
FINER FRACTAL GEOMETRY

FOR ANALYTIC FAMILIES

OF

CONFORMAL DYNAMICAL SYSTEMS

BARTŁOMIEJ SKORULSKI AND MARIUSZ URBAŃSKI

Abstract. We prove several results establishing real analyticity of Hausdorff dimensions
of limit sets of analytic families of conformal graph directed Markov systems. With this
tool and with iterated functions systems resulting from the existence nice sets in the
sense of Rivera-Letelier, we prove that the canonical Hausdorff measure restricted to the
radial Julia set of a tame meromorphic function (can be rational) is σ-finite and that
the Hausdorff dimension of the radial Julia sets for fairly general families of meromorphic
functions (can be rational) is real–analytic.
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1. Introduction

Complex dynamics is a field originated in the works of Pierre Fatou and Gaston Julia.
Of course, the problem of linearization for a fixed point was studied before (Böttcher,
Koenings and others) and definitely it was an inspiration for the idea of creating this
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separate branch of mathematics, but numerous and extensive works of Fatou and Julia
were the place where complex dynamics was born and maturated. The field became widely
known and popular when about three decades ago first computer images of Mandelbrot
set and Julia sets appeared. Complex dynamics attracted attention of many researches
who started to investigate a variety of interesting and exiting topics in this field. One of
them is the geometry of Julia sets and one of the ways to describe and analyze the complex
nature of this object is its Hausdorff dimension. In this paper we study the behavior of
this dimension under analytic perturbations.

Probably the first result indicating how the Hausdorff dimension of Julia sets changes
under analytic perturbations is the result of Ruelle in [15]. He studied the family z 7→ z2 +c
and showed that the Hausdorff dimension of the Julia set is a real-analytic function for
a complex parameter c sufficiently close to zero. The main technique Ruelle used was
thermodynamic formalism. We refer the reader to the books of M. Zinsmeister [24] and F.
Przytycki & M. Urbański [12] for a modern exposition of thermodynamic formalism and
contemporary approach to the problem of real analyticity of Hausdorff dimension.

The problem of real analyticity of the Hausdorff dimension was further studied for many
families of rational and meromorphic functions (see e.g. [23], [22], [21], [8], [1] and [9]).
In the present paper we continue this line of investigation. Our two main results are
Theorem 1.1 and Theorem 1.2 stated below. In these theorems we establish real–analyticity
of Hausdorff dimension of radial Julia sets under weakest, up to our knowledge, conditions.
Having a family {fλ}λ∈Λ of meromorphic functions we commonly abbreviate Jλ for J (fλ),
the Julia set of fλ. The concept of strong N–regularity appearing below is introduced in
Definition 3.6. The class of dynamically regular meromorphic functions was introduced and
investigated in [8] and [9]. We deal with them in Section 6 entitled Strong N–Regularity of
Dynamically Regular Meromorphic Functions.

Theorem 1.1. Assume that a tame meromorphic function f : C → Ĉ is strongly N–
regular. Let Λ ⊂ Cd be an open set and let {fλ}λ∈Λ be an analytic family of meromorphic
functions such that

(1) fλ0 = f for some λ0 ∈ Λ,
(2) there exists a holomorphic motion H : Λ × Jλ0 → C such that each map Hλ is a

topological conjugacy between fλ0 and fλ on Jλ0.
Then the map

Λ 3 λ 7→ HD(Jr(fλ))

is real–analytic on some neighborhood of λ0.

Theorem 1.2. Suppose that f : C→ Ĉ is a dynamically regular meromorphic function of
divergence type which belongs to class S. If Λ ⊆ C is an open set, {fλ}λ∈Λ is an analytic
family (in the sense of Section 5) of meromorphic functions, and if fλ0 = f for some
λ0 ∈ Λ, then the function Λ 3 λ 7→ HD(Jr(fλ)) is real–analytic in some open neighborhood
of λ0 in Λ.
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Both of these two theorems include rational functions. The former of them is also new
for such functions; all hyperbolic, parabolic, semi-hyperbolic, and non-recurrent rational
functions are tame. The latter one in the context of rational functions reduces to hyperbolic
ones and is well-known.

One of our two main techniques employed in the proofs of these two theorems above is the,
recently emerging, concept of nice sets. These sets were introduced and extensively studied
by Przytycki and Rivera-Letelier ([13], [11]) in the context of Collet-Eckmann rational
mappings. Nice sets in transcendental meromorphic dynamics were used to show that
there is no absolutely continuous invariant probability for Misiurewicz exponential maps
(see [3]). A general construction of nice sets for transcendental functions can be found in
[2]. In our present paper we use them to construct appropriate conformal iterated function
systems and then to apply the developed machinery of graph directed Markov systems from
[6] and [7] that form a natural generalization of graph directed Markov systems. While
doing this, as an actually auxiliary step, we obtain new, up to our knowledge, results
about real analyticity of the Hausdorff dimension of limits sets of (infinite) conformal
graph directed Markov systems. The following theorems 1.3 and 1.4 in particular extend
corresponding assertions from [21] and [1]. While dealing with iterated function systems,
or more generally, with graph directed Markov systems, we extensively use the results,
definitions, and notation from [7] and [6]. For the convenience of the reader we collect in
Appendix all those of them that we will need and use.

Theorem 1.3. If an analytic family {Sλ}λ∈Λ consisting of finitely primitive conformal
graph directed Markov systems, is strong, then the function Λ 3 λ 7→ b(Sλ) ∈ R is real–
analytic on some neighborhood of every strongly regular parameter λ0 ∈ Λ.

In addition, if we know the Bowen’s parameter is equal to the Hausdorff dimension of
the limit set (which is due to Theorem 8.1 in Appendix guaranteed for example by the
Open Set Condition), we thus automatically get real analyticity of the Hausdorff dimension
of the limit sets of conformal graph directed Markov systems Sλ, λ ∈ Λ, on that same
neighborhood of λ0.

Theorem 1.4. If Λ ⊆ Cd is an open set and {Sλ}λ∈Λ is an analytic family of finitely
primitive conformal graph directed Markov systems such that Sλ0 is strongly regular for
some λ0 ∈ Λ and there exists a holomorphic motion H : Λ× Ĉ→ Ĉ such that

ϕλe (H(λ, z)) = H(λ, ϕλ0
e (z))

for all λ ∈ Λ and all z ∈ Jλ0(:= JSλ0
), then the Bowen’s parameter function Λ 3 λ→ b(Sλ)

is real–analytic on some sufficiently small neighborhood of λ0.

Again, if the Bowen’s parameter is equal to the Hausdorff dimension of the limit set then
the Hausdorff dimension is real-analytic.

Note that although we assume in the latter theorem seemingly more, namely the existence
of an appropriate holomorphic motion, however, on the other hand, we merely assume



4 BARTŁOMIEJ SKORULSKI AND MARIUSZ URBAŃSKI

here analyticity of the family of graph directed Markov systems, which is much weaker
than weakly regular analyticity required in Theorem 4.1 from [21]. Staying in the realm
of abstract Conformal Graph Directed Markov Systems we are able to provide a very mild
sufficient condition, called periodical separation, which entails the existence of a suitable
holomorphic motion. We can then prove Theorem 1.1 under very weak hypotheses indeed.
This is however not quite the end of the story about directed Markov systems. The point
is that those conformal Markov systems constructed in the proof of Theorem 1.1 are not
known to satisfy the Open Set Condition. To remedy this we invoke the theory of conformal
Walters expanding maps developed in in [4].

Having Conformal Iterated Function Systems produced with the help of nice sets, we were
also able to show (see Theorem 3.4), as a straightforward consequence of the theory of Con-
formal Graph Directed Markov Systems, that the canonical Hausdorff measure restricted
to the radial Julia set of a tame meromorphic function is σ-finite. This is also new for
rational functions.

We have already indicated this a few times but as the last remark we would like to say again
that all our considerations about tame meromorphic functions also do apply to rational
functions, and also for them are new. We do not assume that our meromorphic functions
are transcendental.

2. Nice Sets and Corresponding Conformal Iterated Function Systems
for Meromorphic Functions

Let f : C → Ĉ be a meromorphic function. The Fatou set of f consists of all points
z ∈ C that admit an open neighborhood Uz such that all the forward iterates fn, n ≥ 0,
of f are well-defined on Uz and the family of maps {fn|Uz : Uz → C}∞n=0 is normal. The
Julia set J (f) is then defined as the complement of the Fatou set of f in C. By sing(f−1)
we denote the set of singularities of f−1, i. e. such points w ∈ C that for every spherical
ball B(w, r) ⊆ C there exists a connected component C of f−1(B(w, r)) for which the map
f : C → B(w, r) is not a homeomorphism. We define the postsingular set of f : C→ Ĉ as

P(f) =
∞⋃
n=0

fn(sing f−1).

Given z ∈ C we say that a complex number w is in ω(z) if all the forward iterates fn(z),
n ≥ 0, are well-defined and w is a cluster point of the sequence {fn(z)}∞n=0. The set ω(z)
is then refereed to as the ω-limit set of z. Note that ω(z) = ∅ if and only if either z is
eventually mapped to infinity or limn→∞ f

n(z) = ∞. The primary object of our study in
this paper, the radial Julia set Jr(f) of f is defined as

Jr(f) := {z ∈ J (f) : ω(z) \ P(f) 6= ∅}.

Given a set F ⊂ Ĉ and n ≥ 0, by Comp(f−n(F )) we denote the collection of all connected
components of f−n(F ). A meromorphic function f : C → Ĉ is called tame if its postsin-
gular set does not contain its Julia set. Unless otherwise stated all meromorphic functions
considered in the sequel will be tame. As noted in the introduction, J. Rivera-Letelier in-
troduced in [13] the concept of nice sets in the realm of the dynamics of rational maps of the



FINER FRACTAL GEOMETRY 5

Riemann sphere. In [2] N. Dobbs proved their existence for tame meromorphic functions
from C to Ĉ. We quote now his theorem.

Theorem 2.1. Let f : C → Ĉ be a tame meromorphic function. Fix z ∈ J (f) \ P(f),
κ > 1, and K > 1. Then there exists L > 1 and for all r > 0 sufficiently small there exists
an open connected set U = U(z, r) ⊂ C \ P(f) such that

(a) If V ∈ Comp(f−n(U)) and V ∩ U 6= ∅, then V ⊂ U .
(b) If V ∈ Comp(f−n(U)) and V ∩ U 6= ∅, then, for all w,w′ ∈ V,

|(fn)′(w)| ≥ L and
|(fn)′(w)|
|(fn)′(w′)|

≤ K.

