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Abstract
In this manuscript we introduce measurable expanding random systems, develop

the thermodynamical formalism and establish, in particular, exponential decay of
correlations and analyticity of the expected pressure although the spectral gap prop-
erty does not hold. This theory is then used to investigate fractal properties of con-
formal random systems. We prove a Bowen’s formula and develop the multifractal
formalism of the Gibbs states. Depending on the behavior of the Birkhoff sums of
the pressure function we get a natural classifications of the systems into two classes:
quasi-deterministic systems which share many properties of deterministic ones and
essential random systems which are rather generic and never bilipschitz equivalent
to deterministic systems. We show in the essential case that the Hausdorff mea-
sure vanishes which refutes a conjecture of Bogenschütz and Ochs. We finally give
applications of our results to various specific conformal random systems and posi-
tively answer a question of Brück and Büger concerning the Hausdorff dimension
of random Julia sets.
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Chapter 1
Introduction

In this monograph we develop the thermodynamical formalism for measurable ex-
panding random mappings. This theory is then applied in the context of conformal
expanding random mappings where we deal with the fractal geometry of fibers.

Distance expanding maps have been introduced for the first time in Ruelle’s
monograph [25]. A systematic account of the dynamics of such maps, including the
thermodynamical formalism and the multifractal analysis, can be found in [24]. One
of the main features of this class of maps is that their definition does not require any
differentiability or smoothness condition. Distance expanding maps comprise sym-
bol systems and expanding maps of smooth manifolds but go far beyond. This is
also a characteristic feature of our approach.

We first define measurable expanding random maps. The randomness is mod-
eled by an invertible ergodic transformation θ of a probability space (X ,B,m). We
investigate the dynamics of compositions

T n
x = Tθ n−1(x) ◦ ...◦Tx , n≥ 1,

where the Tx : Jx→Jθ(x) (x ∈ X) is a distance expanding mapping. These maps
are only supposed to be measurably expanding in the sense that their expanding
constant is measurable and a.e. γx > 1 or

∫
logγx dm(x)> 0.

In so general setting we build the thermodynamical formalism for arbitrary
Hölder continuous potentials ϕx. We show, in particular, the existence, uniqueness
and ergodicity of a family of Gibbs measures {νx}x∈X . Following ideas of Kifer
[17], these measures are first produced in a pointwise manner and then we carefully
check their measurability. Often in the literature all fibres are contained in one and
the same compact metric space and symbolic dynamics plays a prominet role. Our
approach does not require the fibres to be contained in one metric space neither we
need any Markov partitions or, even auxiliary, symbol dynamics.

Our results contain those in [5] and in [17] (see also the expository article [20]).
Throughout the entire monograph where it is possible we avoid, in hypotheses, ab-
solute constants. Our feeling is that in the context of random systems all (or at least
as many as possible) absolute constants appearing in deterministic systems should
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2 1 Introduction

become measurable functions. With this respect the thermodynamical formalism
developed in here represents also, up to our knowledge, new achievements in the
theory of random symbol dynamics or smooth expanding random maps acting on
Riemannian manifolds.

Unlike recent trends aiming to employ the method of Hilbert metric (as for exam-
ple in [12], [19], [27], [26]) our approach to the thermodynamical formalism stems
primarily from the classical method presented by Bowen in [7] and undertaken by
Kifer [17]. Developing it in the context of random dynamical systems we demon-
strate that it works well and does not lead to too complicated (at least to our taste)
technicalities. The measurability issue mentioned above results from convergence
of the Perron-Frobenius operators. We show that this convergence is exponential,
which implies exponential decay of correlations. These results precede investiga-
tions of a pressure function x 7→ Px(ϕ) which satisfies the property

νθ(x)(Tx(A)) = ePx(ϕ)
∫

A
e−ϕx dνx

where A is any measurable set such that Tx|A is injective. The integral, against the
measure m on the base X , of this function is a central parameter EP(ϕ) of ran-
dom systems called the expected pressure. If the potential ϕ depends analytically
on parameters, we show that the expected pressure also behaves real analytically.
We would like to mention that, contrary to the deterministic case, the spectral gap
methods do not work in the random setting. Our proof utilizes the concept of com-
plex cones introduced by Rugh in [26], and this is the only place, where we use the
projective metric.

We then apply the above results mainly to investigate fractal properties of fibers
of conformal random systems. They include Hausdorff dimension, Hausdorff and
packing measures, as well as multifractal analysis. First, we establish a version of
Bowen’s formula (obtained in a somewhat different context in [6]) showing that the
Hausdorff dimension of almost every fiber Jx is equal to h, the only zero of the
expected pressure EP(ϕt), where ϕt = −t log | f ′| and t ∈ R. Then we analyze the
behavior of h–dimensional Hausdorff and packing measures. It turned out that the
random dynamical systems split into two categories. Systems from the first cate-
gory, rather exceptional, behave like deterministic systems. We call them, therefore,
quasi-deterministic. For them the Hausdorff and packing measures are finite and
positive. Other systems, called essentially random, are rather generic. For them the
h–dimensional Hausdorff measure vanishes while the h-packing measure is infinite.
This, in particular, refutes the conjecture stated by Bogenschütz and Ochs in [6] that
the h–dimensional Hausdorff measure of fibers is always positive and finite. In fact,
the distinction between the quasi-deterministic and the essentially random systems
is determined by the behavior of the Birkhoff sums

Pn
x (ϕ) = Pθ n−1(x)(ϕ)+ ...+Px(ϕ)

of the pressure function for potential ϕh = −h log | f ′|. If these sums stay bounded
then we are in the quasi-deterministic case. On the other hand, if these sums are nei-
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ther bounded below nor above, the system is called essentially random. The behavior
of Pn

x , being random variables defined on X , the base map for our skew product map,
is often governed by stochastic theorems such as the law of the iterated logarithm
whenever it holds. This is the case for our primary examples, namely conformal DG-
systems and classical conformal random systems. We are then in position to state
that the quasi-deterministic systems correspond to rather exceptional case where the
asymptotic variance σ2 = 0. Otherwise the system is essential.

The fact that Hausdorff measures in the Hausdorff dimension vanish has fur-
ther striking geometric consequences. Namely, almost all fibers of an essential con-
formal random system are not bi-Lipschitz equivalent to any fiber of any quasi-
deterministic or deterministic conformal expanding system. In consequence almost
every fiber of an essentially random system is not a geometric circle nor even a
piecewise analytic curve. We then show that these results do hold for many ex-
plicit random dynamical systems, such as conformal DG-systems, classical confor-
mal random systems, and, perhaps most importantly, Brück and Büger polynomial
systems. As a consequence of the techniques we have developed, we positively an-
swer the question of Brück and Büger (see [9] and Question 5.4 in [8]) of whether
the Hausdorff dimension of almost all naturally defined random Julia set is strictly
larger than 1. We also show that in this same setting the Hausdorff dimension of
almost all Julia sets is strictly less than 2.

Concerning the multifractal spectrum of Gibbs measures on fibers, we show that
the multifractal formalism is valid, i.e. the multifractal spectrum is Legendre con-
jugated to a temperature function. As usual, the temperature function is implicitly
given in terms of the expected pressure. Here, the most important, although perhaps
not most strikingly visible, issue is to make sure that there exists a set Xma of full
measure in the base such that the multifractal formalism works for all x ∈ Xma.

If the system is in addition uniformly expanding then we provide real analyticity
of the pressure function. This part is based on work by Rugh [27] and it is the only
place where we work with the Hilbert metric. As a consequence and via Legendre
transformation we obtain real analyticity of the multifractal spectrum.

Random transformations have already a long history and the present manuscript
does, by no means, cover all its topics. Some of them can be found in Arnold’s book
[1] and in Kifer and Liu’s chapter in [20]. Let us however mention some interesting
results. Denote by M 1

m(T ) the set of T -invariant measures from M 1
m(J ). Let µ ∈

M 1
m(T ). The fiber entropy hr

µ(T ) of µ is given as follows. If R = {R1,R2, . . . ,Rn}
is a finite partition of J , then by Rx we denote the partition of J given by sets
Rk

x := Rk ∩Jx, k = 1, . . . ,n. Then

hr
µ(T ) := sup

R
lim
n→∞

1
n

Hµx

(n−1∨
i=0

Rθ i(x)

)
.

In fairly general random setting one can prove that this limit m-almost surely exists
(see e.g. [4]). Moreover, there is a following relation between the fibre entropy and
the topological pressure called Variational Principle (see e.g. [4], [14], [2])
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EP(ϕ) := sup
µ∈(T )

(∫
ϕdµ +hr

µ(T )
)
.

It is also worth noting that in many cases the entropy and averaged positive Lya-
punov exponents can satisfy so called Margulis-Ruelle inequality (see e.g. [3]) or
Pesin formula (see e.g. [21]). We also refer the reader to [22].

We would like to thank Yuri I. Kifer for his remarks which improved the final
version of this monograph.



Chapter 2
Expanding Random Maps

For the convenience of the reader, we first give some introductory examples. In
the remaining part of this chapter we present the general framework of expanding
random maps.

2.1 Introductory examples

Before giving the formal definitions of expanding random maps, let us now consider
some typical examples.

The first one is a known random version of the Sierpiński gasket (see for example
[15]). Let ∆ = ∆(A,B,C) be a triangle with vertexes A,B,C and choose a ∈ (A,B),
b ∈ (B,C) and c ∈ (C,A). Then we can associate to x = (a,b,c) a map

fx : ∆(A,a,c)∪∆(a,B,b)∪∆(b,C,a)→ ∆

such that the restriction of fx to each one of the three subtriangles is a affine map
onto ∆ . The map fx is nothing else than the generator of a deterministic Sierpiński
gasket. Note that this map can be made continuous by identifying the vertices
A,B,C.

Now, suppose x1 = (a1,b1,c1),x2 = (a2,b2,c2), ... are chosen randomly which,
for example, may mean that they form sequences of three dimensional independent
and identically distributed (i.i.d.) random variables. Then they generate compact sets

Jx1,x2,x3,... =
⋂
n≥1

( fxn ◦ ...◦ fx1)
−1(∆)

called random Sierpiński gaskets having the invariance property f−1
x1

(Jx2,x3,...) =
Jx1,x2,x3,.... For a little bit simpler example of random Cantor sets we refer the reader
to Section 5.3. In that example we provide a more detailed analysis of such random
sets.

5



6 2 Expanding Random Maps

Fig. 2.1 Two different generators of Sierpinski gaskets.

Such examples admit far going generalizations. First of all, we will consider
much more general random choices than i.i.d. ones. We model randomness by taking
a probability space (X ,B,m) along with an invariant ergodic transformation θ :
X → X . This point of view was up to our knowledge introduced by the Bremen
group (see [1]).

Fig. 2.2 A generator of degree 6.

Another point is that the maps fx that generate the random Sierpiński gasket have
degree 3. In the sequel of this manuscript, we will allow the degree dx of all maps
to be different (see Figure 2.2) and only require that the function x 7→ log(dx) is
measurable.

Finally, the above examples are all expanding with an expanding constant

γx ≥ γ > 1 .

As already explained in the introduction, the present monograph concerns random
maps for which the expanding constants γx can be arbitrarily close to one. Further-
more, using an inducing procedure, we will even weaken this to the maps that are
only expanding in the mean (see Chapter 7).

The example of random Sierpiński gasket is not conformal. Random iterations
of rational functions or of holomorphic repellers are typical examples of conformal
random dynamical systems. Random iterations of the quadratic family fc(z) = z2+c
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have been considered, for example, by Brück and Büger among others (see [8] and
[9]). In this case, one chooses randomly a sequence of bounded parameters c =
(c1,c2, ...) and considers the dynamics of the family

Fc1,...,cn = fcn ◦ fcn1
◦ ...◦ fc1 , n≥ 1 .

This leads to the dynamical invariant sets

Kc = {z ∈ C ; Fc1,...,cn(z) 6→ ∞} and Jc = ∂Kc .

The set Kc is the filled in Julia set and Jc the Julia set associated to the sequence
c.

