THE GEOMETRY OF BAIRE SPACES

TUSHAR DAS AND MARIUSZ URBAŃSKI

ABSTRACT. We introduce the concept of Baire embeddings and we classify them up to $C^{1+\varepsilon}$ conjugacies. We show that two such embeddings are $C^{1+\varepsilon}$ equivalent if and only if they have exponentially equivalent geometries. Next, we introduce the class of IFS-like Baire embeddings and we also show that two Hölder equivalent IFS-like Baire embeddings are $C^{1+\varepsilon}$ conjugate if and only if their scaling functions are the same. In the remaining sections we introduce metric scaling functions and we show that the logarithm of such a metric scaling function and the logarithm of Sullivan's scaling function multiplied by the Hausdorff dimension of the Baire embedding are cohomologous up to a constant. This permits us to conclude that if the Bowen measures coincide for two IFS-like Baire embeddings, then the embeddings are bi-Lipschitz conjugate.

1. INTRODUCTION

An involved analysis of the geometries of Cantor embeddings and their conjugacies originated in the work of D. S. Sullivan, [5] and [6]; where he introduced the concept of scaling functions. Sullivan presented a classification theorem to the effect that two Cantor sets with bounded geometries are $C^{1+\varepsilon}$ conjugate if and only if their geometries are exponentially equivalent if and only if their scaling functions are the same. This topic was treated in length in [4]; whereas the case of conjugacies between Baire embeddings was treated in [1]. In [1] the case of real-analytic IFS-like Baire embeddings was, in a sense, exhausted. It has been shown there that two real-analytic IFS-like Baire embeddings (one of which must not be essentially affine) are conjugate in a real-analytic fashion if and only if they are bi-Lipschitz conjugate. In terms of scaling functions introduced in [1], it was shown that two C^1 conjugate Baire embeddings have the same scaling functions. In this paper, developing the approach in [4], we analyse in greater detail the geometries and conjugacies between Baire embeddings. In this setting the concept of exponential geometries looses its significance and meaning - already we have that the lengths of the first level sets converge to zero. Instead we assume that the embeddings are Hölder equivalent. We prove

Date: December 23, 2008.

Key words and phrases. Baire spaces, Scaling functions, Rigidity.

Research was supported in part by the NSF Grant DMS 0400481.

that two Baire embeddings are $C^{1+\varepsilon}$ conjugate if and only if their geometries are exponentially equivalent. The proof requires a more refined geometrical analysis and in fact, more notions describing the geometry of Baire embeddings than was needed in the case of Cantor embeddings. Following [1] we then introduce dual Cantor sets and scaling functions defined on these sets. We then prove that two Hölder equivalent Baire embeddings are $C^{1+\varepsilon}$ conjugate if and only if they have the same scaling functions. Note that in [1] it was only shown that if the scaling functions are the same then the Baire embeddings are bi-Lipschitz equivalent. In the last part of the paper, our starting point is the natural Bowen measure induced by a given Baire embedding. We first associate to such a measure its counterpart (not simply via reflection) on the dual symbol space and then to the this dual measure, the reciprocal of its Jacobian; which we call the metric scaling function of the original Baire embedding. We show that the logarithm of such a metric scaling function and the logarithm of Sullivan's scaling function multiplied by the Hausdorff dimension of the Baire embedding are cohomologous up to a constant. This implies that two Baire embeddings with the same Bowen measure are bi-Lipschitz equivalent. It is known (Theorem 3.1 in [1]) that in the case of real analytic Baire embeddings (one of which must not be essentially affine) this conjugacy is real-analytic.

2. PRELIMINARY NOTATIONS AND DEFINITIONS

Let us recall that two topological dynamical systems $T: X \to X$ and $S: Y \to Y$ are topologically conjugate if there exists a homeomorphism $h: X \to Y$ such that $S \circ h = h \circ T$, that is, if the following diagram commutes:

$$\begin{array}{cccc} X & \xrightarrow{T} & X \\ h \downarrow & & \downarrow h \\ Y & \xrightarrow{S} & Y \end{array}$$

Denote $I := 2\mathbb{N} - 1$. Consider $\Sigma = (2\mathbb{N} - 1)^{\mathbb{N}} = I^{\mathbb{N}}$ with the product topology. Then the following are homeomorphic

$$\Sigma \cong \mathscr{N} \cong (\mathbb{R} - \mathbb{Q}) \cap [0, 1]$$

where, \mathscr{N} is Baire space, viz. $\mathbb{N}^{\mathbb{N}}$ with the product topology. Let us define

$$\Sigma^* := \bigcup_{k=0}^{\infty} I^k \cup (\bigcup_{k=0}^{\infty} I^k \times 2\mathbb{N}).$$

Denote $I^* := \bigcup_{k=0}^{\infty} I^k$ and $G^* := \bigcup_{k=0}^{\infty} I^k \times 2\mathbb{N}$. One can think of the I^* as the intervals that remain at a finite level and the G^* as the corresponding gaps that

are left out. Then

$$\Sigma^* := I^* \cup G^*$$

If $\omega \in I^*$, then $C_{\omega} := h([\omega])$ and I_{ω} is the closed convex hull of C_{ω} . On the other hand if $\omega \in G^*$, where $\omega = \tau j$ for $\tau \in I^*, j \in 2\mathbb{N}$, then I_{ω} is the gap between $I_{\tau(j-1)}$ and $I_{\tau(j+1)}$.

Definition 2.1. Let $h: \Sigma \to \mathbb{R}$ be a homeomorphism onto its image such that

- (a) $\omega < \tau \Rightarrow h(\omega) < h(\tau)$ i.e. h is order-preserving
- (b) $h(\Sigma)$ is bounded
- (c) $h: \Sigma \to \mathbb{R}$ is uniformly continuous, meaning that

(2.1)
$$\lim_{n \to \infty} \sup_{\omega \in I^n} \{ \operatorname{diam}(h([\omega])) \} = 0$$

(d)
$$\overline{h([i])} \cap \overline{h([j])} = \varnothing$$
 for all $i \neq j$

Call such an h a Baire embedding. Denote by \mathcal{H} the class of all such Baire embeddings.

Notation 2.2. Let us set the following notations:

(1) For every $\omega \in I^n$,

(2.2)
$$\operatorname{diam}(I_{\omega}) := \operatorname{diam}(h([\omega]))$$

- (2) $D_n(h) := \sup_{\omega \in I^n} \operatorname{diam}(h([\omega]))$
- (3) For $n \ge 0$, $E_n := \bigcup_{\omega \in I^n} I_\omega$ and denote $C := h(\Sigma) = \bigcap_{n=0}^{\infty} E_n$. Here C is the embedding of our Baire space into \mathbb{R} .
- (4) $\Delta := \operatorname{diam} h(\Sigma)$
- (5) Denote the (closed) convex hull of a set A by co(A). Therefore for $\omega \in I^*$, we have that $I_{\omega} :=: co(C_{\omega}) :=: co(h([\omega]))$.

Remark 2.3. Observe that conditions (a) and (d) imply that $I_i \cap I_j = \emptyset$ for $i \neq j$ and thus it follows by induction that if $\omega, \tau \in I^*$ are incomparable, then $I_{\omega} \cap I_{\tau} = \emptyset$. Moreover in such a circumstance, $\sup I_{\omega} < \inf I_{\tau}$ if $\omega < \tau$. Also observe that condition (c), viz. (2.1) can be expressed as

$$\lim_{n \to \infty} D_n(h) = 0.$$

Lastly, we would like to note that by translating and scaling the map h, we may assume without loss of generality that the $co(h(\Sigma)) = [0, 1]$.

Notation 2.4. For every $\omega \in I^*$ let $I_{\omega\infty} :=: h(\omega\infty) := \lim_{i\to\infty} h([\omega i])$ be the right-hand endpoint of I_{ω} . In particular, $h(\infty) = h(\emptyset\infty)$ is the right hand endpoint of I_{\emptyset} .

We now prove the following

Proposition 2.5. $\overline{h(\Sigma)} = h(\Sigma) \cup \{h(\omega\infty) : \omega \in I^*\}.$

Proof. The inclusion \subseteq is clear. In order to prove the reverse inclusion let us fix $x \in \overline{h(\Sigma)}$. Then there exists a sequence $(\omega^{(n)})_{n\geq 1}$ of elements $\omega^{(n)} \in \Sigma$ such that $x = \lim_{n \to \infty} h(\omega^{(n)})$. For each $k \in \mathbb{N}$, define

$$E_k(x) := \{ \omega^{(n)} |_k : n \ge k \} \text{ and let } E_0(x) := \emptyset.$$

Note that if $\tau \in E_{k+1}(x)$ then there exists $\gamma \in E_k(x)$ such that $\tau|_k = \gamma$. So, $E_k(x)$ is a rooted tree with vertex $E_0(x)$. Now consider two cases: First, suppose that there exists $k \in \mathbb{N}$ such that $E_k(x)$ has infinitely many elements. Then put

 $q := \min\{k \in \mathbb{N} : E_k(x) \text{ has infinitely many elements}\}.$

The set $E_{q^{-1}}(x)$ is finite and non-empty although it might be equal to the singleton $\{\emptyset\}$. Thus there exists $\tau \in E_{q^{-1}}(x) \subseteq I^*$ and an infinite sequence $(\omega_q^{(n_j)})_{j\geq 1}$ of distinct elements of I such that $\tau \omega_q^{(n_j)} = \omega^{(n_j)}|_q$ for all $j \in \mathbb{N}$. Therefore

$$x = \lim_{j \to \infty} h(\omega^{(n_j)}) \in \limsup_{j \to \infty} h(\omega^{(n_j)}|_q) = \limsup_{j \to \infty} h(\tau \omega_q^{(n_j)}) = h(\tau \infty).$$

Thus $x = h(\tau \infty)$ and we are done in the first case.

Next, suppose that the set $E_k(x)$ is finite for every $k \in \mathbb{N}$. Since, as we have mentioned before, these sets form a rooted tree with vertex $E_0(x)$, König's Lemma yields the existence of an infinite word $\omega \in \Sigma$ such that $\omega|_k \in E_k(x)$ for all $k \in \mathbb{N}$. Therefore, there exists an increasing sequence $(n_k)_{k \in \mathbb{N}}$ such that $\omega|_k = \omega^{(n_k)}|_k$ for all $k \in \mathbb{N}$. Thus $|h(\omega^{(n_k)}) - h(\omega)| \leq D_k(h)$ and thus condition (2.1) yields that $x = \lim_{k \to \infty} h(\omega^{(n_k)}) = h(\omega)$. We are done.

Now given $h_1, h_2 \in \mathcal{H}$, consider the map $h_2 \circ h_1^{-1} : h_1(\Sigma) \to h_2(\Sigma)$. By Proposition 2.5 the formula

$$H_{1,2}(x) = \begin{cases} h_2 \circ h_1^{-1}(x) & \text{if } x \in h_1(\Sigma) \\ h_2(\omega\infty) & \text{if } x = h_1(\omega\infty) \text{ and } \omega \in I^*, \end{cases}$$

defines an extension $H_{1,2}(x) : \overline{h_1(\Sigma)} \to \overline{h_2(\Sigma)}$ of $h_2 \circ h_1^{-1}$ from the closure of $h_1(\Sigma)$ to the closure of $h_2(\Sigma)$. We shall now prove the following

Proposition 2.6. If $h_1, h_2 \in \mathcal{H}$, then $H_{1,2} : \overline{h_1(\Sigma)} \to \overline{h_2(\Sigma)}$ is a homeomorphism.

Proof. Since $H_{2,1} \circ H_{1,2} = \operatorname{Id}_{\overline{h_1(\Sigma)}}$ and $H_{1,2} \circ H_{2,1} = \operatorname{Id}_{\overline{h_2(\Sigma)}}$, it suffices to show that $H_{1,2} : \overline{h_1(\Sigma)} \to \overline{h_2(\Sigma)}$ is continuous. We shall prove the continuity of $H_{1,2}$ at every point $x \in \overline{h_1(\Sigma)}$. Suppose first that $x \in h_1(\Sigma)$, i.e. $x = h_1(\omega)$ for some $\omega \in \Sigma$. For every $y \in I_{\omega}$, let $n_y \geq 1$ be the largest integer $n \geq 1$ such that $y \in I_{\omega|_n}$. We then have that $\lim_{y\to x} n_y = +\infty$ and therefore it follows from (2.2) combined with continuity of $h_2: \Sigma \to \mathbb{R}$ that

$$\lim_{\substack{y \to x \\ y \in \overline{h_1(\Sigma)}}} H_{1,2}(y) = h_2(\omega) = h_2 \circ h_1^{-1}(x) = H_{1,2}(x).$$

We are done in this case. Next, suppose that $x \in h_1(\Sigma) - h_1(\Sigma)$. Then, in view of Proposition 2.5 there exists $\omega \in I^*$ such that $x = h_1(\omega\infty)$. For every $y \in \overline{h_1([\omega])} - \{x\}$ there exists a unique $j_y \in I$ such that $y \in \overline{h_1([\omega j_y])}$. In addition $\lim_{y\to x} = +\infty$. Therefore we have that

$$\lim_{y \to x} H_{1,2}(y) \in \limsup_{y \to x} \overline{h_2([\omega j_y])} = \limsup_{j \to \infty} \overline{h_2([\omega j])} = h_2(\omega \infty) = H_{1,2}(x).$$

Thus $\lim_{y\to x} H_{1,2}(y) = x$ and we are done.

Notation 2.7. Let $\kappa = \sup\{|I_j| : j \in \mathbb{N}\}$. Notice that

(2.3)
$$\kappa \le \max\{|I_1|, \Delta - |I_1|\} < \Delta = 1$$

Definition 2.8. $A : \mathbb{N} \to [0,1]$ is said to be a probability vector if and only if $\sum_{n=0}^{\infty} A(n) = 1$. Given $c \ge 1$ two probability vectors $A : \mathbb{N} \to [0,1]$ and $B : \mathbb{N} \to [0,1]$ are said to be c-equivalent, $A \sim_c B$, if $\forall n \ge 1$,

$$c^{-1}B(n) \le A(n) \le cB(n)$$

Given $\omega \in I^*$ define $A(\omega) : \mathbb{N} \to [0,1]$ by

$$A(\omega)(j) :=: A_j(\omega) :=: \frac{|I_{\omega j}|}{|I_{\omega}|}$$

Note that each $A(\omega)$ is a probability vector with no zero entries.