(c) B(z, r) ⊂ U ⊂ B(z, κr) ⊂ C \ P(f).

Let U be the collection of all nice sets of f : C → Ĉ, i.e. all the sets U satisfying the
above proposition with some z ∈ J (f)\P(f) and some r > 0. Note that if U = U(z, r) ∈ U
and V ∈ Comp(f−n(U)) satisfies the requirements (a), (b) and (c) from Proposition 2.1
then there exists a unique holomorphic inverse branch f−nV : B(z, κr) → C such that
f−nV (U) = V . The collection SU of all such inverse branches forms obviously an iterated
function system in the sense of [6] and [7], comp. Appendix. In particular, SU clearly
satisfies the Open Set Condition. We denote its limit set by JU .

3. Hausdorff Dimension; Hausdorff, Conformal and Invariant Measures

Recall that U is the collection of all nice sets of a tame meromorphic function f : C→ Ĉ.
Since, by Theorem 2.1, U forms a basis of topology for J (f) \ P(f) and since this metric
space is separable, it follows from Lindelöf’s Theorem that U contains a countable cover of
J (f) \ P(f). We start with the following.

Lemma 3.1. If W is a subcover of U , than

Jr(f) =
⋃
U∈W

∞⋃
k=0

f−k(JU).

Proof. Since JU ⊂ Jr for all U , ⋃
U∈W

∞⋃
k=0

f−k(JU) ⊂ Jr.

On the other hand, if x ∈ Jr, then there exists y ∈ ω(x) \ P(f) and therefore U ∈ W with
y ∈ U such that the set {n ≥ 0 : fn(x) ∈ U} is infinite. So, x ∈ f−k(Ju) for some k ≥ 0.
This finishes the proof. �

Now, we aim to prove that for a tame meromorphic the Hausdorff dimension of limit
sets of all nice sets is the same and is equal to the Hausdorff dimension of the radial Julia
set. To do this we need the following proposition, concerning general Conformal Iterated
Function Systems, which is also interesting on its own.
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Proposition 3.2. Let S = {ϕe}e∈E be a Conformal Iterated Function System. For every
τ ∈ E∗, let

J∞τ = π({ω ∈ E∞ : ω contains infinitely many copies of the block τ}).

Then HD(J∞τ ) = HD(Js).

Proof. Let F ⊆ E be an arbitrary finite subset of E (containing all letters of τ). Let m̃F

and µ̃F be respectively the corresponding symbolic geometric and invariant hs-conformal
measures; see Appendix for their definitions. Let

F∞τ = {ω ∈ F∞ : ω contains infinitely many copies of the block τ}

since supp(µ̃F ) = F∞, it follows from Birkhoff Ergodic Theorem that µ̃F (F∞τ ) = 1. Since
the measures m̃F and µ̃F are equivalent, we conclude that mf (F

∞
τ ) = 1. Thus

mF (π(F∞τ )) = mF ◦ π−1(π(F∞τ )) ≥ mF (F∞τ ) = 1.

Since F is finite, the measure mF coincides on JF up to a multiplicative constant with the
Hausdorff measure HhF . So, HhF (π(F∞τ )) > 0, whence HD(π(F∞τ )) = hF . Thus,

HD(J∞τ ) ≥ sup HD(π(F∞τ )) = suphF = hE.

where both suprema are taken over all F being a finite subsets of E containing all elements
of the finite word τ . This finishes the proof. �

Coming back to meromorphic functions, we prove the following.

Lemma 3.3. If U and W are two arbitrary nice sets of a tame meromorphic function
f : C→ C̄, then HD(JW ) = HD(JU).

Proof. Let SU = {φUi : i ∈ IU} be the iterated function system induced by the nice set U .
Since U ∩ J (f) 6= ∅, there exists q ≥ 0 so large that

f q(U) ∩ J (f) ⊇ J (f) ∩W.

Since
lim
n→∞

sup{diam(ϕUω (U) : |ω| = n} = 0

(in fact the rate of convergence is exponential), and since W is an open set, there thus
exists τ ∈ E∗U such that

f q(ϕUτ (U ∩ J (f)) ⊆ J (f) ∩W.
Hence

(3.1) f q(J∞U,τ ) ⊆ JW .

Therefore, applying Proposition 3.2, we get that

HD(JU) = HD(J∞U,τ ) = HD(f q(J∞U,τ )) ≤ HD(JW ).

Exchanging the roles of the U and W we also get that HD(JW ) ≤ HD(JU) and the proof
is complete. �
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Now, as the main result of this section, we show that the number

h := HD(Jr(f))

is equal to the common value of Hausdorff dimensions of the limits sets of all the iterated
function systems induced by all the nice sets and that the the corresponding Hausdorff
measure on the radial limit set J (f) is σ-finite.

Theorem 3.4. Let f : C → C̄ be a tame meromorphic function. Then the following is
true.

(a) h = HD(Jr(f))) = HD(JU) for every nice set U .
(b) The h-dimensional Hausdorff measure Hh restricted to each nice limit set JU , U ∈
U , is finite.

(c) The h-dimensional Hausdorff measure Hh restricted to Jr(f) is σ-finite.

Proof. Fixing U ∈ U , and choosing a countable subcover of U containing U , Part (a) follows
immediately from Lemma 3.3 and Lemma 3.1. Part (b) follows from Theorem 4.5.1 and
4.5.11 from [7], comp. Fact 8.3 (d) in Appendix, and Part (c) is an immediate consequence
of part (b) and Lemma 3.1 applied with an arbitrary countable subcover W of U . We are
done. �

Let us record the following straightforward:

Observation 3.5. If f : C→ C̄ is a meromorphic function, then the following are equiva-
lent.

(a) For every point z ∈ J (f) there exists a radius R(z) > 0 such that J (f)∩B(z, R(z))
is contained in a real-analytic (so connected) curve.

(b) There exists a point z ∈ J (f) and a radius R(z) > 0 such that J (f) ∩ B(z, R(z))
is contained in a real-analytic (so connected) curve.

(c) For every point z ∈ J (f) there exists a radius R(z) > 0 such that J (f)∩B(z, R(z))
is contained in a countable union of real-analytic curves.

(d) There exists a point z ∈ J (f) and a radius R(z) > 0 such that J (f) ∩ B(z, R(z))
is contained in a countable union of real-analytic curves.

If one, or equivalently all, of the above condition fails, we call the meromorphic function
f : C→ C̄ of fractal type A; otherwise we call it of fractal type B.

Definition 3.6. We call a tame meromorphic function f : C → C̄ (strongly) N–regular if
there exists at least one nice set U ∈ U giving rise to a (strongly) regular iterated function
system (IFS) SU .

In Section 6 we shall provide same sufficient conditions for a meromorphic function to be
strongly N–regular. Strong N–regularity will turn out to be a much harder issue than mere
N–regularity.
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Let us now recall another fundamental concept. Its origins go back to work of S. Paterson
([10]) in the realm of Fuchsian groups and of D. Sullivan([18], [20], ([17], ([19],) in the
contexts of Kleinian groups and rational functions. Namely, a Borel σ-finite measure mh

on J (f) is called h-conformal for f : C→ C̄ if

(3.2) mh(f(A)) =

∫
A

|f ′|hdmh

for every Borel set A ⊆ J (f) (or ⊆ C) such that f |A is one–to–one. This concept is
clearly similar to the one for graph directed Markov systems (see Appendix) although it is
a verbatim copy of Sullivan’s definition for rational functions, and it therefore should not
be regarded as historically later than that of graph directed Markov systems.

The existence of this kind of measures is of enormous help in the investigation of geo-
metric properties of Julia sets. Therefore, we now prove their existence and establish some
properties of these measures.

Theorem 3.7. If a tame meromorphic function f : C→ C is N–regular, then the following
hold.

(a) Each nice set W ∈ U gives rise to a regular IFS.
(b) There exists a σ-finite h-conformal measure mh for f : C → C̄. In addition,

mh(J (f)\Jr(f)) = 0, and for every nice set U ∈ U , we have that mh(JU) > 0
and the measure mh|JU is h-conformal for the IFS SU .

(c) There exist a Borel σ-finite f -invariant measure µh on J (f) such that µh(J (f)\Jr(f)) =
0, 0 < µh(JU) < +∞, for every nice set U ∈ U , and µh|JU = µU is equivalent to
the h-conformal probability measure mU on JU .

(d) The Radon-Nikodym derivative dµh
dmh

has a unique real-analytic extension to an open
neighborhood of the set J (f) \ P(f) if the meromorphic function f : C → C̄ is of
fractal type A, and a unique holomorphic extension to such a neighborhood if the
function f is of fractal type B.

Proof. Let U ∈ U be a nice set giving rise to a regular IFS SU = {ϕUe : e ∈ E}. Denote
‖e‖ the number n ∈ N such that fn ◦ ϕUe = idU . For every n ≥ 1 let In parametrize all
holomorphic branches {f−ni }i∈In of f−n that are defined on U , let I =

⋃∞
n=1 In and for

every i ∈ I let n(i) be a unique integer k ≥ 0 such that i ∈ Ik. Let I∗ be the subset of I
consisting all elements i such that fk(f−n(i)

i (U)) ∩ U = ∅ for all 0 ≤ k ≤ n(i) − 1. Notice
that the family {f−n(i)

i (U)}i∈I∗ consists of mutually disjoint sets and define the measure
mh on U ∪

⋃
i∈I∗ f

−n(i)
i (U) by the following formula. If i ∈ I∗, A ⊆ f

−n(i)
i (U) is an arbitrary

Borel set, then

(3.3) mh(A) =

∫
fn(i)(A)

|(f−n(i)
i )′(z)|hdmU(z).

Otherwise, if A ⊆ U is a Borel set, then

(3.4) mh(A) = mU(A).

It immediately follows (3.3) that (3.2) holds for all Borel set A ⊆ f
−n(i)
i (U) where i ∈ I∗,

since n(i) ≥ 1. Now, for any z ∈ JU letN(z) ≥ 1 be the first return time to U , i.e. N(z) ≥ 1
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is the least integer such that fN(z)(z) ∈ U . Note that N(z) < +∞ and fN(z)(z) ∈ JU . For
every Borel set A ⊆ JU and every n ≥ 1 let

An = {z ∈ A : N(z) = n},

then {An}∞n=1 is a partition of A into measurable sets. Notice that

An =
⋃
||e||=n

ϕUe (fn(An)).

