U and
its image D̂i, respectively, it follows that ϕ̂i : U → U contracts the hyperbolic metric in U
by a constant factor less than 1. Finally, since in D both spherical metric and hyperbolic
metric (with respect to U) are comparable, there thus exists an integer N ≥ 1 such that
the spherical metric is also contracted by every composition of of maps (ϕ̂i) |D, of length
N . �

Remark 25. Since all the maps ϕ̂i, i ∈ I, are defined on U and D ⊂ U , the distortion of
all maps ϕ̂i and all their compositions is bounded above by a common positive constant.
We denote by K.

As a straightforward consequence of Proposition 23, and Kac’s lemma applied for the
function log |(F∗)′| and the invariant measure µφ, we get the following.

Proposition 26. The function log |(F∗)′| is mφ-integrable.

We now modify now the potential φ according to the second inducing scheme, putting, for
every i ∈ I and every point x ∈ D̂i,

φ∗(x) =

N(i)−1∑
k=0

φ(F k(x)),

Again, it is straightforward to verify that the measure mφ is conformal for the system F∗.
Similarly as for F , the following proposition holds for the new system F∗.

Proposition 27. There exists a unique probability F∗-invariant measure µφ∗ on X∗ which

is equivalent to mφ|X∗. Moreover the Radon-Nikodym derivative ρ∗ :=
dµφ∗
dmφ

is bounded

above and separated below from zero. This Radon-Nikodym derivative ρ∗ has a continuous
extension ρ∗ : D → (0; +∞) to the whole disc D and this extension is a fixed point of the
following transfer operator

Lφ∗(v)(x) =
∑

y∈F−1(x)

expφ∗(y)v(y).
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This is a bounded linear operator acting on the Banach space Cb(D) of all bounded real-
valued continuous functions defined on D, and it is easy to see that this operator is almost
periodic. In fact µφ∗ is the measure µφ, conditioned on D, and the Radon-Nikodym deriv-
ative ρ∗ extends continuously even to U .

As an immediate consequence of Proposition 26 we get the following.

Corollary 28. The Lyapunov exponent∫
log |F ′∗|dµφ∗

is finite.

Having this corollary, in virtue of Theorem 4.4.2 in [MU2], which is a version of Volume
Lemma, we can express the Hausdorff dimension of the measure µφ∗ as follows.

Corollary 29.

HD(µφ∗) =
hµφ∗∫

log |F ′∗|dµφ∗
=
hµφ∗
χµφ∗

.

Remark 30. Let α be the partition into sets D̂i = ϕ̂i(D), i ∈ I. Then α is a generator for
F∗. It follows from the proof of Theorem 4.4.2 in [MU2] that, if the Lyapunov exponent of
F∗ is finite then also Hµφ∗

(α), the entropy of the partition α, is finite. In consequence, α
is a countable generator with finite entropy.

5. Dimension of the equilibrium measure–rigidity

In this section we provide the proof of Theorem 43 which characterizes all rational maps
f : Ĉ→ Ĉ for which

β := HD(µφ) = DD(J(f)).

or, as will turn out to be equivalent, for which

β := HD(µφ) = HD(J(f)).

Therefore, throughout the present section we keep the following

Assumption. HD(µφ) = β = DD(J(f)).
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5.1. Homology equation for F∗. With the above assumption we get

HD(µφ∗) = HD(mφ) = HD(µφ) = β

and, therefore, in virtue of Corollary 29,

hµφ∗ − βχµφ∗ = 0.

Invoking the Variational Principle (see Theorem 2.1.7 in [MU2]), this implies that

P∗(−β log |F ′∗|) ≥ 0,

where P∗ refers to topological pressure defined with respect to the iterated function sys-
tem F∗. But, as X∗ consists of radial points, we get in virtue of Theorem 1, that
β = DD(J(f)) ≥ HD(X∗). Hence, Bowen’s formula (see Theorem 4.2.13 in [MU2]) yields
this.

P∗(−β log |F ′∗|) ≤ 0.

These two inequalities, taken together, give the following.

Corollary 31. If β = HD(J(f)) = HD(µφ), then

P∗(−β log |F ′∗|) = 0.

With this corollary, the results from [MU2] and [MU3], give the following.

Proposition 32. There exists a unique conformal measure mβ on X∗, i.e. a Borel proba-
bility measure mβ on X∗, such that

mβ(F∗(A)) =

∫
A

|F ′∗|βdmβ

for every Borel subset of X∗ on which F∗ is one-to one. Moreover there exists a unique
Borel probability F∗-invariant measure (a Gibbs state) µβ � mβ. In fact, µβ = ρ · mβ,
where the Radon-Nikodym derivative ρ has a continuous extension to D, and this extension
ρ : D → (0,+∞) is a fixed point of the Perron-Frobenius operator

L(g)(x) =
∑

y∈F−1
∗ (x)

g(y)
1

|F ′∗((y))|β

acting, as a bounded linear operator, on the Banach space Cb(D).

Remark 33. We do not know whether,
∫

log |F ′∗|dµβ, the Lyapunov exponent of the
measure µβ, is finite. Fortunately, we do not need this for the next steps of the proof.

We now prove the following.
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Proposition 34. If HD(µφ∗) = β = HD(J(f)), then

(28)
ρ

ρ ◦ F∗
· 1

|F ′∗|β
· 1

J−1
φ∗

= 1

everywhere in X∗, where Jφ∗ = exp(−φ∗) · ρ∗◦F̂ρ∗ is the Jacobian of the map F∗ evaluated

with respect to the invariant measure µφ∗.

Proof. This proof follows an argument of habilitation thesis of Gerhard Keller. We consider
two Perron-Frobenius operators

L̂φ∗(g)(x) =
∑

y∈F−1
∗ (x)

g(y)(Jφ̂(y))−1

and

(29) L(g)(x) =
∑

y∈F−1
∗ (x)

g(y)
1

|F ′∗(y)|β
,

and write

(30)

1 =

∫
1dµφ∗ =

∫
Lρ
ρ
dµφ∗ =

∫
Lφ̂

(
ρ · 1

|F̂ ′|β

J−1
φ∗
· ρ ◦ F∗

)
dµφ∗

=

∫ ρ · 1
|F ′∗|β

J−1
φ∗
· ρ ◦ F

dµφ∗

≥ 1 +

∫
log

(
ρ

ρ ◦ F∗
· 1

|F ′∗|β
· 1

J−1
φ∗

)
dµφ∗

= 1 +

∫
log ρ dµφ∗ −

∫
log ρ ◦ F∗dµφ∗ +

∫
log Jφ∗dµφ∗ −

∫
log |F ′∗|βdµφ∗ .

Since the partition α, introduced in Remark 30, is a countable generator with finite entropy
for F∗, we have that

∫
log Jφ∗dµφ∗ = hµφ∗ . Therefore, the last sum in (30) is equal to 1.

This means that

(31)
ρ

ρ ◦ F∗
· 1

|F ′∗|β
· 1

J−1
φ∗

= 1

µφ∗ almost everywhere. Since all the functions appearing in this equation are continuous

in each disc D̂i, i ∈ I, the equality (31) holds everywhere in each set D̂i ∩X∗ i ∈ I. �

Therefore, we can write

|F ′∗|β = exp(−φ∗)
ρ∗ ◦ F∗
ρ∗

· ρ

ρ ◦ F∗
= exp(−φ∗)

r ◦ F∗
r

everywhere in each set D̂i ∩ X∗, where r = ρ∗/ρ. Put u0 = log r. We rewrite the above
displayed formula in the following.
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Corollary 35. If dimH(µφ∗) = β = dimH(J), then everywhere in X∗, we have that

(32) β log |F ′∗| = −φ∗ + u0 ◦ F∗ − u0,

and u0 has a continuous extension to D given by the formula u0 = log(ρ̂/ρ).

Recalling Theorem Proposition 32 and Proposition 27, we obtain from this corollary and
Theorem 2.2.7 in [MU2], the following.

Corollary 36. If dimH(µφ∗) = β = dimH(J), then µφ∗ = µβ.

5.2. Cohomology equation for h. We start this section with proving the following.

Lemma 37. There exists a continuous function u : U → R such that

(a) u|X∗ = u0.
(b) β log |F ′(x)| = u ◦ F (x)− u(x)− φ(x) for all x ∈ F (X∗) ∩ F−1(F (X∗)).