The simplest case is certainly the one when we consider just two polynomials
z 7→ z2 + λ1 and z 7→ z2 + λ2 and we build a random sequence out of them. Julia
sets that come out of such a choice are presented in Figure 2.3. Such random Julia
sets are different objects as compared to the Julia sets for deterministic iteration of
quadratic polynomials. But not only the pictures are different and intriguing, we
will see in Chapter 5 that also generically the fractal properties of such Julia sets
are fairly different as compared with the deterministic case even if the dynamics are
uniformly expanding. In Chapter 8 we present a more general class of examples and
we explain their dynamical and fractal features.

Fig. 2.3 Some quadratic random Julia sets
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2.2 Preliminaries

Suppose (X ,B,m,θ) is a measure preserving dynamical system with invertible and
ergodic map θ : X → X which is referred to as the base map. Assume further that
(Jx,ρx), x ∈ X , are compact metric spaces normalized in size by diamρx(Jx)≤ 1.
Let

J =
⋃
x∈X

{x}×Jx . (2.1)

We will denote by Bx(z,r) the ball in the space (Jx,ρx) centered at z ∈Jx and
with radius r. Frequently, for ease of notation, we will write B(y,r) for Bx(z,r),
where y = (x,z). Let

Tx : Jx→Jθ(x) , x ∈ X ,

be continuous mappings and let T : J →J be the associated skew-product de-
fined by

T (x,z) = (θ(x),Tx(z)). (2.2)

For every n≥ 0 we denote T n
x := Tθ n−1(x) ◦ ...◦Tx : Jx→Jθ n(x). With this notation

one has T n(x,y) = (θ n(x),T n
x (y)). We will frequently use the notation

xn = θ
n(x) , n ∈ Z .

If it does not lead to misunderstanding we will identify Jx and {x}×Jx.

2.3 Expanding Random Maps

A map T : J →J is called a expanding random map if the mappings Tx : Jx→
Jθ(x) are continuous, open, and surjective, and if there exist a function η : X→R+,
x 7→ ηx, and a real number ξ > 0 such that following conditions hold.

Uniform Openness. Tx(Bx(z,ηx))⊃ Bθ(x)
(
Tx(z),ξ

)
for every (x,z) ∈J .

Measurably Expanding. There exists a measurable function γ : X→ (1,+∞), x 7→ γx
such that, for m-a.e. x ∈ X ,

ρθ(x)(Tx(z1),Tx(z2))≥ γxρx(z1,z2) whenever ρ(z1,z2)< ηx, z1,z2 ∈Jx .

Measurability of the Degree. The map x 7→ deg(Tx) := supy∈Jθ(x)
#T−1

x ({y}) is mea-
surable.

Topological Exactness. There exists a measurable function x 7→ nξ (x) such that

T
nξ (x)

x (Bx(z,ξ )) = J
θ

n
ξ
(x)

(x)
for every z ∈Jx and a.e. x ∈ X . (2.3)
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Note that the measurably expanding condition implies that Tx|B(z,ηx) is injective
for every (x,z) ∈J . Together with the compactness of the spaces Jx it yields the
numbers deg(Tx) to be finite. Therefore the supremum in the condition of measura-
bility of the degree is in fact a maximum.

In this work we consider two other classes of random maps. The first one con-
sists of the uniform expanding maps defined below. These are expanding random
maps with uniform control of measurable “constants”. The other class we consider
is composed of maps that are only expanding in the mean. These maps are defined
like the expanding random maps above excepted that the uniform openness and the
measurable expanding conditions are replaced by the following weaker conditions
(see Chapter 7 for detailed definition).

1. All local inverse branches do exist.
2. The function γ in the measurable expanding condition is allowed to have values

in (0,∞) but subjects only the condition∫
X

log γx dm > 0 .

We employ an inducing procedure to expanding in the mean random maps in order
to reduce then to the case of random expanding maps. This is the content of Chapter
7 and the conclusion is that all the results of the present work valid for expanding
random maps do also hold for expanding in the mean random maps.

2.4 Uniformly Expanding Random Maps

Most of this paper and, in particular, the whole thermodynamical formalism is de-
voted to measurable expanding systems. The study of fractal and geometric prop-
erties (which starts with Chapter 5), somewhat against our general philosophy, but
with agreement with the existing tradition (see for example [5], [17] and [12]), we
will work mostly with uniform and conformal systems (the later are introduced in
Chapter 5).

A expanding random map T : J →J is called uniformly expanding if

- γ∗ := infx∈X γx > 1,
- deg(T ) := supx∈X deg(Tx)< ∞,
- nξ∗ := supx∈X nξ (x)< ∞.

2.5 Remarks on Expanding Random Mappings

The conditions of uniform openness and measurably expanding imply that, for every
y = (x,z) ∈J there exists a unique continuous inverse branch
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T−1
y : Bθ(x)(T (y),ξ )→ Bx(y,ηx)

of Tx sending Tx(z) to z. By the measurably expanding property we have

ρ(T−1
y (z1),T−1

y (z2))≤ γ
−1
x ρ(z1,z2) for z1,z2 ∈ Bθ(x)

(
T (y),ξ

)
(2.4)

and
T−1

y (Bθ(x)(T (y),ξ ))⊂ Bx(y,γ−1
x ξ )⊂ Bx(y,ξ ).

Hence, for every n≥ 0, the composition

T−n
y = T−1

y ◦T−1
T (y) ◦ . . .◦T−1

T n−1(y) : Bθ n(x)(T
n(y),ξ )→ Bx(y,ξ ) (2.5)

is well-defined and has the following properties:

T−n
y : Bθ n(x)(T

n(y),ξ )→ Bx(y,ξ )

is continuous,
T n ◦T−n

y = Id|Bθn(x)(T n(y),ξ ), T−n
y (T n

x (z)) = z

and, for every z1,z2 ∈ Bθ n(x)
(
T n(y),ξ

)
,

ρ(T−n
y (z1),T−n

y (z2))≤ (γn
x )
−1

ρ(z1,z2), (2.6)

where γn
x = γxγθ(x) · · ·γθ n−1(x). Moreover,

T−n
x (Bθ n(x)(T

n(y),ξ ))⊂ Bx(y,(γn
x )
−1

ξ )⊂ Bx(y,ξ ). (2.7)

Lemma 2.1 For every r > 0, there exists a measurable function x 7→ nr(x) such that
a.e.

T nr(x)
x (Bx(z,r)) = J

θ nr(x)(x) for every z ∈Jx . (2.8)

Moreover, there exists a measurable function j : X → N such that a.e. we have

T j(x)
x− j(x)(Bx− j(x)(z,ξ )) = Jx for every z ∈Jx− j(x) . (2.9)

Proof. In order to prove the first statement, consider γ0 > 1 and let F be the set of
x∈X such that γx≥ γ0. If γ0 is sufficiently close to 1, then m(F)> 0. In the following
section such a set will be called essential. In that section we also associate to such an
essential set a set X ′+F (see (2.10)). Then for x ∈ X ′+F , the limit limn→∞(γ

n
x )
−1 = 0.

Define
X+F,k := {x ∈ X ′+F : (γk

x )
−1

ξ < r}.

Then X+F,k ⊂ X+F,k+1 and
⋃

k∈N X+F,k = X ′+F By measurability of x 7→ γx, X+F,k is
a measurable set. Hence the function

X ′+F 3 x 7→ nr(x) := min{k : x ∈ X+F,k}+nξ (x)
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is finite and measurable. By (2.7) and (2.3),

T nr(x)
x (Bx(z,r)) = J

θ nr(x)(x).

In order to prove the existence of a measurable function j : X → N define mea-
surable sets

Xξ ,n := {x ∈ X : nξ (x)≤ n}, X ′
ξ ,n := θ

n(Xξ ,n) and X ′
ξ
=
⋃

n∈N
X ′

ξ ,n.

Then the map
X ′

ξ
3 x 7→ j(x) := min{n ∈ N : x ∈ X ′

ξ ,n}

satisfies (2.9) for x ∈ X ′
ξ

. Since m(θ n(Xξ ,n)) = m(Xξ ,n)↗ 1 as n tends to ∞ we have
m(X ′

ξ
) = 1.

ut

2.6 Visiting sequences

Let F ∈F be a set with a positive measure. Define the sets

V+F(x) := {n ∈ N : θ
n(x) ∈ F} and V−F(x) := {n ∈ N : θ

−n(x) ∈ F}.

The set V+F(x) is called visiting sequence (of F at x). Then the set V−F(x) is just a
visiting sequence for θ−1 and we also call it backward visiting sequence. By n j(x)
we denote the jth-visit in F at x. Since m(F) > 0, by Birkhoff’s Ergodic Theorem
we have that

m(X ′+F) = m(X ′−F) = 1

where

X ′+F :=
{

x ∈ X : V+F(x) is infinite and lim
j→∞

n j+1(x)
n j(x)

= 1
}

(2.10)

and X ′−F is defined analogously. The sets X ′+F and X ′−F are respectively called for-
ward and backward visiting for F .

Let Ψ(x,n) be a formula which depends on x ∈ X and n ∈N. We say that Ψ(x,n)
holds in a visiting way, if there exists F with m(F)> 0 such that, for m-a.e. x ∈ X ′+F
and all j ∈ N, the formula Ψ(θ n j(x),n j(x)) holds, where (n j(x))∞

j=0 is the visiting
sequence of F at x. We also say that Ψ(x,n) holds in a exhaustively visiting way,
if there exists a family Fk ∈F with limk→∞ m(Fk) = 1 such that, for all k, m-a.e.
x ∈ X ′+Fk

, and all j ∈N, the formula Ψ(θ n j(x),n j(x)) holds, where (n j(x))∞
j=0 is the

visiting sequence of Fk at x.
Now, let fn : X → R be a sequence of measurable functions. We write that

s-lim
n→∞

fn = f
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if that there exists a family Fk ∈F with limk→∞ m(Fn) = 1 such that, for all k and
m-a.e. x ∈ X ′+Fk

and all j ∈ N,

lim
j→∞

fn j(x) = f (x)

where (n j)
∞
j=0 is the visiting sequence of Fk at x.

Suppose that g1, . . . ,gk : X→R is a finite collection of measurable functions and
let b1, . . . ,bn be a collection of real numbers. Consider the set

F :=
k⋂

i=1

g−1
i ((−∞,bi]).

If m(F) > 0, then F is called essential for g1, . . . ,gk with constants b1, . . . ,bn (or
just essential, if we do not want explicitly specify functions and numbers). Note
that by measurability of the functions g1, . . . ,gk, for every ε > 0 we can always find
finite numbers b1, . . . ,bn such that the essential set F for g1, . . . ,gk with constants
b1, . . . ,bn has the measure m(F)≥ 1− ε .

2.7 Spaces of Continuous and Hölder Functions

We denote by C (Jx) the space of continuous functions gx : Jx→R and by C (J )
the space of functions g : J →R such that, for a.e. x∈X , x 7→ gx := g|Jx ∈C (Jx).
The set C (J ) contains the subspaces C 0(J ) of functions for which the function
x 7→ ‖gx‖∞ is measurable, and C 1(J ) for which the integral

‖g‖1 :=
∫

X
‖gx‖∞ dm(x)< ∞.