Definition 2.9. $h \in \mathcal{H}$ is said to be of bounded geometry provided there exists $c \geq 1$ such that $A(\omega) \sim_c A(\emptyset)$ for all $\omega \in I^*$ and $A_i(h, \omega) \leq cA_j(h, \omega)$ whenever $|i-j| \leq 1$. Denote by \mathcal{H}_b the class of Baire embeddings with bounded geometry. If more than one Baire embedding is considered, write $A_h(\omega)$ for $A(\omega)$ and $A_j(h, w)$ for $A_j(\omega)$.

Recall that we had introduced the notation $I_{\omega\infty}$ to denote the right-hand endpoint of the interval I_{ω} . Let us now prove a straightforward but useful fact.

Lemma 2.10. Let $h \in \mathcal{H}$ be of bounded geometry. There exists a constant $c^* \geq 1$ such that for all $\omega \in I^*$, if $x \in I_{\omega i}$, $y \in I_{\omega j}$ and $|j - i| \geq 2$, then

$$\operatorname{diam}(I_{\omega i} \cup I_{\omega j}) \le c^* |y - x|.$$

Note that i or j can be ∞ , and it does not hurt to assume that $|\infty - \infty| \geq 2$.

Proof. Since h is of bounded geometry there exists a $c \ge 1$ such that $\frac{|I_{\omega i}|}{|I_{\omega (i+1)}|} \le c$ and $\frac{|I_{\omega (j-1)}|}{|I_{\omega j}|} \le c$. Then $|I_{\omega i}| \le c|I_{\omega (i+1)}| \le c|y - x|$ since x and y are not in $I_{\omega (i+1)}$. Similarly, $|I_{\omega (j-1)}| \le c|I_{\omega j}| \le c|y - x|$. Thus, we have that

$$\operatorname{diam}(I_{\omega i} \cup I_{\omega j}) \leq |I_{\omega i}| + |I_{\omega j}| + |y - x|$$
$$\leq (2c+1)|y - x|,$$

which completes the proof.

Definition 2.11. $h_1, h_2 \in \mathcal{H}$ are said to have weakly equivalent geometries, $h_1 \sim_{wk} h_2$, if

$$\lim_{n \to \infty} \sup_{\omega \in I^n} \sup_{j \in \mathbb{N}} \left\{ \left| \frac{A_j(h_2, \omega)}{A_j(h_1, \omega)} - 1 \right| \right\} = 0$$

Notation 2.12. Given $\omega \in I^*$ and $i, j \in \mathbb{N}$, let

$$Q_h(\omega; i, j) :=: \frac{A_j(h, \omega)}{A_i(h, \omega)} :=: \frac{|I_{\omega j}|}{|I_{\omega i}|}$$

If it is clear which homeomorphism we are dealing with, we will frequently drop the subscript h and will write $Q(\omega; i, j)$ for $Q_h(\omega; i, j)$.

Definition 2.13. $h_1, h_2 \in \mathcal{H}$ are said to have equivalent geometries, $h_1 \sim h_2$, if

$$\lim_{n \to \infty} \sup_{\omega \in I^n} \sup_{i,j \in \mathbb{N}} \left\{ \left| \frac{Q_{h_2}(\omega; i, j)}{Q_{h_1}(\omega; i, j)} - 1 \right| \right\} = 0,$$

that is, $\forall \omega \in I^*$

$$\lim_{i,j\to\infty} \left| \frac{Q_{h_2}(\omega;i,j)}{Q_{h_1}(\omega;i,j)} - 1 \right| = 0$$

and

(2.4)
$$\lim_{n \to \infty} \sup_{\omega \in I^n} \left| \frac{A_1(h_2, \omega)}{A_1(h_1, \omega)} - 1 \right| = 0.$$

Notation 2.14. Given $\omega \in I^*$ and $j \in \mathbb{N}$ let

$$I_{\omega j+} := \overline{\cup_{k \ge j} I_{\omega k}} \; .$$

In particular note that $I_{\omega 1+} = I_{\omega}$.

For all $i, j \in \mathbb{N}$ let

$$I_{\omega[i,j]} := igcup_{k=\min\{i,j\}}^{\max\{i,j\}} I_{\omega k}$$

be the convex hull containing $I_{\omega i}$ and $I_{\omega j}$. All intervals of the form $I_{\omega[i,j]}$ will be called ω -intervals.

Definition 2.15. $h_1, h_2 \in \mathcal{H}$ are said to have weakly exponentially equivalent geometries, $h_1 \sim_{wex} h_2$, if

(2.5)
$$\liminf_{n \to \infty} \inf_{\omega \in I^n} \inf_{j \in \mathbb{N}} \left\{ \frac{\log \left| \frac{A_j(h_2,\omega)}{A_j(h_1,\omega)} - 1 \right|}{\min\{\log |I_{\omega}^1|, \log |I_{\omega}^2|\}} \right\} > 0.$$

This condition means that there exist $c \geq 1$ and $\delta > 0$ such that $\forall \omega \in I^*$, $\forall i, j \in \mathbb{N}$

(2.6)
$$\left|\frac{A_j(h_2,\omega)}{A_j(h_1,\omega)} - 1\right| \le c \min\{|I_{\omega j+}^1|^{\delta}, |I_{\omega j+}^2|^{\delta}\}.$$

We note that if we wish to be more explicit about the constant δ , we may write $h_1 \sim_{wex(\delta)} h_2$ for $h_1 \sim_{wex} h_2$.

Definition 2.16. $h_1, h_2 \in \mathcal{H}$ are said to have exponentially equivalent geometries, $h_1 \sim_{ex} h_2$, if

$$\liminf_{n \to \infty} \inf_{\omega \in I^n} \inf_{i,j \in \mathbb{N}} \frac{\log \left| \frac{Q_{h_2}(\omega;i,j)}{Q_{h_1}(\omega;i,j)} - 1 \right|}{\min \left\{ \log \left| I^1_{\omega[i,j]} \right|, \log \left| I^2_{\omega[i,j]} \right| \right\}} > 0$$

and

$$\liminf_{n \to \infty} \inf_{\omega \in I^n} \frac{\log \left|\frac{A_1(h_2,\omega)}{A_1(h_1,\omega)} - 1\right|}{\min\{\log |I_{\omega}^1|, \log |I_{\omega}^2|\}} > 0.$$

These conditions equivalently mean that there exist $c \geq 1$ and $\delta > 0$ such that $\forall \omega \in I^*, \forall i, j \in \mathbb{N}$

(2.7)
$$\left|\frac{Q_{h_2}(\omega; i, j)}{Q_{h_1}(\omega; i, j)} - 1\right| \le c \min\left\{\left|I_{\omega[i, j]}^1\right|^{\delta}, \left|I_{\omega[i, j]}^2\right|^{\delta}\right\}$$

and

(2.8)
$$\left|\frac{A_1(h_2,\omega)}{A_1(h_1,\omega)} - 1\right| \le c \min\{|I_{\omega}^1|^{\delta}, |I_{\omega}^2|^{\delta}\}.$$

We note that if we wish to be more explicit about the constant δ , we may write $h_1 \sim_{ex(\delta)} h_2$ for $h_1 \sim_{ex} h_2$.

It is straightforward to see that the relation of being (weakly) exponentially equivalent geometries is reflexive and transitive. Noting that $x^{-1} - 1 = x^{-1}(1 - x)$, it is also easy to see that this relation is symmetric. Thus they are equivalence relations. Let us now prove that our weak notions are implied by their stronger counterparts.

Lemma 2.17. If the geometries of h_1, h_2 are equivalent, then they are weakly equivalent.

Proof. The proof follows directly from the following formula and the definition of equivalent geometry.

$$\left|\frac{A_{j}(h_{2},\omega)}{A_{j}(h_{1},\omega)} - 1\right| = \left|\frac{\frac{A_{j}(h_{2},\omega)}{A_{1}(h_{2},\omega)}}{\frac{A_{j}(h_{1},\omega)}{A_{1}(h_{1},\omega)}} \cdot \frac{A_{1}(h_{2},\omega)}{A_{1}(h_{1},\omega)} - 1\right| = \left|\frac{Q_{h_{2}}(\omega;1,j)}{Q_{h_{1}}(\omega;1,j)} \cdot \frac{A_{1}(h_{2},\omega)}{A_{1}(h_{1},\omega)} - 1\right|$$

Lemma 2.18. If the geometries of h_1, h_2 are exponentially equivalent, then they are weakly exponentially equivalent.

Proof. Let u be either 1 or 2.

$$\begin{split} \left| \frac{A_{j}(h_{2},\omega)}{A_{j}(h_{1},\omega)} - 1 \right| &= \left| \frac{Q_{h_{2}}(\omega;1,j)}{Q_{h_{1}}(\omega;1,j)} \cdot \frac{A_{1}(h_{2},\omega)}{A_{1}(h_{1},\omega)} - 1 \right| \\ &= \left| \left(\frac{Q_{h_{2}}(\omega;1,j)}{Q_{h_{1}}(\omega;1,j)} - 1 \right) \left(\frac{A_{1}(h_{2},\omega)}{A_{1}(h_{1},\omega)} - 1 \right) + \left(\frac{Q_{h_{2}}(\omega;1,j)}{Q_{h_{1}}(\omega;1,j)} - 1 \right) + \left(\frac{A_{1}(h_{2},\omega)}{A_{1}(h_{1},\omega)} - 1 \right) \right| \\ &\leq c^{2} |I_{\omega}^{u}|^{\delta} + c|I_{\omega}^{u}|^{\delta} + c|I_{\omega}^{u}|^{\delta} \\ &\leq c^{2} |I_{\omega}^{u}|^{2\delta} + 2c|I_{\omega}^{u}|^{\delta} \\ &\leq 3c^{2} |I_{\omega}^{u}|^{\delta}. \end{split}$$

 \square

Definition 2.19. $h_1, h_2 \in \mathcal{H}$ are called $C^{1+\varepsilon}$ -equivalent, $h_1 \sim^{1+\varepsilon} h_2$, for $0 < \varepsilon < 1$, if there exists an increasing $C^{1+\varepsilon}$ diffeomorphism ϕ from a neighbourhood of $co(h_1(\Sigma))$ onto a neighbourhood of $co(h_2(\Sigma))$ such that $\phi|_{h_1(\Sigma)} = h_2 \circ h_1^{-1}$. Similarly, $h_1, h_2 \in \mathcal{H}$ are called C^1 -equivalent, $h_1 \sim^{1+0} h_2$, if there exists an increasing C^1 diffeomorphism ϕ from a neighbourhood of $co(h_1(\Sigma))$ onto a neighbourhood of $co(h_2(\Sigma))$ such that $\phi|_{h_1(\Sigma)} = h_2 \circ h_1^{-1}$. Again, $h_1, h_2 \in \mathcal{H}$ are called C^{1+1} -equivalent, $h_1 \sim^{1+1} h_2$, if there exists an increasing C^{1+1} diffeomorphism (i.e. one whose first derivative is Lipschitz) ϕ from a neighbourhood of $co(h_1(\Sigma))$ onto a neighbourhood of $co(h_2(\Sigma))$ such that $\phi|_{h_1(\Sigma)} = h_2 \circ h_1^{-1}$.

The composition $h_2 \circ h_1^{-1} : [0,1] \to [0,1]$ is called the natural conjugacy from $h_1(\Sigma)$ to $h_2(\Sigma)$. Each conjugacy class of the relation $\sim^{1+\varepsilon}$ is called a $C^{1+\varepsilon}$ -structure on Σ .

Proposition 2.20. If $h_1, h_2 \in \mathcal{H}$ and $h_1 \sim^{1+0} h_2$, then h_1 and h_2 have equivalent geometries, i.e. $h_1 \sim h_2$.

Proof. Let $\phi: U_1 \to U_2$ be a C^1 extension of $h_2 \circ h_1^{-1}$. Let $M_{D\phi}$ be the modulus of continuity of $D\phi$. By assumption, $|D\phi(x)| \ge A > 0$ for all $x \in U_1$. Then

$$\begin{aligned} \left| \frac{A_{j}(h_{2},\omega)}{A_{j}(h_{1},\omega)} - 1 \right| &= \left| \frac{|I_{\omega j}^{2}|/|I_{\omega}^{2}|}{|I_{\omega j}^{1}|/|I_{\omega}^{1}|} - 1 \right| \\ &= \left| \frac{|\phi(I_{\omega j}^{1})|/|I_{\omega j}^{1}|}{|\phi(I_{\omega}^{1})|/|I_{\omega}^{1}|} - 1 \right| \\ &= \left| \frac{\phi'(x_{\omega j})}{\phi'(x_{\omega})} - 1 \right| \text{ for some } x_{\omega j} \in I_{\omega j}^{1}, \ x_{\omega} \in I_{\omega}^{1} . \\ &= \frac{|\phi'(x_{\omega j}) - \phi'(x_{\omega})|}{|\phi'(x_{\omega})|} \\ &\leq \frac{1}{A} \left| \phi'(x_{\omega j}) - \phi'(x_{\omega}) \right| \\ &\leq \frac{1}{A} M(|x_{\omega j} - x_{\omega}|) \\ &\leq A^{-1} M(|I_{\omega}|) \\ &\leq A^{-1} MD_{|\omega|}(h_{1}) \end{aligned}$$

Thus taking j = 1, the last requirement of equivalent geometries viz.(2.4) is satisfied. Let us deal with the first one. We have

$$\begin{split} \left| \frac{Q_{h_2}(\omega; i, j)}{Q_{h_1}(\omega; i, j)} - 1 \right| &= \left| \frac{\frac{A_j(h_2, \omega)}{A_i(h_2, \omega)}}{\frac{A_j(h_1, \omega)}{A_i(h_1, \omega)}} - 1 \right| = \left| \frac{|I_{\omega_j}^2|/|I_{\omega_i}^1|}{|I_{\omega_j}^2|/|I_{\omega_i}^1|} - 1 \right| \\ &= \left| \frac{|I_{\omega_j}^2|/|I_{\omega_j}^1|}{|I_{\omega_j}^2|/|I_{\omega_j}^1|} - 1 \right| \\ &= \left| \frac{|\phi(I_{\omega_j})|/|I_{\omega_j}^1|}{|\phi(I_{\omega_j})|/|I_{\omega_j}^1|} - 1 \right| \\ &= \left| \frac{\phi'(x_{\omega_j})}{\phi'(x_{\omega_i})} - 1 \right| \text{ for some } x_{\omega_j} \in I_{\omega_j}^1, \ x_{\omega_i} \in I_{\omega_i}^1 . \\ &= \frac{|\phi'(x_{\omega_j}) - \phi'(x_{\omega})|}{\phi'(x_{\omega_i})} \\ &\leq A^{-1}M(|I_{\omega_j}|]) \end{split}$$

We are done.