Proof. Since F (D) = U and since F |D is one-to-one, we may define u : U → R by declaring
that

(33) u(F (x)) = β log |F ′(x)|+ φ(x) + u(x)

for all x ∈ D. In order to prove (a) fix a point x ∈ X∗. Since U = F (D) and F |D is one-to-
one, there exists a unique y ∈ D such that x = F (y). But now, since both x and y belong
to D and since F∗ is the first return map to D, we have F∗(y) = F (y). In consequence
y ∈ X∗, and applying Corollary 35, we get

u0(x) = u0 ◦ F (y) = u0 ◦ F∗(y) = φ∗(y) + u0(y) + β log |(F∗)′(y)|
= φ(y) + u0(y)) + β log |F ′(y)|
= u(F (y)) = u(x).

In order to prove (b) suppose that x ∈ F (X∗) ∩ F−1(F (X∗)). Then x = F (y) and F (x) =
F (z) with y, z ∈ X∗. Write F∗(y) = Fm(y), m ≥ 1, and F∗(z) = F n(z), n ≥ 1. Corollary 35
then gives

(34)

u0(F∗(y)) = u0(y) + φ∗(y) + β log |(F∗)′(y)|

= u0(y) + φ(y)) +
m−2∑
j=0

φ(F j(x) + β log |(Fm−1)′(x)|+ β log |F ′(y)|

= u(x)) +
m−2∑
j=0

φ(F j(x)) + β log |(Fm−1)′(x)|,
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and likewise

(35) u0(F∗(z)) = u(F (x)) +
n−2∑
i=0

φ(F i(F (x))) + β log |(F n−1)′(F (x))|.

Now consider two cases. Suppose first that x /∈ D. Then F∗(y) = F∗(z) and m = n + 1.
Equating (34) and (35), we then get

u(F (x)) +
n−2∑
i=0

φ(F i(F (x))) + β log |(F n−1)′(F (x))|

=

u(x) +
n−1∑
j=0

φ(F j(x)) + β log |(F n)′(x)|

or equivalently,

u(F (x))− u(x) = log |F ′(x)|+ φ(x),

which is just the equation (b). If, on the other hand, x ∈ D, then x ∈ X∗ and, by (a),
u(x) = u0(x), and hence, (33) implies that u(F (x)) = u(x) + β log |F ′(x)| + φ(x). We are
done. �

Proposition 38. The function u : U → R satisfies the homology equation for the map
h = gr = f rq throughout J ∩ U . Precisely,

(36) u ◦ h− u = β log |h′|+ φqr

everywhere in J ∩ U .

Proof. Since mφ(X∗) = mφ(J ∩D), we get that

(37) mφ(F (X∗)) = mφ(F (J ∩D)) = mφ(J) = 1.

Since also mφ(F−1(U) = 1 and F (X∗) ⊂ U , we thus conclude that mφ(F−1(F (X∗)) = 1.
Along with (37) this implies that

mφ

(
F (X∗) ∩ F−1(F (X∗))

)
= 1.

Hence, F (X∗)∩F−1(F (X∗)) is a dense subset of the Julia set J . Therefore, De ∩F (X∗)∩
F−1(F (X∗)) is a dense subset of De ∩ J for every e ∈ E. Since F |De and u : U → R are
continuous, we thus conclude from Lemma 37 (b) that

(38) β log |F ′(x)| = −φ(x) + u ◦ F (x)− u(x)

for all e ∈ E and all x ∈ De ∩ J . Now keep e ∈ E and x ∈ De ∩ J . Because of the way
the point F (x) is defined, i.e. the earliest very good pullback from hn(x) to x with some
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n ≥ 1, we have that Fm(h(x)) = F (x) with some 0 ≤ m ≤ n− 1. Formula (38) applied to
x then gives,

(39)

β log |(hn)′(h(x))| = β log |F ′(x)| = u ◦ F (x)− u(x)− φ∗(x)

= u(hn(x))− u(x)−
n−1∑
j=0

φqr(h
j(x))

and started from h(x) and iterated m times, it gives

β log |(hn−1)′(x)| = β log |(Fm)′(h(x))|
= u ◦ Fm(h(x))− u(h(x))− φ(h(x))

= u(hn(x))− u(h(x))−
n−1∑
j=1

φqr(h
j(x)).

Subtracting this from (39), we get that

β log |h′(x)| = u(h(x))− u(x)− φqr(x).

Hence (36) is established throughout the set J∩
⋃
e∈E De. Since this set is dense in J∩U and

all the functions appearing in (36) are continuous, formula (36) is thus proved throughout
J ∩ U . The proof is complete. �

The following proposition is now easy to prove.

Proposition 39. If p ∈ J is not an element of the postcritcal set for the iterate h =
f qr : Ĉ → Ĉ, then there exists a neighborhood V of p such that the restriction u|V ∩J∩U is
uniformly continuous and bounded.

Proof. Since u is continuous in U , it is uniformly continuous, and thus bounded, in every
open set W such that W ⊂ U . This proves the statement for all points p ∈ U . If p ∈ J \U ,
then p ∈ J ∩ ∂U and U ∩ h−k(p) 6= ∅ for some integer k ≥ 0 sufficiently large. Pick
p̃ ∈ h−k(p) ∩ U . Since p ∈ J is not an element of the postcritcal set for h, the logarithm
log |(hk)′|(x) is uniformly continuous and bounded in some neighborhood V of p̃. So, the
statement of our theorem follows from the equation (36) and the already proved part of
the theorem. �

Corollary 40. If p ∈ J is in the postcritical set of h = f qr, i.e. if p = hk(c) for some
integer k ≥ 1, then each point p̃ ∈ h−1(p) is either a critical point of h or belongs to the
postcritical set of h. In particular, the trajectory of every critical point c ∈ J is finite, i.e.
every critical point in J is eventually periodic.
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Proof. Since the rational function h : Ĉ → Ĉ has only finitely many critical points, the
second assertion follows from the first one. So, we will prove the first assertion of our
corollary. Since J contains no critical periodic cycles of h, we may assume without loss
of generality that c does not belong to the postcritical set of h. Thus, by the previous
corollary, the function u is bounded in U ∩ V ∩ J , for some neighborhood V of c. Note
that this intersection is nonempty, even infinite, and c is its accumulation point, even if
c ∈ ∂U . Thus, keeping in mind that hk(V ) is a neighborhood of hk(c) and invoking (36),
we see that the function u is unbounded in the set hk(U ∩V )∩J . Even more, u(z)→∞ as
z → hk(c), z ∈ hk(U ∩V )∩J . If now p = hk(c) had a preimage p̃ ∈ h−1(p) which is neither
a critical point of h nor an element of a postcritical set h, then, by Proposition 39, there
would exists a neighborhood W of p̃ such that u is bounded in J∩W ∩U . But then, by (36)
again, the function u would bounded in some neighborhood of p in J . This contradiction
finishes the proof of the first assertion, and the whole corollary is established. �

For the final conclusion we will need the following observation whose proof can be found
for example in [DH]).

Proposition 41. Let R : Ĉ → Ĉ be a rational map. Recall that PR is the postcritical set
of R. If some set Z ⊂ PR satisfies R−1(Z) ⊂ PR ∪ Crit(R), then #(Z) ≤ 4. If #(Z) = 4
then all critical points are ordinary, Z contains the set of all critical values of R, and
Z ∩ Crit(R) = ∅.

Remark 42. Actually, the authors in [DH] assume that the map R itself is critically finite,
in particular, that the trajectories of all critical points outside J(R) are also finite, but this
assumption is not used in the proof.

We can now classify all rational maps f : Ĉ → Ĉ for which dimH(µφ) = dimH(J(f)).
Notice that passing to the iterate h = f qr does not alter the postcritical set, i.e. Pf = Ph.
We prove the following.

Theorem 43. Let f : Ĉ→ Ĉ be a rational map, let φ : J(f)→ R be a Hölder continuous
potential such that sup(φ) < P (φ), and let µφ be a unique equilibrium state corresponding
to this potential. Then the following are equivalent.

(1) HD(µφ) = DD(J(f)),
(2) HD(µφ) = HD(J(f)),
(3) The intersection Pf ∩J(f) consists of at most four points, there are no other points

in Pf ∩ J(f) and also the potential φ : J(f) → R is cohomologous modulo con-
stant to −DD(J(f)) log |f ′| in the class of continuous functions on J(f) \ Pf . The
cohomology constant is equal to P (φ).
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(4) The intersection Pf ∩ J(f) consists of at most four points, it is equal to Pf ∩
J(f), and also the potential φ : J(f) → R is cohomologous modulo constant to
−HD(J(f)) log |f ′| in the class of continuous functions on J(f) \ Pf . The coho-
mology constant is equal to P (φ).