Now, fix α ∈ (0,1]. By H α(Jx) we denote the space of Hölder continuous
functions on Jx with an exponent α . This means that ϕx ∈H α(Jx) if and only if
ϕx ∈ C (Jx) and v(ϕx)< ∞ where

vα(ϕx) := inf{Hx : |ϕ(z1)−ϕ(z2)| ≤ Hxρ
α
x (z1,z2)}. (2.11)

where the infimum is taken over all z1,z2 ∈Jx with ρ(z1,z2)≤ η .
A function ϕ ∈ C 1(J ) is called Hölder continuous with an exponent α pro-

vided that there exists a measurable function H : X → [1,+∞), x 7→ Hx, such that
logH ∈ L1(m) and such that vα(ϕx)≤ Hx for a.e. x ∈ X . We denote the space of all
Hölder functions with fixed α and H by H α(J ,H) and the space of all α–Hölder
functions by H α(J ) =

⋃
H≥1 H α(J ,H).
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2.8 Transfer operator

For every function g : J → C and a.e. x ∈ X let

Sngx =
n−1

∑
j=0

gx ◦T j
x , (2.12)

and, if g : X → C, then Sng = ∑
n−1
j=0 g ◦ θ j. Let ϕ be a function in the Hölder

space H α(J ). For every x ∈ X , we consider the transfer operator Lx = Lϕ,x :
C (Jx)→ C (Jθ(x)) given by the formula

Lxgx(w) = ∑
Tx(z)=w

gx(z)eϕx(z), w ∈Jθ(x). (2.13)

It is obviously a positive linear operator and it is bounded with the norm bounded
above by

‖Lx‖∞ ≤ deg(Tx)exp(‖ϕ‖∞). (2.14)

This family of operators gives rise to the global operator L : C (J )→C (J) defined
as follows:

(L g)x (w) = Lθ−1(x)gθ−1(x)(w).

For every n > 1 and a.e. x ∈ X , we denote

L n
x := Lθ n−1(x) ◦ ...◦Lx : C (Jx)→ C (Jθ n(x)).

Note that
L n

x gx(w) = ∑
z∈T−n

x (w)

gx(z)eSnϕx(z) , w ∈Jθ n(x) , (2.15)

where Snϕx(z) has been defined in (2.12). The dual operator L ∗
x maps C∗(Jθ(x))

into C∗(Jx).

2.9 Distortion Properties

Lemma 2.2 Let ϕ ∈H α(J ,H), let n≥ 1 and let y = (x,z) ∈J . Then

|Snϕx(T−n
y (w1))−Snϕx(T−n

y (w2))| ≤ ρ
α(w1,w2)

n−1

∑
j=0

Hθ j(x)(γ
n− j
θ j(x))

−α

for all w1,w2 ∈ B(T n
x (z),ξ ).

Proof. We have by (2.6) and Hölder continuity of ϕ that
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|Snϕx(T−n
y (w1))−Snϕx(T−n

y (w2))| ≤
n−1

∑
j=0
|ϕx(T j

x (T
−n

y (w1)))−ϕx(T j
x (T

−n
y (w2)))|

=
n−1

∑
j=0

∣∣∣ϕx(T
−(n− j)

T j
x (y)

(w1))−ϕx(T
−(n− j)

T j
x (y)

(w2))
∣∣∣

≤
n−1

∑
j=0

ρ
α
(
T−(n− j)

T j
x (x)

(w1),T
−(n− j)

T j
x (x)

(w2)
)
Hθ j(x),

hence |Snϕx(T−n
y (w1))−Snϕx(T−n

y (w2))| ≤ ρα(w1,w2)∑
n−1
j=0 Hθ j(x)(γ

n− j
θ j(x))

−α . ut

Set

Qx := Qx(H) =
∞

∑
j=1

Hθ− j(x)(γ
j

θ− j(x))
−α . (2.16)

Lemma 2.3 The function x 7→ Qx is measurable and m-a.e. finite. Moreover, for
every ϕ ∈H α(J ,H),

|Snϕx(T−n
y (w1))−Snϕx(T−n

y (w2))| ≤ Qθ n(x)ρ
α(w1,w2)

for all n ≥ 1, a.e. x ∈ X, every z ∈Jx and w1,w2 ∈ B(T n(z),ξ ) and where again
y = (x,z).

Proof. The measurability of Qx follows directly form (2.16). Because of Lemma 2.2
we are only left to show that Qx is m-a.e. finite. Let χ be a positive real number less
or equal to

∫
logγxdm(x). Then, using Birkhoff’s Ergodic Theorem for θ−1, we get

that

liminf
j→∞

1
j

j−1

∑
k=0

logγθ− j(x) ≥ χ

for m-a.e. x ∈ X . Therefore, there exists a measurable function Cγ : X → [1,+∞) m-
a.e. finite such that C−1

γ (x)e jχ/2 ≤ γ
j

θ− j+1(x) for all j ≥ 0 and a.e. x ∈ X . Moreover,

since logH ∈ L1(m) it follows again from Birkhoff’s Ergodic Theorem that

lim
j→∞

1
j

logHθ− j(x) = 0 m−a.e.

There thus exists a measurable function CH : X → [1,+∞) such that

Hθ j(x) ≤CH(x)e jαχ/4 and Hθ− j(x) ≤CH(x)e jαχ/4 (2.17)

for all j ≥ 0 and a.e. x ∈ X . Then, for a.e. x ∈ X , all n≥ 0 and all a≥ j ≥ n−1, we
have

Hθ j(x) = H
θ−(n− j)(θ n(x)) ≤CH(θ

n(x))e(n− j)αχ/4.

Therefore, still with xn = θ n(x),
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Qxn =
n−1

∑
j=0

Hx j(γ
n− j
x j

)−α ≤
n−1

∑
j=0

CH(xn)e(n− j)αχ/4Cα
γ (xn−1)e−α(n− j)χ/2

≤Cα
γ (xn−1)CH(xn)

n−1

∑
j=0

e−α(n− j)χ/4 ≤Cα
γ (xn−1)CH(xn)(1− e−αχ/4)−1.

Hence
Qx ≤Cα

γ (θ
−1(x))CH(x)(1− e−αχ/4)−1 <+∞.

ut





Chapter 3
The RPF–theorem

We now establish a version of Ruelle-Perron-Frobenius (RPF) Theorem along with
a mixing property. Notice that this quite substantial fact is proved without any mea-
surable structure on the space J . In particular, we do not address measurability
issues of λx and qx. In order to obtain this measurability we will need and we will
impose a natural measurable structure on the space J . This will be done in the next
chapter.

3.1 Formulation of the Theorems

Let T : J →J be a expanding random map. Denote by M 1(Jx) the set of
all Borel probability measures on Jx. A family of measures {µx}x∈X such that
µx ∈M 1(Jx) is called T –invariant if µx ◦T−1

x = µθ(x) for a.e. x ∈ X .
This chapter is devoted to the thermodynamical formalism. The main results

proved here are listed below.

Theorem 3.1 Let ϕ ∈H α(J ) and let L = Lϕ be the associated transfer opera-
tor. Then the following holds.

1. There exists a unique family of probability measures νx ∈M (Jx) such that

L ∗
x νθ(x) = λxνx where λx = νθ(x)(Lx1) m−a.e. (3.1)

2. There exists a unique function q ∈ C 0(J ) such that m-a.e.

Lxqx = λxqθ(x) and νx(qx) = 1. (3.2)

Moreover, qx ∈H α(Jx) for a.e. x ∈ X.

3. The family of measures {µx := qxνx}x∈X is T -invariant.

17
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Theorem 3.2
1. Let

ϕ̂x = ϕx + logqx− logqθ(x) ◦T − logλx.

Denote L̂ := Lϕ̂ . Then, for a.e. x ∈ X and all gx ∈C(Jx),

L̂ n
x gx −−−→

n→∞

∫
gxqxdνx.

2. Let ϕ̃x = ϕx− logλx. Denote L̃ := Lϕ̃ . There exist a constant B < 1 and a
measurable function A : X → (0,∞) such that for every function g ∈ C 0(J ) with
gx ∈H α(Jx) there exists a measurable function Ag : X → (0,∞) for which

‖(L̃ ng)x−
(∫

gθ−n(x)dνθ−n(x)

)
qx‖∞ ≤ Ag(θ

−n(x))A(x)Bn

for a.e. x ∈ X and every n≥ 1.

3. There exists B < 1 and a measurable function A′ : X → (0,∞) such that for
every fθ n(x) ∈ L1(µθ n(x)) and every gx ∈H α(Jx),∣∣µx

(
( fθ n(x) ◦T n

x )gx
)
−µθ n(x)( fθ n(x))µx(gx)

∣∣
≤ µθ n(x)(| fθ n(x)|)A′(θ n(x))

(∫
|gx|dµx +4

vα(gxqx)

Qx

)
Bn.

A collection of measures {µx}x∈X such that µx ∈M 1(Jx) is called a Gibbs
family for ϕ ∈H α(J ) provided that there exists a measurable function Dϕ : X →
[1,+∞) and a function x 7→ Px, called the pseudo-pressure function, such that

(Dϕ(x)Dϕ(θ
n(x)))−1 ≤

µx(T−n
y (B(T n(y),ξ )))

exp(Snϕ(y)−SnPx)
≤ Dϕ(x)Dϕ(θ

n(x)) (3.3)

for every n≥ 0, a.e. x ∈ X and every z ∈Jx and with y = (x,z).
Towards proving uniqueness type result for Gibbs families we introduce the fol-

lowing concept. Notice that in the case of random compact subsets of a Polish space
(see Section 4.5) this condition always holds (see Lemma 4.11).

Measurability of Cardinality of Covers There exists a measurable function X 3 x 7→
ax ∈ N such that for almost every x ∈ X there exists a finite sequence w1

x , . . . ,w
ax
x ∈

Jx such that
⋃ax

j=1 B(w j
x,ξ ) = Jx.

Theorem 3.3 The collections {νx}x∈X and {µx}x∈X are Gibbs families. Moreover,
if J satisfies the condition of measurability of cardinality of covers and if {ν ′x}x∈X
is a Gibbs family, then ν ′x and νx are equivalent for almost every x ∈ X.
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3.2 Frequently used auxiliary measurable functions

Some technical measurable functions appear throughout the paper so frequently
that, for convenience of the reader, we decided to collect them in this section to-
gether. However, the reader may skip this part now without any harm and come
back to it when it is appropriately needed.

First, define
Dξ (x) :=

(
degT n

x
)−1 exp(−2‖Snϕx‖∞) (3.4)

with n = nξ (x) being the index given by the topological exactness condition (cf.
(2.3)). Then, let j = j(x) be the number given by Lemma 2.1 and define

Cϕ(x) := eQx− j deg(T j
x− j

)max
{

exp(2‖Skϕx−k‖∞) : 0≤ k ≤ j
}
≥ 1. (3.5)

Now let s > 1. Put

Cmin(x) := e−sQx e−‖S jϕx− j ‖∞ ≤ 1 (3.6)

and
Cmax(x) := esQx deg

(
T n

x
)

exp(2‖Snϕx‖∞) (3.7)

where n := nξ (x). Then we define

βx(s) :=
Cmin(x)
Cϕ(x)

· inf
r∈(0,ξ ]

1− exp
(
− (s−1)Hx−1γ−α

x−1
rα
)

1− exp(−2sQxrα)
. (3.8)

Since by (2.16)
sQx = sQx−1γ

−α
x−1

+ sHx−1γ
−α
x−1

, (3.9)

(sQx−1 +Hx−1)γ
−α
x−1

= sQx− (s−1)Hx−1γ
−α
x−1

. (3.10)

This, together with (3.5) and (3.6), gives us that

0 < βx(s) =
Cmin(x)
Cϕ(x)

(s−1)Hx−1 γ−α
x−1

2sQx
<

Cmin(x)
Cϕ(x)

≤ 1.

3.3 Transfer Dual Operators

In order to prove Theorem 3.1 we fix a point x0 ∈ X and, as the first step, we reduce
the base space X to the orbit

Ox0 = {θ
n(x0),n ∈ Z}.

The motivation for this is that then we can deal with a sequentially topological
compact space on which the transfer (or related) operators act continuously. Our
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conformal measure then can be produced, for example, by the methods of the fixed
point theory, similarly as in the deterministic case.

Removing a set of measure zero, if necessary, we may assume that this orbit is
chosen so that all the involved measurable functions are defined and finite on the
points of Ox0 . For every x ∈Ox0 , let ϕx ∈ C (Jx) be the continuous potential of the
transfer operator Lx : C(Jx)→C(Jθ(x)) which has been defined in (2.13).