Lemma 2.21. If $h \in \mathcal{H}_b$, then

$$\limsup_{n \to \infty} \frac{1}{n} \log D_n(h) < 0.$$

Proof. Take $c \geq 1$ such that $A(\omega) \sim_c A(\emptyset)$ for all $\omega \in I^*$. Then for all $\omega \in I^*$ and for all $j \in 2\mathbb{N} - 1$, we have

$$\frac{\sum_{i \in \mathbb{N} \setminus \{j\}} |I_{\omega i}|}{|I_{\omega}|} = \sum_{i \neq j} \frac{|I_{\omega i}|}{|I_{\omega}|} \ge \sum_{i \neq j} c^{-1} \frac{|I_i|}{|\Delta|} \ge c^{-1} (1 - \frac{|I_i|}{\Delta}) \ge c^{-1} (1 - \kappa \Delta^{-1}) > 0.$$

Note that the last inequality follows from (2.3). Therefore,

(2.9)
$$\frac{|I_{\omega j}|}{|I_{\omega}|} = 1 - \sum_{i \neq j} \frac{|I_{\omega i}|}{|I_{\omega}|} \le 1 - c^{-1}(1 - \kappa \Delta^{-1})$$

i.e.

$$|I_{\omega j}| \le (1 - c^{-1}(1 - \kappa \Delta^{-1}))(|I_{\omega}|)$$

Thus by a straightforward induction,

$$|I_{\tau}| \le (1 - c^{-1}(1 - \kappa \Delta^{-1}))^{|\tau|}$$

for $\tau \in I^*$. We are done.

We would like to note an immediate consequence of this lemma and the definition of weakly exponentially equivalent geometries, see (2.6), viz. if $h_1, h_2 \in \mathcal{H}_b$

with $h_1 \sim_{wex} h_2$, then we have that

(2.10)
$$\limsup_{n \to \infty} \frac{1}{n} \log \sup_{\omega \in I^n} \sup_{j \in \mathbb{N}} \left\{ \left| \frac{A_j(h_2, \omega)}{A_j(h_1, \omega)} - 1 \right| \right\} < 0$$

3. $C^{1+\varepsilon}$ Equivalence

In this section we prove our first main result, viz. that two Baire embeddings are $C^{1+\delta}$ conjugate if and only if these have $(1 + \delta)$ -equivalent geometries. Besides being interesting in itself, this result will play a central role in the next section.

Theorem 3.1. Let $h_1, h_2 \in \mathcal{H}_b$. Fix $\delta > 0$. Then $h_1 \sim^{1+\delta} h_2 \Leftrightarrow h_1 \sim_{ex(\delta)} h_2$.

Proof. (\Rightarrow) Essentially the same computation from the first part of the proof of Proposition 2.20, gives us

$$\left|\frac{A_j(h_2,\omega)}{A_j(h_1,\omega)} - 1\right| \le A^{-1} \left|\phi'(x_{\omega j}) - \phi'(x_{\omega})\right| \le cA^{-1} |x_{\omega j} - x_{\omega}|^{\delta} \le cA^{-1} |I_{\omega}^1|^{\delta}.$$

Likewise

$$\left|\frac{A_j(h_1,\omega)}{A_j(h_2,\omega)} - 1\right| \le cA^{-1} |I_{\omega}^2|^{\delta}.$$

Thus the requirement (2.8) is satisfied. For the second requirement we now repeat the same computation from the second part of the Proposition 2.20 to get

$$\left|\frac{Q_{h_2}(\omega;i,j)}{Q_{h_1}(\omega;i,j)} - 1\right| \le A^{-1} |\phi'(x_{\omega j}) - \phi'(\omega i)| \le A^{-1} c |x_{\omega i} - x_{\omega j}|^{\delta} \le c A^{-1} |I^1_{\omega[i,j]}|^{\delta}$$

Likewise

$$\left|\frac{Q_{h_1}(\omega;i,j)}{Q_{h_2}(\omega;i,j)} - 1\right| \le cA^{-1} |I_{\omega[i,j]}^2|^{\delta}$$

Thus we are done with the first part of our implication.

 (\Leftarrow) For all $a, b \in \overline{h_1(\Sigma)}, a \neq b$, set

$$R(a,b) = \frac{H_{1,2}(b) - H_{1,2}(a)}{b - a}$$

and for every interval (closed, open or clopen) $J \subseteq \mathbb{R}$ with endpoints $a, b \in \overline{h_1(\Sigma)}$, set

$$R(J) = \frac{H_{1,2}(b) - H_{1,2}(a)}{b - a} = \frac{|H_{1,2}(J)|}{|J|}$$

Fix $\delta > 0$ and $c \ge 1$ coming from (2.7) and (2.8). We shall prove the following:

(3.1)
$$\left| \frac{R(I_{\omega|_n}^1)}{R(I_{\omega|_m}^1)} - 1 \right| \le c_1 |I_{\omega|_m}^1|^{\delta} \le c_2 e^{-\theta \delta m},$$

with the same constants $c_1, c_2 \ge 1$ for all $\omega \in \Sigma^* (= I^* \cup G^*)$ and also for all $\theta \le m \le n \le |\omega|$.

Indeed, suppose first that n = m + 1. Then

$$\frac{R(I_{\omega|m+1}^{1})}{R(I_{\omega|m}^{1})} - 1 = \frac{\frac{\left|H_{1,2}\left(I_{\omega|m+1}^{1}\right)\right|}{\left|I_{\omega|m+1}^{1}\right|}}{\frac{\left|H_{1,2}\left(I_{\omega|m}^{1}\right)\right|}{\left|I_{\omega|m}^{1}\right|}} - 1 = \frac{\left|I_{\omega|m+1}^{2}\right| / \left|I_{\omega|m+1}^{1}\right|}{\left|I_{\omega|m}^{2}\right|} - 1$$
$$= \frac{\left|I_{\omega|m+1}^{2}\right| / \left|I_{\omega|m}^{2}\right|}{\left|I_{\omega|m+1}^{1}\right| / \left|I_{\omega|m}^{1}\right|} - 1$$
$$= \frac{A_{\omega_{m+1}}(h_{2}, \omega|_{m+1})}{A_{\omega_{m+1}}(h_{1}, \omega|_{m+1})} - 1.$$

It therefore follows from Lemma 2.18 that

$$\left|\frac{R(I_{\omega|_{m+1}}^1)}{R(I_{\omega|_m}^1)} - 1\right| \le c_3 |I_{\omega|_m}^1|^{\delta},$$

with some universal constant $c_3 \geq 1$. In other words, we have

(3.2)
$$\frac{R(I_{\omega|m+1}^1)}{R(I_{\omega|m}^1)} = 1 + c(\omega|_{m+1})|I_{\omega|m}|^{\delta}$$

with some constant $c(\omega|_{m+1}) \in [-c_3, c_3]$.

Now come back to the general case of arbitrary $m, n \ge 0$. Set

$$\theta := -\log\left(1 - c^{-1}(1 - \kappa \Delta^{-1})\right) > 0 \qquad (cf.(2.9)).$$

We may assume without loss of generality that $n \ge m+1$. Using (3.2), we then get

$$\frac{R(I_{\omega|_n}^1)}{R(I_{\omega|_m}^1)} = \prod_{j=m}^{n-1} \frac{R(I_{\omega|_{j+1}}^1)}{R(I_{\omega|_j}^1)} = \prod_{j=m}^{n-1} \left(1 + c(\omega|_{j+1})|I_{\omega|j}^1|^{\delta}\right).$$

Hence

$$\left|\log \frac{R(I_{\omega|n}^{1})}{R(I_{\omega|m}^{1})}\right| = \left|\sum_{j=m}^{n-1} \log(1 + c(\omega|_{j+1})|I_{\omega|j}^{1}|^{\delta})\right| \le \sum_{j=m}^{n-1} |c(\omega|_{j+1})||I_{\omega|j}^{1}|^{\delta}$$
$$\le \sum_{j=m}^{n-1} c|I_{\omega|j}^{1}|^{\delta}$$
$$\le c \sum_{j=m}^{n-1} |I_{\omega|j}^{1}|^{\delta}.$$

But by (2.9), $|I_{\omega|_j}^1| \leq e^{-\theta(j-m)}|I_{\omega|_m}^1|$. Therefore,

$$\begin{aligned} \left| \log \frac{R(I_{\omega|_n}^1)}{R(I_{\omega|_m}^1)} \right| &\leq c |I_{\omega|_j}^1|^{\delta} \sum_{j=m}^{\infty} e^{-\theta \delta(j-m)} \\ &= c |I_{\omega|_m}^1|^{\delta} \sum_{i=0}^{\infty} e^{-\theta \delta(i)} \\ &= c(1-e^{-\theta \delta})^{-1} |I_{\omega|_m}^1|^{\delta} \\ &\leq c \Delta^{\delta} (1-e^{-\theta \delta})^{-1}. \end{aligned}$$

Thus there exists a constant $c_4 \geq 1$ depending only on the number $c\Delta^{\delta}(1 - e^{-\theta\delta})^{-1}$, such that

$$\left| \frac{R(I_{\omega|n}^{1})}{R(I_{\omega|m}^{1})} - 1 \right| \leq c_{4} \log \frac{R(I_{\omega|n}^{1})}{R(I_{\omega|m}^{1})}$$
$$\leq \Delta c \ c_{4} (1 - e^{-\theta\delta})^{-1} |I_{\omega|m}^{1}|^{\delta}$$
$$\leq \Delta^{1+\delta} c \ c_{4} (1 - e^{-\theta\delta})^{-1} e^{-\theta\delta m}.$$

The formula (3.1) is proved.

Now we shall show that there exists a constant $c_5 \geq 1$ such that for all $\omega \in I^*$ and all ω -intervals Δ, Γ with diam $(\Delta \cup \Gamma)$ small enough,

(3.3)
$$\left|\frac{R(\Delta)}{R(\Gamma)} - 1\right| \le c_5 \left(\operatorname{diam}(\Delta \cup \Gamma)\right)^{\delta}$$

Indeed, set $\Delta = I_{\omega[i_1,i_2]}$ and $\Gamma = I_{\omega[j_1,j_2]}$. Let $a = \min\{i_1,i_2\}$ and $b = \max\{j_1,j_2\}$. Then $\Delta \cup \Gamma \subseteq I_{\omega[a,b]}$ and $\operatorname{diam}(\Delta \cup \Gamma) = |I_{\omega[a,b]}|$. Now using (2.7) we can write

$$\frac{R(\Delta)}{R(\Gamma)} = \frac{\sum_{k=j_{1}}^{j_{2}} |I_{\omega k}^{2}| / \sum_{k=j_{1}}^{j_{2}} |I_{\omega k}^{1}|}{\sum_{k=i_{1}}^{i_{2}} |I_{\omega k}^{2}| / \sum_{k=i_{1}}^{i_{2}} |I_{\omega k}^{1}|} \\
= \frac{\sum_{k=j_{1}}^{j_{2}} |I_{\omega k}^{2}| / \sum_{k=i_{1}}^{i_{2}} |I_{\omega k}^{2}|}{\sum_{k=j_{1}}^{j_{2}} |I_{\omega k}^{1}| / \sum_{k=i_{1}}^{i_{2}} |I_{\omega k}^{1}|} \\
= \frac{\sum_{k=j_{1}}^{j_{2}} A_{k}(h_{2},\omega) / \sum_{k=i_{1}}^{i_{2}} A_{k}(h_{2},\omega)}{\sum_{k=j_{1}}^{j_{2}} A_{k}(h_{1},\omega) / \sum_{k=i_{1}}^{i_{2}} A_{k}(h_{1},\omega)} \\
= \frac{\sum_{k=j_{1}}^{j_{2}} Q_{h_{2}}(\omega;a,k) / \sum_{k=i_{1}}^{i_{2}} A_{h}(h_{1},\omega)}{\sum_{k=j_{1}}^{j_{2}} Q_{h_{1}}(\omega;a,k) / \sum_{k=i_{1}}^{i_{2}} Q_{h_{1}}(\omega;a,k)} \\
(3.4) = \frac{\sum_{k=j_{1}}^{j_{2}} (1 + c_{k} |I_{\omega [a,b]}^{1}|^{\delta}) Q_{h_{1}}(\omega;a,k) / \sum_{k=i_{1}}^{i_{2}} Q_{h_{1}}(\omega;a,k)}{\sum_{k=j_{1}}^{j_{2}} Q_{h_{1}}(\omega;a,k) / \sum_{k=i_{1}}^{i_{2}} Q_{h_{1}}(\omega;a,k)} \\
\end{cases}$$

with some $c_k \in [-c, c]$ since $I^1_{\omega[a,k]} \subseteq I^1_{\omega[a,b]}$.