In addition, if the closure of the postcritical set Pf is disjoint from J(f), which equivalently
means that the restriction f|J(f) : J(f) → J(f) is then expanding, and the potential φ :
J(f) → R is cohomologous modulo constant to −HD(J(f)) log |f ′| in the class of Hölder
continuous functions on J(f).

Proof. Assume without loss of generality that P (φ) = 0. Apart from the fact that P f ∩
J(f) = Pf ∩ J(f), the implication (1)⇒(3) follows immediately from Proposition 38,
Proposition 39, Corollary 40, and Proposition 41. In order to prove this implication in
full, suppose for a contrary that there exists a point w ∈ P f ∩ J(f) \ Pf ∩ J(f). In
virtue of the Fatou-Sullivan classification of connected components of the Fatou set, and
since the boundaries of a Siegel disc and a Herman ring are contained in P f , we conclude
that w must be a rationally indifferent periodic point of f . Passing to a sufficiently high
iterate, we may assume without loss of generality that w is a fixed point of f . But since
w ∈ J(f) \Pf it follows from Proposition 39 that the function u : U → R can be extended
in a continuous manner to a neighborhood of w in J(f) and the cohomology equation holds
there. Equating this equation at w, we conclude that φ(w) = 0. Thus

(40) sup(φ) ≥ 0.

Since P (φ) = 0 this however contradicts the existence of a pressure gap for the potential
φ. The implication (1)⇒(3) is established.

Now let show that (3)⇒(1). Applying in turn the dimension formula due to Mané (see
[Ma2], comp. [PU]), the fact that µφ is an equilibrium state for φ, vanishing of P (φ), and
the cohomology equation of (3), we get that

HD(µφ) =
hµφ(f)

χµφ(f)
=
P (φ)−

∫
φ dµφ

χµφ(f)
=
−
∫
φ dµφ

χµφ(f)
=

DD(J(f))χµφ(f)

χµφ(f)
= DD(J(f)).

The implication (3)⇒(1) is established.

The conditions (3) and (4) are equivalent since if either of them holds then all but countably
many points of the Julia set J(f) are radial and therefore, by Theorem 1, DD(J(f)) =
HD(J(f)).

The implication (2)⇒(1) holds since HD(µφ) ≤ DD(J(f)) ≤ HD(J(f)).

Finally if (1), (3), and (4) hold, then, as we noted in the proof of the equivalence of (3) and
(4), DD(J(f)) = HD(J(f)). Therefore, because of (1) also holds (2). We are done. �

As a fairly straightforward consequence of this theorem we get the following remarkable
corollary.
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Corollary 44. Let f : Ĉ→ Ĉ be a rational map and let φ : J(f)→ R be a Hölder contin-
uous potential such that sup(φ) < P (φ). If µφ is a unique equilibrium state corresponding
to this potential, then HD(µφ) = 2 if and only if both the function φ : J(f) → R is co-
homologous to a constant in the class of continuous functions on J(f), and the rational

function f : Ĉ→ Ĉ is a critically finite rational map with a parabolic orbifold.

Proof. If HD(µφ) = 2, then using the Koebe’s Distortion Theorem it is straightforward to
see that the measures m2 and µ2 produced in Proposition 32 are equivalent to 2-dimensional
Lebesgue measure l2 restricted to X∗. So, invoking Corollary 36, we get that the measures
µφ∗ and l2 restricted to X∗ are equivalent. Consequently

(41) l2(X∗) > 0.

We shall now show that

(42) J(f) = Ĉ

Indeed, seeking contradiction, suppose that J(f) 6= Ĉ. Then J(f) is a nowhere dense

subset of Ĉ, and therefore l2
(
Int(D) \

⋃
i∈I ϕi(D)

)
> 0. Invoking Proposition 4.5.9 from

[MU2], we get that l2(X∗) = 0, contrary to (41). Formula (42) is proved. Having this
formula, Theorem 43 tells us that the entire postcritical set Pf consists of at most four
points. Furthermore, Corollary 40, with h replaced by f yields f−1(Pf ) ⊂ Pf ∪ Crit(f),
and, because of the cohomology equation in Theorem 43, degx(f) = degy(f) for every

z ∈ Ĉ and all x, y ∈ f−1(z). This enables us to conclude in exactly the same way as

in [Z1] that the map f : Ĉ → Ĉ has a parabolic orbifold. But then this map is semi-

conjugate to map f̃ : C/Z2 → C/Z2, which is the multiplication by some integer ≥ 2.
The semi-conjugacy in question is the canonical projection from C to C/Z2. So, log |f ′| is
cohomologous to a constant in the class of continuous functions, and so, the same is true
for −2 log |f ′|. In consequence the Hölder continuous map φ : Ĉ→ R is cohomologous to a

constant in the class of continuous functions on Ĉ \ Pf . But since φ and this constant are

both continuous on Ĉ, the cohomology equation yields the the function giving cohomology
to extend continuously to all points of Pf . Of course then the cohomology equation holds

in the whole space Ĉ.

In the other direction the proof is immediate once one invokes the semi–conjugacy fact
used in the first part of the proof. �

6. Real Analyticity of the Pressure Function

We start with some abstract symbolic preparation. Let I be an arbitrary countable set
and let σ : I∞ → I∞ be the shift map. We describe now in detail the Hölder continuity
concepts appropriate in this setting. Recall that for ω, τ ∈ I∞, we define ω∧τ ∈ I∞∪I∗ to
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be the longest initial block common to both ω and τ . We say that a function f : I∞ → C
is Hölder continuous with an exponent α > 0 if

vα(f) := sup
n≥1
{vα,n(f)} <∞,

where

vα,n(f) = sup{|f(ω)− f(τ)|eα(n−1) : ω, τ ∈ I∞ and |ω ∧ τ | ≥ n}.
For every α > 0 let Kα be the set of all complex-valued Hölder continuous (not necessarily
bounded and allowing −∞ with the convention that e−∞ = 0 and −∞ − (−∞) = 0)
functions on I∞. Set

Ksα :=

{
ρ ∈ Kα :

∑
e∈E

exp
(
sup
(
Reρ|[e]

))
< +∞

}
.

An element of Ksα is called an α-Hölder summable potential. Moreover, Hα is defined to
be the set of all bounded Hölder continuous functions. By endowing Hα with the norm

||f ||α := ||f ||∞ + vα(f),

the set Hα becomes a complex Banach space. Also, the set Hα forms a vector subspace of
the Banach space Cb := Cb(I

∞) of bounded continuous complex-valued functions defined
on I∞. This Banach space is equipped with the supremum norm || · ||∞. Now, fix ρ ∈ Ksα
and notice that for every g ∈ Cb, the function Lρ(g) given by the formula

(43) Lρ(g)(ω) =
∑
i∈I

eρ(iωg(iω), ω ∈ I∞,

is well-defined, it belongs to Cb and ||Lρ(g)||∞ ≤
∑

e∈E exp
(
sup
(
Reρ|[e]

))
||g||∞. The oper-

ator Lρ, called the transfer, or Perron-Frobenius, operator, acts continuously on Cb with

||Lρ||∞ ≤
∑
i∈I

exp
(
sup
(
Reρ|[e]

))
<∞.

The transfer operator Lρ preserves the Banach space Hα and acts continuously on this
space. Now notice that the function vα alone is a pseudo-norm on the vector space Kα. So,
it induces a pseudo-metric on Kα ((f, g) 7→ vα(f − g)), and this pseudo-metric restricted
to Ksα induces a topology on Ksα, which in the sequel will be called the α–Hölder topology.
We quote now Theorem 3.8 from [U2].

Theorem 45. Suppose that Λ is an open subset of Cd, d ≥ 1, and that the function
Λ 3 λ 7→ ρλ ∈ Ksα (Ksα endowed with the α–Hölder topology) is continuous. If the function
Λ 3 λ 7→ ρλ(ω) ∈ C is holomorphic for every ω ∈ I∞, then the function Λ 3 λ 7→ Lρλ ∈
L(Hα) is also holomorphic.

This theorem was in fact proved in [U2] for d = 1 only, but the general case follows
immediately from Hartogs Theorem. We naturally identify Rd with a subset of Cd. As a
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fairly straightforward consequence of Theorem 45 and Kato-Rellich Perturbation Theorem
we shall prove the following.