Proposition 3.4 There exists probability measures νx ∈M(Jx) such that

L ∗
x νθ(x) = λxνx f or every x ∈ Ox0 ,

where
λx := L ∗

x (νθ(x))(1) = νθ(x)(Lx1). (3.11)

Proof. Let C ∗(Jx) be the dual space of C (Jx) equipped with the weak∗ topology.
Consider the product space

D(Ox0) := ∏
x∈Ox0

C ∗(Jx)

with the product topology. This is a locally convex topological space and the set

P(Ox0) := ∏
x∈Ox0

M 1(Jx)

is a compact subset of D(Ox0). A simple observation is that the map

Ψx : M 1(Jθ(x))→M 1(Jx)

defined by

Ψx(νθ(x)) =
L ∗

x νθ(x)

L ∗
x νθ(x)(1)

is weakly continuous. Consider then the global map Ψ : P(Ox0)→P(Ox0) given
by

ν = (νx)x∈Ox0
7−→Ψ(ν) =

(
Ψxνθ(x)

)
x∈Ox0

.

Weak continuity of the Ψx implies continuity of Ψ with respect to the coordinate
convergence. Since the space P(Ox0) is a compact subset of a locally convex topo-
logical space, we can apply the Schauder-Tychonoff fixed point theorem to get
ν ∈P(Ox0) fixed point of Ψ , i.e.

L ∗
x νθ(x) = λxνx where λx = L ∗

x νθ(x)(1) = νθ(x)(Lx(1))

for every x ∈ Ox0 . ut

Remark 3.5 The relation (3.11) implies

inf
y∈Jx

eϕx(y) ≤ λx ≤ ‖Lx1‖∞. (3.12)
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A straightforward adaptation of the proof of Proposition 2.2 in [13] leads to the
following, to Proposition 3.4 equivalent, characterization of Gibbs states: if T n

x |A is
injective, then

νθ n(x)(T
n

x (A)) = λ
n
x

∫
A

e−Snϕ dνx. (3.13)

Here is one more useful estimate.

Lemma 3.6 For every x ∈ Ox0 and n≥ 1,

inf
z∈Jx

exp
(
Snϕx(z)

)
≤ λ n

x

deg(T n
x )
≤ sup

z∈Jx

exp
(
Snϕx(z)

)
. (3.14)

Moreover, for every z ∈Jx and every r > 0,

νx(B(z,r))≥ D(x,r), (3.15)

where

D(x,r) :=
(
deg(T N

x )
)−1

inf
z∈Jx

exp
(

inf
a∈B(z,r)

SNϕx(a)− sup
b∈B(z,r)

SNϕx(b)
)

(3.16)

with N = nr(x) being the index given by Lemma 2.1. It follows that the set Jx is a
topological support of νx. In particular, with Dξ (x) defined in (3.4),

νx(B(z,ξ ))≥ Dξ (x). (3.17)

Proof. The inequalities (3.14) immediately follow from

νθ n(x)(L
n

x 1) = ((L n
x )
∗
νθ n(x))(1) = λ

n
x νx(1) = λ

n
x .

Now fix an arbitrary z ∈Jx and r > 0. Put n = nr(x) (see Lemma 2.1). Then, by
(3.13),

νx(B(z,r))λ n
x sup

a∈B(z,r)
e−Snϕx(a) ≥ λ

n
x

∫
B(z,r)

e−Snϕx dνx ≥ 1

which implies (3.15). ut

3.4 Invariant density

Consider now the normalized operator L̃ given by

L̃x = λ
−1
x Lx, x ∈ X . (3.18)

Proposition 3.7 For every x ∈Ox0 , there exists a function qx ∈H α(Jx) such that
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L̃xqx = qθ(x) and
∫

Jx

qxdνx = 1.

In addition,
qx(z1)≤ exp{Qxρ

α(z1,z2)}qx(z2)

for all z1,z2 ∈Jx with ρ(z1,z2)≤ ξ , and

1/Cϕ(x)≤ qx ≤Cϕ(x), (3.19)

where Cϕ was defined in (3.5).

In order to prove this statement we first need a good uniform distortion estimate.

Lemma 3.8 For all w1,w2 ∈Jx and n≥ 1

L̃ n
x−n1(w1)

L̃ n
x−n1(w2)

=
L n

x−n1(w1)

L n
x−n1(w2)

≤Cϕ(x), (3.20)

where Cϕ is given by (3.5). If in addition ρ(w1,w2)≤ ξ , then

L̃ n
x−n1(w1)

L̃ n
x−n1(w2)

≤ exp{Qxρ
α(w1,w2)}. (3.21)

Moreover,

1/Cϕ(x)≤ L̃ n
x−n1(w)≤Cϕ(x) for every w ∈Jx and n≥ 1. (3.22)

Proof. First, (3.21) immediately follows from Lemma 2.3. Notice also that

exp
(
Qxρ

α(w1,w2)
)
≤ expQx (3.23)

since diam(Jx)≤ 1. The global version of (3.20) can be proved as follows. If n =
0, . . . , j(x), then for every w1,w2 ∈Jx,

L n
x−n1(w1)≤

deg(T n
x−n)exp(‖Snϕx−n‖∞)

exp(−‖Snϕx−n‖∞)
L n

x−n1(w2)≤Cϕ(x)L n
x−n1(w2).

Next, let n > j := j(x). Take w′1 ∈ T− j
x− j(w1) such that

eS jϕ(w′1)L n− j
x−n 1(w

′
1) = sup

y∈T− j
x− j (w1)

(
eS jϕ(y)L n− j

x−n 1(y)
)

and w′2 ∈ T− j
x− j(w2) such that ρx− j(w

′
1,w
′
2)≤ ξ . Then, by (3.21) and (3.23),

L n
x−n1(w1) = L j

x− j
(L n− j

x−n 1)(w1)≤ deg(T j
x− j

)eS jϕ(w′1)L n− j
x−n 1(w

′
1)

≤ deg(T j
x− j

)eS jϕ(w′1)eQx− j L n− j
x−n 1(w

′
2)≤Cϕ(x)L n

x−n1(w2).
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This shows (3.20). By Proposition 3.4∫
Jx

L̃ n
x−n(1)dνx =

∫
Jx−n

1dνx−n = 1, (3.24)

which implies the existence of w,w′ ∈Jx such that L̃ n
x−n1(w)≤ 1 and L̃ n

x−n1(w
′)≥

1. Therefore, by the already proved part of this lemma, we get (3.22). ut

Proof. [Proof of Proposition 3.7] Let x ∈Ox0 . Then by Lemma 3.8, for every k ≥ 0
and all w1,w2 ∈Jx with ρ(w1,w2)≤ ξ , we have that

|L̃ k
x−k
1(w1)− L̃ k

x−k
1(w2)| ≤Cϕ(x)2Qxρ

α(w1,w2)

and 1/Cϕ(x)≤ L̃ k
x−k
1≤Cϕ(x). It follows that the sequence

qx,n :=
1
n

n−1

∑
k=0

L̃ k
x−k
1 , n≥ 1,

is equicontinuous for every x ∈Ox0 . Therefore, there exists a sequence n j→∞ such
that qx,n j → qx uniformly for every x of the countable set Ox0 . The functions qx have
all the required properties. ut

Let
µx := qxνx, (3.25)

and let L̂x := Lϕ̂,x be the transfer operator with potential

ϕ̂x = ϕx + logqx− logqθ(x) ◦Tx− logλx.

Then
L̂xgx =

1
qθ(x)

L̃x(gxqx) for every gx ∈ L1(µx). (3.26)

Consequently
L̂x1x = 1θ(x). (3.27)

Lemma 3.9 For all gθ(x) ∈ L1(µθ(x)) = L1(νθ(x)), we have

µx(gθ(x) ◦Tx) = µθ(x)(gθ(x)) . (3.28)

Proof. From conformality of νx (see Proposition 3.4) it follows that

L̂ ∗
x (µθ(x))(gx) =

∫
Jθ(x)

L̂x(gx)dµθ(x) = λ−1
x
∫
Jθ(x)

(Lxgxqx)dνθ(x)

= λ−1
x L̂ ∗

x (νθ(x))(gxqx) = νx(gxqx) = µx(gx).
(3.29)

So, if fx · (gθ(x) ◦Tx) ∈ L1(µx), then
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µx
(
(gθ(x) ◦Tx) fx

)
= L̂ ∗

x (µθ(x))
(
(gθ(x) ◦Tx) fx

)
= µθ(x)

(
L̂x
(
(gθ(x) ◦Tx) fx

))
= µθ(x)

(
gθ(x)L̂x( fx)

)
,

(3.30)

since
L̂x
(
(gθ(x) ◦Tx) fx

)
= gθ(x)L̂x( fx).

Substituting in (3.30) 1x for fx and using (3.27), we get the lemma. ut

Remark 3.10 In Chapter 4 we provide sufficient measurability conditions for these
fiber measures νx and µx to be integrable to produce global measures projecting on
X to m. The measure µ defined by (4.2) is then T -invariant.

3.5 Levels of Positive Cones of Hölder Functions

For s≥ 1, set

Λ
s
x =

{
g ∈ C (Jx) : g≥ 0, νx(g) = 1 and g(w1)≤ esQxρα (w1,w2)g(w2)

for all w1,w2 ∈Jx with ρ(w1,w2)≤ ξ

}
. (3.31)

In fact all elements of Λ s
x belong to H α(Jx). This is proved in the following

lemma.

Lemma 3.11 If g≥ 0 and if for all w1,w2 ∈Jx with ρ(w1,w2)≤ ξ we have

g(w1)≤ esQxρα (w1,w2)g(w2),

then
vα(g)≤ sQx(exp(sQxξ

α))ξ α ||g||∞.

Proof. Let w1,w2 ∈Jx be such that ρ(w1,w2)≤ ξ . Without loss of generality we
may assume that g(w1) > g(w2). Then g(w1) > 0 and therefore, because of our
hypothesis, g(w2)> 0. Hence, we get

|g(w1)−g(w2)|
|g(z2)|

=
g(w1)

g(w2)
−1≤ exp

(
sQxρ

α(w1,w2)
)
−1.

Then
|g(w1)−g(w2)| ≤ sQx(exp(sQxξ

α))ρα(w1,w2)||g||∞.

ut

Hence the set Λ s
x is a level set of the cone defined in (9.13), that is

Λ
s
x = C s

x ∩{g : νx(g) = 1}.
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In addition, in the following lemma we show that this set is bounded in H α(Jx).

Lemma 3.12 For a.e. x∈X and every g∈Λ s
x , we have ‖g‖∞≤Cmax(x), where Cmax

is defined by (3.7).

Proof. Let g ∈Λ s
x and let z ∈Jx. Since g≥ 0 we get∫

B(z,ξ )
gdνx ≤

∫
Jx

gdνx = 1.

Therefore there exists b ∈ B(z,ξ ) such that

g(b)≤ 1/νx(B(z,ξ ))≤ 1/Dξ (x),

where the latter inequality is due to Lemma 3.6. Hence

g(z)≤ esQxρα (b,z)g(b)≤ esQx

Dξ (x)
≤Cmax(x).

ut

A kind of converse to Lemma 3.11 is given by the following.

Lemma 3.13 If g ∈H α(Jx) and g≥ 0, then

g+ vα(g)/Qx

νx(g)+ vα(g)/Qx
∈Λ

1
x .

Proof. Consider the function h = g+ vα(g)/Qx. In order to get the inequality from
the definition of Λ s

x , we take z1,z2 ∈Jx. If h(z1) ≤ h(z2) then this inequality is
trivial. Otherwise h(z1)> h(z2), and therefore

h(z1)

h(z2)
−1 =

|h(z1)−h(z2)|
|h(z2)|

≤ vα(g)ρα(z1,z2)

vα(g)/Qx
= Qxρ

α(z1,z2).

ut

An important property of the sets Λ s
x is their invariance with respect to the nor-

malized operator L̃x = λ−1
x Lx.

Lemma 3.14 Let g ∈Λ s
x . Then, for every n≥ 1,

L̃ n
x g(w1)

L̃ n
x g(w2)

≤ exp
(
sQxnρ

α(w1,w2)
)
, w1,w2 ∈Jθ n(x) with ρ(w1,w2)≤ ξ .