Now assume $|I^1_{\omega[a,b]}| = \operatorname{diam}(\Delta \cup \Gamma)$ to be so small that

(3.5)
$$\max\{2c, 3c+c^2, 3c\} \cdot |I^1_{\omega[a,b]}|^{\delta} \le 1/2.$$

Then we have that

$$\left| (1 \pm c |I_{\omega[a,b]}^1|^{\delta})^{-1} \right| = \left| \sum_{n=1}^{\infty} (\mp c |I_{\omega[a,b]}^1|^{\delta})^n \right| = \frac{c |I_{\omega[a,b]}^1|^{\delta}}{1 \mp c |I_{\omega[a,b]}^1|^{\delta}} \le 2c |I_{\omega[a,b]}^1|^{\delta}$$

and we also have that

$$1 - 2c|I_{\omega[a,b]}^1|^{\delta} \le (1 \pm c|I_{\omega[a,b]}^1|^{\delta})^{-1} \le 1 + 2c|I_{\omega[a,b]}^1|^{\delta}.$$

Now using this observation, we have from (3.4) that

$$\frac{R(\Delta)}{R(\Gamma)} \leq \frac{(1+c_k |I_{\omega[a,b]}^1|^{\delta}) \sum_{k=j_1}^{j_2} Q_{h_1}(\omega;a,k) / (1+c_k |I_{\omega[a,b]}^1|^{\delta}) \sum_{k=i_1}^{i_2} Q_{h_1}(\omega;a,k)}{\sum_{k=j_1}^{j_2} Q_{h_1}(\omega;a,k) / \sum_{k=i_1}^{i_2} Q_{h_1}(\omega;a,k)} \\
= \frac{(1+c |I_{\omega[a,b]}^1|^{\delta})}{(1-c |I_{\omega[a,b]}^1|^{\delta})} \\
\leq (1+c |I_{\omega[a,b]}^1|^{\delta}) (1+2c |I_{\omega[a,b]}^1|^{\delta}) \\
\leq 1+c_5 |I_{\omega[a,b]}^1|^{\delta},$$

and that

$$\begin{split} \frac{R(\Delta)}{R(\Gamma)} &\leq \frac{\left(1 - c_k |I_{\omega[a,b]}^1|^{\delta}\right) \sum_{k=j_1}^{j_2} Q_{h_1}(\omega;a,k) / (1 + c_k |I_{\omega[a,b]}^1|^{\delta}) \sum_{k=i_1}^{i_2} Q_{h_1}(\omega;a,k)}{\sum_{k=j_1}^{j_2} Q_{h_1}(\omega;a,k) / \sum_{k=i_1}^{i_2} Q_{h_1}(\omega;a,k)} \\ &= \frac{\left(1 - c |I_{\omega[a,b]}^1|^{\delta}\right)}{\left(1 + c |I_{\omega[a,b]}^1|^{\delta}\right)} \\ &\leq \left(1 - c |I_{\omega[a,b]}^1|^{\delta}\right) (1 - 2c |I_{\omega[a,b]}^1|^{\delta}) \\ &\leq 1 - c_6 |I_{\omega[a,b]}^1|^{\delta}, \end{split}$$

with universal constants $c_5, c_6 \geq 1$.

Thus we have shown that

$$\left|\frac{R(\Gamma)}{R(\Delta)} - 1\right| \le \max\{c_5, c_6\} |I^1_{\omega[a,b]}|^{\delta}$$

and we are done with the proof of (3.3).

Now it follows from (3.1) that for every $\omega \in I^{\mathbb{N}}$, the limit of the sequence $(R(I^1_{\omega|_n}))_{n=1}^{\infty}$ exists, is finite and non-zero. We define it to be

$$H_{1,2}^*(h_1(\omega)) := \lim_{n \to \infty} R(I_{\omega|_n}^1)) \cdot$$

In fact, we can further observe from (3.1) that

(3.6)
$$\left|\frac{H_{1,2}^*(h_1(\omega))}{R(I_{\omega|nj}^1)} - 1\right| \le c_1' |I_{\omega|n}^1|^{\delta} \text{ for every } \omega \in I^{\mathbb{N}}, j \in \mathbb{N}, n \in \mathbb{N}.$$

Whereas, noting that $I^1_{\omega 1+} = I^1_{\omega}$, it follows from (3.3) that

(3.7)
$$\left|\frac{H_{1,2}^*(h_1(\omega\infty))}{R(I_{\omega}^1)} - 1\right| \le c_5' |I_{\omega}^1|^{\delta} \text{ for every } \omega \in I^*.$$

TUSHAR DAS AND MARIUSZ URBAŃSKI

Likewise, it follows from (3.3) that for every $\omega \in I^*$, the limit of the sequence $(R(I^1_{\omega n+}))_{n=1}^{\infty}$ exists, is finite and non-zero. We define this limit to be

$$H_{1,2}^*(h_1(\omega\infty)) := \lim_{n \to \infty} R(I_{\omega n+}^1)) \cdot$$

Thus, looking at Proposition 2.5, we see that we have defined a function $H_{1,2}^*$: $\overline{h_1(\Sigma)} \to (0, +\infty)$. It readily follows from (3.1) and (3.3) that

(3.8)
$$0 < \inf\{H_{1,2}^*\} \le \sup\{H_{1,2}^*\} < +\infty$$

and that

(3.9)
$$\begin{cases} \left| \frac{H_{1,2}^{*}(h_{1}(\omega))}{R(I_{\omega|n}^{1})} - 1 \right| \leq c_{1}' |I_{\omega|n}^{1}|^{\delta} \\ \left| \frac{H_{1,2}^{*}(h_{1}(\tau\infty))}{R(\Delta)} - 1 \right| \leq c_{5}' (\operatorname{diam}(\Delta \cup \{h_{1}(\tau\infty)\}))^{\delta} \end{cases}$$

for all $\omega \in I^{\mathbb{N}}$, $\tau \in I^*$, $n \in \mathbb{N}$ and a τ -interval Δ . Note that it also follows from (3.1), (3.3) and Lemma 2.10 that

(3.10)
$$\left|\frac{H_{1,2}^{*}(h_{1}(\omega))}{H_{1,2}^{*}(h_{1}(\tau))} - 1\right| \leq \tilde{c_{1}}|I_{\omega\wedge\tau[a,b]}^{1}|^{\delta} \leq \tilde{c}|h_{1}(\omega) - h_{1}(\tau)|^{\delta}$$

for all $\omega, \tau \in I^{\mathbb{N}}$ with $|a - b| \geq 2$; where $a := \min\{\omega_{|\omega \wedge \tau|+1}, \tau_{|\omega \wedge \tau|+1}\}$ and $b := \max\{\omega_{|\omega \wedge \tau|+1}, \tau_{|\omega \wedge \tau|+1}\}$ and also that

(3.11)
$$\left|\frac{H_{1,2}^*(h_1(\tau\infty))}{H_{1,2}^*(h_1(\tau\omega))} - 1\right| \le \tilde{c}_5' |I_{\tau\omega_1+}^1|^{\delta}$$

for all $\tau \in I^*$ and $\omega \in I^{\mathbb{N}}$.

Now observe that the complement of the Baire set $\overline{h_1(\Sigma)}$ in the interval [0,1] has all its connected components (frequently referred to as gaps of $\overline{h_1(\Sigma)}$) of the following form, viz. the gap between $I^1_{\omega n}$ and $I^1_{\omega(n+2)}$ in I^1_{ω} , $\omega \in I^*$, $n \in I := 2\mathbb{N} - 1$ that has endpoints $h_1(\omega n\infty)$ and $h_1(\omega(n+2)1^{\infty})$ and is denoted by $I^1_{\omega(n+1)}$. Denote these endpoints respectively by $a_{\omega}(n)$ and $b_{\omega}(n)$. We first extend $H^*_{1,2}$ to each gap $[a_{\omega}(n), b_{\omega}(n)]$ as follows.

Take an arbitrary $t \in \mathbb{R}$ and extend $H_{1,2}^*$ to a function $H_{(1,2);t}^* : [a_{\omega}(n), b_{\omega}(n)] \to \mathbb{R}$ by demanding that

(a) $H^*_{(1,2);t}$ is linear on $[a_{\omega}(n), \frac{a_{\omega}(n)+b_{\omega}(n)}{2}]$ and on $[\frac{a_{\omega}(n)+b_{\omega}(n)}{2}, b_{\omega}(n)]$

(b)
$$H^*_{(1,2);t}(a_{\omega}(n)) = H^*_{1,2}(a_{\omega}(n))$$

(c) $H^*_{(1,2);t}(b_{\omega}(n)) = H^*_{1,2}(b_{\omega}(n))$
and
(d) $H^*_{(1,2);t}(\frac{a_{\omega}(n)+b_{\omega}(n)}{2}) = t.$

Now an elementary computation gives that

$$(3.12) \quad \frac{\int\limits_{a_{\omega}(n)}^{b_{\omega}(n)} H^*_{(1,2);t}(x) dx}{b_{\omega}(n) - a_{\omega}(n)} = \frac{\frac{1}{2} \left(b_{\omega}(n) - a_{\omega}(n) \right) \left(\frac{H^*_{(1,2);t}(a_{\omega}(n)) + t}{2} + \frac{H^*_{(1,2);t}(b_{\omega}(n)) + t}{2} \right)}{b_{\omega}(n) - a_{\omega}(n)} = \frac{1}{4} \left(H^*_{(1,2)}(a_{\omega}(n)) + H^*_{(1,2)}(b_{\omega}(n)) + 2t \right)$$

Thus there exists a unique $t\in\mathbb{R}$ such that

$$(3.13) \quad \frac{\int\limits_{a_{\omega}(n)}^{b_{\omega}(n)} H^*_{(1,2)}(x) dx}{b_{\omega}(n) - a_{\omega}(n)} = R(a_{\omega}(n), b_{\omega}(n)) \left(= \frac{H_{(1,2)}(b_{\omega}(n)) - H_{(1,2)}(a_{\omega}(n))}{b_{\omega}(n) - a_{\omega}(n)} \right)$$

Set $H^*_{1,2} = H^*_{(1,2);t}$ on $[a_{\omega}(n), b_{\omega}(n)]$ with this unique t. It follows from (3.12) and (3.13) that

$$\frac{t}{R(a_{\omega}(n), b_{\omega}(n))} = 2 - \frac{1}{2} \left(\frac{H_{1,2}^*(a_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} \right) + \frac{1}{2} \left(\frac{H_{1,2}^*(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} \right) \cdot$$

Equivalently, we have that

$$\frac{t}{R(a_{\omega}(n), b_{\omega}(n))} - 1 = -\frac{1}{2} \left(\frac{H_{1,2}^{*}(a_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right) - \frac{1}{2} - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n)} - 1 \right) - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n)}{R(a_{\omega}(n), b_{\omega}(n)} - 1 \right) - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n)} - 1 \right) - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n)}{R(a_{\omega}(n), b_{\omega}(n)} - 1 \right) - \frac{1}{2} \left(\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n),$$

Now in view of (3.9),

$$\left|\frac{H_{1,2}^*(b_{\omega}(n))}{R(I_{\omega(n+2)}^1)} - 1\right| \le c_5 |I_{\omega(n+2)}^1|^{\delta}$$

and in view of (2.10) and bounded geometry of h_1 , we have that

$$\left|\frac{R(I_{\omega(n+2)}^{1})}{R(a_{\omega}(n),b_{\omega}(n))} - 1\right| \le c_{5}|I_{\omega(n+2)}^{1}|^{\delta} \le c_{5}(1+c)^{\delta}|I_{\omega(n+1)}^{1}|^{\delta} = c_{5}(1+c)^{\delta}(b_{\omega}(n)-a_{\omega}(n))^{\delta}.$$

Hence we have that

(3.15)
$$\left|\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1\right| \le c_{9} (b_{\omega}(n) - a_{\omega}(n))^{\delta},$$

with some universal constant $c_9 \ge 1$.

Likewise in view of (3.9),

$$\left|\frac{H_{1,2}^*(a_{\omega}(n))}{R(I_{\omega n}^1)} - 1\right| \le c_5 |I_{\omega n}^1|^{\delta}$$

and in view of (3.3) and bounded geometry of h_1 , we have that

$$\left|\frac{R(I_{\omega n}^{1})}{R(a_{\omega}(n), b_{\omega}(n))} - 1\right| \le c_{5}|I_{\omega[n,n+1]}^{1}|^{\delta} \le c_{5}(1+c)^{\delta}|I_{\omega(n+1)}^{1}|^{\delta} = c_{5}(1+c)^{\delta}(b_{\omega}(n)-a_{\omega}(n))^{\delta}.$$

Hence, we have that

(3.16)
$$\left|\frac{H_{1,2}^{*}(b_{\omega}(n))}{R(a_{\omega}(n), b_{\omega}(n))} - 1\right| \le c_{10} (b_{\omega}(n) - a_{\omega}(n))^{\delta},$$

with some universal constant $c_{10} \ge 1$.

Combining this and (3.15) with (3.12), we get that

(3.17)
$$\left| \frac{t}{R(a_{\omega}(n), b_{\omega}(n))} - 1 \right| \leq \frac{1}{2} (c_9 + c_{10}) (b_{\omega}(n) - a_{\omega}(n))^{\delta}.$$

It follows from this that t > 0 if $b_{\omega}(n) - a_{\omega}(n) = |I_{\omega(n+1)}^1|$ is small enough.