Theorem 46. Suppose that Λ is an open subset of Cd, d ≥ 1, and that the function
Λ 3 λ 7→ ρλ ∈ Ksα (Ksα endowed with the α–Hölder topology) is continuous. Suppose also
that the function Λ 3 λ 7→ ρλ(ω) ∈ C is holomorphic for every ω ∈ I∞. If ρλ(I

∞) ⊂ R for
all λ ∈ Λ∩Rd, then the topological pressure function Λ∩Rd 3 λ 7→ P (ρλ) is real-analytic.

Proof. Fix λ0 ∈ Λ ∩ Rd. In view of Theorem 2.4.6 from [MU2], eP (ρλ0
) is a simple isolated

eigenvalue of the operator Lλ0 := Lρλ0
: Hα → Hα. Hence, in view of Theorem 45, Kato-

Rellich Perturbation Theorem ([K], Theorem XII.8) is applicable to yield a number r1 > 0
and a holomorphic function γ : Dq(λ0; r1)→ C such that

(a) Dq(λ0; r1) ⊂ Λ, where Dq(λ; r) ⊂ Cd is the polydisc centered at λ and with all radii
equal to r.

(b) γ(λ0) = eP (ρλ0
).

(c) For all λ ∈ Dq(λ0; r1), γ(λ) is a simple isolated eigenvalue of the operator Lλ :
Hα → Hα, with the remainder of the spectrum uniformly separated from γ(λ).

In particular there exist r2 ∈ (0, r1] and η > 0 such that

(44) σ(Lλ) ∩BC(eP (ρλ0
), η) = {γ(λ)}

for all λ ∈ Dq(λ0; r2). Now, eP (ρλ is the spectral radius r(Lλ) of the operator Lλ for all λ ∈
Dq(λ0; r2)∩Rd. In view of semi-continuity of the spectral set function (see Theorem 10.20
on p.256 in [Rud]), taking r2 > 0 appropriately smaller, we will also have that r(Lλ) ∈
[0, eP (ρλ0

) +η). Along with (44), these facts imply that eP (ρλ) = γ(λ) for all λ ∈ Dq(λ0; r2)∩
Rd. Consequently, the function Dq(λ0; r2) ∩ Rd 3 λ 7→ P (ρλ) ∈ R is real-analytic. �

Recall that for every Hölder continuous potential φ : J(f)→ R,

∆φ =

{
t ∈ R : sup

n≥1

(
P (tφ)− 1

n
sup(Sn(tφ))

)
> 0

}
.

Obviously, ∆φ is an open subset of R. Our goal in this section is to prove the following.

Theorem 47. The topological pressure function

∆φ 3 t 7→ P (tφ) ∈ R

is real-analytic.

Proof. Since analyticity is a local property, we may assume without loss of generality that
1 ∈ ∆φ and to prove real analyticity in some sufficiently small neighborhood of 1. So, fix η
so small that (1−η, 1+η) ⊂ ∆φ and, moreover, P (tφ)−sup(tφ) > κ for all t ∈ (1−η, 1+η)
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and some κ > 0. Denote by Q the set of all rational numbers and arrange Q∩ (1−η, 1+η)
in a sequence {tk}∞k=1. Define

µ0 :=
∞∑
k=1

2−kµtkφ.

Notice (see the proof) that by the choice of η, Lemma 10 is satisfied with the same constants
τ and r0 for all t ∈ (1− η, 1 + η), and the measures mtφ. So the same estimate is valid for
the measure µ0. Now, applying Lemma 9 and Lemma 10 for this measure µ0, we arrive at
the following version of Lemma 11.

Lemma 48. There exists a topological disc U contained in Ec, with piecewise smooth
boundary, such that U does not contain any critical value of f q, µtk(U) = 1 for all k ≥ 1,

and there exist λ > 1, λ̃ > 1 such that

µtk(B(∂U, λ̃−n)) ≤ λ−n.

Remark 49. Having the disc U as appearing in Lemma 48, all the objects, i.e. inducing
schemes and iterated function systems, produced in Section 2, depend only on U , and not
on the measure involved. In particular, all statements about the measure µφ are now true

for all measures µtkφ, k ≥ 1, with the constants, particularly λ and λ̃, as coming from
Lemma 48.

Recall that F = {ϕe : U → De}e∈E is the corresponding iterated function system and X
is its limit set. Let π : E∞ → X be the corresponding canonical projection. Recall that

φ(x) =
∑n(e)−1

k=0 φqr(h
k(x)) whenever x ∈ De. Put ψ = φ ◦ π and ψqr = φqr ◦ π. Consider

the following 2–parameter family of potentials.

ψs,t(ω) = tψ(ω)− sqrn(ω1), ω ∈ E∞.

Notice that, equivalently, one can write

ψs,t(ω) = tSn(ω1)ψqr(ω)− sqrn(ω1).

Remember that φ : E∞ → R is Hölder continuous. It then follows from (22) that there
exist γ > 0 > 0 and C1, C2 > 0 such that

(45)

∑
n(e)=k

exp(sup(ψ|[i])− P (φ)qrk) =
∑
n(e)=k

exp(sup(Snψqr |[i])− P (φ)qrk)

≤ C1

∑
n(e)=k

µφ(ϕi(U))

≤ C2e
−γk.
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In view of Remark 49, for every k ≥ 1 there exists a Borel probability measure mk on E∞

such that, for all j ≥ 1, for all τ ∈ Ej, and for all Borel sets A ⊂ E∞

mk(τA) =

∫
A

exp
(
tkSnψ(τω)− qr(n(τ1) + n(τ2) + · · ·+ n(τj))P (tkφ)

)
dmk(ω).

Indeed, Remark 49 assures us that for all integers k ≥ 1 the limit set X of our induced
system F is of full µtkφ measure. Since the measure µtkφ is equivalent to the exp(−tkφ +
P (tkφ))–conformal measure mtkφ, it follows that mtkφ itself, serves as a conformal measure
for the induced system. Thus, mk is just equal to mtkφ ◦ π. We thus conclude that

(46) P (ψP (tkφ),tk
) = 0

for all k, where P denotes topological pressure with respect to the shift map σ : E∞ → E∞.
Since ||ψ|[e]||∞ ≤ n(e)||ψqr||∞, we conclude from (45) that

(47)
∑
n(e)=j

exp
(

sup(ψs,t|[e])
)
≤ e−

γ
2
j

for all j ≥ 1, all t ∈ T :=
(

1− γ
4||ψqr||∞ , 1 + γ

4||ψqr||∞

)
and all s ∈ S := (P (φ)− γ

4qr
, P (φ) +

γ
4qr

). Therefore, for all (s, t) ∈ Λ := {(s, t) ∈ C × C : Res ∈ S, Ret ∈ T} the operator

Ls,t : Hα → Hα is well-defined if given by the following formula

Ls,t(g)(ω) =
∑
e∈E

g(eω) exp
(
ψs,t(eω)

)
.

Obviously, the function Λ 3 (s, t) 7→ ψs,t(ω) is holomorphic for all ω ∈ Λ and ψs,t(E
∞) ⊂ R

for all (s, t) ∈ Λ∩R = S×T . Also, since the function ψqr : E∞ → R is Hölder continuous,
the standard distortion argument shows that

vα
(
ψs,t − ψa,b

)
= |t− b|vα

(
Sn(ω1)ψqr(ω)

)
≤ Q|t− b|

with some constant Q > 0 depending only on ψ. Hence, the map Λ 3 (s, t) 7→ ψs,t ∈
Ksα is Lipschitz continuous, thus continuous. So, we have verified all the hypotheses of
Theorem 46. It gives the following.

Lemma 50. The function
S × T 3 (s, t) 7→ P (ψs,t)

is real-analytic.

Since the map T 3 t 7→ P (tφ) is continuous, even Lipschitz continuous with a Lipschitz
constant equal to 1, there exists an open interval Γ ⊂ ∆φ containing the number 1 such
that P (tφ) ∈ S for all t ∈ Γ. Using this, continuity of the map T 3 t 7→ (P (tφ), t), and
Lemma 50, we thus conclude that the function Γ 3 t 7→ P (ψP (tφ),t) is continuous as a
composition of two continuous functions. We thus derive from (46) that

(48) P (ψP (tφ),t) = 0
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for all t ∈ Γ. Now, in virtue of Proposition 2.6.13 in [MU2] we have that

∂

∂s

∣∣∣∣
(P (φ),1)

P (ψs,t) = −
∫
E∞

n(ω1) dµψP (φ),1
∈ (−∞, 0).