Assume that f |A is 1-1. Then also f |An is also 1-1, and by (3.3), (3.4) and conformality of
the measure mU for the IFS SU ,

mh(f(A)) =
∞∑
n=1

mh(f(An)) =
∞∑
n=1

∑
e:||e||=n

mh(f ◦ ϕUe (fn(An)))

=
∞∑
n=1

∑
e:||e||=n

∫
fn(An)

|(f ◦ ϕUe )′|hdmU

=
∞∑
n=1

∑
e:||e||=n

∫
fn(An)

|f ′ ◦ ϕUe |h|(ϕUe )′|hdmU

=
∞∑
n=1

∑
e:||e||=n

∫
ϕUe (fn(An))

|f ′|hdmU

=
∞∑
n=1

∑
||e||=n

∫
ϕUe (fn(An))

|f ′|hdmh

=
∞∑
n=1

∫
⋃
{ϕUe (fn(An)):||e||=n}

|f ′|hdmh =
∞∑
n=1

∫
An

|f ′|hdmh

=

∫
⋃∞
n=1 An

|f ′|hdmh =

∫
A

|f ′|hdmh.

Thus, (3.2) holds for all Borel sets

A ⊆ U ∪
⋃
i∈I∗

f−n(i)(U)

such that f |A is 1-1. Observe that then all sets f(A ∩ U) and f(A ∩ f−n(i)(U)), i ∈ I∗ are
mutually disjoint and mh(A∩U) = mU(A∩JU) as well as mh(f(A∩U)) = mh(f(A∩JU)).
Since also

(3.5) mh(C\(JU ∪
⋃
i∈I∗

f
−n(i)
i (JU))) = 0

and since

f
(
JU ∪

⋃
i∈I∗

f
−n(i)
i (JU)

)
= f−1

(
JU ∪

⋃
i∈I∗

f
−n(i)
i (JU)

)
= JU ∪

⋃
i∈I∗

f
−n(i)
i (JU),
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we conclude that mh is a Borel σ-finite h-conformal measure for f : C → C̄ such that
mh|JU = mU . Since

(3.6) JU ∪
⋃
i∈I∗

f
−n(i)
i (JU) ⊆ Jr

we further conclude from (3.5) that mh(J (f) \ Jr(f) = ∅.
If now W is an arbitrary nice set, then it follow from (3.1), conformality property (3.2),

and the fact that mh(J∞U,τ ) = mU(J∞U,τ ) = 1, that mh(Jω) > 0. Items (a) and (b) of our
theorem are then proved.

It is known that one can spread out the measure µU and get a unique ergodic and
conservative f -invariant measure µh on JU∪

⋃
i∈I∗ f

−n(i)
i (JU) such that µh|JU = µU . Hence,

by (3.6), µh(J (f)\Jr(f)) = 0 and the item (c) is proved.

Let us now prove item (d). For any two open balls B1, B2 ⊂ C let B1 ∧ B2 = B1 and
B2∧B1 = B2 if either B1∩B2 = ∅ or J (f)∩B1∩B2 6= ∅. Otherwise, let {a, b} = ∂B1∩∂B2

and let l be the unique straight line passing through the points a and b. Let thenHi, i = 1, 2,
be the connected component (open half-plane) of C \ l containing the center of the ball Bi.
Set then

B1 ∧B2 = B1 ∩H1 and B2 ∧B1 = B2 ∩H2.

Let s be the spherical metric on C normalized so that diams(C) = 1. For every integer
n ≥ 0 consider the set

Γn = {z ∈ J (f) \ P(f) : 2−(n+1) ≤ s(z,P(f) ∪ {∞}) ≤ 2−n}.
Obviously, each set Γn, n ≥ 0, is compact and

∞⋃
n=0

Γn = J (f) \ P(f).

For every integer n ≥ 0 and every point z ∈ J (f) \ P(f) let Uz be a nice set containing z.
Fix then an open ball Bn(z) = B(z, rn(z)) with 0 < rn(z) < 2−(n+3) so small that

(3.7) Bn(z) ⊂ Uz ∩ C \ P(f).

Since each set Γn, n ≥ 0, is compact, we can find for every n ≥ 0 a finite set En ⊂ Γn such
that ⋃

w∈En

Bn(w) ⊃ Γn.

An immediate observation is that

(3.8)
⋃
w∈En

Bn(w) ∩
∞⋃

k=n+2

⋃
z∈Ek

Bk(z) = ∅

for all n ≥ 0. Hence, for every n ≥ 0 and every w ∈ En, the set

A(n,w) := {(k, z) ∈ N× C : z ∈ Ek and Bn(w) ∩Bk(z) 6= ∅}
is finite. Set then

B̂n(w) =
⋂

(k,z)∈A(n,w)

Bn(w) ∧Bk(z).
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It immediately follows from our construction that

(a) J (f) \ P(f) ⊂ G :=
⋃∞
n=0

⋃
w∈En B̂n(w) ⊂ C \ P(f).

(b) All the sets B̂n(w), n ≥ 0, w ∈ En, are open and convex; so simply connected.

(c) If B̂n(w) ∩ B̂k(z) 6= ∅, then J (f) ∩ B̂n(w) ∩ B̂k(z) 6= ∅, in fact

(J (f) \ P(f)) ∩ B̂n(w) ∩ B̂k(z) 6= ∅
as P(f) is a nowhere dense subset of J (f).

In virtue of Theorem 6.1.3 from [7] (comp. Fact 8.3 (c) in Appendix), for every w ∈ J (f)\
P(f) the Radon-Nikodym derivative dµUw

dmUw
defined on JUw , has a real-analytic extension

ρ̂w : Uw → R. Since dµh
dmh

∣∣
JUw

is a constant multiple of dµUw
dmUw

, we thus infer that dµh
dmh

∣∣
JUw

has
a real-analytic extension, being a constant multiple of ρ̂w, ρw : Uw → R. Assume now that
our meromorphic function f : C→ C is of fractal type A. Define a function ρ : G→ R by
setting

ρ(z) := ρw(z) if z ∈ B̂n(w) with some n ≥ 0 and some w ∈ En.
Since G is an open set containing J (f) \ P(f), all what what we are to check is that the
function ρ is well-defined. But from our construction (item (c) above), if n, k ∈ N, w ∈ En,
z ∈ Ek, and B̂n(w) ∩ B̂k(z) 6= ∅, then J (f) ∩ B̂n(w) ∩ B̂k(z) 6= ∅. But as

J (f) ∩ B̂n(w) ∩ B̂k(z) ⊂ {ξ ∈ B̂n(w) ∩ B̂k(z) : (ρw − ρz)(ξ) = 0},

if ρz and ρw are not identically equal on B̂n(w)∩B̂k(z), then the right hand side of the above
formula is a countable union of real-analytic curves, contrary to item (d) of Observation 3.5.
Thus ρw = ρz on B̂n(w) ∩ B̂k(z) and we are done in the case meromorphic functions of
fractal type A.

In the case of fractal type B, in the construction of the balls Bn(z), n ∈ N, z ∈ En, in
addition to (3.7) we require the radii rn(z) > 0 to be so small that the real-analytic function
ρz restricted to ∆z,n (where ∆z,n denotes the real-analytic curve contained in Bn(z) and
containing J (f) ∩ Bn(z)) extends uniquely to a holomorphic function ρ̃z : Bn(z) → C.
Now the argument analogous to that employed in the case of fractal type A, shows that all
the functions ρ̃z|B̂n(z), n ∈ N, z ∈ En, glue together to a holomorphic function ρ̃ : G → C
which extends the function ρ : J (f) \ P(f). The proof is complete. �

4. Real Analyticity of Hausdorff Dimension for Conformal Graph
Directed Markov Systems

The results of this section form a far going strengthening of existing theorems about real
analyticity (see [21] and references therein) or even continuity (see [14]) of the Hausdorff
dimension of limit sets of Conformal Graph Directed Markov Systems. All notions needed
are explained in Appendix. We would also like to emphasize that our results in this section
will primarily concern Conformal Graph Directed Markov Systems (conformal GDMSs)
without assuming the Open Set Condition to hold and will be primarily formulated as
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real analyticity of Bowen’s parameter defined below. Real analyticity of the Hausdorff
dimension of limit sets will be then obtained as an immediate corollary in the case when
the Open set Condition holds. However in Section 5 devoted to proving real analyticity
of the Hausdorff dimension of radial Julia sets of tame meromorphic functions that are
strongly regular, we will construct conformal Graph Directed Markov Systems which will
not be known to satisfy the Open Set Condition. Real analyticity of Bowen’s parameter
will result from the present section whereas its equality to Hausdorff dimension will come
from the theory of conformal Walters expanding maps laid down in [4].

Let Λ ⊆ Cd be a complex manifold. Let Γ = (E, V, t, i, A) be a finitely primitive multi-
graph with edges E, vertexes V , initial and terminal function t and i, and a incidence
matrix A : E × E → {0, 1} (see Appendix). For every vertex v ∈ V let bounded open sets
Wv,W

′
r ⊆ C be given satisfying that Wr ⊂ W ′

r. Further more, for every λ ∈ Λ, let

Sλ = {ϕλe : Wt(e) → Wi(e)}

be a conformal GDMS generated over the multigraph Γ with the properties that Wr is
connected, Wr ⊂ W ′

r, ϕe : W ′
t(e) → W ′

i(e) and ϕe : Wt(e) → Wi(e). Although for our
applications to meromorphic dynamics considered in this paper all the sets Xλ

r will be
independent of λ, here we do not assume that the corresponding compact seed setsXλ

v ⊂ Wv

are independent of λ.
Fix λo ∈ Λ and for every ω ∈ E∞A , let Ψω : Λ→ C be given by the following formula

Ψω(λ) =
(ϕλω1

)′(πλ(σω))

(ϕλ0
ω1)′(πλ0(σω))

where πλ : E∞A → JSλ is the canonical projection induced by the GDMS Sλ. The family
{Sλ}λ∈Λ is called analytic if
(ra-a) For any e ∈ E and every z ∈ Wt(e), the function Λ 3 λ 7→ ϕλe (z) ∈ C, λ ∈ Λ is

holomorphic.
The analytic family {Sλ}λ∈Λ is called strong if the following conditions are satisfied.
(ra-b) The GDMS Sλ0 is strongly regular, and then we simply say the parameter λ0 is

strongly regular.
(ra-c) There exists a function κ : E → (0,+∞) such that

sup{‖(ϕλe )′‖ exp(κ(e)) : e ∈ E, λ ∈ Λ} < +∞.