Now since for every $x \in I^1_{\omega(n+1)}$, the point $H^*_{1,2}(x)$ belongs to the convex hull of $H^*_{1,2}(a_{\omega}(n)), H^*_{1,2}(b_{\omega}(n))$ and t; we then have that (3.15), (3.16) and (3.17) taken together yield

(3.18)
$$\left|\frac{H_{1,2}^{*}(x)}{R(a_{\omega}(n), b_{\omega}(n))} - 1\right| \le c_{11} (b_{\omega}(n) - a_{\omega}(n))^{\delta},$$

with some universal constant $c_{11} \ge 1$. In fact with a possible bigger constant c_{12} , we have

(3.19)
$$\left| \frac{H_{1,2}^*(x)}{H_{1,2}^*(a_{\omega}(n))} - 1 \right|, \left| \frac{H_{1,2}^*(x)}{H_{1,2}^*(b_{\omega}(n))} - 1 \right| \le c_{12} \left(b_{\omega}(n) - a_{\omega}(n) \right)^{\delta}.$$

It therefore follows from (3.8) that on U, the complement in [0,1] of some collection of finitely many gaps, we have that

$$(3.20) 0 < m := \inf\{H_{1,2}^*|_U\} \le M := \sup\{H_{1,2}^*|_U\} < +\infty.$$

Our aim now is to show that $H_{1,2}^*|_U$ is Hölder continuous with exponent δ . To do so let us come back to our gap $(a_{\omega}(n), b_{\omega}(n))$. Due to our definition of $H_{1,2}^*$ throughout the interval $\left[a_{\omega}(n), \frac{a_{\omega}(n)+b_{\omega}(n)}{2}\right]$, the absolute value of the slope of $H_{1,2}^*$ on this interval is equal to $\frac{2\left(t-H_{1,2}^*(a_{\omega}(n))\right)}{b_{\omega}(n)-a_{\omega}(n)}$. Therefore using (3.19) and (3.20), we get for all $a_{\omega}(n) \leq x \leq y \leq \frac{a_{\omega}(n)+b_{\omega}(n)}{2}$ that

$$(3.21) \quad \begin{cases} \left| H_{1,2}^{*}(y) - H_{1,2}^{*}(x) \right| = \frac{2|t - H_{1,2}^{*}(a_{\omega}(n))|}{b_{\omega}(n) - a_{\omega}(n)} \cdot |y - x| \\ \leq H_{1,2}^{*}(a_{\omega}(n))c_{12}\frac{|y - x|(b_{\omega}(n) - a_{\omega}(n))^{\delta}}{b_{\omega}(n) - a_{\omega}(n)} \\ = c_{12}H_{1,2}^{*}(a_{\omega}(n))|y - x|(b_{\omega}(n) - a_{\omega}(n))^{\delta-1} \\ \leq c_{1}M|y - x|^{\delta}. \end{cases}$$

Similarly, (3.21) holds for all $\frac{a_{\omega}(n)+b_{\omega}(n)}{2} \leq x \leq y \leq b_{\omega}(n)$. Now suppose that $a_{\omega}(n) \leq x \leq \frac{a_{\omega}(n)+b_{\omega}(n)}{2} \leq y \leq b_{\omega}(n)$. Then

$$\frac{a_{\omega}(n) + b_{\omega}(n)}{2} - x , \ y - \frac{a_{\omega}(n) + b_{\omega}(n)}{2} \le y - x$$

and applying (3.21), we get

$$\begin{aligned} \left| H_{1,2}^{*}(y) - H_{1,2}^{*}(x) \right| &\leq \left| H_{1,2}^{*}(y) - H_{1,2}^{*}\left(\frac{a_{\omega}(n) + b_{\omega}(n)}{2}\right) \right| + \\ &+ \left| H_{1,2}^{*}\left(\frac{a_{\omega}(n) + b_{\omega}(n)}{2}\right) - H_{1,2}^{*}(x) \right| \\ &\leq c_{1}M\left(y - \frac{a_{\omega}(n) + b_{\omega}(n)}{2}\right)^{\delta} + \\ &+ c_{1}M\left(\frac{a_{\omega}(n) + b_{\omega}(n)}{2} - x\right)^{\delta} \\ &\leq 2c_{1}M|y - x|^{\delta}. \end{aligned}$$

Thus we have that

(3.22) $|H_{1,2}^*(y) - H_{1,2}^*(x)| \le 2c_1 M |y - x|^{\delta}$ holds for all $x, y \in [a_{\omega}(n), b_{\omega}(n)].$ Now fix x, y in the same (out of finitely many) connected component of U. Let $\omega \in I^*$ be the longest word such that $x, y \in I^1_{\omega}$. If $x, y \in I^1_{\omega n}$ with the same $n \in 2\mathbb{N}$ (i.e. in the same gap), we are done by (3.22). So suppose that $x \in I^1_{\omega i}$ and $y \in I^1_{\omega j}$ with $i, j \in \mathbb{N}, i \neq j$. We may assume without loss of generality that i < j. Consider two cases:

Firstly, suppose that $j - i \ge 2$. In view of the first part of (3.9) and (3.18), we get that

$$\left|\frac{H_{1,2}^*(x)}{R(I_{\omega i}^1)} - 1\right| \le c_{13} |I_{\omega i}^1|^{\delta} \quad \text{and} \quad \left|\frac{H_{1,2}^*(y)}{R(I_{\omega j}^1)} - 1\right| \le c_{13} |I_{\omega j}^1|^{\delta},$$

where $c_{13} = \max\{c_1, c_{12}\}$. Now applying (3.3) and the inequalities above, we obtain that

(3.23)
$$\left|\frac{H_{1,2}^*(y)}{H_{1,2}^*(x)} - 1\right| \le c_{14} (\operatorname{diam}(I_{\omega i}^1 \cup I_{\omega j}^1))^{\delta} \le c_{15} |y - x|^{\delta},$$

where there are constants $c_{14}, c_{15} \ge 1$. Note that we use Lemma 2.10 for the last inequality.

Secondly, suppose that j = i + 1. We will have 2 subcases, viz. when $I_{\omega i}^1$ is an interval and $I_{\omega(i+1)}^1$ is a gap and vice versa.

Subcase 1. $I^1_{\omega i}$ is an interval and $I^1_{\omega(i+1)}$ is a gap.

In this case, we have an interval followed by a gap. Let a be the right-hand end-point of the interval $I^1_{\omega i}$, i.e. $a = h(\omega i \infty)$. Since $I^1_{\omega(i+1)}$ is a gap we have that

$$(3.24) |H_{1,2}^*(y) - H_{1,2}^*(a)| \le c|y-a|^{\delta}.$$

Now let $x \in I_{\omega in}$ for some $n \in \mathbb{N}$. There are two subcases: either x belongs to a gap or to $h_1(\Sigma)$. If x belongs to a gap, then let x' be the right-hand end-point of the gap. If $x \in h_1(\Sigma)$, set x' = x. In either case we have from (3.22),

(3.25)
$$|H_{1,2}^*(x) - H_{1,2}^*(x')| \le c^1 |x - x'|^{\delta}.$$

Since $x' \in h_1(\Sigma)$, we get from (3.11) that

(3.26)
$$|H_{1,2}^*(a) - H_{1,2}^*(x')| \le c_2 |I_{\omega in+}|^{\delta} = c_2 |a - x'|^{\delta}.$$

Now combining (3.24), (3.25) and (3.26) we have that

20

$$|H_{1,2}^*(y) - H_{1,2}^*(x)| \le c_4 |y - x|^{\delta}$$

and so we are done in this case.

Subcase 2. $I_{\omega i}^1$ is a gap and $I_{\omega(i+1)}^1$ is an interval.

Now let a denote the right hand end point of the gap $I_{\omega i}$, i.e. $a = h(\omega(i+1)1^{\infty})$. Since $I_{\omega i}$ is a gap, for $x \in I_{\omega i}$ we know that

$$(3.27) |H_{1,2}^*(x) - H_{1,2}^*(a)| \le c|x-a|^{\delta}.$$

Now let $y \in I_{\omega(i+1)n}$ for some $n \in \mathbb{N}$. Again there are two subcases: either y belongs to a gap or to $h_1(\Sigma)$. If y belongs to a gap, then let y' be the right-hand end-point of the gap. If $y \in h_1(\Sigma)$, set y' = y. In either case we have

$$(3.28) |H_{1,2}^*(y) - H_{1,2}^*(y')| \le c|y - y'|^{\delta}.$$

Now $y' \in h_1(\Sigma)$, say $y' = h(\omega(i+1)\kappa)$ with $\kappa \in I^{\mathbb{N}}, \kappa_1 = n$. Since $y' \neq a = h(\omega(i+1)1^{\infty})$, there must exist some j such that $\kappa_j \neq 1$ and $\kappa_j \in 2\mathbb{N} - 1$. Now we would like to use (3.10), where we also use Lemma 2.10. Using notation from the Lemma we now have that $|a - b| = |\kappa_j - 1| \geq 2$, and thus we obtain

(3.29)
$$|H_{1,2}^*(a) - H_{1,2}^*(y')| \le c|a - y'|^{\delta}.$$

Now combining (3.27), (3.28) and (3.29) we have that

$$|H_{1,2}^*(y) - H_{1,2}^*(x)| \le c|y - x|^{\delta}$$

and so we are done in this case.

Thus we have proved the theorem.

4. The class of IFS-like Baire embeddings and Scaling functions

In this section we deal with the class of Baire embeddings that give rise to iterated function systems in the sense of [3]. We will call them IFS-like in the sequel.

Definition 4.1. For the shift map σ recall that the inverse branches were labeled σ_i^{-1} . For every $i \in 2\mathbb{N} - 1$ set $\psi_i := h \circ \sigma_i^{-1} \circ h^{-1} : h(\Sigma) \to h([i])$. A Baire embedding $h : \Sigma \to [0, 1]$ is IFS-like if each map $\psi_i := h \circ \sigma_i^{-1} \circ h^{-1} : h(\Sigma) \to h([i])$ has a bijective differentiable extension $\phi_i : co(h(\Sigma)) = [0, 1] \to I_i = co(h([i]))$ with the following property: $\exists \varepsilon > 0 \exists L > 0 \ \forall i \in 2\mathbb{N} - 1 \ \forall x, y \in [0, 1]$

(4.1)
$$|\phi'_i(y) - \phi'_i(x)| \le L \cdot \inf\{|\phi'_i(z)| : z \in [0,1]\} \cdot |y - x|^{\varepsilon}.$$

For every $\omega \in (2\mathbb{N}-1)^*$, say $\omega \in (2\mathbb{N}-1)^n$, set

$$\phi_n := \phi_{\omega_1} \circ \phi_{\omega_2} \circ \cdots \circ \phi_{\omega_n} : [0, 1] \to I_{\omega}$$

Now as in Lemma 4.2.2 in [2], we shall prove the following

Lemma 4.2. Let h be a Baire-embedding that is IFS-like. Then for every $\omega \in (2\mathbb{N}-1)^*$, there exists T > 0 such that for all $x, y \in [0, 1]$,

$$\left|\log |\phi'_{\omega}(y)| - \log |\phi'_{\omega}(x)|\right| \le T \cdot$$

Proof. For every $\omega \in (2\mathbb{N}-1)^*$, say $\omega \in (2\mathbb{N}-1)^n$, set $z_k := \phi_{\omega_{n-k+1}} \circ \phi_{\omega_{n-k+2}} \circ \cdots \circ \phi_{\omega_n}(z)$ for $z \in [0,1]$. Put $z_0 = z$. Recall that $D_n(h) := \sup_{\omega \in I^n} \operatorname{diam}(h([\omega]))$. Then for $x, y \in [0,1]$ we have that

$$\begin{aligned} \left| \log |\phi'_{\omega}(y)| - \log |\phi'_{\omega}(x)| \right| &= \left| \sum_{j=1}^{n} \log \left(1 + \frac{|\phi'_{\omega_j}(y_{n-j})| - |\phi'_{\omega_j}(x_{n-j})|}{|\phi'_{\omega_j}(x_{n-j})|} \right) \right| \\ &\leq \sum_{j=1}^{n} \left\| (\phi'_{\omega_j})^{-1} \right\| \left| \log |\phi'_{\omega_j}(y_{n-j})| - \log |\phi'_{\omega_j}(x_{n-j})| \right| \\ &\leq \sum_{j=1}^{n} L |y_{n-j} - x_{n-j}|^{\varepsilon} \qquad \text{by (4.1)} \\ &\leq \sum_{j=1}^{n} L |I_{\sigma^j \omega}|^{\varepsilon} \\ &\leq \sum_{j=1}^{\infty} (D_{n-j}(h))^{\varepsilon} \\ &\leq \sum_{j=0}^{\infty} (D_j(h))^{\varepsilon} =: T < +\infty, \qquad \text{by Lemma 2.21.} \end{aligned}$$

Proposition 4.3. Suppose $h: \Sigma \to [0, 1]$ is an IFS-like Baire embedding. Then there exists s > 0 and $c \ge 1$ such that

$$\|\phi'_{\omega}\|_{\infty} \le c \exp(-s|\omega|),$$

for all $\omega \in (2\mathbb{N}-1)^*$.

Proof. By Lemma 2.21 there exists s > 0 and $c_1 \ge 1$ such that

 $|I_{\omega}| \le c_1 \exp(-s|\omega|)$

for all $\omega \in (2\mathbb{N}-1)^*$. Then by Lemma 4.2, we get that

$$\|\phi'_{\omega}\|_{\infty} \leq \exp(T)\inf\{|\phi'_{i}(z)|: z \in [0,1]\} \leq \exp(T)|I_{\omega}| \leq c_{1}\exp(T)\exp(-s|\omega|)$$

Lemma 4.4. Let h be a Baire-embedding that is IFS-like. Then for every $\omega \in (2\mathbb{N}-1)^*$, there exists s > 0 and $c \ge 1$ such that for all $x, y \in [0, 1]$,

$$\left|\log |\phi'_{\omega}(y)| - \log |\phi'_{\omega}(x)|\right| \le L \frac{c^{\varepsilon}}{1 - \exp(-\varepsilon s)} |y - x|^{\varepsilon}.$$

Proof. Note that

$$|y_{n-j} - x_{n-j}| = |\phi_{\omega_{j+1}} \circ \phi_{\omega_{j+2}} \circ \cdots \circ \phi_{\omega_n}(x) - \phi_{\omega_{j+1}} \circ \phi_{\omega_{j+2}} \circ \cdots \circ \phi_{\omega_n}(y)|$$

$$\leq ||\phi_{\omega_{j+1}\dots\omega_n}'|| \cdot |x-y|$$

$$\leq c \exp(-s(n-j))|x-y|.$$

Therefore

$$|y_{n-j} - x_{n-j}|^{\varepsilon} \le c^{\varepsilon} \exp(-\varepsilon s(n-j))|x-y|^{\varepsilon}.$$

Then using this estimate in the inequality from the proof of Lemma 4.2, we have that

$$\left| \log |\phi'_{\omega}(y)| - \log |\phi'_{\omega}(x)| \right| \leq \sum_{j=1}^{n} L |y_{n-j} - x_{n-j}|^{\varepsilon}$$
$$\leq Lc^{\varepsilon} \sum_{j=1}^{n} \exp(-\varepsilon s(n-j)) |x-y|^{\varepsilon}$$
$$\leq L \frac{c^{\varepsilon}}{1 - \exp(-\varepsilon s)} |x-y|^{\varepsilon}.$$

Definition 4.5. We now define the dual Cantor set and the functions $S_n(\omega; j)$. Define $\mathbb{N}^- := \{\ldots, -3, -2, -1\}$. Then the dual Cantor set is defined as $\tilde{\Sigma} :=$ $(2\mathbb{N}-1)^{\mathbb{N}^-}$. Now define for every $n \in \mathbb{N}$ the functions $S_n : \tilde{\Sigma} \times \mathbb{N} \to [0,1]$ given by

$$S_n(\omega;j) = A(\omega|_n)(j) = \frac{|I_{\omega|_n j}|}{|I_{\omega|_n}|} ,$$

where $\omega|_n = \omega_{-n} \dots \omega_{-1}$ and $j \in \mathbb{N}$.