Consequently L̃ n
x (Λ

s
x )⊂Λ s

θ n(x) for a.e. x ∈ X and all n≥ 1.

Notice that the constant function 1 ∈Λ s
x for every s≥ 1. For this particular func-

tion our distortion estimation was already proved in Lemma 3.8.
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Proof. [Proof of Lemma 3.14] Let g ∈ Λ s
x , let ρθ n(x)(w1,w2) ≤ ξ , and let z1 ∈

T−n
x (w1). For y = (x,z1), we put z2 = T−n

y (w2). With this notation, we obtain from
Lemma 2.2 and from the definition of Λ s

x that

L̃ n
x g(w1)

L̃ n
x g(w2)

≤ sup
z1∈T−n

x (w1)

exp
(
Snϕx(z1)

)
g(z1)

exp
(
Snϕx(z2)g(z2)

)
≤ exp

(
ρ

α(w1,w2)
(n−1

∑
j=0

Hθ j(x)(γ
n− j
θ j(x))

−α + sQx(γ
n
x )
−α

))
.

(3.32)

Since

Qx(γ
n
x )
−α +

n−1

∑
j=0

Hθ j(x)(γ
n− j
θ j(x))

−α = Qθ n(x), (3.33)

the lemma follows. ut

Lemma 3.15 With Cmin the function given by (3.6) we have that

L̃ i
x−i

g≥Cmin(x) for every i≥ j(x) and g ∈Λ
s
x−i

.

Proof. First, let i = j(x). Since
∫
Jx−i

gdνx−i = 1 there exists a ∈Jx−i such that

g(a) ≥ 1. By definition of j(x), for any point w ∈Jx, there exists z ∈ T−i
x−i

(x)∩
B(a,ξ ). Therefore

L̃ i
x−i

g(w)≥ eSiϕx−i (z)g(z)≥ eSiϕx−i (z)e−sQx g(a)≥Cmin(x).

The case i > j(x) follows from the previous one, since L̃
i− j(x)

x−i gx−i ∈Λx− j(x) . ut

3.6 Exponential Convergence of Transfer Operators

Lemma 3.16 Let βx = βx(s) (cf. (3.8)). Then for x ∈ X, i ≥ j(x) and gx−i ∈ Λ s
x−i

,
there exists hx ∈Λ s

x such that

(L̃ ig)x = L̃ i
x−i

gx−i = βxqx +(1−βx)hx .

Proof. By Lemma 3.15, we have L̃ i
x−i

gx−i ≥Cmin(x). Then by (3.19) for all w,z ∈
Jx with ρx(z,w)< ξ ,
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βx

(
exp
(
sQxρ

α
x (z,w)

)
qx(z)−qx(w)

)
≤

≤ βx

(
exp
(
sQxρ

α
x (z,w)

)
− exp

(
− sQxρ

α
x (z,w)

))
qx(z)

≤ βx

(
exp
(
sQxρ

α
x (z,w)

)
− exp

(
− sQxρ

α
x (z,w)

))
Cϕ(x)

≤ βxCϕ(x)
(
1− exp(−2sQxρ

α
x (z,w))

)
exp
(
sQxρ

α
x (z,w)

)
≤
(

exp
(
sQxρ

α
x (z,w)

)
− exp

(
(sQx−Hx−1γ

−α
x−1

)ρα
x (z,w)

))
L̃ i

x−i
gx−i(z)

≤
(

exp
(
sQxρ

α
x (z,w)

)
− exp

(
(sQx−1 +Hx−1)γ

−α
x−1

ρ
α
x (z,w)

))
L̃ i

x−i
gx−i(z).

Since by (3.32), for h ∈Λ s
x−1

,

L̃x−1h(z)≤ exp
(
(sQx−1 +Hx−1)γ

−α
x−1

ρ
α
x (z,w)

)
L̃x−1h(w),

L̃ i
x−i

gx−i(z)≤ exp
(
(sQx−1 +Hx−1)γ

−α
x−1

ρ
α
x (z,w)

)
L̃ i

x−i
gx−i(w).

Then we have that

βx

(
exp
(
sQxρ

α
x (z,w)

)
qx(z)−qx(w)

)
≤ exp

(
sQxρ

α
x (z,w)

)
L̃ i

x−i
gx−i(z)− L̃ i

x−i
gx−i(w)

and then

L̃ i
x−i

gx−i(w)−βxqx(w)≤ exp
(
sQxρ

α
x (z,w)

)(
L̃ i

x−i
gx−i(z)−βxqx(z)

)
.

Moreover, βxqx ≤Cmin(x)≤ L̃ i
x−i

gx−i . Hence the function

hx :=
L̃ i

x−i
gx−i −βxqx

1−βx
∈Λ

s
x .

ut

We are now ready to establish the first result about exponential convergence.

Proposition 3.17 Let s > 1. There exist B < 1 and a measurable function A : X →
(0,∞) such that for a.e. x ∈ X for every N ≥ 1 and gx−N ∈Λ s

x−N
we have

‖(L̃ Ng)x−qx‖∞ = ‖L̃ N
x−N

gx−N −qx‖∞ ≤ A(x)BN .

Proof. Fix x ∈ X . Put gn := gxn , βn := βxn , Λ s
n := Λ s

xn and (L̃ ng)k := (L̃ ng)xk . Let
(i(n))∞

n=1 be a sequence of integers such that i(n+1) ≥ j(x−S(n)), where S(n) =
∑

n
k=1 i(k), n ≥ 1, and where S(0) = 0. If g−S(n) ∈ Λ s

−S(n), then Lemma 3.16 yields
the existence of a function hn−1 ∈Λ s

−S(n−1) such that
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L̃ i(n)g

)
−S(n−1)

= β−S(n−1)q−S(n−1)+(1−β−S(n−1))hn−1

=
(

1− (1−β−S(n−1))
)

q−S(n−1)+(1−β−S(n−1))hn−1.

Since(
L̃ i(n)+i(n−1)g

)
−S(n−2)

=
(
L̃ i(n−1)

(
L̃ i(n)g

))
−S(n−2)

=
(
L̃ i(n−1)

(
β−S(n−1)q−S(n−1)+(1−β−S(n−1))hn−1

))
−S(n−2)

= β−S(n−1)q−S(n−2)+(1−β−S(n−1))
(
L̃ i(n−1)(hn−1)

)
−S(n−2)

it follows again from Lemma 3.16 that there is hn−2 ∈Λ s
−S(n−2) such that

(
L̃ i(n)+i(n−1)g

)
−S(n−2)

=

= β−S(n−1)q−S(n−2)+(1−β−S(n−1))
(

β−S(n−2)qS(n−2)+(1−β−S(n−2))hn−2

)
=
(

1−(1−β−S(n−2))(1−β−S(n−1))
)

qS(n−2)+(1−β−S(n−2))(1−β−S(n−1))hn−1.

It follows now by induction that there exists h ∈Λ s
x such that(

L̃ S(n)g
)

x
=
(
L̃ i(n)+...+i(1)g

)
x
= (1−Π

(n)
x )qx +Π

(n)
x h

where we set Π
(n)
x =∏

n−1
k=0(1−βx−S(k)). Since h∈Λ s

x , we have |h| ≤Cmax(x). There-
fore,∣∣∣(L̃ S(n)g

)
x
−
(

1−Π
(n)
x

)
qx

∣∣∣≤Cmax(x)Π
(n)
x if g−S(n) ∈Λ

s
−S(n) . (3.34)

By measurability of β and j one can find M > 0 and J ≥ 1 such that the set

G := {x : βx ≥M and j(x)≤ J} (3.35)

has a positive measure larger than or equal to 3/4. Now, we will show that for a.e.
x ∈ X there exists a sequence (nk)

∞
k=0 of non-negative integers such that n0 = 0, for

k > 0, we have that x−Jnk ∈ G, and

#{n : 0≤ n < nk and x−Jn ∈ G}= k−1. (3.36)

Indeed, applying Birkhoff’s Ergodic Theorem to the mapping θ−J we have that for
almost every x ∈ X ,

lim
n→∞

#{0≤ m≤ n−1 : θ−Jm(x) ∈ G}
n

= E(1G|IJ)(x),
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where E(1G|IJ) is the conditional expectation of 1G with the respect to the σ -
algebra IJ of θ−J-invariant sets. Note that if a measurable set A is θ−J-invariant,
then set ∪J−1

j=0θ j(A) is θ−1-invariant. If m(A) > 0, then from ergodicity of θ−1 we
get that m(∪J−1

j=0θ j(A)) = 1, and then by invariantness of the measure m, we con-
clude that m(A) ≥ 1/J. Hence we get that for almost every x the sequence nk is
infinite and

lim
k→∞

k
nk
≥ 3

4J
. (3.37)

Fix N ≥ 0 and take l ≥ 0 so that Jnl ≤ N ≤ Jnl+1. Define a finite sequence(
S(k)

)l
k=1 by S(k) := Jnk for k < l and S(l) := N, and observe that by (3.37), we

have N ≤ Jnl+1 ≤ 4J2l. Then (3.19) and (3.34) give

||L̃ N
x−N

gx−N −qx||∞ ≤
∣∣∣∣∣∣L̃ N

x−N
gx−N −

(
1−Π

(l)
x

)
qx

∣∣∣∣∣∣
∞

+Π
(l)
x ||qx||∞

≤ (1−M)l(Cϕ(x)+Cmax(x)
)

≤ ( 4J2√
1−M)N(Cϕ(x)+Cmax(x)

)
.

This establishes our proposition with B = 4J2√
1−M and

A(x) := max{2Cmax(x)B−Jk∗x ,(Cϕ(x)+Cmax(x))},

where k∗x is a measurable function such that we have k
nk
≥ 1

2J for all k ≥ k∗x . ut

From now onwards throughout this section, rather than the operator L̃ , we con-
sider the operator L̂x defined previously in (3.26).

Lemma 3.18 Let s> 1 and let g : J →R be any function such that gx ∈H α(Jx).
Then, with the notation of Proposition 3.17, we have∣∣∣∣∣∣L̂ n

x gx−
(∫

gxdµx

)
1

∣∣∣∣∣∣
∞

≤Cϕ(θ
n(x))

(∫
|gx|dµx +4

vα(gxqx)

Qx

)
A(θ n(x))Bn.

Proof. Fix s > 1. First suppose that gx ≥ 0. Consider the function

hx =
gx + vα(gx)/Qx

∆x
where ∆x := νx(gx)+ vα(gx)/Qx.

It follows from Lemma 3.13 that hx belongs to the set Λ s
x and from Proposition 3.17

we have∣∣∣∣∣∣L̃ n
x gx−

(∫
gx dνx

)
qθ n(x)

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣∆xL̃

n
x hx−

vα(gx)

Qx
L̃ n

x 1x−
(∫

gx dνx

)
qθ n(x)

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣∆xL̃

n
x hx−∆xqθ n(x)+

vα(gx)

Qx

(
qθ n(x)− L̃ n

x 1x

)∣∣∣∣∣∣
∞

≤
(

∆x +
vα(gx)

Qx

)
A(θ n(x))Bn.
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Then applying this inequality for gxqx and using (3.19) we get∣∣∣∣∣∣L̂ n
x gx−

(∫
gx dµx

)
1θ n(x)

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣ 1

qθ n(x)

∣∣∣∣∣∣ · ∣∣∣∣∣∣L̃ n
x (gxqx)−

(∫
gxqx dνx

)
qθ n(x)

∣∣∣∣∣∣
∞

≤Cϕ(θ
n(x))

(∫
gx dµx +2

vα(gxqx)

Qx

)
A(θ n(x))Bn.

So, we have the desired estimate for non-negative gx. In the general case we can
use the standard trick and write gx = g+x − g−x , where g+x ,g

−
x ≥ 0. Then the lemma

follows. ut

The estimate obtained in Lemma 3.18 is a little bit inconvenient for it depends
on the values of a measurable function, namely Cϕ A, along the positive θ–orbit
of x ∈ X . In particular, it is not clear at all from this statement that the item 1. in
Theorem 3.2 holds. In order to remedy this flaw, we prove the following proposition.