(ra-d) The family of real-valued function Λ 3 λ 7→ κ(ω1)−1 log |Ψω(λ)|, ω ∈ E∞A , λ ∈ Λ, is
bounded.

There are two differences of the above setting as related to Section 4 of [21]. The first
one, as a matter of fact, inessential, is that we do not require in the present paper the sets
Xλ
V to be independent of λ, and the second one, more important, is that condition (ra-d)

involves log |Ψω(λ)| rather than log Ψω(λ). Somewhat awkwardly, a family of such maps
was called in [21] weakly regularly analytic. Having all this said, Theorem 4.2 from [21] can
be reformulated as follows.
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Theorem 4.1. If {Sλ}λ∈Λ, a family of finitely primitive conformal GDMS, is weakly regu-
larly analytic, then the function Λ 3 λ 7→ b(Sλ) ∈ R is real–analytic on some neighborhood
of every strongly regular parameter λ0 ∈ Λ.

In fact the assertion in here is different than in the original theorem in [21]. The point
is that since we now did not assume the Open Set Condition to hold, we have replaced
Hausdorff dimension by Bowen’s parameter; the Open Set Condition was used in Section 4
of [21] exclusively to guarantee that Bowen’s parameter is equal to the Hausdorff dimension
of the limit set. With condition (ra-d) weaker then its analog in [21] as explained above,
our strengthened version of Theorem 4.1 is the following.

Theorem 1.3. If an analytic family {Sλ}λ∈Λ consisting of finitely primitive conformal
GDMS, is strong, then the function Λ 3 λ 7→ b(Sλ) ∈ R is real–analytic on some neighbor-
hood of every strongly regular parameter λ0 ∈ Λ.

Proof. Fix a strongly regular parameter λ0 ∈ Λ. We shall show that on same sufficiently
small open neighborhood of λ0, the family of functions

{λ 7→ (κ(ω1))−1 log Ψω(λ)}ω∈E∞A ,
is uniformly bounded. Then the theorem follows from Theorem 4.1. So assume without
loss of generality that Λ is simply connected. First, for every ω ∈ E∞A , choose an analytic
branch of logarithm logω(Ψω) : Λ→ C such that

(4.1) logω Ψω(λ0) = 0.

Then set

(4.2) Ψ1/κ(ω1)
ω (λ) := exp

(
1

κ(ω1)
logω Ψω(λ)

)
.

Let B > 0 be the bound coming from (rad). We then have that, for all ω ∈ E∞A and all
λ ∈ Λ, ∣∣Ψ1/κ(ω1)

ω (λ)
∣∣ = exp

(
Re

(
1

κ(ω1)
logω Ψω(λ)

))
(4.3)

= exp

(
1

κ(ω1)
Re (logω Ψω(λ))

)
= exp

(
1

κ(ω1)
log |Ψω(λ)|

)
≤ eB

Put
gω := Ψ1/κ(ω1)

ω .

Fix an arbitrary r > 0 so small that B(λ0, 2r) ⊆ Λ and let λ ∈ B(λ0, r). Set

Γr = {γ ∈ Λ: |γj − λj| = r for all j = 1, . . . , d}.
In virtue of Cauchy’s formula, and of (4.3), we have∣∣∣∣dgωdλ (λ)

∣∣∣∣ =

∣∣∣∣ 1

(2πi)d

∫
Γr

gω(γ)

(γ1 − λ1)2 . . . (γd − λd)2
dγ1 . . . dγd

∣∣∣∣
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≤ 1

(2π)d

∫
Γr

|gω(γ)|
|γ1 − λ1|2 . . . |γd − λd|2

|dγ1| . . . |dγd|

=
1

(2πr2)d

∫
Γr

|gω(γ)||dγ1| . . . |dγd|

≤ eBrd

(2πr2)d
=

eB

(2πr)d
.

Since gω(λ0) = 1, we therefore get, for all λ ∈ B(λ0, r), that

|gω(λ)− 1| = |gω(λ)− gω(λ0)| ≤ eB

(2πr)d
|λ− λ0|.

Fix now δ ∈ (0, r) so small that eB(2πr)−dδ < 1
4
. Let log0 : B(1, 1

2
) → C be an an-

alytic branch of logarithm such that log0(1) = 0. Then log0 ◦gω : B(λ0, δ) → C is an
analytic branch of logarithm of gω, and, by (4.2). It follows from (4.1) and the fact that
log0 ◦gω(λ0) = log0(1) = 0, that

1

κ(ω1)
logω Ψω(λ) = log0 ◦gω(λ)

for all ω ∈ E∞A and all λ ∈ B(λ0, δ). Then∣∣∣∣ 1

κ(ω1)
logω Ψω(λ)

∣∣∣∣ ≤ sup{| log ◦g0(z)| : z ∈ B(1, 1/4)} < +∞.

We are done. �

Remark 4.2. With the hypotheses of Theorem 1.3, if we knew in addition that Bowen’s
parameters are equal to the Hausdorff dimensions of the corresponding limit sets (which
due to Theorem 8.1 is guaranteed for example by the Open Set Condition), then we would
automatically have a corresponding real analyticity statement for Hausdorff dimension.

We now provide a useful sufficient condition for an analytic family of GDMS to be strong.

Definition 4.3. An analytic family {Sλ}λ∈Λ, consisting of finitely primitive conformal
GDMS, is called Hölderly stable if

(a) there exists λ0 ∈ Λ, called the center of Λ, such that Sλ0 is strongly regular,
(b) there are two constant c > 0 and α ∈ (0, 1) and for every λ ∈ Λ there exists a

homeomorphism Hλ : Jλ0 → Jλ such that

C−1|z − ω|
1
α ≤ |Hλ(z)−Hλ(ω)| ≤ C|z − ω|α for all z, w ∈ Jλ0

and
ϕλe ◦Hλ = Hλ ◦ ϕλ0

e for all e ∈ E.

Proposition 4.4. If S, an analytic family consisting of finitely primitive conformal GDMS,
is Hölderly stable, then S is strong and, in consequence, the associated Bowen’s parameter
function is real–analytic in some sufficiently small neighborhood of the center of S.
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Proof. In order to show the first part we need to prove that there exists a function κ : E →
(o,+∞) such that (ra-c) and (ra-d) holds. Indeed, it follows from condition (b) of Defini-
tion 4.3 that

C−1 diam
1
α (ϕλ0

e (Jλ0)) ≤ diam(ϕλe (Jλ)) ≤ C diamα(ϕλ0
e (Jλ0))

for all e ∈ E and all λ ∈ Λ. Therefore, by uniform distortion, there exists Ĉ > 0 such that

(4.4) Ĉ−1|(ϕλ0
e )′(z)|

1
α ≤ |(ϕλe )′(ω)| ≤ Ĉ|(ϕλ0

e )′(z)|α

for all e ∈ E, all z ∈ Jλ0 , all λ ∈ Λ and all ω ∈ Jλ. It follows

− log Ĉ + (1/α− 1) log |(ϕλ0
e )′(z)| ≤ log |(ϕλe )′(ω)| − log |(ϕλ0

e )′(z)|

≤ log Ĉ + (α− 1) log |(ϕλ0
e )′(z)|,

and then for the distortion constant K > 1 we have
− log Ĉ + (1− 1/α) logK + (1/α− 1) log ‖(ϕλ0

e )′‖ ≤
≤ log |(ϕλe )′(ω)| − log |(ϕλ0

e )′(z)|

≤ log Ĉ + (α− 1) logK + (α− 1) log ‖(ϕλ0
e )′‖.

Hence

−M ≤
(1− 1

α
)

α
+

log Ĉ + (1− 1
α

) logK

−α log ||(ϕλ0
e )′||

≤ 1

−α log ||(ϕλ0
e )′||

log
|(ϕλe )′(ω)|
|(ϕλ0

e )′(z)|

≤ (1− α)

α
+

(1− α) logK + log Ĉ

−α log ||(ϕλ0
e )′||

≤M

for some M > 0 large enough since, for all e ∈ E, ||(ϕλ0
e )′|| ≤ S < 1 and lime→∞ ||(ϕλ0

e )′|| =
0. Since in addition, by (4.4),

||(ϕλe )′|| ≤ Ĉ||(ϕλ0
e )′||α

= Ĉ exp
(
α log ||(ϕλ0

e )′||
)

= Ĉ
(
exp(−(−α log ||(ϕλ0

e )′||))
)
,

we conclude that conditions (rac) and (rad) are satisfied if we set

κ(e) = −α log ||(ϕλ0
e )′||.

The first assertion of our proposition is thus proved. The second one follows now immedi-
ately from Theorem 1.3 �

Remark 4.5. Similarly as in Remark 4.2, if we knew in addition to the hypotheses of
Proposition 4.4, that Bowen’s parameters are equal to the Hausdorff dimensions of the
corresponding limit sets, which due to Theorem 8.1 is guaranteed for example by the Open
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Set Condition, then we would automatically have a corresponding real analyticity statement
for Hausdorff dimension.

Now we may prove the following main general result of this section already stated in the
introduction.

Theorem 1.4. Let Λ ⊆ Cd be an open set. Assume that {Sλ}λ∈Λ is an analytic family
consisting of finitely primitive GDMS such that for some λ0 ∈ Λ the system Sλ0 is strongly
regular. If there exists a holomorphic motion H : Λ× Ĉ→ Ĉ such that

ϕλe (H(λ, z)) = H(λ, ϕλ0
e (z))

for all λ ∈ Λ and all z ∈ Jλ0, then the Bowen’s parameter function Λ 3 λ → b(Sλ) is
real–analytic on some sufficiently small neighborhood of λ0.