It thus follows from the Implicit Function Theorem, Lemma 50 and (48) applied with t = 1
that there exists η > 0 and a unique continuous function Q : (1− η, 1 + η)→ S such that
(1− η, 1 + η) ⊂ Γ,

Q(1) = P (φ)

and
P (ψQ(t),t) = 0

for all t ∈ (1 − η, 1 + η). Moreover, the function Q : (1 − η, 1 + η) → S is real–analytic.
Invoking (48) we thus conclude that Q(t) = P (tφ) for all t ∈ (1−η, 1+η). As a consequence,
the function (1− η, 1 + η) 3 t 7→ P (tφ) is real–analytic. We are done.

�

7. The Law of Iterated Logarithm; Abstract Setting

This section is of general abstract character. We consider a probability space (Y,F , µ) and
an F -measurable mapping T : Y → Y preserving the probability measure µ. Our goal is
to show that if a “sufficiently good” induced map satisfy the Law of Iterated Logarithm,
then so does the original map. Precisely, we say that a µ-integrable function g : Y → R
satisfies the Law of Iterated Logarithm if there exists a positive constant Ag such that

lim sup
n→∞

Sng − n
∫
gdµ√

n log log n
= Ag.

From now on we always assume without loss of generality that

µ(g) =

∫
gdµ = 0.

Fix a set F ∈ F with µ(F ) > 0. Let τ : F → N ∪∞ be the first return time to F , i.e.

τ(x) = min{n ≥ 1 : T n(x) ∈ F}.
Poincare’s Return Theorem assures us that the function τ is µ-almost everywhere finite in
F . The first return (induced) map is then defined by the following formula.

TF (x) := T τ(x)(x).

It is well-known that the conditional measure µF on F is TF -invariant. Given x ∈ F , the
sequence (τn(x))∞n=1 is then defined as follows.

τ1(x) := τ(x) and τn(x) = τn−1(x) + τ(T τn−1(x)(x)).

Define the function ĝ : F → R as follows.

ĝ =
τ−1∑
j=0

g ◦ T j.
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The main result of this section is the following.

Theorem 51. Let T : Y → Y be a measurable dynamical system preserving a probability
measure µ on Y . Assume that the dynamical system (T, µ) is ergodic. Fix F , a measurable
subset of Y having a positive measure µ. Let g : Y → R be a measurable function such
that the function ĝ : F → R satisfies the Law of Iterated Logarithm with respect to the
dynamical system (TF , µF ). If in addition,

(49)

∫
|ĝ|2+γdµ <∞

for some γ > 0, then the function g : Y → R satisfies the Law of Iterated Logarithm with
respect to the original dynamical system (T, µ) and Ag = Aĝ.

Proof. Since the Law of Iterated Logarithm holds for a point x ∈ X if and only if it holds
for T (x), in virtue of ergodicity of T , it suffices to prove our theorem for almost all points
in F . By our assumptions there exists a positive constant Aĝ such that

lim sup
n→∞

Sτng(x)√
n log log n

= Aĝ.

for µF -a.e. x ∈ F . Since, by Kac’s Lemma,

(50) lim
n→∞

τn
n

=

∫
Y

τdm =

∫
F

τdm = 1,

µF -a.e. on F , we thus have

(51) lim sup
n→∞

Sτng√
n log log n

lim sup
n→∞

Sτng√
τn log log τn

= Aĝ.

µF -a.e. on F . Now, for every n ∈ N and (almost) every x ∈ F let k = k(x, n) be the
positive integer uniquely determined by the condition that

τk(x) ≤ n < τk+1(x).

Since

Sng(x) = Sτk(x)g(x) + Sn−τk(x)g(T τk(x)(x)),

we have that

(52)
Sng√

n log log n
=

Sτk(x)g√
n log log n

+
Sn−τk(x)g√
n log log n

Since by (50)

lim
n→∞

τk+1(x)

τk(x)
= 1,

we get from (51) that,

lim sup
n→∞

Sτkg(x)√
n log log n

= lim sup
n→∞

Sτkg(x)√
k log log k

= Aĝ.
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Because of this and because of (52), we are only left to show that

(53) lim
n→∞

Sn−τk(n)
g(x)

√
n log log n

= 0.

µF -a.e. on F . To do this, note first that

Sτk+1−τk |g|(T τk(x))
√
k log log k

=
|ĝ|(T kF (x))√
k log log k

.

Take ean arbitrary ε ∈ (0, γ). Since
(54)

µ
(
{x ∈ F : |ĝ|(T kF (x)) ≥ ε

√
k log log k}

)
= µ

(
{x ∈ F : |ĝ|(x) ≥ ε

√
k log log k}

)
= µ

(
{x ∈ F : |ĝ|2+ε(x) ≥ ε2+ε(k log log k)1+ε/2}

)
≤

∫
|ĝ|2+εdµ

ε2+ε(k log log k)1+ε/2
,

using (49) we conclude that
∞∑
k=1

µ
(
{x ∈ F : |ĝ|(x) ≥ ε

√
k log log k}

)
<∞.

So, applying Borel-Cantelli lemma, (53) follows. We are done. �

8. Stochastic properties of the equilibrium measure µφ

In this section we obtain strong transparent stochastic properties of the dynamical system
(f, µφ). We deduce them from the corresponding properties of the induced system (F, µφD),
where µφD is the conditional measure µφ on D. We follow the scheme worked out in [LSY].
We recall it briefly now. We do this in an abstract context. Let (∆0,B0,m0) be a measure
space with a finite measure m0, let P0 be a countable measurable partition of ∆0 and let
T0 : ∆0 → ∆0 be a measurable map such that, for every ∆′ ∈ P0 the map T0 : ∆′ → ∆0

is a bijection onto ∆0. Moreover, we assume that the partition P0 is generating, i.e. for
every x, y ∈ ∆0 there exists s ≥ 0 such that T s0 (x), T s0 (y) are in different elements of the
partition P0. We denote by s = s(x, y) the smallest integer with this property and we
call it a separation time for the pair x, y. We assume also that for each ∆′ ∈ P0 the map
(T0|∆′)

−1 is measurable and that the Jacobian Jacm0(T0) with respect to the measure m0

is well–defined and positive a.e. in ∆′. The following distortion property is assumed to be
satisfied.

(55)

∣∣∣∣Jacm0T0(x)

Jacm0T0(y)
− 1

∣∣∣∣ ≤ Cβs(T0(x),T0(y)).

We have also a function R : ∆0 → N (”return time”) which is constant on each element of
the partition P0. We assume that the greatest common divisor of the values of R is equal
to 1. Finally, let

∆ = {(z, n) ∈ ∆0 × N ∪ {0} : 0 ≤ n < R(z)}
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and each point z ∈ ∆0 is identified with (z, 0). The map T acts on ∆ as

T (z, n) =

{
(z, n+ 1) if n+ 1 < R(z)

(T0(z), 0) if n+ 1 = R(z)

The measure m0 is spread over the whole space ∆ by putting

m̃|∆0 = m0 and m̃|∆′×{j} = m0|∆′ ◦ π−1
j , ∆′ ∈ P ,

where πj(z, 0) = (z, j). Thus, the measure m is finite if and only if
∫

∆0
Rdm0 < ∞. The

separation time s((x, n), (y,m)) is defined to be equal to s(x, y) if n = m and x, y are in
the same set of the partition P . Otherwise we set s(x, y) = 0. Given β > 0 we define the
space

Cβ(∆) = {ϕ : ∆→ R : ∃ Cϕ such that |ϕ(x)− ϕ(y)| < Cϕβ
s(x,y) ∀x, y ∈ ∆}.

We refer to the quadrupole Y = (∆0, T0,P0, R) as a Young tower. The following basic
result has been proved in [LSY].

Theorem 52. If Y = (∆0, T0,P0, R)) is a Young tower and
∫
Rdm0 < ∞ then there

exists a unique probability T–invariant measure ν, absolutely continuous with respect to m̃.
The Radon-Niokodym derivative dν/dm̃ is bounded from below by a positive constant. The
dynamical system (T, ν) is exact, thus ergodic.