Proposition 3.19 For m–a.e. x ∈ X and every gx ∈ C (Jx), we have∣∣∣∣∣∣L̂ n
x gx−

(∫
gxdµx

)
1θ n(x)

∣∣∣∣∣∣
∞

−−−→
n→∞

0.

Proof. First of all, we may assume without loss of generality that the function
gx ∈H α(Jx) since every continuous function is a limit of a uniformly conver-
gent sequence of Hölder functions. Now, let A > 0 be sufficiently big such that the
set

XA = {x ∈ X ; A(x)≤A } (3.38)

has positive measure. Notice that, by ergodicity of m, some iterate of a.e. x ∈ X is
in the set XA . Then by Poincaré recurrence theorem and ergodicity of m, for a.e.
x ∈ X , there exists a sequence n j → ∞ such that θ n j(x) ∈ XA , j ≥ 1. Therefore we
get, for such an x ∈ XA , from Lemma 3.18 that∥∥∥L̂ n j

x gx−
(∫

gxdµx

)
1

θ
n j (x)

∥∥∥
∞

(∫
|gx|dµx +4

vα(gxqx)

Qx

)−1
≤A Bn j (3.39)

for every j ≥ 1. Finally, to pass from the subsequence (n j) to the sequence of all
natural numbers we employ the monotonicity argument that already appeared in
Walters paper [29]. Since L̂x1x = 1θ(x), we have for every w ∈Jθ(x) that

inf
z∈Jx

gx(z)≤ ∑
z∈T−1

x (w)

gx(z)eϕ̂(z) ≤ sup
z∈Jx

gx(z).

Consequently the sequence

(Mn,x)
∞
n=0 = ( sup

w∈Jθn(x)

L̂ n
x gx(w))∞

n=0

is weakly decreasing. Similarly we have a weakly increasing sequence
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(mn,x)
∞
n=0 = ( inf

w∈Jθn(x)
L̂ n

x gx(w))∞
n=0.

The proposition follows since, by (3.39), both sequences converge on the subse-
quence (n j). ut

3.7 Exponential Decay of Correlations

The following proposition proves item 3. of Theorem 3.2. For a function fx ∈ L1(µx)
we denote its L1–norm with respect to µx by

‖ fx‖1 :=
∫
| fx|dµx.

Proposition 3.20 There exists a θ–invariant set X ′ ⊂ X of full m–measure such
that, for every x ∈ X ′, every fθ n(x) ∈ L1(µθ n(x)) and every gx ∈H α(Jx),∣∣µx

(
( fθ n(x) ◦T n

x )gx
)
−µθ n(x)( fθ n(x))µx(gx)

∣∣≤ A∗(gx,θ
n(x))Bn|| fθ n(x)||1

where

A∗(gx,θ
n(x)) :=Cϕ(θ

n(x))
(∫
|gx|dµx +4

vα(gxqx)

Qx

)
A(θ n(x)).

Proof. Set hx = gx−
∫

gxdµx and note that by (3.30) and (3.27) we have that

µx
(
( fθ n(x) ◦T n

x )gx
)
−µθ n(x)( fθ n(x))µx(gx) =

= µθ n(x)
(

fθ n(x)L̂
n

x (gx)
)
−µθ n(x)( fθ n(x))µx(gx)

= µθ n(x)
(

fθ n(x)L̂
n

x (hx)
)
.

(3.40)

Since Lemma 3.18 yields ||L̂ n
x hx||∞ ≤ A∗(gx,θ

n(x))Bn it follows from (3.40) that∣∣µx
(
( fθ n(x) ◦T n

x )gx
)
−µθ n(x)( fθ n(x))µx(gx)

∣∣≤ ∫ ∣∣ fθ n(x)L̂
n

x (hx)
∣∣dµθ n(x)

≤ A∗(gx,θ
n(x))Bn

∫ ∣∣ fθ n(x)
∣∣dµθ n(x).

ut

Using similar arguments like in Proposition 3.19 we obtain the following.

Corollary 3.21 Let fθ n(x) ∈ L1(µθ n(x)) and gx ∈ L1(Jx), where x ∈ X ′ and X ′ is
the set given by Lemma 3.20. If || fθ n(x)||1 6= 0 for all n, then∣∣µx

(
( fθ n(x) ◦T n

x )gx
)
−µθ n(x)( fθ n(x))µx(gx)

∣∣
|| fθ n(x)||1

−→ 0 as n→ ∞.
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Remark 3.22 Note that if || fθ n(x)||1 grows subexponentially, then∣∣µx
(
( fθ n(x) ◦T n

x )gx
)
−µθ n(x)( fθ n(x))µx(gx)

∣∣−→ 0 as n→ ∞. (3.41)

This is for example the case if x 7→ log || fx||1 is m-integrable since Birkhoff’s Ergodic
Theorem implies that (1/n) log || fθ n(x)||1→ 0 for a.e. x ∈ X.

3.8 Uniqueness

Lemma 3.23 The family of measures x 7→ νx is uniquely determined by condition
(3.1).

Proof. Let ν̃x be a family of probability measures satisfying (3.1). For x ∈ X choose
arbitrarily a sequence of points wn ∈Jθ n(x) and define

νx,n :=
(L n

x )
∗δwn

L n
x 1(wn)

.

Then, by Proposition 3.19, for a.e. x ∈ X and all gx ∈ C (Jx) we have

lim
n→∞

νx,n(gx) = lim
n→∞

L n
x gx(wn)

L n
x 1(wn)

= lim
n→∞

L̂ n
x (gx/qx)(wn)

L̂ n
x (1/qx)(wn)

=
νx(gx)

νx(1)
= νx(gx). (3.42)

In other words,
νx,n −−−→

n→∞
νx. (3.43)

in the weak* topology. Uniqueness of the measures νx follows. ut

Lemma 3.24 There exists a unique function q ∈ C 0(J ) that satisfies (3.2).

Proof. Follows from Proposition 3.17. ut

3.9 Pressure function

The pressure function is defined by the formula

x 7→ Px(ϕ) := logλx.

If it does not lead to misunderstanding, we will also denote the pressure function
by Px. It is important to note that this function is generally non-constant, even for
a.e. x ∈ X . Actually, if the pressure function is a.e. constant, then the random map
shares many properties with a deterministic system. This will be explained in detail
in section 5. Note that (3.42) and (3.11) imply an alternative definition of Px(ϕ),
namely
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Px(ϕ) = log(νθ(x)(Lx1)) = lim
n→∞

log
L n+1

x 1(wn+1)

L n
θ(x)1(wn+1)

(3.44)

where, for every n ∈ N, wn is an arbitrary point from Jθ n(x).

Lemma 3.25 For m-a.e. x ∈ X and every sequence (wn)n ⊂Jx

lim
n→∞

1
n

SnPx−n −
1
n

logL n
x−n1x−n(wn) = 0.

Proof. By (3.19) and Proposition 3.17, we have that

1
Cϕ(x)

−A(x)Bn ≤
L n

x−n1x−n(w)
λ n

x−n

≤Cϕ(x)+A(x)Bn

for every w ∈Jx and every n ∈ N. Therefore

log
( 1

Cϕ(x)
−A(x)

)
≤ logL n

x−n1x−n(w)− logλ
n
x−n ≤ log

(
Cϕ(x)+A(x)

)
.

ut

Lemma 3.26 For m-a.e. x ∈ X and for every sequence yn ∈Jxn , n≥ 0,

s-lim
n→∞

(1
n

SnPx−
1
n

logL n
x 1x(yn)

)
= 0.

Proof. Using Egorov’s Theorem and Lemma 3.25 we have that for each δ > 0 there
exists a set Fδ such that m(X \Xδ )< δ and

1
n

SnPx−n −
1
n

max
y∈Jxn

logL n
x−n1x−n(y)−−−→n→∞

0

uniformly on Fδ . The lemma follows now from Birkhoff’s Ergodic Theorem. ut

Lemma 3.27 If there exist g ∈ L1(m) such that log‖Lx1‖∞ ≤ g(x), then

lim
n→∞

∥∥∥∥1
n

SnPx−
1
n

logL n
x 1x

∥∥∥∥
∞

= 0.

Proof. Let F := Fδ be the set from the proof of Lemma 3.26, let x ∈ X ′+F and let
(n j) be the visiting sequence. Let j be such that n j < n≤ n j+1. Then

logL n
x 1(y)≤ log‖L n j

x 1‖+Sn−n j g(θ
n j(x)) for every y ∈Jθ n(x). (3.45)

Now, let h(x) := ‖ϕx‖∞. Since by (3.12) − logλx ≤ ‖ϕx‖∞,

− logλ
n
x =− logλ

n j
x − logλ

n−n j
xn j

≤ Sn j Px +Sn−n j h(θ
n j(x)).

Then by (3.45)
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1
n

SnPx−
1
n

logL n
x 1x(yxn)≤

1
n j

Sn j Px−
1
n j

logL
n j

x 1x(yxn j
)+

1
n

Sn−n j(g+h)(θ n j(x)).

On the other hand, for y ∈Jθ n(x),

logL n
x 1(y)≥ logL

n j+1
x 1(T

n j+1−n
θ n(x) (y))−Sn j+1−ng(θ n(x))

and by (3.12),

logλ
n
x = logλ

n j+1
x − logλ

n j+1−n
xn ≤ log‖L n j+1

x 1‖+Sn j+1−nh(θ n(x)).

The lemma follows now by Birkhoff’s Ergodic Theorem. ut

3.10 Gibbs property

Lemma 3.28 Let w ∈Jx, set y = (x,w) and let n≥ 0. Then

e−Qθn(x)(Dξ (θ
n(x)))≤

νx(T−n
y (B(T n(y),ξ )))

exp(Snϕ(y)−SnPx(ϕ))
≤ eQθn(x) .

Proof. Fix an arbitrary z∈Jx and set y = (x,z). Then by Lemma 2.3 and (3.13) we
have that

νx(T−n
y (B(T n(y),ξ )))

exp(Snϕ(y)−SnPx(ϕ))

≤
(λ n

x )
−1νθ n(x)(B(T n(y),ξ ))supz′∈T−n

y (B(T n(y),ξ )) eSnϕ(z′)

(λ n
x )
−1eSnϕ(y)

≤ eQSn(x) .

On the other hand

νx(T−n
y (B(T n(y),ξ )))

exp(Snϕ(y)−SnPx(ϕ))
≥

(λ n
x )
−1νθ n(x)(B(T n(y),ξ )) infz′∈T−n

y (B(T n(y),ξ )) eSnϕ(z′)

(λ n
x )
−1eSnϕ(y)

≥ νθ n(x)(B(T
n(y),ξ ))e−QSn(x) .

The lemma follows by (3.17). ut

Lemma 3.29 Let T : J →J satisfy the condition of measurability of cardinality
of covers and let {νi,x}, where i = 1,2, be two Gibbs families with pseudo-pressure
functions x 7→ Pi,x. Then, for a.e. x, the measures ν1,x and ν2,x are equivalent and

lim
k→∞

1
nk

Snk P1,x = lim
k→∞

1
nk

Snk P2,x = lim
k→∞

1
nk

Snk Px
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where (nk) = (nk(x)) is the visiting sequence of an essential set.

Proof. Let A be compact subset of Jx and let δ > 0. By regularity of ν2,x we can
find ε > 0 such that

ν2,x(Bx(A,ε))≤ ν2,x(A)+δ . (3.46)

Now, let Nx be a measurable function such that ξ (γNx
x )−1 ≤ ε/2. Set

A j
n := {y ∈ T−n

x (y j
xn) : A∩T−n

y (B(y j
xn ,ξ )) 6= /0}.

Let Z be a L,N,D,D-essential set of ax,Nx,D1,D2 and let (nk) = (nk(x)) be the
visiting sequence of Z. Fix k ∈ N and put n = nk(x). Then we have

A⊂
axn⋃
j=1

⋃
y∈A j

n

T−n
y B(y j

xn ,ξ )⊂ Bx(A,ε).