Proof. Fix a radius r > 0 such that B(λ0, r) ⊆ Λ. Then, decreasing r > 0 if necessary, the
λ-lemma (see [5], [16]) asserts that for all λ ∈ B(λ0, r), the maps Ĉ 3 z → H(λ, z) ∈ Ĉ
are Hölder continuous with both, a common Hölder exponent and a common Hölder con-
stant. Hence, the analytic family {Sλ}λ∈B(λ0,r) is Hölderly stable. Applying Proposition 4.4
finishes then the proof. �

Remark 4.6. Similarly as in Remarks 4.2 and 4.5, if we knew in addition to the hypotheses
of Theorem 1.4, that Bowen’s parameters are equal to the Hausdorff dimensions of the limit
sets, which due to Theorem 8.1 in Appendix is guaranteed for example by the Open Set
Condition, then we would automatically have a corresponding real analyticity result for
Hausdorff dimension.

For our applications to meromorphic functions, we will need Theorem 1.4 in the form
as stated above, explicitly involving holomorphic motion. However, we can already now
provide some mild quite general sufficient conditions for an analytic family of conformal
GDMSs to admit a holomorphic motion. These conditions are frequently fairly easy to
verify, though not in the context of meromorphic functions.

Definition 4.7. Let S be a finitely primitive GDMS and let

E∗p = {ω ∈ E∗ : ω1 = ω|ω| and ω 6= τ k for any τ ∈ E and k ≥ 2}.

For every ω ∈ E∗p let xω ∈ Wt(ω) be the only fixed point of the map ϕω : W t(ω) → W t(ω).
We say that the system S is periodically separated, if xω 6= xτ wherever ω, τ ∈ E∗p and the
words are incomparable (that is none of them is an extension of the other).

Let us now record two obvious sufficient conditions for a GDMS to be periodically sep-
arated. The following proposition will not be used later.

Proposition 4.8. If either
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(a) for every ω ∈ E∗p , xω ∈ Wt(ω) and ϕa(Wt(a)) ∩ ϕb(Wt(b)) = ∅ whenever a, b ∈ E with
a 6= b

or
(b) ϕa(Wt(a)) ∩ ϕb(Wt(b)) = ∅ whenever a, b ∈ E with a 6= b,

then S is a periodically separated.

Lemma 4.9. If Λ ⊆ Cd is an open simply connected set and {Sλ}λ∈Λ is an analytic family
consisting of finitely primitive conformal GDMS that are periodically separated, then for
every λ0 ∈ Λ there exists a holomorphic motion H : Λ× Jλ0 → Ĉ such that

ϕλe (H(λ, z)) = H(λ, ϕλ0
e (z)) for all λ ∈ Λ and all z ∈ Jλ0 .

In addition

H({λ} × Jλ0) = Jλ and H({λ} × Jλ0) = Jλ for all λ ∈ Λ.

Proof. Fix ω ∈ E∗p . Since the map

Λ×Wt(ω) 3 (λ, z) 7→ ϕλω(z) ∈ C
is holomorphic and since (ϕλω)′(ξ) 6= 1 for all ξ ∈ Wt(ω), it follows from the Implicit Function
Theorem that for rλ0,ω > 0 small enough there exists a unique holomorphic function

B(λ0, rλ0,ω) 3 λ 7→ xλλ0,ω
∈ Wt(ω)

such that ϕλω(xλλ0,ω
) = xλλ0,ω

and xλλ0,ω
is (of course) the unique fixed point of the map

ϕλω : Wt(ω) → Wt(ω). By this uniqueness, all the maps x(·)
λ0,ω

glue together to a unique
holomorphic function Λ 3 λ 7→ xλω ∈ Wt(ω) such that

(4.5) ϕλω(xλω) = xλω.

Let
Yλ := {xλω : ω ∈ E∗p}.

Since all the systems {Sλ}λ∈Λ are periodically separated, there exists a bijection Pλ : Yλ →
E∗p sending each point x ∈ Yλ to the unique ω ∈ E∗p such that xλω = Pλ(x) and for every
fixed λ ∈ Λ, the map Yλ0 3 z 7→ W λ

Pλ0
(z) ∈ Yλ is bijective. Thus the map H : Λ× Yλ0 → C

given by the formula
H(λ, z) = xλPλ0

(z) ∈ C
is a holomorphic motion, and by the λ-lemma it uniquely extends to a holomorphic motion
H : Λ× Yλ0 → C. But, by finite primitivity, Yλ = Jλ. By (4.5) on the other hand only by
continuity of the map H, we have that

(4.6) ϕλω(H(λ, z)) = H(λ, ϕλ0
ω (z))

for all λ ∈ Λ and all z ∈ Jλ0 . Also, for all λ ∈ Λ, we have

H({λ} × Jλ0) = H({λ} × Yλ0) = Yλ = Jλ.
Finally, it follows from (4.6) that πλ(ω) = H(λ, πλ0(ω)), and therefore

Jλ = πλ(E
∞
A ) = H({λ} × πλ0(E

∞
A )) = H({λ} × Jλ0).

We are done. �
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Theorem 4.10. Let Λ ⊆ C be an open simply connected set whose complement C\Λ
contains at least two points. If {Sλ}λ∈Λ is an analytic family consisting of finitely primitive
conformal GDMS that are periodically separated, then for every λ0 ∈ Λ there exists a
holomorphic motion H : Λ× Ĉ→ Ĉ such that

ϕλe (H(λ, z)) = H(λ, ϕλ0
e (z)) for all λ ∈ Λ and all z ∈ Jλ0 .

In addition,
H({λ} × Jλ0) = Jλ for all λ ∈ Λ,

and if the system Sλ0 is strongly regular, then the Bowen’s parameter function λ 7→ b(Sλ)
is real–analytic on some sufficiently small neighborhood of λ0.

Proof. In virtue of Lemma 4.9 there exists a holomorphic motion on λ×Jλ0 satisfying the
required properties. By Slodkowski’s Theorem [16] it can be extended to a holomorphic
motion on Λ × Ĉ with uniformly bounded dilatation. The last assertion of the theorem
follows then immediately from Proposition 1.4. �

Remark 4.11. Similarly as in the three preceding remarks, if we knew in addition to the
hypotheses of Theorem 4.10 that Bowen’s parameters are equal to the Hausdorff dimension
of the corresponding limit sets, which due to Theorem 8.1 is guaranteed for example by the
Open Set Condition, then we would automatically have a corresponding real analyticity
result for Hausdorff dimension.

5. Real Analyticity of Hausdorff Dimension for Meromorphic Functions

Recall that a meromorphic function f : C → Ĉ belongs to Speiser class S if the set
sing(f−1) of all singularities of f−1 is finite. Let Λ ⊆ Cd be an open set. We say that a
family {fλ}λ∈Λ of meromorphic functions from C to Ĉ is analytic if

(a) The function fλ0 : C→ Ĉ belongs to Speiser class S.
(b) The function Λ 3 λ 7→ sing(f−1

λ ) is continuous.
(c) Each point of sing(f−1

λ0
) \ J (fλ0) belongs to the attraction basin of some attracting

periodic orbit of fλ0 .
(d) The function Λ 3 λ 7→ fλ(z) ∈ Ĉ is meromorphic for all z ∈ C.

The main result of this section is the following theorem already stated in the introduction.

Theorem 1.1. Assume that a tame meromorphic function f : C → Ĉ is strongly N–
regular. Let Λ ⊂ Cd be an open set and let {fλ}λ∈Λ be an analytic family of meromorphic
functions with the following properties:

(1) fλ0 = f for some λ0 ∈ Λ,
(2) there exists a holomorphic motion H : Λ × Jλ0 → C such that each map Hλ is a

topological conjugacy between fλ0 and fλ on Jλ0.
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Then the map
Λ 3 λ 7→ HD(Jλ)

is real–analytic on some neighborhood of λ0.

Proof. The idea of the proof of this theorem is to associate, by means of nice sets, to the
analytic family fλ : C→ Ĉ of meromorphic maps a strong analytic family of conformal iter-
ated function systems (the simplest subclass of conformal Graph Directed Markov Systems)
that have the same Hausdorff dimensions of their limit sets as the Hausdorff dimensions
of the radial Julia sets of the corresponding maps fλ. Having this, we can use the real
analyticity results of Section 4 to conclude the proof.

Since the function fλ0 is tame, it has at least one nice set U . Let Sλ0 = {ϕλ0
e }e∈E be

iterated function system generated by the nice set U . We can require that
(5.1) B(ξ, R) ⊆ U ⊆ B(ξ, 2R)

with some non-periodic point ξ ∈ Jλ0 . Because of analyticity of our family fλ : C → Ĉ,
λ ∈ Λ, (this takes care of singular points of f−1

λ lying in the Fatou set of fλ) and because
of topological conjugacy guaranteed by (2) (this takes care of singular points of f−1

λ lying
in the Julia set of fλ), we may further require that

B(ξ, 12R) ∩
∞⋃
n=0

fnλ
(
sing(f−1

λ )
)

= ∅

and
(5.2) |(fkλ )′(z)| ≥ 6K whenever z ∈ B(ξ, 6R) and fkλ (z) = ξ

for all λ ∈ Γ2
λ0
, where Γ2

λ0
⊆ Λ is a sufficiently small open neighborhood of λ0 ∈ Λ. The

number K ≥ 1 is here the Koebe’s constant corresponding to the scale 1/2. Now for every
λ ∈ Γ2

λ0
form an iterated function system Sλ acting on B(ξ, 6R) as follows. If e ∈ E, let

ϕλe be the unique holomorphic inverse branch of f ‖e‖ defined on B(ξ, 6R) and sending ξ to
Hλ(ϕ

λ0
e (ξ)). We shall prove the following

Claim 1. For any λ ∈ Γ2
λ0

sufficiently close to λ0, Sλ = {ϕλe}e∈E is a strongly regular
conformal iterated function system on B(ξ, 6R).

Proof. Conformality of the maps ϕλe , e ∈ E, is immediate from their definitions. The
distortion properties follows immediately from Koebe’s Distortion Theorems and the fact
that all maps ϕλe have unique univalent holomorphic extensions to B(ξ, 12R). In order to
complete the proof that Sλ is a conformal IFS it thus suffices to show that

ϕλe (B(ξ, 5R)) ⊆ B(ξ, 5R).