Let us make now an abstract digression. Let (Y, µ) be a probability space and let S : Y → Y
be a measurable map preserving measure µ. Let g : Y → R be a square integrable function.
We put

σ2
S(g) := lim sup

n→∞

1

n

∫
Y

(Sn(g)− nµ(g))2 dµ

and

σ2
S(g) := lim inf

n→∞

1

n

∫
Y

(Sn(g)− nµ(g))2 dµ.

In the case when these two numbers are equal, we denote by σ2
S(g) their common value and

call it the asymptotic variance of g. Coming back to our dynamical system T : ∆→ ∆, we
shall prove the following technical fact interesting itself and needed for the Law of Iterated
Logarithm.

Lemma 53. For every s ≥ 1 let As be the union of all those elements ∆′ of the partition
P for which R|∆′ ≥ s. Assume that there exist α > 3 and C > 0 such that m0(As) ≤ Cs−α

for all s ≥ 1. If a bounded measurable function g : ∆ → R is such that ν(g) = 0 and
σ2
T (g) > 0, then the measurable function ĝ : ∆0 → R is not a coboundary in the class of

real-valued bounded measurable functions defined on ∆0.
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Proof. Seeking contradiction suppose that ĝ : ∆0 → R is such a coboundary, i.e.

ĝ = u− u ◦ T

with some bounded measurable function g : ∆0 → R. Fix an integer n ≥ 1. For all x ∈ ∆
let

i = i(x) := min{0 ≤ s ≤ n : T s(x) ∈ ∆0}.

If no such s exists, set i = n. Let

j = j(x) := max{0 ≤ s ≤ n : T s(x) ∈ ∆0}.

Likewise, if no such s exists, set j = n. We have,

0 ≤ i ≤ j ≤ n,

and there exists a unique integer 0 ≤ k ≤ j − i such that

T j−i(x) = T k0 (x).

Hence we can write

Sng(x) = Sig(x) + ST0
k (ĝ)(T i(x)) + Sn−jg(T j(x)) = a(x) + b(x) + c(x).

In order to show that σ2
T (g) = 0, we shall estimate∫

(Sn(g))2dν = ||(Sn(g))||22 ≤ (||a(x)||2 + ||b(x)||2 + ||c(x)||2)2.

We shall deal with each of these three norms separately. Since b(x) = ST0
k (ĝ)(T i(x)) and

|ST0
k (ĝ)(T i(x))| ≤ 2||u||∞, we get immediately that

||b||2 ≤ 2||u||∞.

Next, we estimate ||a(x)||2. Since g is bounded, we have∫
a(x)2dν(x) ≤ ||g||∞

∫
(i(x))2dν(x) ≤M ||g||∞

∫
(i(x))2dm̃(x).

Note that, for all 0 ≤ s ≤ n we have,

(56) s = i(x) ⇐⇒ x ∈ T (R|∆′−s)(∆′)
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for some ∆′ ∈ As and, putting also the value given by the formula (56) on the remaining
part of the set X, gives us an estimate of the function i(x) for above. Thus,

(57)

∫
i2(x)dm̃(x) =

n∑
s=1

m̃{x : i(x) = s} · s2

≤
∞∑
s=1

∑
∆′∈As

m̃(T (R|∆′−s)(∆′)) · s2

=
∞∑
s=1

∑
∆′∈As

m0(∆′) · s2 =
∞∑
s=1

s2m0(As)

≤
∞∑
s=1

s2−α < +∞.

The estimate of ||c(x)||2 can be treated similarly. Indeed, note first that for 0 ≤ s ≤ n0,
we have

j(x) = n− s ⇐⇒ T n−s(x) ∈ As+1.

Thus,

(58)

∫
(b(x))2dν(x) ≤ ||g||∞

∫
(n− j(x))2dν(x)

=
n∑
s=1

s2ν({x : T n−s(x) ∈ As+1}) =
n∑
s=1

s2ν(As+1)

≤ C
n∑
s=1

s2−α

≤ C
∞∑
s=1

s2−α < +∞.

Therefore, the integrals
∫

(Sng)2dν remain bounded as n → ∞. This obviously implies
that σ2

T (g) = 0. �

The first two items of the following theorem concerning stochastic properties of the dy-
namical system (T, ν) form an extract from the results proved in [LSY] while the item (3)
has been basically proved in Section7.

Theorem 54. Let Y = (∆0, T0,P0, R)) be a Young tower. Then the following hold.

(1) If m0(R > n) = O(θn) for some 0 < θ < 1, then there exists 0 < θ̃ < 1 such that
for all functions ψ ∈ L∞ and we have g ∈ Cβ,

(59) Cov(ψ ◦ T n, g) =

∣∣∣∣∫ (ψ ◦ T n)gdν −
∫
ψdν

∫
gdν

∣∣∣∣ = O(θ̃n)
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(2) If m0(R > n) = O(n−α) with some α > 1 (in particular, if m0(R > n) = O(θn)),
then the Central Limit Theorem is satisfied for all functions g ∈ Cβ, that are not
cohomologous to a constant in L2(ν).

(3) If m0(R > n) = O(n−α) with some α > 4 (in particular, if m0(R > n) = O(θn)),
then the Law of Iterated Logarithm holds for all functions g ∈ Cβ, that are not
cohomologous to a constant in L2(ν).

Proof. As we have already said, the first two items are extracted from [LSY]. We will
show that (3) holds. Assume without loss of generality that ν(g) = 0. First note that the
boundedness of the function g and the condition m0(R > n) = O(n−α) with some α > 4
entail condition (49) in Theorem 51. Since the item (2) of our theorem holds, we must have
that σ2

T (g) > 0. It the follows from Lemma 53 that the measurable function ĝ : ∆0 → R is
not a coboundary in the class of real-valued bounded measurable functions defined on ∆0.
It is also easy to see that the function ĝ : ∆0 → R is Hölder continuous with respect to the
“symbolic” metric dβ(x, g) = βs(x,y). These two facts inserted to Theorem 5.5 in [MU2]
imply that the Law of Iterated Logarithm holds for the function ĝ : ∆0 → R. So, it holds
for the map g itself because of Theorem 51. We are done. �

Passing to our rational function dynamical system (f, µφ) we shall check that the assump-
tions of this theorem are satisfied for our induced system (F,mφ|D). The space ∆0 is now
X, the limit set of the iterated function system F . The partition P0 consists of the sets
∆e := De ∩ X, e ∈ E. The measure m0 is the conformal measure mφ, restricted to X.
The map T0 is, in our setting, the map F . The function R, the return time, is, naturally,
defined as R|De = n(e), where hn(e)(De) = U . Fix e ∈ E, write F|De = hn(e) = grn(e) and

fix x, x′ ∈ ∆e. Recall that φqr(x) =
∑r−1

j=0 φq(x). Since φ is Hölder continuous, φqr is also
Hölder continuous; we denote the Hölder constant of φqr by Hqr. Then

log JacmφF (x) = −
n(e)−1∑
k=0

φqr(h
k(x)) = −

rn(e)−1∑
j=0

φq(g
j(x)),

and similarly for x′. So,

(60)

∣∣∣∣log
JacmφF (x)

JacmφF (x′)

∣∣∣∣ ≤ n(e)−1∑
k=0

|φqr(hk(x))− φqr(hk(x′))|

≤ Hqr

n(e)−1∑
k=0

distα(hkx, hky)

≤ H̃qr

n(e)−1∑
k=0

distαhyp(h
kx, hky)

where the last inequality follows from the fact that the spherical distance in U can be
estimated from above by the hyperbolic distance in U multiplied by some constant C > 0;
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so H̃qr = CαHqr). Now, as the map F :
⋃
e∈E De → U expands the hyperbolic metric in U

by some factor 1
τ
> 1 along every good pullback (see the proof of Proposition 18), we get

the following.

(61)

n(e)−1∑
k=0

distαhyp(h
kx, hky) ≤

n(e)−1∑
k=0

τα(n(e)−1−k)distαhyp(h
n(e)−1x, hn(e)−1x′)

≤ Const distαhyp(h
n(e)x, hn(e)x′).

First assume that s0((F (x), F (y)) ≥ 1. This corresponds to the case when F (x) and F (y)
are both in the same disc De, e ∈ E, from the domain of F . Then, applying Proposition 19
to the points hn(x) = F (x) and hn(x′) = F (x′), we see that∣∣∣∣log

JacmφF (x)

JacmφF (x′)

∣∣∣∣ ≤ Const βs0(F (x),F (x′))

with β := τα. If, on the other hand, s0(F (x), F (y)) = 0 then, using (23), we see that
distαhyp(h

n(e)−1x, hn(e)−1x′) ≤ Cα
1 . Therefore, the second term of (61) is readily bounded

by a constant. So, (55) is established in our context. The fact that the partition P0 is
generating follows directly from formula (25).