Theorem 4.6. If the map $h: \Sigma \to I$ is IFS-like, then $\exists c > 0, \exists \varepsilon \in (0, 1]$ such that

(a)
$$\forall \omega \in \tilde{\Sigma}, \forall j \in \mathbb{N}, \forall n \ge 1$$

(4.2)
$$\left|\frac{S_{n+1}(\omega;j)}{S_n(\omega;j)} - 1\right| \le L |I_{\omega|_n}|^{\varepsilon}$$

(b)
$$\forall \omega \in \tilde{\Sigma}, \forall i, j \in \mathbb{N}, \forall n \ge 1$$
,

(4.3)
$$\left| \left(\frac{S_{n+1}(\omega;j)}{S_n(\omega;j)} \middle/ \frac{S_{n+1}(\omega;i)}{S_n(\omega;i)} \right) - 1 \right| \le c \left| I_{\omega|_n[i,j]} \right|^{\varepsilon} \cdot$$

(c) [consequence of (a)]

$$S(\omega; j) := \lim_{n \to \infty} S_n(\omega; j)$$
 exists, and

(4.4)
$$\left|\frac{S(\omega;j)}{S_n(\omega;j)} - 1\right| \le c' |I_{\omega|_n}|^{\varepsilon}$$

We call this $S(\omega; j)$ the Sullivan scaling function of the Baire embedding h.

Proof. (a) The proof follows from the following sequence of inequalities given below,

$$\begin{aligned} \frac{S_{n+1}(\omega;j)}{S_n(\omega;j)} - 1 &= \left| \frac{|I_{\omega|(n+1)j}|/|I_{\omega|(n+1)}|}{|I_{\omega|nj}|/|I_{\omega|n}|} - 1 \right| \\ &= \left| \frac{|\phi_{\omega_{-(n+1)}}(I_{\omega|nj})|/|I_{\omega|n}|}{|\phi_{\omega_{-(n+1)}}(I_{\omega|n})|/|I_{\omega|n}|} - 1 \right| \\ &= \left| \frac{\phi_{\omega_{-(n+1)}}'(y_n)}{\phi_{\omega_{-(n+1)}}'(x_n)} - 1 \right| \\ &\quad \text{(for some } x_n \in I_{\omega|n}, y_n \in I_{\omega|nj} \text{ by the Mean Value Theorem)} \\ &= \frac{\left| \frac{\phi_{\omega_{-(n+1)}}'(y_n) - \phi_{\omega_{-(n+1)}}'(x_n) \right|}{|\phi_{\omega_{-(n+1)}}'(x_n)|} \\ &\leq \frac{L \cdot \inf\{|\phi_{\omega_{-(n+1)}}'(z_n)| : z \in [0,1]\} \cdot |y_n - x_n|^{\varepsilon}}{|\phi_{\omega_{-(n+1)}}'(x_n)|} \end{aligned} \tag{by (4.1)} \\ &\leq L|y_n - x_n|^{\varepsilon} \\ &\leq L|I_{\omega|n}|^{\varepsilon} \end{aligned}$$

(b) The proof also follows a very similar strategy to that of part (a).

$$\begin{split} \left| \left(\frac{S_{n+1}(\omega;j)}{S_n(\omega;j)} \middle/ \frac{S_{n+1}(\omega;i)}{S_n(\omega;i)} \right) - 1 \right| &= \left| \frac{|\phi_{\omega|_{(n+1)}}(I_j)| / |\phi_{\omega|_n}(I_j)|}{|\phi_{\omega|_{(n+1)}}(I_i)| / |\phi_{\omega|_n}(I_i)|} - 1 \right| \\ &= \left| \frac{\phi_{\omega_{-(n+1)}}'(y)}{\phi_{\omega_{-(n+1)}}'(x)} - 1 \right| \\ &\quad \text{(for some } x \in I_{\omega|_n}, y \in I_{\omega|_n j}, \text{by the Mean Value Theorem)} \\ &= \frac{|\phi_{\omega_{-(n+1)}}'(y) - \phi_{\omega_{-(n+1)}}'(x)|}{|\phi_{\omega_{-(n+1)}}'(x)|} \\ &\leq L|y - x|^{\varepsilon} \\ &\leq L \left| I_{\omega|_n[i,j]} \right|^{\varepsilon}. \end{split}$$

(c) This follows from the estimate in part (a).

Lemma 4.7. Let us stick to the same set-up in the previous theorem. Then $\exists c_3 > 0$ such that $\forall \omega \in \tilde{\Sigma}, \forall i, j \in \mathbb{N}, \forall n \geq 1$

$$\left(\frac{S_n(\omega;j)}{S(\omega;j)} \middle/ \frac{S_n(\omega;i)}{S(\omega;i)}\right) - 1 \bigg| \le c_3 |I_{\omega[i,j]}|^{\varepsilon}.$$

Proof. Note that

$$\frac{S_n(\omega;j)}{S_{n+k}(\omega;j)} = \prod_{l=n}^{n+k-1} \frac{S_l(\omega;j)}{S_{l+1}(\omega;j)} ,$$

and therefore that

$$\frac{S_n(\omega;j)}{S_{n+k}(\omega;j)} \Big/ \frac{S_n(\omega;i)}{S_{n+k}(\omega;i)} = \prod_{l=n}^{n+k-1} \frac{S_l(\omega;j)}{S_{l+1}(\omega;j)} \Big/ \prod_{l=n}^{n+k-1} \frac{S_l(\omega;i)}{S_{l+1}(\omega;i)}$$
$$= \prod_{l=n}^{n+k-1} \frac{S_l(\omega;j)}{S_{l+1}(\omega;j)} \Big/ \frac{S_l(\omega;i)}{S_{l+1}(\omega;i)}.$$

Therefore we have that

$$\begin{split} \left| \log \left(\frac{S_n(\omega;j)}{S_{n+k}(\omega;j)} \middle/ \frac{S_n(\omega;i)}{S_{n+k}(\omega;i)} \right) \right| &= \left| \log \left(\prod_{l=n}^{n+k-1} \frac{S_l(\omega;j)}{S_{l+1}(\omega;j)} \middle/ \frac{S_l(\omega;i)}{S_{l+1}(\omega;i)} \right) \right| \\ &= \left| \sum_{l=n}^{n+k-1} \log(1+c_l |I_{\omega|_l[i,j]}|^{\varepsilon}) \right| \\ &\quad \text{(for some } c_l \in [-c,c], \text{ where } c \text{ is from } (4.3).) \\ &\leq \sum_{l=n}^{n+k-1} \frac{1}{1+w_l} |c_l| |I_{\omega|_l[i,j]}|^{\varepsilon} \\ &\quad \text{(for some } |w_l| < |c_l| I_{\omega|_l[i,j]}|^{\varepsilon} |\text{ by the Mean Value Theorem.)} \\ &\leq 2|c_l| \sum_{l=n}^{n+k-1} |I_{\omega|_l[i,j]}|^{\varepsilon} \\ &\leq 2|c_l| \sum_{l=n}^{\infty} |I_{\omega|_l[i,j]}|^{\varepsilon} \\ &\leq 2|c_l| \sum_{l=n}^{\infty} |I_{\omega|_n[i,j]}|^{\varepsilon} s^{\varepsilon(l-n)} \\ &\quad \text{(for some } s < 1, \text{ see Lemma 2.21.)} \\ &= 2|c_l| |I_{\omega|_n[i,j]}|^{\varepsilon} (1-s^{\varepsilon})^{-1} \end{split}$$

Thus we now have that

$$\left|\log\left(\frac{S_n(\omega;j)}{S_{n+k}(\omega;j)} \middle/ \frac{S_n(\omega;i)}{S_{n+k}(\omega;i)}\right)\right| \le M |I_{\omega|_n[i,j]}|^{\varepsilon},$$

where $M = 2|c_l|(1 - s^{\epsilon})^{-1}$.

Finally noting that for $y \in \mathbb{R}$ we have that $1 - 2y \le e^y \le 1 + 2y$ and therefore that $|e^y - 1| \le 2y$ we conclude that

$$\left| \left(\frac{S_n(\omega;j)}{S(\omega;j)} \middle/ \frac{S_n(\omega;i)}{S(\omega;i)} \right) - 1 \right| \le 2M |I_{\omega[i,j]}|^{\varepsilon}.$$

We are done noting that $c_3 = 2M$.

Proposition 4.8. If h_1, h_2 are IFS-like and are $C^{1+\varepsilon}$ -equivalent, then $S_{h_1} = S_{h_2}$, i.e. their scaling functions are the same.

Proof. Notice that we have

$$\left|\frac{S_{h_2}(\omega|_n;j)}{S_{h_1}(\omega|_n;j)} - 1\right| \le \min\left\{|I_{\omega|_n}^{(2)}|^{\delta}, |I_{\omega|_n}^{(1)}|^{\delta}\right\}.$$

This implies that $S_{h_1}(\omega; j) = S_{h_2}(\omega; j)$.

Proposition 4.9. If h_1, h_2 are IFS-like, $h_1 \circ h_2^{-1}$ is bi-Hölder continuous and $S_{h_1} = S_{h_2}$, then $h_1 \sim^{1+\varepsilon} h_2$.

Proof. Let $\omega \in \tilde{\Sigma}$.

$$\begin{aligned} \left| \frac{A_{1}(h_{2},\omega|_{n})}{A_{1}(h_{1},\omega|_{n})} - 1 \right| &= \left| \frac{S_{h_{2}}(\omega|_{n};j)}{S_{h_{1}}(\omega|_{n};j)} - 1 \right| \\ &= \left| \frac{S_{h_{2}}(\omega|_{n};j)}{S_{h_{2}}(\omega;j)} \cdot \frac{S_{h_{1}}(\omega;j)}{S_{h_{1}}(\omega|_{n};j)} - 1 \right| \\ &\leq c_{2} \max\left\{ \left| I_{\omega|_{n}}^{(2)} \right|^{\varepsilon}, \left| I_{\omega|_{n}}^{(1)} \right|^{\varepsilon} \right\} \text{ (using (4.4))} \\ &\leq c_{2} \min\left\{ \left| I_{\omega|_{n}}^{(1)} \right|^{\eta}, \left| I_{\omega|_{n}}^{(2)} \right|^{\eta} \right\} \text{ (since } h_{1} \circ h_{2}^{-1} \text{ is Hölder),} \end{aligned}$$

with some $0 < \eta \leq \varepsilon$.

Now using Lemma 4.7, we get that

$$\begin{aligned} \left| \frac{Q_{h_2}(\omega|_n; i, j)}{Q_{h_1}(\omega|_n; i, j)} - 1 \right| &= \left| \frac{S_{h_2}(\omega|_n; j)}{S_{h_2}(\omega|_n; i)} / \frac{S_{h_1}(\omega|_n; j)}{S_{h_1}(\omega|_n; i)} - 1 \right| \\ &= \left| \frac{S_{h_2}(\omega|_n; j)}{S_{h_1}(\omega|_n; j)} / \frac{S_{h_2}(\omega|_n; i)}{S_{h_1}(\omega|_n; i)} - 1 \right| \\ &= \left| \left(\left| \frac{S_{h_2}(\omega|_n; j)}{S_{h_2}(\omega; j)} \right| / \left| \frac{S_{h_1}(\omega|_n; j)}{S_{h_1}(\omega; j)} \right| / \left| \frac{S_{h_2}(\omega|_n; i)}{S_{h_2}(\omega; i)} \right| / \left| \frac{S_{h_1}(\omega|_n; j)}{S_{h_1}(\omega; i)} \right| \right) - 1 \right| \\ &= \left| \left(\left| \frac{S_{h_2}(\omega|_n; j)}{S_{h_2}(\omega; j)} \right| / \left| \frac{S_{h_2}(\omega|_n; i)}{S_{h_2}(\omega; i)} \right| / \left| \frac{S_{h_1}(\omega|_n; j)}{S_{h_1}(\omega; j)} \right| \right) - 1 \right| \\ &\leq c_4 \max \left\{ \left| I_{\omega|_n}^{(2)} \right|^{\varepsilon}, \left| I_{\omega|_n}^{(1)} \right|^{\varepsilon} \right\} \\ &\leq c_4 \min \left\{ \left| I_{\omega|_n}^{(2)} \right|^{\eta}, \left| I_{\omega|_n}^{(1)} \right|^{\eta} \right\} \text{ (since } h_1 \circ h_2^{-1} \text{ is Hölder}). \end{aligned}$$

The proof is concluded by invoking Theorem 3.1.

Thus we can finally state the main result of the section, viz.

Theorem 4.10. Let h_1, h_2 be IFS-like. If $h_1 \sim^{1+\varepsilon} h_2$, then $S_{h_1} = S_{h_2}$. Conversely, if $S_{h_1} = S_{h_2}$ and $h_1 \circ h_2^{-1}$ is bi-Hölder continuous, then $h_1 \sim^{1+\varepsilon} h_2$.

Proof. Follows immediately from Propositions 4.8 and 4.9.

 \Box

It was proved in [1] (Theorem 4.3) that if $h_1 \sim^{1+0} h_2$, then $S_{h_1} = S_{h_2}$. Note that this also follows easily from our considerations here. Now as an immediate consequence of this and Theorem 4.10 we get the following rigidity result:

Corollary 4.11. If h_1, h_2 are two IFS-like C^{1+0} -equivalent Baire embeddings, then they are $C^{1+\varepsilon}$ -equivalent with some $\varepsilon > 0$.

5. GIBBS STATES, DUAL MEASURES AND CONDITIONAL MEASURES

We begin this section by introducing some notation and definitions. In a sense this section is independent of the rest of the paper and we will thus attempt to write it in such a fashion.

Definition 5.1. Let us make the following conventions: $\mathbb{N} := \{1, 2, 3...\};$ $\mathbb{N}_0 := \{0, 1, 2, 3...\}; \mathbb{N}^- := \{\cdots - 3, -2, -1\}$ and $\mathbb{N}_0^- := \{\cdots - 3, -2, -1, 0\}.$ Now let I be a countable set and $A : I \times I \to \{0, 1\}$ be a finitely primitive incidence matrix.