Indeed, since for any e ∈ E, ϕλ0
e (U) ⊆ U , we get that ϕλ0

e (J (Sλ0)) ∩ U 6= ∅, and therefore
(see also (5.1)) ϕλe (Hλ(J (Sλ0))∩B(ξ, 3R) 6= ∅ for all λ sufficiently close to λ0 (independently
of e), say λ ∈ B(λ0, δ1) ⊆ Γ2

λ0
. Since ‖(ϕλe )′‖ ≤ 1

6
(see (5.2)), using the triangle inequality,

we conclude that
ϕλe (B(ξ, 6R)) ⊆ B

(
ξ, 3R + 12R‖(ϕλe )′‖

)
⊆ B(ξ, 3R + 2R)

= B(ξ, 5R).
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We are left to show that all the systems Sλ are strongly regular for all λ sufficiently close
to λ0. Indeed, since the system Sλ and Sλ0 are quasi-conformally conjugated on J (Sλ0)

and J (Sλ) respectively, we get that

(5.3) C−1||(ϕλ0
ω )′||

1
αλ ≤ ||(ϕλω)′|| ≤ C||(ϕλ0

ω )′||αλ

for all ω ∈ E∗ and some C and numbers αλ ∈ (0, 1) such that

(5.4) lim
λ→λ0

αλ = 1.

For every λ ∈ B(λ0, δ1) put
bλ = b(Sλ).

Since the function fλ0 : C → Ĉ is strongly N–regular, the system Sλ0 is strongly regular,
and so, there exist t0 < bλ0 and 0 < κ < 1 such that

(5.5) 0 < Pλ0(t) < +∞
for all t ∈ (t0 − κ(bλ0 − t0), t0 + κ(bλ0 − t0)). In view of (5.4) there exists δ2 ∈ (0, δ1) such
that

αδt0, α
−1
δ t0 ∈ (t0 − κ(bλ0 − t0), t0 + κ(bλ0 − t0))

for all λ ∈ B(λ0, δ2). Formulas (5.3) and (5.5) imply then that

Pλ(t) ≤ Pλ0(αλt0) < +∞
and

Pλ(t) ≥ Pλ0(α
−1
λ t) > 0

for all λ ∈ B(λ0, δ2). Thus, all the systems Sλ, λ ∈ B(λ0, δ2), are strongly regular, and the
proof of Claim 1 is complete. �

Claim 2. HD(Jλ) = bλ for all λ ∈ B(λ0, δ2).

Proof. By the very definition of the nice sets all the sets ϕλ0
e (U), e ∈ E, are mutually dis-

joint, and therefore, so are the sets {ϕλ0
e (J (Sλ0)}e∈E. So, because of topological conjugacy,

the sets {ϕλe (J (Sλ)}e∈E are mutually disjoint for every fixed λ ∈ B(λ0, δ2). This means
that the global map Fλ :

⋃
e∈E ϕ

λ
e (J (Sλ))→ J (Sλ) is well-defined if given by the formula

Fλ(ϕ
λ
e (z)) = z where z ∈ Jλ.

It is straightforward to see that all transformations Fλ, λ ∈ B(λ0, δ2), are Walter expanding
conformal maps in the sense of [4]. Therefore, Theorem 2.7 in [4] yields HD(J (Sλ)) = bλ
for all λ ∈ B(λ0, δ2). The proof of Claim 2 is complete. �

Claim 3. There exits δ3 ∈ (0, δ2] such that, for every λ ∈ B(λ0, δ3) ⊂ Λ, we have that

HD(J (Sλ)) = HD(Jr(fλ)).

Proof. Clearly J (Sλ) ⊆ Jr(fλ). Hence,
(5.6) HD(J (Sλ)) ≤ HD (Jr(fλ)) .
In order to prove the opposite inequality take λ ∈ B(λ0, δ2) and consider a nice set Uλ ⊆
B(ξ, R) for the tame meromorphic map fλ. If ψλe is a member of the iterated functions
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system S ′λ induced by the nice set Uλ, then ψλe (Uλ) ⊆ Uλ. So, if λ is taken sufficiently close
to λ0 (independently of e), say λ ∈ B(λ0, δ3), with 0 < δ3 ≤ δ2, then

H−1
λ ◦ ψ

λ
e (Jr(fλ) ∩ Uλ) ⊆ B(ξ, 2R).

Thus the map ψλ0
e : U → C, the unique holomorphic inverse branch of f ||e||λ0

, determined
by the condition that ψλ0

e (ξ) = H−1
λ ◦ ψλe (ξ) is a member of Sλ0 . But then ψλe = ϕλe ,

where ϕλe ∈ Sλ. Consequently, the limit set J (S ′λ) of S ′λ, λ ∈ B(λ0, δ3), is contained in
J (Sλ). Hence HD(J (S ′λ)) ≤ HD(J (Sλ)), and, in virtue of Theorem 3.4, HD(Jr(fλ)) ≤
HD(J (Sλ)). Along with (5.6), this finishes the proof of Claim 3. �

Conclusion of the proof of Theorem 1.1 This proof is now straightforward. Since the family
(fλ)λ∈Λ is analytic, so is the family {Sλ}λ∈B(λ0,δ3). By the very definition of the systems
Sλ, the map H|B(λ0,δ3)×J (Sλ0

) forms a holomorphic motion such that

Hλ(J (Sλ0)) = J (Sλ)

and
ϕλe (H(λ, z)) = H(λ, ϕλ0

e (z))

for all λ ∈ B(λ0, δ) and all z ∈ J (Sλ0). By Slodkowski’s Theorem ([16]) this holomorphic
motion extends to a holomorphic motion of the entire extended complex plane Ĉ. Thus
Proposition 1.4 with the help of the Claims 1, 2 and 3, complete the proof of our theorem.

�

6. Strong N–Regularity of Dynamically Regular Meromorphic Functions

In this section we deal with dynamically regular functions as defined in [9]. Our goal is
to show first that they are all strongly N–regular and then, in the next section, to prove
real analyticity of Hausdorff dimension of radial Julia sets of analytic families consisting of
dynamically regular meromorphic functions. We refer the reader to [9] for the definition
and specific facts about dynamically regular functions. In what follows we use the notation
of that article.

Let f : C → C be a dynamically regular meromorphic function. Let |dτ(z)| be the
Riemannian metric defined in section 5.1 of [9]. Remember that metric |dτ | is conformally
equivalent to the standard Euclidean metric |dz|. It was proved in [9] that the limit

P (t) = lim
n→∞

1

n
logLnt 1(z)

exists for any z ∈ J (f), where Lt : Cb(J (f)) → Cb(J (f)) is the bounded linear operator
defined by the formula

Ltg(z) =
∑

w∈f−1(z)

g(w)|f ′(w)|−tτ .

It is referred to as the Perron-Frobenius operator associated to the parameter t. The number
P (t) is called the topological pressure at t. It was proved in [9] that there is a certain number
c > 0, that if t > c, then

‖Lt1‖∞ <∞ and therefore P (t) <∞.
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For every open set U ⊆ C, we define

K(U) =
∞⋂
n=0

f−n(U c ∩ J (f)) = {z ∈ J (f) : fn(z) /∈ U for all n ≥ 0},

and

Kr(U) : =
∞⋂
n=0

f−n(U c ∩ Jr(f)) = {z ∈ Jr(f) : fn(z) /∈ U for all n ≥ 0}.

Of course K(U) is a closed subset of J (f) and Kr(U) is a closed subset of Jr(f). Both
K(U) and Kr(U) are forward invariant in the sense that

f(K(U)) ⊆ K(U) and f(Kr(U)) ⊆ Kr(U).

Put

U c
n =

n⋂
j=0

f−j(U c),

and define
P
c

U(t) = sup{P c

U(z, t) : z ∈ J (f) ∩ U c},
where

P
c

U(z, t) = lim sup
n→∞

1

n
log

∑
ω∈Ucn∩f−n(z)

|(fn)′(ω)|−tτ = lim sup
n→∞

1

n
logLnt 1Ucn(z).

We shall prove the following.

Lemma 6.1. If U is an open subset of J (f) and P c

U(t) < 0, then HD(Kr(U)) ≤ t.

Proof. For every k ≥ 0 set

Kk
r (U) = {z ∈ Kr(U) : lim sup

n→∞
|fn(z)| < k}.

From topological hyperbolicity of f , guaranteed by its dynamical regularity, there exists
δ > 0 such that each open ball B(z, 2δ), z ∈ J (f), is disjoint from the forward orbit of
the singular set of f−1. Cover the ball J ∩B(0, k) with finitely many balls {B(xj, δ)}x∈E,
where E ⊂ J (f) ∩ U c. Fix arbitrary η > 0. By hyperbolicity of f and the definition
of P c

U(t), there exists an integer l(η) ≥ 0 such that, for all n ≥ l(η), all x ∈ E, and all
w ∈ f−n(x), we have that

|(fn)′(w)|τ ≥ 2Kη−1δ

and ∑
y∈f−n(x)

|(fn)′(y)|−tτ ≤ exp
(
P (t)/2

)
.

But the family {
f−nw

(
B(x, δ)

)
: n ≥ l(η), x ∈ E, w ∈ f−n(x)

}
covers Kk

r (U) and
diam

(
f−nw (B(x, δ))

)
≤ K2δ|(fn)′(w)|−1

τ ≤ η
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for all n, x and w as above. Also

∞∑
n=l(η)

∑
x∈E

∑
w∈f−n(x)

diamt
τ

(
f−nw (B(x, δ))

)
≤

≤
∞∑

n=l(η)

∑
x∈E

∑
w∈f−n(x)

(2Kδ)t|(fn)′(w)τ |−t

≤ (2Kδ)t
∞∑

n=l(η)

∑
e∈E

exp

(
1

2
P (t)n

)

= (2Kδ)t#E
exp(P (t)l(η)/2)

1− exp (P (t)/2)
.

Since limη→0 l(η) = +∞, we thus conclude from this that the Hausdorff measureHt

(
Kk
r (U)

)
=

0. Thus, the formula

Kr(U) =
∞⋃
k=0

Kk
r (U),

yields Ht (Kr(U)) = 0. Hence HD (Kr(U)) ≤ t and the proof is finished. �

We now need the following standard auxiliary fact.

Lemma 6.2. Let F ⊆ C be a closed set, let R ∈ (0,∞), and let K be a closed subset of
B(0, R)\F . Then, there exists a smooth C∞ function g : C → [0,+∞) with the following
tow properties:

(a) 1F ≤ g ≤ 1 and
(b) g|K ≡ 0.

The main technical result of this section is the following.

Proposition 6.3. If f : C → Ĉ is a dynamically regular function, t > %
α1+τ

and U is an
arbitrary open subset of C intersecting the Julia set J (f), then P̄ c

U(t) < P (t).