The last assumption in Theorem 54 is that the greatest common divisor of all the values
of n(e), e ∈ E, is equal to 1. If for our induced system this value is equal to some integer

s > 1, then we replace the map h by its iterate hs. The return times are now equal to n(e)
s

,
e ∈ E, and their greatest common divisor is equal to 1.

Therefore, using (22) we conclude from Theorems 52 and 54 that

(62) m̃φ(∆) < +∞,

the map T : ∆ → ∆ admits a probability T -invariant measure ν which is absolutely
continuous with respect to m̃φ, that for each function g ∈ Cβ and every ψ ∈ C∞(ν), (59)
holds, and that both, the Central Limit Theorem and the Law of Iterated Logarithm are
true for all functions g ∈ Cβ(∆) that are not cohomologous to a constant in L2(ν).

Now consider π : ∆→ Ĉ, the natural projection from the abstract tower ∆ to the Riemann
sphere C given by the formula

(63) π(z, n) = hn(z).

Then

(64) π ◦ T = h ◦ π,

m̃φ|∆0
◦ π−1 = m0 = mφ,

and

m̃φDe×{n} ◦ π
−1 = mφDe×{0} ◦ h

−n = m0|De ◦ h
−n
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for all e ∈ E and all 0 ≤ n ≤ n(e). Now, m̃φDe×{n} ◦ π
−1 is absolutely continuous with

respect to mφ, with the Radon-Nikodym derivative equal to JDe,n := Jacmφ(h−n) in hn(De)
and zero elsewhere. Therefore, using (62), we get that∫ ∑

e∈E

∑
0≤n<n(e)

JDe,ndmφ =
∑
e∈E

∑
0≤n<n(e)

∫
JDe,ndmφ = m̃φ ◦ π−1(J(f)) = m̃φ(∆) < +∞.

Thus, the function
∑

e∈E
∑

0≤n<n(i) JDe,n is integrable with respect to the measure mφ.

This implies immediately that the measure m̃φ ◦ π−1 is absolutely continuous with respect
to the measure mφ with the Radon–Nikodym derivative equal to

∑
e∈E
∑

0≤n<n(e) JDi,n.

Hence, the measure ν ◦ π−1 is also absolutely continuous with respect to mφ. Since ν is
F–invariant and π ◦ T = h ◦ π, the measure ν ◦ π−1 is h–invariant. But the measure µφ
is h–invariant ergodic and equivalent with the conformal measure mφ. Hence, ν ◦ π−1 is
absolutely continuous with respect to the ergodic measure µφ. Invariance and ergodicity
of ν ◦ π−1 yield this.

Lemma 55.
ν ◦ π−1 = µφ.

We are now in position to prove the following.

Theorem 56. For the dynamical system (f, µφ) the following hold.

(1) For every α ≤ 1, every α–Hölder continuous function g : J(f) → R and every
bounded measurable function ψ : J(f)→ R, we have that∣∣∣∣ ∫ ψ ◦ fn · gdµφ −

∫
gdµφ

∫
ψdµφ

∣∣∣∣ = O(θn)

for some 0 < θ < 1 depending on α.

(2) The Central Limit Theorem holds for every Hölder continuous function g : J(f)→
R that is not cohomologous to a constant in L2(µφ), i.e. for which there is no square
integrable function η for which g = const+η ◦f−η. Precisely this means that there
exists σ > 0 such that

1√
n

n−1∑
j=0

g ◦ f j → N (0, σ)

in distribution.

(3) The Law of Iterated Logarithm holds for every Hölder continuous function g :
J(f) → R that is not cohomologous to a constant in L2(µφ). This means that
there exists a real positive constant Ag such that such that µφ almost everywhere

lim sup
n→∞

Sng − n
∫
gdµ√

n log log n
= Ag.



FINE INDUCING AND EQUILIBRIUM MEASURES 49

Proof. Let g : J(f) → R be a Hölder continuous function with a Hölder exponent α and

let ψ ∈ L∞(µφ). Consider the functions g̃ = g ◦ π, ψ̃ = ψ ◦ π : ∆→ R. We shall prove the
following.

Claim 1: The function g̃ belongs to the space Cβ for an appropriate exponent β ∈ (0, 1).

Indeed (see the definition of the space Cβ), it is enough to check that |g̃(x, n)− g̃(x′, n)| ≤
Cβs(T0(x),T0(x′)). Equivalently, we are to check that

|g(hn(x))− g(hn(x′))| ≤ Cβs(T0(x),T0(x′)).

The left-hand side of this inequality can be estimated from above by distα(hn(x), hn(x′).
Since both points hn(x), hn(x′) are images of T0(x), T0(x′) under a very good pullback, the
same reasoning as in the proof of Proposition 19 shows that

dist(hn(x), hn(x′)) ≤ Cdisthyp(h
n(x), hn(x′)) ≤ disthyp(T0(x), T0(x′)) ≤ Cτ s(T0(x),T0(x′)).

Therefore, g̃ ∈ Cβ with β = τ < 1.

Claim 2: The function g̃ is not cohomologous to a constant in L2(ν).

Indeed, assume without loss of generality that µφ(g) = 0. Let Lµφ : L2(µφ)→ L2(µφ) be the
Perron–Frobenius operator corresponding to the function µφ. The fact that g : J(f)→ R
that is not a coboundary in L2(µφ) equivalently means that the sequence

(
Sn(g)

)∞
n=0

is not

uniformly bounded in L2(µφ). But because of Lemma 55, ||Sn(g̃)||L2(ν) = ||Sn(g)||L2(µφ). So,

the sequence
(
Sn(g̃)

)∞
n=0

is not uniformly bounded in L2(ν). Thus, it is not a coboundary

in L2(ν).

Having these two claims, all items, (1), (2), and (3), now follow immediately from Theo-
rem 54 with the use of Lemma 55 and formula (64). The proof is finished. �

9. The Law of Iterated Logarithm for aφ+ b log |f ′|
and

Refined Geometry of the Equilibrium State µφ.

In this section we prove the Law of Iterated Logarithm for the functions of the form
aφ+ b log |f ′| whenever an appropriate cohomology equation fails and derive from it finer
geometrical properties of the equilibrium states µφ. In particular we show that if condition
(1) of Theorem 43 fails then the measure µφ is singular with respect to the Hausdorff
measure HHD(µφ). Keep D the disc used to define the system F∗, and X∗ the limit set of
this system. For every ψ : J(f)→ R let

ψ∗ =
ˆ̂
ψ : X∗ → R,

where the first ”ˆ” refers to the inducing scheme with respect to h on X = ∆0, while
the second ‘ˆ” refers to the inducing scheme with respect to F on X∗. We start with the
following.
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Lemma 57. If f : Ĉ → Ĉ is a rational function with degree deg(f) ≥ 2 and a having
pressure gap Hölder continuous potential φ : J(f) → R fails to satisfy condition (1) of
Theorem 43, then the function ψ∗ : X∗ → R is not cohomologous to a constant in L2(µφ∗),
where ψ := φ+ HD(µφ) log |f ′| : J(f)→ R.

Proof. Suppose for a contrary that ψ∗ is cohomologous to a constant in L2(µφ∗). Let

κ = HD(µφ).

We know from Corollary 28 that
∫

log |F ′∗|dµφ∗ < +∞. Therefore, using Theorem 2.2.7
in [MU2] we conclude that µφ∗ = µκ, where µκ := µ−κ log |F ′∗| is the equilibrium (or Gibbs)
state corresponding to the potential −κ log |F ′∗| : ∆0 → R. Using this and Theorem 4.4.2
(Volume Lemma) in [MU2], as well as the definition of a Gibbs state, we can write as
follows.

HD(µφ) = HD(µφ∗) = HD(µκ) =
hµκ(F∗)

χµκ
=
P (−κ log |F ′∗|) + κχµκ

χµκ

=
P (−κ log |F ′∗|)

χµκ
+ κ

= HD(µφ) +
P (−κ log |F ′∗|)

χµκ
.

Hence
P (−HD(µφ) log |F ′∗|) = 0.