By (3.3) it follows that

ν1,x(A)≤
axn

∑
j=1

∑
y∈A j

n

ν1,x(T−n
y B(y j

xn ,ξ ))≤ D1(x)D
L

∑
j=1

∑
y∈A j

n

exp(Snϕ(y)−SnP1,x(ϕ)).

(3.47)
Then by (3.46) and again by (3.3)

ν1,x(A)≤ D1(x)Dexp(SnP2,x−SnP1,x)
axn

∑
j=1

∑
y∈A j

n

exp(Snϕ(y)−SnP2,x(ϕ))

≤ D1(x)D2(x)D2 exp(SnP2,x−SnP1,x)
axn

∑
j=1

∑
y∈A j

n

ν2,x(T−n
y B(y j

xn ,ξ ))

≤ D1(x)D2(x)D2Lexp(SnP2,x−SnP1,x)ν2,x(B(A,ε))

≤ D1(x)D2(x)D2Lexp(SnP2,x−SnP1,x)(ν2,x(A)+δ ), (3.48)

since for y 6= y′ such that y,y′ ∈ T−n
x (y j

xn), we have that

T−n
y B(y j

xn ,ξ )∩T−n
y′ B(y j

xn ,ξ ) = /0.

Hence the difference Snk P2,x − Snk P1,x is bounded from below by some constant,
since otherwise taking A=Jx we would obtain that ν1,x(Jx) = 0 on a subsequence
of (nk) in (3.48). Similarly, exchanging ν1,x with ν2,x we obtain that Snk P1,x−Snk P2,x
is bounded from above. Then, letting δ go to zero, we have that ν1,x and ν2,x are
equivalent.

Note that

exp(−SnP1,x)L
n

x 1x(yn) = ∑
y∈T−n

x (yn)

eSnϕx(y)−SnP1,x
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≤ D1(x)D ∑
y∈T−n

x (yn)

ν1,x(T−n
y B(yn,ξ ))≤ D1(x)Dν1,x(Jx) = D1(x)D.

Then
1
n

logLx1x(yn)−
1
n

log(D1(x)D)≤ 1
n

SnP1,x.

On the other hand, by (3.47), on the same subsequence

1 = ν
1
x (Jx)≤ D1(x)DL ∑

y∈T−n
x (yn)

eSnϕx(y)−SnP1,x

for some yn ∈ {y1
xn , . . . ,y

axn
xn }. Therefore, using Lemma 3.26 and the Sandwich The-

orem, we have that, for x ∈ X ′Z ∩X ′P,

lim
k→∞

1
nk

Snk P1,x = lim
k→∞

1
nk

Snk Px.

ut

Remark 3.30 We cannot expect that P1,x = Px(ϕ) m-almost surely since, for any
measurable function x 7→ gx, P1,x := Px(ϕ)+ gx− gθ(x), is also a pseudo-pressure
function (see Lemma 3.28).

3.11 Some comments on Uniformly Expanding Random Maps

By C ∞
∗ (J ) we denote the space of B-measurable mappings g : J → R with gx :

Jx→ R continuous such that supx∈X ‖gx‖∞ < ∞. For H0 ≥ 0, by H α
∗ (J ,H0) we

denote the space of all functions ϕ in H α
m (J )∩C ∞

m (J ) such that all of Hx are
bounded above by H0. Let

H α
∗ (J ) =

⋃
H0≥0

H α
∗ (J ,H0).

For ϕ ∈H α(J ,H0) we put

Q := H0

∞

∑
j=1

γ
−α j =

H0γ−α

1− γ−α
.

Then Lemma 2.3 takes on the following form.

Lemma 3.31 For every ϕ ∈H α
∗ (J ,H0),

|Snϕx(T−n
y (w1))−Snϕx(T−n

y (w2))| ≤ Qρ
α(w1,w2)

for all n ≥ 1, all x ∈ X, every z ∈Jx and every w1,w2 ∈ B(T n(z),ξ ) and where
y = (x,z).
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In this paper, whenever we deal with uniformly expanding random maps, we
always assume that potentials belong to H α

∗ (J ). Hence all the functions Cϕ(x),
Cmax(x), Cmin(x) and βx defined respectively by (3.5), (3.7), (3.6) and (3.8) are uni-
formly bounded on X . Therefore, there exists A∈R such that A(x)≤ A for all x∈ X ,
where A(x) is the function from Proposition 3.17. In particular, we can prove the fol-
lowing.

Lemma 3.32 There exists a constant Aλ such that, for x ∈ X and all y1,y2 ∈Jxn∣∣∣ L n
x 1(y1)

L n−1
x1 1(y1)

−λx

∣∣∣≤ Aλ Bn.

Proof. It follows from Proposition 3.17 that

|L̃x1(L̃ 1)(y1)− L̃x11(y2)| ≤ 2ABn−1.

Then by Lemma 3.6 and (3.22) we have, for some x-independent constant Aλ , that∣∣∣ L n
x 1(y1)

L n−1
x1 1(y2)

−λx

∣∣∣≤ 2AB−1Bnλx

L̃ n
x1
(1)(y2)

≤ Aλ Bn.

ut





Chapter 4
Measurability, Pressure and Gibbs Condition

We now study measurability of the objects produced in the previous section. Up to
now we do not know, for example, whether the family of measures νx represents
the disintegration of a global Gibbs state ν with marginal m on the fibered space
J . Therefore, we define abstract measurable expanding random maps for which
the above measurabilities of λx, qx, νx and µx can be shown. Then, we can construct
a Borel probability invariant ergodic measure on J for the skew-product transfor-
mation T with Gibbs property and study the corresponding expected pressure.

Our settings are related to those of smooth expanding random mappings of one
fixed Riemannian manifold from [17] and those of random subshifts of finite type
whose fibers are subsets of NN from [5]. One possible extension of these works is
to consider expanding random transformations on subsets of a fixed Polish space. A
general framework for this was, in fact, prepared by Crauel in [10]. In Chapter 4.5
we show how Crauel’s random compact subsets of Polish spaces fit into our general
framework and, therefore, our settings comprise all these options and go beyond.

The issue of measurability of λx, qx, νx and µx does not seem to have been treated
with care in the literature. As a matter of fact, it was not quite clear to us even for
symbol dynamics or random expanding systems of smooth manifolds until, very
recently, when Kifer’s paper [19] has appeared to take care of these issues.

4.1 Measurable Expanding Random Maps

Let T : J →J be a general expanding random map. Define πX : J → X by
πX (x,y) = x. Let B := BJ be a σ -algebra on J such that

1. πX and T are measurable,
2. for every A ∈B, πX (A) ∈F ,
3. B|Jx is the Borel σ -algebra on Jx.

By L0
m(J ) we denote the set of all BJ -measurable functions and by C 0

m(J ) the
set of all BJ -measurable functions g such that gx ∈ C (Jx).

39
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Lemma 4.1 If g ∈ C 0
m(J ), then x 7→ ‖gx‖∞ is measurable.

Proof. The proof is a consequence of item 2. Indeed, let (Gn) be an increasing
approximation of |g| by step functions. So let Gn = ∑

m
k=1 ak1Ak , where (ak) is an in-

creasing sequence of non-negative real numbers, and Ak are BJ -measurable. Then,
define

Xm := πX (Am) and Xk := πX (Ak)\∪m
j=k+1πX (A j)

where k = 1, . . . ,m−1. Let

Hn(x) :=
m

∑
k=0

ak1Xk(x) = sup
y∈Jx

Gn(x,y).

Then the sequence (Hn) is increasing and converges pointwise to the function x 7→
‖gx‖∞. ut

The space L1
m(J ) is, by definition, the set of all g∈L0

m(J ), such that
∫
‖gx‖∞dm(x)<

∞. We also define
C 1

m(J ) := C 0
m(J )∩L1

m(J )

and
H α

m (J ) := C 1
m(J )∩H α(J ).

By M 1(J ) we denote the set of probability measures and by M 1
m(J ) its subset

consisting of measures ν ′ such that there exists a system of fiber measures {ν ′x}x∈X
with the property that for every g ∈ L1

m(J ), the map x 7→
∫
Jx

gx dν ′x is measurable
and ∫

J
gdν

′ =
∫

X

∫
Jx

gxdν
′
xdm(x).

Then
m = ν

′ ◦π
−1
X (4.1)

and the family (ν ′x)x∈X is the canonical system of conditional measures of ν ′ with
respect to the measurable partition {Jx}x∈X of J . It is also instructive to notice
that in the case when J is a Lebesgue space then (4.1) implies that ν ′ ∈M 1

m(J ).
The measure µ ′ ∈ M 1(J ) is called T –invariant if µ ′ ◦ T−1 = µ ′. If µ ′ ∈

M 1
m(J ), then, in terms of the fiber measures, clearly T –invariance equivalently

means that the family {µ ′x}x∈X is T -invariant; see Chapter 3.1 for the definition of
T -invariance of a family of measures.

Fix ϕ ∈ H 1
m (J ). Then the general expanding random map T : J →J is

called a measurable expanding random map if the following conditions are satisfied.

Measurability of the Transfer Operator

The transfer operator is measurable i.e. L g ∈ C 0
m(J ) for every g ∈ C 0

m(J ).
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Integrability of the Logarithm of the Transfer Operator

The function X 3 x 7→ log‖Lx1x‖∞ belongs to L1(m).

We shall now provide a simple, easy to verify, sufficient condition for integrabil-
ity of the logarithm of the transfer operator.

Lemma 4.2 If log(deg(Tx)) ∈ L1(m), then x 7→ log‖Lx1x‖∞ belongs to L1(m).

Proof. Recall that

e−‖ϕx‖∞ ≤ ∑
Tx(z)=w

eϕx(z) ≤ deg(Tx)e‖ϕx‖∞ .

Hence −‖ϕx‖∞ ≤ log‖Lx1x‖∞ ≤ log(deg(Tx))+‖ϕx‖∞. ut

4.2 Measurability

Now, we assume that T : J →J is a measurable expanding random map. In
particular, the operator L is measurable. Armed with these assumptions, we come
back to the families of Gibbs states {νx}x∈X and {µx}x∈X whose pointwise construc-
tion was given in Theorem 3.1. Since we have already established good convergence
properties, especially the exponential decay of correlations, it will follow rather eas-
ily that these families form in fact conditional measures of some measures ν and µ

from M 1
m(J ). As an immediate consequence of item (3) of Theorem 3.1, we get

that the probability measure µ is invariant under the action of the map T : J →J .
All of this is shown in the following lemmas.

Lemma 4.3 For every g ∈ L1
m(J ), the map x 7→ νx(gx) is measurable.

Proof. It follows from (3.42) that

lim
n→∞

‖L n
x gx‖∞

‖L n
x 1‖∞

= νx(gx).

Then measurability of x 7→ νx(gx) is a direct consequence of measurability of the
transfer operator. ut

This lemma enables us to introduce the probability measure ν on J given by the
formula

ν(g) =
∫

X

∫
Jx

gxdνxdm(x).

This measure, therefore, belongs to M 1
m(J ).

Lemma 4.4 The map X 3 x 7→ λx ∈ R is measurable and the function q : J 3
(x,y) 7→ qx(y) belongs to L0

m(J ).
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Proof. Since ν ∈M 1
m(J ), measurability of λ ’s follows from the formula (3.11)

and measurability of the transfer operator. Then measurability of λ ’s and of the
transfer operator together with limn→∞ L̃ n

x−n1 = qx (see Proposition 3.17) imply
measurability of q. ut

From this lemma and Lemma 4.3 it follows that we can define a measure µ by
the formula

µ(g) =
∫

X

∫
Jx

qxgxdνxdm(x). (4.2)

4.3 The expected pressure

The pressure function of a measurable expanding random map has the following
important property.

Lemma 4.5 The pressure function X 3 x 7→ Px(ϕ) is integrable.