 $\Sigma^{0} :=: \Sigma^{0}_{A} := \{ \omega \in I^{\mathbb{N}_{0}} : A_{\omega_{n}\omega_{n+1}} = 1, \forall n \geq 0 \} \text{ will be called the symbol space.}$

 $\widetilde{\Sigma}^0 :=: \widetilde{\Sigma}^0_A := \{ \omega \in I^{\mathbb{N}^-_0} : A_{\omega_{n-1}\omega_n} = 1, \forall n \leq 0 \}$ will be called the dual symbol space.

We also define $\widetilde{\Sigma} :=: \widetilde{\Sigma_A} := \{ \omega \in I^{\mathbb{N}^-} : A_{\omega_{n-1}\omega_n} = 1, \forall n \leq 1 \}.$

Now let μ be a Borel probability shift-invariant measure on Σ_A^0 . For every finite word $\omega \in \Sigma_A^{0^*}$, set $\tilde{\mu}([\omega]) = \mu([\omega])$, where $[\omega]$ on the left-hand side of the equality is treated as a subset of $\widetilde{\Sigma_A^0}$, whereas $[\omega]$ on the right-hand side is treated as a subset of Σ_A^0 .

Let us define

$$[\omega|_{a}]_{m}^{m+b-a} := \{\tau : \tau_{m+i} = \omega_{a+i} \ \forall 0 \le i \le b-a\}.$$

Then one can define

$$\tilde{\mu}\Big([\omega|_1^n]_{-m}^{-m+n-1}\Big) := \mu\Big([\omega|_1^n]_0^{n-1}\Big).$$

Note that since the measure μ is shift invariant, $\tilde{\mu}$ extends uniquely to an additive function on the algebra generated by finite-length cylinders. It is also easy to check that the continuity condition is satisfied and thus $\tilde{\mu}$ extends to a (σ additive) measure on $\widetilde{\Sigma}_A$. Also we note that since μ is measure, $\tilde{\mu}$ is (right) shift-invariant.

Let us denote the space of shift-invariant Borel probability measures on $\widetilde{\Sigma_A^0}$ and Σ_A^0 by $\mathcal{M}(\widetilde{\Sigma_A^0})$ and $\mathcal{M}(\Sigma_A^0)$ respectively. Thus we have just defined a map

$$\mathcal{M}(\Sigma^0_A) \ni \mu \mapsto \tilde{\mu} \in \mathcal{M}(\widetilde{\Sigma^0_A});$$

which one can also define in the reverse direction by symmetry, i.e.

$$\mathcal{M}(\widetilde{\Sigma_A^0}) \ni \nu \mapsto \tilde{\nu} \in \mathcal{M}(\Sigma_A^0).$$

Note that the map is an involution, i.e. $\tilde{\tilde{\mu}} = \mu$ and hence is a bijection between $\mathcal{M}(\widetilde{\Sigma_A^0})$ and $\mathcal{M}(\Sigma_A^0)$.

Let $\xi := \{ [\omega] : \omega \in \widetilde{\Sigma_A} \}$. One can check that ξ is a measurable partition of $\widetilde{\Sigma_A^0}$, and let $\{ \mu_\omega \}_{\omega \in \widetilde{\Sigma_A}}$ be the corresponding canonical system of conditional measures. Then it follows from the Martingale Convergence Theorem that for μ -a.e. $\omega \in \widetilde{\Sigma_A^0}$,

$$\tilde{S}_{\mu}(\omega) := \tilde{\mu}_{\omega|_{-\infty}^{-1}}(\omega) = \lim_{n \to \infty} \frac{\tilde{\mu}([\omega|_{-n}^{0}])}{\tilde{\mu}([\omega|_{-n}^{-1}])}$$

We call $\tilde{S}_{\mu}: \widetilde{\Sigma_A^0} \to [0,1]$ the scaling function of the measure μ . It is clear from the formula above that \tilde{S}_{μ} is the inverse of the Jacobian of the right-oriented shift map $\sigma: \widetilde{\Sigma_A^0} \to \widetilde{\Sigma_A^0}$ with respect to the measure $\tilde{\mu}$, i.e.

(5.1)
$$\tilde{S}_{\mu}(\omega) := \left(\frac{d\tilde{\mu} \circ \sigma}{d\tilde{\mu}}(\omega)\right)^{-1} :=: \left(\mathfrak{J}_{\sigma}(\tilde{\mu})\right)^{-1}(\omega)$$

We also note that for every $\omega \in \widetilde{\Sigma_A}$,

(5.2)
$$\sum_{j:A_{\omega_{-1}j}=1} \tilde{S}_{\mu}(\omega j) = 1$$

We shall now define partition functions, topological pressure and Gibbs states and state some of their well-known properties (see for e.g.[3]).

Definition 5.2. Given a function $f : \Sigma_A^0 \to \mathbb{R}$ we define the *n*th partition function by

$$Z_n(f) := \sum_{\omega \in (\Sigma_A^0)^n} \exp(\sup_{\tau \in [\omega]} \sum_{j=0}^{n-1} f(\sigma^j(\tau))) \cdot$$

Note that we would have the analogous definition for function defined on $\widetilde{\Sigma_A^0}$. We denote the nth partial orbit sum by

$$S_n(f) := \sum_{j=0}^{n-1} f \circ \sigma^j.$$

Next we define the topological pressure of f with respect to the shift map σ to be

$$P(f) := \lim_{n \to \infty} \frac{1}{n} \log Z_n(f) = \inf_{n \in \mathbb{N}} \frac{1}{n} \log Z_n(f) \cdot$$

Definition 5.3. If $f: \Sigma_A^0 \to \mathbb{R}$ is a Hölder continuous function, then a Borel probability measure μ_f on Σ_A is called a Gibbs state for f, when there exist constants $Q \ge 1$ and P_{μ_f} such that for every $\omega \in \Sigma_A^*$ and every $\tau \in [\omega]$ we have that

(5.3)
$$Q^{-1} \le \frac{\mu_f([\omega])}{\exp(S_{|\omega|}f(\tau)) - P_{\mu_f} \cdot |\omega|)} \le Q \cdot$$

In addition, if μ_f is shift-invariant, it is then called an invariant Gibbs state. Also note that we have the analogous definition for functions $f: \widetilde{\Sigma}_A^0 \to \mathbb{R}$. Notice that $S_{|\omega|}f(\tau)$ in the definition refers to the $|\omega|$ -th partial orbit sum of f with respect to the shift and should not be confused with the scaling function $\widetilde{S}_{\mu}: \widetilde{\Sigma}_A^0 \to [0,1]$. Let us denote the spaces of invariant Gibbs states of $\widetilde{\Sigma}_A^0$ and Σ_A^0 by $\mathcal{G}(\widetilde{\Sigma}_A^0)$ and $\mathcal{G}(\Sigma_A^0)$ respectively. We recall that a Hölder continuous function $f: \widetilde{\Sigma_A^0} \to \mathbb{R}$ with an exponent $\beta > 0$ that satisfies the condition

$$\sum_{i \in I} \exp(\sup(f|_{[i]})) < \infty$$

is called summable.

Definition 5.4. A function $\phi: \widetilde{\Sigma_A^0} \to (0,1)$ is said to be a Keane function if and only if

$$\phi$$
 is Hölder continuous and $\sum_{j:A_{\omega_{-1}j}=1} \phi(\omega j) = 1$, for all $\omega \in \widetilde{\Sigma_A}$.

Likewise, a function $\psi: \Sigma^0_A \to (0,1)$ is said to be a Keane function if and only if

$$\psi$$
 is Hölder continuous and $\sum_{j:A_{j\omega_1}=1} \psi(j\omega) = 1$, for all $\omega \in \Sigma_A$.

We denote the class of Keane functions on $\widetilde{\Sigma_A^0}$ and Σ_A^0 by $\mathcal{K}(\widetilde{\Sigma_A^0})$ and $\mathcal{K}(\Sigma_A^0)$ respectively.

Remark 5.5. We now state the following well-known fact about Gibbs states, viz. If μ is a Gibbs state, then $-\log \mathfrak{J}_{\mu}$ is Hölder continuous. Conversely, if μ is an invariant Borel probability measure and $-\log \mathfrak{J}_{\mu}$ is Hölder continuous, then $-\log \mathfrak{J}_{\mu}$ is summable and μ is a Gibbs state for $-\log \mathfrak{J}_{\mu}$. In other words, the map $\mu \mapsto -\log \mathfrak{J}_{\mu}$ is a bijection between \mathcal{G} and \mathcal{K} for both Σ^0_A and Σ^0_A .

Theorem 5.6. The following hold:

- (a) If $\mu \in \mathcal{G}(\Sigma^0_A)$, then $\tilde{\mu} \in \mathcal{G}(\Sigma^0_A)$.
- (b) The mapping $\mathcal{G}(\Sigma_A^0) \ni \mu \mapsto \tilde{\mu} \in \mathcal{G}(\widetilde{\Sigma}_A^0)$ is a bijection. (c) The mapping $\mu \mapsto \tilde{S}_{\mu}$ is a bijection between $\mathcal{G}(\Sigma_A)$ and the class of Keane functions $\mathcal{K}(\Sigma^0_{\mathcal{A}})$.

Proof. Consider $\mu \in \mathcal{G}(\Sigma_A^0)$ and put $\phi = -\log \mathfrak{J}_{\mu}$. In view of Remark 5.5, in order to prove that \tilde{S}_{μ} is a Keane function, it suffices to demonstrate that \tilde{S}_{μ} is a nowhere-vanishing Hölder continuous function.

In order to prove that, for every $\omega \in \Sigma_A^0$ and every $n \ge 1$ set

$$\tilde{S}_n(\omega) := \frac{\tilde{\mu}([\omega|_{-n}])}{\tilde{\mu}([\omega|_{-n}])} \cdot$$

Then for every $k \ge 0$,

$$\frac{\tilde{S}_{n+k}(\omega)}{\tilde{S}_{n}(\omega)} = \frac{\tilde{\mu}([\omega|_{-(n+k)}^{0}])}{\tilde{\mu}([\omega|_{-n}^{0}])} \cdot \frac{\tilde{\mu}([\omega|_{-n}^{-1}])}{\tilde{\mu}([\omega|_{-(n+k)}^{-1}])}$$
(5.4)
$$= \frac{\tilde{\mu}([\omega|_{-(n+k)}^{0}])}{\int\limits_{[\omega|_{-(n+k)}^{0}]} \exp(-S_{k}\phi(\tau))d\mu(\tau)} \cdot \frac{\int\limits_{[\omega|_{-(n+k)}^{-1}]} \exp(-S_{k}\phi(\tau))d\mu(\tau)}{\tilde{\mu}([\omega|_{-(n+k)}^{-1}])},$$

where in the second line of this formula we treated $[\omega|_{-(n+k)}^0]$ and $[\omega|_{-(n+k)}^{-1}]$ as subsets of $\widetilde{\Sigma}_A^0$. Now, fix $\hat{\omega} \in \Sigma_A^0$ such that $\hat{\omega}|_0^{n+k} = \omega|_{-(n+k)}^0$. We can then continue (5.4) as follows:

Now, since $|S_k\phi(\hat{\omega}) - S_k\phi(\tau)| \leq ce^{-\alpha n}$ with the same universal constant c > 0 for all $\tau \in [\omega|_{-(n+k)}^{-1}]$, we can further write

$$\frac{\tilde{S}_{n+k}(\omega)}{\tilde{S}_n(\omega)} = (1 \pm c_2 e^{-\alpha n})(1 \pm c_2 e^{-\alpha n}) = 1 \pm c_3 e^{-\alpha n} ,$$

with some numbers $c_1, c_2, c_3 > 0$ bounded above independently of ω, n and k, say by c > 0. In other words,

(5.5)
$$\left|\frac{\tilde{S}_{n+k}(\omega)}{\tilde{S}_n(\omega)} - 1\right| \le ce^{-\alpha n} .$$

Now an elementary analysis shows that $\tilde{S}_{\mu} = \lim_{n \to \infty} \tilde{S}_n$ is a nowhere-vanishing function whose logarithm is Hölder continuous function with exponent α .

Finally, the proof of all the items in the theorem follow by applying (5.1) along with Remark 5.5.

6. Relations between Scaling functions and Gibbs States

We assume that all homeomorphisms $h: \Sigma \to [0, 1]$ appearing in this section are mutually Hölder equivalent. All h are assumed to be IFS-like and thus they induce iterated function systems and these are the main concern in this section.