Starting from this formula and proceeding in exactly the same was as in our current paper
with β replaced by κ = HD(µφ), we end up with Theorem 43 with β replaced by κ. As,
in addition, φ was normalized so that P(φ) = 0, the function φ + κ log |f ′| is therefore a
coboundary. Le µ be an arbitrary ergodic probability f -invariant measure on J(f) having
positive entropy. We then get

HD(µ) =
hµ
χµ
≤
P (φ)−

∫
φ dµ

χµ
= −

∫
φ dµχµ =

κχµ
χµ

= κ = HD(µφ).

Thus, we get that DD(J(f)) = HD(µ), and so, φ + DD(J(f)) log |f ′| : J(f) → R is a
coboundary, contrary to our assumption. We are done. �

Notice that Koebe’s Distortion Theorem readily entails the following.

Proposition 58. Let ψ = − log |f ′| : J(f)→ R. Then ψ∗ : X∗ → R is a Hölder continuous
function in the sense of Section 6.

We shall now prove the following lemma in an abstract context of subshifts of finite type
with a countable alphabet. Apart from being needed for the proof of finiteness of all
momenta of (log |f ′|)∗, this lemma is of intrinsic interest itself.
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Lemma 59. Being in the context of Section 6 let I be a countable set, called alphabet,
consisting of at least two distinct points. Let ρ ∈ Ksα and let µρ be the corresponding Gibbs
(equilibrium) state; see [MU2] for their definition, existence and an account of properties.
Recall that for every i ∈ I, τi : [i]→ N is the first return map to [i], i.e. τi(ω) = min{n ≥
1 : σn(ω) ∈ [i]}. We claim that for every a ∈ I there exists κ > 0 such that

(65) µρ(τ
−1
a (n)) ≤ e−κn

for all n ≥ 1.

Proof. Fix a ∈ I. Since I contains at least two distinct elements and since measure µρ
has a full topological support, it suffices to prove (65) for all n ≥ large enough. In fact it
suffices to show that

(66) µρ(τa > n) ≤ e−κn

for some κ > 0 and all n ≥ 1. Let Lρ : Cb(I
∞) → Cb(I

∞) be the Perron-Frobenius
operator defined in (43). Let mρ be the probability eigenmeasure corresponding to the

eigenvalue eP (ρ) of the dual operator L∗ρ : C∗b (I∞) → C∗b (I∞) and let g = dµρ
dmρ

. Set

ρ0 := exp
(
ρ− P (ρ)

)
g
g◦σ . Since ∑

i∈I

exp
(
ρ0(iω)

)
= 1,

we can write as follows:
(67)

µρ(τa > n) =
∑
i 6=a

µρ
(
[e(τa > n− 1)]

)
=
∑
i 6=a

∫
{τa>n−1}

exp
(
ρ0(iω)

)
dµρ(ω)

=

∫
{τa>n−1}

(∑
i 6=a

exp
(
ρ0(iω)

))
dµρ(ω) =

∫
{τa>n−1}

(
11− exp

(
ρ0(aω)

))
dµρ(ω)

≤
∫
{τa>n−})

(
11− exp

(
inf
(
ρ0|[i]

)))
dµρ(ω)

=
(
11− exp

(
inf
(
ρ0|[i]

)))
µρ(τa > n− 1).

Since µρ(τa > 1) < 1 and since
(
11 − exp

(
inf
(
ρ0|[i]

)))
< 1, formula (66) follows from (67)

by induction. We are done. �

Now we are in position to prove the following.

Proposition 60. Let ψ = log |f ′| : J(f) → R. Then all moments of the function ψ∗ :
X∗ → R are finite, i.e.

∫
|ψ∗|γ dµφ∗ < +∞ for all γ > 0.
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Proof. Let n ≥ 1 be an arbitrary integer. For every i ∈ I such that N(i) = n and for all

z ∈ D̂i, in virtue of Koebe’s Distortion Theorem we get

K−1 ≤ K−1 diam(D)

diam(D̂i)
≤ |(hn)′(z)| ≤ ||h′||n∞

with some K ≥ 1 independent of i, n, and z ∈ D̂i. Therefore,∣∣ log |(hn)′(z)|
∣∣ ≤ nmax{logK, log ||h′||∞}.

Putting L := max{logK, log ||h′||∞}, and applying Lemma 59 we thus get for all γ > 0
that ∫

|ψ∗|γ dµφ∗ =
∞∑
n=1

∑
N(i)=n

∫
D̂i

|ψ∗|γ dµφ∗

=
∞∑
n=1

∫
τD=n

|ψ∗|γ dµφ∗

≤
∞∑
n=1

(nL)γµφ∗
(
τD = n

)
≤ Lg

∞∑
n=1

nγe−κn < +∞.

The proof is complete. �

Inserting these last two propositions to Theorem 2.5.5 and Lemma 2.5.6 in [MU2], we get
the following.

Lemma 61. Let ψ = aφ+ b log |f ′| : J(f)→ R, a, b ∈ R. Then the function ψ∗ : X∗ → R
satisfies the Law of Iterated Logarithm with respect to the dynamical system (F∗, µφ∗),
provided that ψ∗ is not cohomologous to a constant in L2(µφ∗).

Notice that the function ψ∗ : X∗ → R can be also represented in the form ψ∗ =
̂̂

(ψ ◦ π),
where π : ∆ → J(f) is the projection from the tower ∆ to the Julia set J(f), defined by
(63), the first ”ˆ” refers to the inducing scheme on ∆0 with respect to the map T : ∆→ ∆,
while the second ‘ˆ” refers to the inducing scheme with respect to T0 = F on X∗. So, as
an immediate consequence of lemma 61 and Lemma 53, by passing from ψ∗ : X∗ → R to

(̂ψ ◦ π), from (̂ψ ◦ π) to ψ ◦ π, and from ψ ◦ π to ψ, in the same way as in the proof of
Theorem 56, we get the following.

Theorem 62. Let ψ = aφ + b log |f ′| : J(f) → R, a, b ∈ R. Then the function ψ :
J(f)) → R satisfies the Law of Iterated Logarithm with respect to the dynamical system
(f, µφ), provided that ψ∗ is not cohomologous to a constant in L2(µφ∗).
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Now, as an immediate consequence of this theorem and Lemma 57, we obtain the following.

Theorem 63. If the pair (f, φ) fails to satisfy condition (1) of Theorem 43, then the
function ψ := φ + HD(µφ) log |f ′| : J(f) → R satisfies the Law of Iterated Logarithm
with respect to the dynamical system (f, µφ). This means that there exists a real positive
constant Ag such that µφ almost everywhere

lim sup
n→∞

Snψ − n
∫
ψdµ√

n log log n
= Ag.

We now derive geometric consequences of this theorem. We recall first the definition of
generalized Hausdorff measures. Let g : [0,∞) → [0,∞) be a non-decreasing function
continuous at 0, positive on (0,∞) and such that g(0) = 0. Such functions are frequently
referred to as gauge functions. Let (X, ρ) be a metric space. For every δ > 0 define

Hδ
g(A) = inf

{ ∞∑
i=1

g(diam(Ui))
}

where the infimum is taken over all countable covers {Ui : i = 1, 2, . . .} of A of with the
diameter of each Ui not exceeding δ. The following limit

Hg(A) = lim
δ→0

Hδ
δ(A) = sup

δ>0
Hδ(A)

exists, but may be infinite, since Hδ
g(A) increases as δ decreases. Since all the functions Hδ

g

are outer measures, Hg is an outer measure too. In addition, Hg turns out to be a metric
outer measure and therefore all Borel subsets of X are Hg–measurable. At the moment we
are particularly interested in gauge functions of the form

gκ,c(t) = tκ exp
(
c
√

log(1/t) log3(1/t)
)
κ, c > 0.

Having Theorem 64 and proceeding then in the same way as in [PUZ] (comp. [PU] for an
easier, expanding, case), we can prove the following.

Theorem 64. Suppose that the pair (f, φ) fails to satisfy condition (1) of Theorem 43.
Let cφ = Aφ+HD(µφ) log |f ′| > 0 and let κ := HD(µφ). Then

µφ is absolutely continuous with respect to Hgκ,c for all 0 < c <
√
cφ/χµφ.

µφ is singular with respect to Hgκ,c for all c >
√
cφ/χµφ.

µφ is singular with respect to the ordinary Hausdorff measure Htκ.



54 MICHA L SZOSTAKIEWICZ, MARIUSZ URBAŃSKI, AND ANNA ZDUNIK
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[PU] F. Przytycki, M. Urbański, Conformal Fractals - Ergodic Theory Methods, Cambridge University

Press, 2010.
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