Proof. Since limn→∞mt(U
c
n) = 0, there exists q ≥ 1 so large that

mt(U
c
q ) ≤

1

5
||%t||−1

∞ , where %t =
dµt
dmt

.

Let R > 0 be so large that mt (Bc(0, R)) < 1
8
mt(U

c
q ). Let K be a compact subset of

B(0, R)\U c
q such that

mt

(
B(0, R)\

(
U c
q ∪K

))
<

1

8
mt(U

c
q ).
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Finally, let g be the function associated to the triple R, K, and F = U c
q , according to

Lemma 6.2. Then,∫
J (f)

gdmt ≤

≤
∫
Bc(0,R)

gdmt +

∫
Ucq∩B(0,R)

gdmt +

∫
K

gdmt +

∫
B(0,R)\(K∪Ucq )

gdmt

=

∫
Bc(0,R)

gdmt +

∫
Ucq∩B(0,R)

gdmt +

∫
B(0,R)\(K∪Ucq )

gdmt

≤ 1

8
mt(U

c
q ) +mt(U

c
q ) +

1

8
mt(U

c
q )

=
5

4
mt(U

c
q )

≤ 1

4
||%t||−1

∞ .

Now, since the function g is bounded and Hölder continuous, it follows from Theorem 6.5
in [9] that there exists s ≥ q such that

‖Lstg − %t
∫
gdmt‖∞ ≤

1

4
.

Consequently

‖Lst1Ucs‖∞ ≤ ‖L
s
t1Ucq‖∞ ≤ ||L

s
tg||∞ ≤ ||%t||∞

∫
gdmt +

1

4
≤ 1

4
+

1

4
=

1

2
.

Hence, for any n ≥ 0 and any z ∈ J (f), we get that

e−P (t)(n+1)sL(n+1)s
t 1Uc

(n+1)s
(z) =

= exp(−P (t)(n+ 1)s)Lnst
(
Lst1Uc(n+1)s

(z)
)

= exp(−P (t)(n+ 1)s)
∑

w∈f−ns(z)

|(fns)′(w)|−tτ Lst1Uc(n+1)s
(w)

= exp(−P (t)(n+ 1)s)
∑

w∈f−ns(z)

(
|(fns)′(w)|−tτ ·

∑
x∈f−s(w)∩Uc

(n+1)s

|(f s)′(x)|−tτ
)

= exp(−P (t)(n+ 1)s)
∑

w∈f−ns(z)∩Ucns

(
|(fns)′(w)|−tτ

∑
x∈f−s(w)∩Ucs

|(f s)′(x)|−tτ
)

= e−P (t)ns
∑

w∈f−ns(z)

|(fns)′(w)|−tτ 1Ucns(w)
(
e−P (t)s

∑
x∈f−s(w)

|(f s)′(x)|−tτ 1Ucs (x)
)

≤ e−P (t)ns
∑

w∈f−ns(z)

(
|(fns)′(w)|−tτ 1Ucns(w)‖e−P (t)sLst1Ucs‖∞

)
≤ ||e−P (t)nsLnst 1Usn||∞||e

−P (t)sLt1Ucs ||∞

≤ 1

2
||e−P (t)nsLnst 1Ucn||∞.
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Therefore,

|| exp(−P (t)(n+ 1)s)L(n+1)s
t 1Uc

(n+1)s
||∞ ≤

1

2
||e−P (t)nsLnst 1Usn||∞.

So, by induction,

(6.1) ||e−P (t)nsLnst 1Ucns||∞ ≤ 2−n

for all n ≥ 0. Now, for any integer k ≥ 0, write k = ns + r, 0 ≤ r ≤ s− 1. Formula (6.1)
implies then that

||Lkt 1Uck ||∞ ≤ ||Lkt 1Ucns||∞ ≤ ||L
r
t ||∞||Lnst 1Ucns||∞

≤ Qs2
−neP (t)ns

≤ Qs2
− k−r

s eP (t)re−P (t)k

= Qs2
r
s e−P (t)r2−

k
s eP (t)k

≤ Ms2
− k
s e−P (t)k,

where Ms = 2
s−1
s Qs max{e−P (t)r : 0 ≤ r ≤ s− 1}. Thus

P
c

U ≤ limn→∞
1

k
log ||Lkt 1Uck ||∞ ≤ P (t)− 1

s
log 2 < P (t).

We are done. �

Corollary 6.4. If f : C→ Ĉ is a dynamically regular function and U is an arbitrary open
subset of C intersecting the Julia set J (t), then HD(Kr(U)) < HD(Jr).
Proof. We know that the topological pressure P (t) is finite for all t > %

α1+τ
. We also

know (see theorem 8.3 in [9]) that P (HD(Jr)) = 0. Since in addition the function t →
P c
U(t) ≤ P (t) is continuous (as convex) throughout

(
%

α1+τ
,+∞

)
, we therefore conclude

from Proposition 6.3 that there exists t ∈
(

%
α1+τ

,HD(Jr)
)
such that P c

U(t) < 0. Lemma
6.1 then yields HD(Kr(U)) ≤ t < HD(Jr). �

Corollary 6.5. If f : C→ Ĉ is a dynamically regular meromorphic function of divergence
type, then each nice set U ∈ U gives rise to a strongly regular IFS. In particular, the
function f : C→ Ĉ is strongly N–regular.
Proof. Let SU = {ϕe}e∈E be the conformal IFS generated by the nice set U . Fix one b ∈ E
and let SU,b = {ϕe}e∈E\{b}. Then HD(JSU,b) ≤ HD(Kr(ϕb(U))) < HD(J )) = HD(JSU ),
where the inequality sign ” < ” follows from Corollary 6.4 and the equality sign ” = ” comes
from Theorem 3.4. The system SU is thus strongly regular because of Theorem 4.3.10 from
[7]. �

7. Real Analyticity of Hausdorff Dimension
for Dynamically Regular Meromorphic Functions

Taking fruits of the previous section, in the present one, fairly short, we provide concrete
examples of analytic families of meromorphic functions that satisfy the hypotheses of The-
orem 1.1. As an ultimate consequence, the Hausdorff dimension of their radial Julia sets
varies in a real–analytic fashion. The following theorem already stated in the introduction.
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Theorem 1.2. Suppose that f : C→ Ĉ is a dynamically regular meromorphic function of
divergence type which belongs to class S. If Λ ⊆ C is an open set, {fλ}λ∈Λ is an analytic
family (in the sense of Section 5) of meromorphic functions, and fλ0 = f for some λ0 ∈ Λ,
then the function Λ 3 λ 7→ HD(Jr(fλ)) is real–analytic in some open neighborhood of λ0

contained in Λ.

Proof. Since our family is analytic, for every aλ0 ∈ sing(f−1
λ0

) there exists a meromor-
phic function λ 7→ aλ ∈ sing(f−1

λ ) defined on some sufficiently small neighborhood of
λ0. Furthermore, the analyticity of the family {fλ}λ∈Λ applied again entails the functions
{λ 7→ fnλ (aλ)}∞n=0 to form a normal family on some sufficiently small neighborhood of λ0

for every point aλ0 in sing(f−1
λ0

). Therefore, see Lemma 9.3 in [9], there exists a holo-
morphic motion H : Γλ0 × Jλ0 → Ĉ over some neighborhood Γλ0 ⊆ Λ of λ0, such that
Hλ(Jλ0) = Jλ and Hλ ◦ fλ0 = fλ0 ◦Hλ on Jλ0 for all λ ∈ Γλ0 . Since also the meromorphic
function fλ0 : C → Ĉ, as dynamically regular is tame, and since, by Corollary 6.5, it is
strongly N–regular, invoking Theorem 1.1 completes the proof. �

Notice that, unlike in [9], we did not have to assume in this theorem anything technical
like that our family {fλ}λ∈Λ is of uniformly balanced growth or of bounded deformation.

8. Appendix; Conformal Graph Directed Markov Systems

Graph directed Markov systems are based on a directed multigraph (V, I, i, t) and an
associated incidence matrix A : I× I → {0, 1}. The multigraph consists of a finite set V of
vertexes, a countable (finite or infinite) set of edges, frequently called an alphabet, and two
functions i, t : I → V that indicate for each directed edge i ∈ I its initial vertex i(e) and
its terminal vertex t(e), respectively. The matrix A is an edge incidence matrix and thus
tells which edges may follow a given edge. Moreover, it respects the multigraph, that is, if
Aab = 1 then t(a) = i(b). It is thereafter natural to define the set of all one-sided infinite
A-admissible words

I∞A := {ω ∈ I∞ |Aωiωi+1
= 1, ∀ i ∈ N}.

The set of all subwords of I∞A of length n ∈ N will be denoted by InA, whereas the set of all
finite subwords will be denoted by I∗A = ∪n∈NI

n
A. A graph directed Markov system(GDMS)

S consists of a directed multigraph (V, I, i, t) and an edge incidence matrix A, together with
a set of non-empty compact subsets {Xv}v∈V of a Euclidean space Rd, a number 0 < s < 1,
and for every a ∈ I, a one-to-one contraction φa : Xt(a) → Xi(a) with Lipschitz constant
not exceeding s. A GDMS is called iterated function system (IFS) provided that V is a
singleton and the matrix A : E × E → {0, 1} takes on the value 1 only.

The graph directed Markov system S is said to be conformal provided that the following
conditions are satisfied.

(a) Each set Xv, v ∈ V , is compact connected and Xv = Int(Xv), where the closure
and interior are taken with respect to the Euclidean space Rd.

(b) There exists an open connected set W ⊃ X such that for every i ∈ I the map φi
extends to a C1 conformal diffeomorphism of W into W .



FINER FRACTAL GEOMETRY 27

(c) (Cone property) There exists γ, l > 0, γ < π/2, such that for every v ∈ V and
every x ∈ Xv ⊂ Rd there exists an open cone Con(x, γ, l) ⊂ Int(XV ) with vertex x,
central angle of measure γ, and altitude l.

(d) There are two constants L ≥ 1 and α > 0 such that∥∥φ′i(y)| − |φ′j(x)|
∣∣ ≤ L‖(φ′i)−1‖−1‖y − x‖α

for every i ∈ I and every pair of points x, y ∈ Xt(i), where |φ′i(x)| denotes the norm
(equivalently, the scaling factor) of the derivative φ′i(x).

Usually, but let us emphasize that not always in this paper, one assumes the following.