So consider $\Phi = {\phi_i}_{i \in I}$, an iterated function system (IFS); where $I := 2\mathbb{N}-1$. For every $t \in Fin(\Phi)$ consider the potentials $\zeta_t : \Sigma \to \mathbb{R}$ given by the formula

$$\zeta_t(\omega) = -t \log |\phi'_{\omega_0}(\pi(\sigma\omega))| \cdot$$

(

Let $\mathcal{L}_t : C(\Sigma) \to C(\Sigma)$ be the corresponding Perron-Fröbenius operator. It was proved in [3] that there exists \hat{m}_t , a Borel probability measure on Σ such that

$$\mathcal{L}_t^*(m_t) = e^{P(t)} m_t$$

where P(t) is the topological pressure of the potential ζ_t . Recall from the previous section that there exists a unique shift-invariant Gibbs state μ_t for the potential ζ_t . Furthermore, μ_t and m_t are equivalent with Radon-Nikodym derivatives uniformly bounded above and separated from zero. Let $\tilde{\mu}_t$ be the corresponding measure on $\tilde{\Sigma}$ that was produced in Theorem 5.6 and Remark 5.5. Finally, let $\mu_t^* = \mu_t \circ \pi^{-1}$ and $m_t^* = m_t \circ \pi^{-1}$. The Borel probability measure m_t^* is uniquely determined by the conditions,

$$m_t^*(\phi_i(A)) = \int_A e^{-P(t)} |\phi_i'|^t dm_t^*, \quad \forall i \in I$$

and

$$m_t^*(\phi_i([0,1]) \cap \phi_j([0,1])) = 0, \quad \forall i \neq j \in I$$

Frequently to be more specific and in order to avoid confusion, we will write $\zeta_{\Phi,t}$, $P_{\Phi}(t)$, $m_{\Phi,t}$, $\mu_{\Phi,t}$, $\tilde{\mu}_{\Phi,t}$, $\mu_{\Phi,t}^*$ and $m_{\Phi,t}^*$ for ζ_t , P(t), m_t , μ_t , $\tilde{\mu}_t$, μ_t^* and m_t^* respectively. We will also use the subscript h rather than Φ if the former was our actual starting point. For example, $\mu_{h,t}$ for $\mu_{\Phi,t}$. We shall prove the following

Proposition 6.1. If $h_2 \circ h_1^{-1} : h_1(\Sigma) \to h_2(\Sigma)$ is bi-Lipschitz continuous, then

(a)
$$\mu_{h_{2,t}} = \mu_{h_{1,t}}$$
 and (a') $m_{h_{2,t}} \simeq m_{h_{1,t}}$
(b) $P_{h_{2,t}} = P_{h_{1,t}}$
(c) $\mu^*_{h_{1,t}} \circ (h_2 \circ h_1^{-1})^{-1} = \mu^*_{h_{2,t}}$

(d)
$$\tilde{\mu}_{h_{2},t} = \tilde{\mu}_{h_{1},t}$$
 and $\tilde{S}_{\mu_{h_{2},t}} = \tilde{S}_{\mu_{h_{1},t}}$
(e) $m^{*}_{h_{1},t} \circ (h_{2} \circ h_{1}^{-1})^{-1} \asymp m^{*}_{h_{2},t}$

Proof. Since $h_2 \circ h_1^{-1}$ is bi-Lipschitz continuous, we have that

(6.1)
$$||(\phi_{\omega}^{(2)})'|| \asymp ||(\phi_{\omega}^{(1)})'||$$

for all $\omega \in I^{\mathbb{N}_0}$, where $\{\phi_i^{(2)}\}_{i \in I}$ and $\{\phi_i^{(1)}\}_{i \in I}$ are the iterated function systems induced respectively by h_2 and h_1 . It follows from (6.1) that

(6.2)
$$||(\phi_{\omega}^{(2)})'||^t \asymp ||(\phi_{\omega}^{(1)})'||^t$$

for all $t \geq 0$ and all $\omega \in I^{\mathbb{N}_0}$.

In particular, $Z_n(h_2, t) \simeq Z_n(h_1, t)$ and consequently

(6.3)
$$P_{h_2}(t) := \lim_{n \to \infty} \frac{1}{n} \log Z_n(h_2, t) = \lim_{n \to \infty} \frac{1}{n} \log Z_n(h_1, t) =: P_{h_1}(t).$$

Thus property (b) is established.

Now, since for every $\omega \in \Sigma$, $m_{h_i,t}([\omega|_n]) \simeq e^{-nP_{h_i(t)}} ||(\phi_{[\omega|_n]}^{(i)})'||^t$ for i = 1, 2; it follows from (6.2) and (6.3) that property (a') holds. Thus $\mu_{h_2,t} \simeq \mu_{h_1,t}$ and thus, since both these measures are ergodic, they must be equal - hence property (a) holds. Then immediately property (d) holds as well.

Since, $\mu_{h_i,t}^* = \mu_{h_i,t} \circ h_i^{-1}$ for i = 1, 2, it follows from property (a) that

$$\mu_{h_{1,t}}^{*} \circ (h_{2} \circ h_{1}^{-1})^{-1} = \mu_{h_{1,t}} \circ h_{1}^{-1} \circ (h_{1} \circ h_{2}^{-1}) = \mu_{h_{1,t}} \circ h_{2}^{-1} = \mu_{h_{2,t}} \circ h_{2}^{-1} = \mu_{h_{2,t}}^{*},$$

which proves property (c). Now property (e) follows from the fact that $m_{h_{i,t}}^{*} \approx \mu_{h_{i,t}}^{*}$ for $i = 1, 2$. Thus we are done.

Definition 6.2. Let

 $\delta_h := \operatorname{HD}(h(\Sigma)),$ where HD stands for Hausdorff Dimension.

We set

$$\tilde{S}_h := \tilde{S}_{\mu_{h,\delta_h}}$$

and call it the metric scaling function of h. We also consider the function $\check{S}_h : \tilde{\Sigma} \to (0, 1)$ given by the formula

$$\check{S}_h(\omega) := S_h(\omega|_{-\infty}^{-1}; \omega_0),$$

and call it the reduced scaling function of h.

Definition 6.3. We call a Baire embedding h regular if $P(\delta_h) = 0$. We refer to [3] for a lengthier exposition of this concept.

As an immediate consequence of Proposition 6.1 and Theorem 4.10, we get the following

Corollary 6.4. If $S_{h_2} = S_{h_1}$, then all the properties (a) - (e) from Proposition 6.1 hold; in particular $\tilde{S}_{h_2} = \tilde{S}_{h_1}$ and $\mu_{h_1,\delta_1} = \mu_{h_2,\delta_2}$.

Hence the scaling function determines uniquely the metric scaling function. The next proposition describes this relation more explicitly.

Definition 6.5. Two functions $f, g : \Sigma \to \mathbb{R}$ are cohomologous (modulo a constant) in a class C if there exists a function $u : \Sigma \to \mathbb{R}$ in the class C such that

$$g - f = u - u \circ \sigma \ (+C),$$

where, σ is a shift and C is a constant. We denote this by $f \simeq g$. Note that this definition can be modified for our functions to be defined on the appropriate symbol space in question.

Proposition 6.6. If h is IFS-like, then $\log \tilde{S}_h$ and $\log \check{S}_h^{\delta_h}$ are cohomologous modulo a constant in the class of bounded Hölder continuous functions on $\tilde{\Sigma}$. This constant is equal to $P(\delta_h)$ (= 0 if h is regular). Consequently, $\tilde{\mu}_{h,\delta_h}$ is the Gibbs state of the potential $\log \check{S}_h^{\delta_h}$.

Proof. Fix $\omega \in \widetilde{\Sigma}$ and $\tau \in \Sigma^*$, where $\tau = \tau_1 \dots \tau_q$. Then $\check{S}_h(\omega\tau) := \lim_{n \to \infty} \frac{|I_{\omega|_n}\tau|}{|I_{\omega|_n}|} = \lim_{n \to \infty} \frac{|I_{\omega|_n\tau_1}|}{|I_{\omega|_n}|} \cdot \frac{|I_{\omega|_n\tau_1\tau_2}|}{|I_{\omega|_n\tau_1}|} \cdots \frac{|I_{\omega|_n\tau_1\dots\tau_q}|}{|I_{\omega|_n\tau_1\dots\tau_{q-1}}|}$ $= \lim_{n \to \infty} \frac{|I_{\omega|_n\tau_1}|}{|I_{\omega|_n}|} \cdot \lim_{n \to \infty} \frac{|I_{\omega|_n\tau_1\tau_2}|}{|I_{\omega|_n\tau_1}|} \cdots \lim_{n \to \infty} \frac{|I_{\omega|_n\tau_1\dots\tau_q-1}|}{|I_{\omega|_n\tau_1\dots\tau_{q-1}}|}$ (6.4) $= \check{S}_h(\omega\tau_1)\check{S}_h(\omega\tau_1\tau_2)\cdots\check{S}_h(\omega\tau) .$

Likewise, putting $\mu^* = \mu^*_{h,\delta_h}$ and $\mu = \mu_{h,\delta_h}$, we have that

$$\tilde{S}_{h}(\omega\tau) := \lim_{n \to \infty} \frac{\mu^{*}(\phi_{\omega|_{n}\tau}(X))}{\mu^{*}(\phi_{\omega|_{n}}(X))} = \lim_{n \to \infty} \frac{\mu([\omega|_{n}\tau])}{\mu([\omega|_{n}])}
= \lim_{n \to \infty} \frac{\mu([\omega|_{n}\tau_{1}])}{\mu([\omega|_{n}])} \cdot \frac{\mu([\omega|_{n}\tau_{1}\tau_{2}])}{\mu([\omega|_{n}\tau_{1}])} \cdots \frac{\mu([\omega|_{n}\tau_{1}\dots\tau_{q}])}{\mu([\omega|_{n}\tau_{1}\dots\tau_{q-1}])}
= \lim_{n \to \infty} \frac{\mu([\omega|_{n}\tau_{1}])}{\mu([\omega|_{n}])} \cdot \lim_{n \to \infty} \frac{\mu([\omega|_{n}\tau_{1}\tau_{2}])}{\mu([\omega|_{n}\tau_{1}])} \cdots \lim_{n \to \infty} \frac{\mu([\omega|_{n}\tau_{1}\dots\tau_{q-1}])}{\mu([\omega|_{n}\tau_{1}\dots\tau_{q-1}])}
(6.5) = \tilde{S}_{h}(\omega\tau_{1})\tilde{S}_{h}(\omega\tau_{1}\tau_{2})\cdots\tilde{S}_{h}(\omega\tau) .$$

Now using the Bounded Distortion Property we get that

$$\mu^*(\phi_{\omega|_n\tau}(X)) \le K^{\delta_h} e^{-P(\delta_h)(n+q)} ||(\phi_{\omega|_n\tau})'||^{\delta_h} \le K^{\delta_h} e^{-P(\delta_h)(n+q)} |I_{\omega|_n\tau}|^{\delta_h}$$

and

$$\mu^*(\phi_{\omega|n\tau}(X)) \ge K^{-\delta_h} e^{-P(\delta_h)(n+q)} ||(\phi_{\omega|n\tau})'||^{\delta_h} \ge K^{-\delta_h} e^{-P(\delta_h)(n+q)} |I_{\omega|n\tau}|^{\delta_h};$$

and likewise

$$\mu^*(\phi_{\omega|_n}(X)) \le K^{\delta_h} e^{-P(\delta_h)n} |I_{\omega|_n}|^{\delta_h}$$

and

$$\mu^*(\phi_{\omega|_n}(X)) \ge K^{-\delta_h} e^{-P(\delta_h)n} |I_{\omega|_n}|^{\delta_h} .$$

Combining the last four formulae along with the definition parts of (6.4) and (6.5), we obtain

(6.6)
$$K^{-2\delta_h} \le \frac{\tilde{S}_h(\omega\tau)}{\check{S}_h^{\delta_h}(\omega\tau)\exp(-P(\delta_h)q)} \le K^{2\delta_h}$$

Combining this with (6.4) and (6.6), we obtain that for all $\omega \in \widetilde{\Sigma}$ and for all $q \ge 1$ we have

$$\sum_{j=0}^{q-1} \log \tilde{S}_h(\sigma^j \omega) - \sum_{j=0}^{q-1} \log \check{S}_h^{\delta_h}(\sigma^j \omega) - P(\delta_h)q \le 2\delta_h \log K .$$

This means that condition (5) from Theorem 2.2.7 in [3] is satisfied and thus our proposition follows directly from this theorem.

Theorem 6.7. Suppose h_1, h_2 are regular IFS-like Baire embeddings and that $\delta_{h_1} = \delta_{h_2} =: \delta$. Then $\mu_{h_1,\delta} = \mu_{h_2,\delta}$ if and only if $\log \check{S}_{h_1} \simeq \log \check{S}_{h_2}$. If either of these two conditions hold, then h_1 and h_2 are bi-Lipschitz equivalent.

Proof. For the forward direction, note that $\mu_{h_1,\delta} = \mu_{h_2,\delta}$ implies that $\tilde{\mu}_{h_1,\delta} = \tilde{\mu}_{h_2,\delta}$ (since the map $\mu \mapsto \tilde{\mu}$ is bijective, as shown in Theorem 5.6) and this in turn implies $\tilde{S}_{h_1} = \tilde{S}_{h_2}$ by definition of \tilde{S} . So we have that $\log \tilde{S}_{h_1} = \log \tilde{S}_{h_2}$ and thus $\delta_{h_1} = \delta_{h_2} =: \delta$ and Proposition 6.6 give us that $\log \check{S}_{h_1} \simeq \log \check{S}_{h_2}$.

For the reverse direction, we again use $\delta_{h_1} = \delta_{h_2} =: \delta$ and Proposition 6.6 to give us that $\log \check{S}_{h_1} \simeq \log \check{S}_{h_2}$ implies $\log \check{S}_{h_1} \simeq \log \check{S}_{h_2}$. Now by Theorem 2.2.7 of [3] we have that $\tilde{\mu}_{h_1,\delta} = \tilde{\mu}_{h_2,\delta}$ and thus $\mu_{h_1,\delta} = \mu_{h_2,\delta}$.

Finally notice that h_1, h_2 being regular means that $P(\delta) = 0$ and thus from the definition of Gibbs state, i.e. (5.3), we have that

$$\mu_{h_1,\delta}([\omega]) \asymp |I_{\omega}^{(1)}|^{\delta}$$

and that

$$\mu_{h_2,\delta}([\omega]) \asymp |I_{\omega}^{(2)}|^{\delta}.$$

Thus $\mu_{h_1,\delta} = \mu_{h_2,\delta}$ would imply that $|I_{\omega}^{(1)}| \simeq |I_{\omega}^{(2)}|$, viz. that h_1 and h_2 are bi-Lipschitz.

36

References

- P. Hanus, M. Urbański, Rigidity of Infinite One-dimensional Iterated Function Systems, Real Analysis Exchange, Vol. 24 (1), 1998/99, 123-136.
- [2] R. D. Mauldin, M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3) 73 (1996) 105-154.
- [3] D. Mauldin, M. Urbański, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge Univ. Press (2003).
- [4] F. Przytycki, M. Urbański, Fractals in the Plane Ergodic Theory Methods, to be published by Cambridge Univ. Press.
- [5] D. S. Sullivan, Quasiconformal Homeomorphisms in Dynamics, Topology and Geometry, Proc. International Congress of Mathematicians, A.M.S. (1986), 1216-1228.
- [6] D. S. Sullivan, Differentiable Structures on Fractal-like Sets determined by Intrinsic Scaling Functions on Dual Cantor Sets, The Mathematical Heritage of Hermann Weyl, A.M.S. Proc. Symp. Pure Math. 48 (1987), 15-23.

TUSHAR DAS, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, DENTON, TX 76203-1430, USA

E-mail address: tushar@unt.edu Web: www.math.unt.edu/~tushar

MARIUSZ URBAŃSKI, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, DENTON, TX 76203-1430, USA

E-mail address: Urbański@unt.edu Web: www.math.unt.edu/~Urbański