(e) (Open set condition; OSC) For all a, b ∈ I, 6= b,

φa(Int(Xt(a))) ∩ φb(Int(Xt(b))) = ∅.

For every ω = ω1ω2 . . . ωn ∈ InA, n ≥ 1, set t(ω) = t(ωn) and i(ω) = i(ωn), and then define
the composition

φω := φω1 ◦ φω2 ◦ . . . φωn : Xt(ω) → Xi(ω).

It is proved in [7] that if d ≥ 2 and a family S = {φi}i∈I satisfies conditions (b) and (d),
then it also satisfies condition (f) with α = 1. Condition (f) in turn implies the so called
bounded distortion property, which says that

||φ′ω(y)||
||φ′ω(y)||

≤ K

with some constant K > 0, all ω ∈
⋃
n≥1 I

n, and all x, y ∈ Xt(ω). If ω ∈ I∗A ∪ I∞A and
n ∈ N does not exceed the length of ω, we denote by ω|n the word ω1ω2 . . . ωn. Since, given
ω ∈ I∞A , the diameters of the compact sets φω|n(Xt(ωn)), n ∈ N, converge to zero and since
these sets form a decreasing family, the set

∞⋂
n=1

φω|n(Xt(ωn))

is a singleton, and we denote its element by πS(ω), or, occasionally, by πI . This defines the
coding map

πS : I∞A → Rd.

Clearly, πS is a continuous function when I∞A is equipped with the Tichonov topology. The
main object of our interest will be the limit set

JS = πS(I∞A ).

Observe that JS satisfies the natural invariance equality,

JS =
⋃
i∈I

φi(JS).

Recall that a matrix A is finitely primitive if there exists a finite set Γ ⊂ I∗A of words of
the same length such that for all a, b ∈ I there is a word ω ∈ Γ for which aωb ∈ I∗A. If
the matrix A is finitely primitive, we also say that the system S is finitely primitive. Each
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iterated function system is of course finitely primitive; take Γ = ∅. We now recall the
definition of topological pressure. Given t ≥ 0, the following limit exists:

PS(t) := lim
n→∞

1

n
log
∑
ω∈InA

‖φ′ω‖t∞.

This limit exists since the sequence involved is subadditive; it is called the topological
pressure of the parameter t. I will be occasionally denoted by PI(t). Let

θS := inf{t ≥ 0 : PS(t) < +∞}.

The basic fact for pursuing the study of fractal properties of limit sets JS is the following
theorem, of Bowen type, proved in [7]. We call the number

inf{t ≥ 0 : PS(t) ≤ 0}

Bowen’s parameter of the system S, and we denote it by b(S). Its geometrical meaning is
signified by the following.

Theorem 8.1. If the conformal graph directed Markov system S is finitely primitive and
satisfies the Open Set Condition, then

HD(JS) = b(S) = sup{HD(JF ) : F is a finite subset of I} ≥ θS.

We recall from [7] that the system S is regular if there is t ≥ 0 such that PS(t) = 0, it is
called strongly regular if there is t ≥ 0 such that 0 < PS(t) < +∞, and it is called cofinitely
(hereditarily) regular if PS(θS) = +∞. The basic properties of these concepts, proved in
[7], are these.

Fact 8.2. If the conformal graph directed Markov system S is finitely primitive and satisfies
the Open Set Condition, then the following hold.

(a) Each cofinitely regular system is strongly regular and each strongly regular system
is regular.

(b) If the system S is regular, then there is a unique h ≥ 0 such that PS(h) = 0. Then
hS := h > 0 and hS = HD(JS).

(c) The system S is cofinitely regular if and only if the series∑
i∈I

‖φ′i‖θS∞

diverges.

Fix t ≥ 0. A Borel probability measure m on Rd is called t-conformal with respect to the
iterated function system S provided that m(JS) = 1,

m(φi(A)) =

∫
A

|φ′i|t dm
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for every every i ∈ I and every Borel set A ⊂ Ji := π({ω ∈ I∞A : Aiω1 = 1}), and
m(φi(Ji) ∩ φj(Jj)) = 0

whenever i 6= j and both i and j are in I. Note that if S is an iterated function system,
then Ji = JS for all i ∈ I. Furthermore,

Fact 8.3. If the conformal graph directed Markov system S is finitely primitive and satisfies
the Open Set Condition, then the following hold.

(a) For every t ≥ 0 there exists at most one t-conformal measure.
(b) For any t a t-conformal measure exists if and only if the system S is regular. If

it is regular, then such a t is unique, in fact t = hS = HD(JS), and we denote
the corresponding hS-conformal measure by mS. We refer to it as the conformal
measure of the system S.

(c) If the system S is regular, then there exists a unique Borel probability S-invariant
measure µS on JS absolutely continuous with respect to mS. S-invariance means
that for every Borel set A ⊂ X,

µS(A) =
∑
i∈I

µS(φi(A ∩ Ji)).

The measure µS is ergodic and equivalent to mS. The corresponding Radon-Nikodym
derivative dµS

dmS
is a log bounded function on JS and has a real-analytic extension on

each set Xv, v ∈ V .
(d) The hS-dimensional Hausdorff measure HhS(JS) of JS is always finite while the hS-

dimensional packing measure PhS(JS) of JS is positive whenever J ∩ Int(X) 6= ∅,
i.e. whenever the so called Strong Open Set Condition is satisfied.

(e) If either the hS-dimensional Hausdorff or packing measure of JS is positive, then
the system SI is regular and the normalized version of the hS-dimensional Hausdorff
or packing measure on JS coincides with mS.

References

[1] Hasina Akter and Mariusz Urbański. Real analyticity of hausdorff dimension of julia sets of parabolic
polynomials f(z) = z(1− z − z2). Illinois J. Math., Preprint, 2011. 1, 1

[2] Neil Dobbs. Nice sets and invariant densities in complex dynamics. Math. Proc. Cambridge Philos.
Soc., 150(1):157–165, 2011. 1, 2

[3] Neil Dobbs and Bartłomiej Skorulski. Non-existence of absolutely continuous invariant probabilities
for exponential maps. Fund. Math., 198(3):283–287, 2008. 1

[4] Janina Kotus and Mariusz Urbański. Conformal, geometric and invariant measures for transcendental
expanding functions. Math. Ann., 324(3):619–656, 2002. 1, 4, 5

[5] R. Mañé, P. Sad, and D. Sullivan. On the dynamics of rational maps. Ann. Sci. École Norm. Sup. (4),
16(2):193–217, 1983. 4

[6] R. Daniel Mauldin and Mariusz Urbański. Dimensions and measures in infinite iterated function
systems. Proc. London Math. Soc, 73(3):105–154, 1996. 1, 2

[7] R. Daniel Mauldin and Mariusz Urbański. Graph directed Markov systems, volume 148 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 2003. Geometry and dynamics of
limit sets. 1, 2, 3, 3, 6, 8, 8



30 BARTŁOMIEJ SKORULSKI AND MARIUSZ URBAŃSKI

[8] Volker Mayer and Mariusz Urbański. Geometric thermodynamical formalism and real analyticity for
meromorphic functions of finite order. Ergod. Th. & Dynam. Sys., 28:915–946, 2008. 1

[9] Volker Mayer and Mariusz Urbański. Thermodynamical formalism and multifractal analysis for mero-
morphic functions of finite order. Mem. Amer. Math. Soc., 203(954):vi+107, 2010. 1, 6, 6, 6, 7

[10] Samuel J. Patterson. The limit set of a fuchsian group. Acta Math., 136:241–273, 1976. 3
[11] Feliks Przytycki and Juan Rivera-Letelier. Statistical properties of topological Collet-Eckmann maps.

Ann. Sci. École Norm. Sup. (4), 40(1):135–178, 2007. 1
[12] Feliks Przytycki and Mariusz Urbański. Conformal fractals: ergodic theory methods, volume 371 of

London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2010. 1
[13] Juan Rivera-Letelier. A connecting lemma for rational maps satisfying a no-growth condition. Ergodic

Theory Dynam. Systems, 27(2):595–636, 2007. 1, 2
[14] Mario Roy and Mariusz Urbanński. Regularity properties of hausdorff dimension in conformal infinite

ifs. Ergodic Theory Dynamical Systems, 25:1961–1983, 2005. 4
[15] David Ruelle. Repellers for real analytic maps. Ergodic Theory Dynamical Systems, 2(1):99–107, 1982.

1
[16] Zbigniew Slodkowski. Holomorphic motions and polynomial hulls. Proc. Amer. Math. Soc., 111(2):347–

355, 1991. 4, 4, 5
[17] Denis Sullivan. The density at infinity of a discrete group. Inst. Hautes Etudes Sci. Pub. Math., 50,

1979. 3
[18] Denis Sullivan. Conformal dynamical systems. In: Geometric dynamics, Lect. Notes in Math,

1007:725–752, 1983. 3
[19] Denis Sullivan. Entropy, hausdorff measures old and new, and the limit set of a geometrically finite

kleinian groups. Acta. Math., 153:259–277, 1984. 3
[20] Denis Sullivan. Quasiconformal homeomorphisms in dynamics, topology, and geometry. Proc. Internat.

Congress of Math., Berkeley, Amer. Math. Soc., pages 1216–1228, 1986. 3
[21] Mariusz Urbański. Analytic families of semihyperbolic generalized polynomial-like mappings. Monatsh.

Math., 159(1-2):133–162, 2010. 1, 1, 1, 4, 4
[22] Mariusz Urbański and Anna Zdunik. Real analyticity of Hausdorff dimension of finer Julia sets of

exponential family. Ergodic Theory Dynam. Systems, 24(1):279–315, 2004. 1
[23] Mariusz Urbański and Michel Zinsmeister. Geometry of hyperbolic Julia-Lavaurs sets. Indagationes

Math., 12, 2001. 1
[24] Michel Zinsmeister. Thermodynamic formalism and holomorphic dynamical systems, volume 2 of

SMF/AMS Texts and Monographs. American Mathematical Society, Providence, RI, 2000. Translated
from the 1996 French original by C. Greg Anderson. 1

Departamento de Matemáticas, Universidad Católica del Norte, Avenida Angamos 0610,
Antofagasta, Chile

E-mail address: bskorulski@ucn.cl

Department of Mathematics, University of North Texas, Denton, TX 76203-1430, USA
E-mail address: urbanski@unt.edu
Web: www.math.unt.edu/∼urbanski