Proof. It follows from the definition of the transfer operator, that

−‖ϕx‖∞ ≤ logνθ(x)(Lx1)≤ log‖Lx1‖∞. (4.3)

Then, by (3.11) and integrability of the logarithm of the transfer operator, the func-
tion Px(ϕ) is bounded above and below by integrable functions, hence integrable.

ut

Therefore, the expected pressure of ϕ given by

EP(ϕ) =
∫

X
Px(ϕ)dm(x)

is well-defined.
The equality (3.42) yields alternative formulas for the expected pressure. In order

to establish them, observe that by Birkhoff’s Ergodic Theorem

EP(ϕ) = lim
n→∞

1
n

logλ
n
x f or a.e. x ∈ X . (4.4)

In addition, by (3.11), λ n
x = λ n

x νx(1) = νθ n(x)(L
n

x (1)). Thus, it follows that

1
n

logλ
n
x = lim

k→∞

1
n

log
L k+n

x 1x(wk+n)

L k
θ n(x)1θ n(x)(wk+n)

.

However, by Lemma 3.27 we can get even more interesting formula.

Lemma 4.6 For every ϕ ∈H α
m (J ) and for almost every x ∈ X

EP(ϕ) = lim
n→∞

1
n

logL n
x 1(wn)
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where the points wn ∈Jθ n(x) are arbitrarily chosen.

4.4 Ergodicity of µ

Proposition 4.7 The measure µ is ergodic.

Proof. Let B be a measurable set such that T−1(B) = B and, for x ∈ X , denote by
Bx the set {y ∈Jx : (x,y) ∈ B}. Then we have that T−1

x (Bθ(x)) = Bx. Now let

X0 := {x ∈ X : µx(Bx)> 0}.

This is clearly a θ -invariant subset of X . We will show that, if m(X0) > 0, then
µx(Bx) = 1 for a.e. x ∈ X0. Since θ is ergodic with respect to m, this implies ergod-
icity of T with respect to µ .

Define a function f by fx := 1Bx . Clearly fx ∈ L1(µx) and fθ n(x) ◦T n
x = fx m–a.e.

Let x ∈ X ′ ∩X0, where X ′ is given by Proposition 3.20. Let gx be a function from
L1(Jx) with

∫
gxdµx = 0. Then using (3.41) we obtain that

lim
n→∞

µx
(
( fθ n(x) ◦T n

x )gx
)
→ 0.

Consequently ∫
Bx

gx dµx = 0.

Since this holds for every mean zero function gx ∈ L1(Jx) , we have that µx(Bx) = 1
for every x ∈ X ′ ∩X0. This finishes the proof of ergodicity of T with respect to the
measure µ . ut

A direct consequence of Lemma 3.29 and ergodicity of T is the following.

Proposition 4.8 The measure µ ∈M 1
m(J ) is a unique T -invariant measure satis-

fying (3.3).

4.5 Random Compact Subsets of Polish Spaces

Suppose that (X ,F ,m) is a complete measure space. Suppose also that (Y,ρ) is a
Polish space which is normalized so that diam(Y ) = 1. Let BY be the σ–algebra of
Borel subsets of Y and let KY be the space of all compact subsets of Y topologized
by the Hausdorff metric. Assume that a measurable mapping X 3 x 7→Jx ∈KY is
given.

Following Crauel [10, Capter 2], we say that a map X 3 x 7→Yx⊂Y is measurable
if for every y ∈ Y, the map x 7→ d(y,Yx) is measurable, where

d(y,Yx) := inf{d(y,yx) : yx ∈ Yx}.
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This map is also called a random set. If every Yx is closed (res. compact), it is called
a closed (res. compact) random set. With this terminology X 3 x 7→Jx ⊂ Y is a
compact random set (see [10, Remark 2.16, p. 16]).

Closed random sets have the following important properties (cf. [10, Proposition
2.4 and Theorem 2.6]).

Theorem 4.9 Suppose that X 3 x 7→ Yx is a closed random set such that Yx 6= /0.
(a) For all open sets V ⊂ Y , the set {x ∈ X : Yx∩V 6= /0} is measurable.
(b) The set J := graph(x 7→ Yx) := {(x,yx) : x ∈ X and yx ∈ Yx} is a measurable
subset of X×Y i.e. J is a subset of F ⊗BY , the product σ -algebra of F and BY .
(c) For every n, there exists a measurable function X 3 x 7→ yx,n ∈ Yx such that

Yx = cl{yx,n : n ∈ N}.

In particular, there exists a measurable map X 3 x 7→ yx ∈ Yx.

Note that item (b) implies that J is a measurable subset of X×Y . Let BJ :=F ⊗
BY |J . Then by Theorem 2.12 from [10] we get that for all A ∈BJ , πX (A) ∈F .

Now, let X 3 x 7→ Yx be a compact random set and let r > 0 be a real number.
Then every set Yx can be covered by some finite number ax = ax(r) ∈ N of open
balls with radii equal to r. Moreover, by Lebesgue’s Covering Lemma, there exits
Rx = Rx(r)> 0 such that every ball B(yx,Rx) with yx ∈Yx is contained in a ball from
this cover. As we prove below, we can actually choose ax and Rx in a measurable
way. Hence for the compact random set x 7→Jx the measurability of cardinality of
covers (see Chapter 3.1, just before Theorem 3.3) holds automatically.

In the proof of Lemma 4.11 we will use the following Proposition 2.1 from [10,
p. 15].

Proposition 4.10 For compact random set x 7→ Yx and for every ε , there exists a
(non-random) compact set Yε ⊂ Y such that

m({x ∈ X : Yx ⊂ Yε})≥ 1− ε.

Lemma 4.11 There exists a measurable set X ′a ⊂ X of full measure m such that,
for every r > 0 and every positive integer k, there exists a measurable function
X ′a 3 x 7→ yx,k ∈ Yx and there exist measurable functions X ′a 3 x 7→ ax ∈ N and X ′a 3
x 7→ Rx ∈ R+ such that for every x ∈ X ′a,

ax⋃
k=1

Bx(yx,k,r)⊃ Yx,

and for every yx ∈ Yx, there exists k = 1, . . . ,ax for which Bx(yx,Rx)⊂ Bx(yx,k,r).

Proof. For n ∈ N let Y1/n ⊂ Y be a compact set given by Proposition 4.10. Then the
set Xn := {x ∈ X : Yx ⊂ Y1/n} is measurable and has the measure m(Xn) greater or
equal to 1−1/n. Define

X ′a :=
⋃

n∈N
Xn.
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Then m(X ′a) = 1.
Let {yn : n ∈ N+} be a dense subset of Y . Since Y1/n is compact, there exists a

positive integer a(n) such that

a(n)⋃
k=1

B(yk,r/2)⊃ Y1/n. (4.5)

Define a function X ′a 3 x 7→ ax, by ax = a(n) where n := min{k : x ∈ Xk}. The mea-
surability of Xn gives us the required measurability of x 7→ ax.

Let {yk : k ∈N} be a countable dense set of Y and m ∈N. For every k ∈N define
a function x 7→ Gx,k by

Gx,k =

{
B(yk,r/2) if Yx∩B(yk,r/2) 6= /0
Yx otherwise.

Since, by Theorem 4.9 (a), the set {x ∈ X : Yx ∩B(yk,r/2) 6= /0} is measurable, it
follows that X 3 x 7→ Gx,k is a closed random set. Hence, by Theorem 4.9 (c), there
exists a measurable selection X 3 x 7→ yx.k ∈Gx,k. Note that, if yx.k ∈ B(yk,r/2), then
B(yk,r/2)⊂ B(yx.k,r). Therefore, by (4.5),

Ux⋃
k=1

B(yx,k,r)⊃ Y1/n ⊃ Yx for all x ∈ Xn .

Finally, for x ∈ Xn, let Rx > 0 be a real number such that, for y ∈ Y1/n, there exists
k = 1, . . . ,U(n) for which B(y,Rx)⊂B(yk,r/2)⊂B(yx,k,r). Then X ′U 3 x 7→Rx ∈R+

is also measurable. ut





Chapter 5
Fractal Structure of Conformal Expanding
Random Repellers

We now deal with conformal expanding random maps. We prove an appropriate
version of Bowen’s Formula, which asserts that the Hausdorff dimension of almost
every fiber Jx, denoted throughout the paper by HD, is equal to a unique zero of the
function t 7→ EP(t). We also show that typically Hausdorff and packing measures on
fibers respectively vanish and are infinite. A simple example of such a phenomenon
is a Random Cantor Set described.

Later in this paper the reader will find more refined and general examples of
Random Conformal Systems notably Classical Random Expanding Systems, Brück
and Büger Polynomial Systems and DG-Systems.

In the following we suppose that all the fibers Jx are in an ambient space Y
which is a smooth Riemannian manifold. We will deal with C1+α –conformal map-
pings fx and denote then | f ′x(z)| the norm of the derivative of fx which, by confor-
mality, is nothing else than the similarity factor of f ′x(z). Finally, let || f ′x||∞ be the
supremum of | f ′x(z)| over z ∈Jx. Since we deal with expanding systems we have

| f ′x| ≥ γx for a.e. x ∈ X . (5.1)

Definition 5.1 Let f : (x,z) 7→ (θ(x), fx(z)) be a measurable expanding random
map having fibers Jx ⊂ Y and such that the mappings fx : Jx →Jθ(x) can be
extended to a neighborhood of Jx in Y to conformal C1+α mappings. If in addition
log || f ′x||∞ ∈ L1(m) then we call f conformal expanding random map.

A conformal random map f : J →J which is uniformly expanding is called
conformal uniformly expanding.

5.1 Bowen’s Formula

For every t ∈ R we consider the potential ϕt(x,z) = −t log | f ′x(z)|. The associated
topological pressure P(ϕt) will be denoted P(t). Let

47
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EP(t) =
∫

X
Px(t)dm(x)

be its expected value with respect to the measure m. In view of (5.1), it follows
from Lemma 9.6 that the function t 7→ EP(t) has a unique zero. Denote it by h. The
result of this subsection is the following version of Bowen’s formula, identifying the
Hausdorff dimension of almost all fibers with the parameter h.

Theorem 5.2 (Bowen’s Formula) Let f be a conformal expanding random map.
The parameter h, i.e. the zero of the function t 7→ EP(t), is m-a.e. equal to the
Hausdorff dimension HD(Jx) of the fiber Jx.

Bowen’s formula has been obtained previously in various settings first by Kifer
[18] and then by Crauel and Flandoli [11], Bogenschütz and Ochs [6] and Rugh
[26].

Proof. Let (νx,h)x∈X be the measures produced in Theorem 3.1 for the potential ϕh.
Fix x ∈ X and z ∈Jx and set again y = (x,z). For every r ∈ (0,ξ ] let k = k(z,r) be
the largest number n≥ 0 such that

B(z,r)⊂ f−n
y (B( f n

x (z),ξ )). (5.2)

By the expanding property this inclusion holds for all 0≤ n≤ k and limr→0 k(z,r) =
+∞. Fix such an n. By Lemma 3.28,

νx,h(B(z,r))≤ νx,h( f−n
y (B( f n

x (z),ξ )))≤ exp
(
hQθ n(x)

)
|( f n

x )
′(z)|−h exp(−Pn

x (h)).
(5.3)

On the other hand, B(z,r) 6⊂ f−(s+1)
y (B( f s+1

x (z),ξ )) for every s ≥ k. But, since by
Lemma 2.3,

B(z,exp(−Qθ s+1(x)ξ
α)|( f s+1

x )′(z)|−1
ξ )⊂ f−(s+1)

y (B( f s+1
x (z),ξ )),

we get
exp
(
−Qθ s+1(x)ξ

α
)
|( f s+1

x )′(z)|−1
ξ ≤ r (5.4)

and |( f s
x )
′(z)|−1 ≤ ξ−1 exp

(
Qθ s+1(x)ξ

α
)
r. Inserting this to (5.3) we obtain,

νx,h(B(z,r))≤ ξ
−h exp

(
hQθ n(x)

)
exp
(
hQθ s+1(x)ξ

α
)
rh

· exp(−Pn
x (h))|

(
f s+1−n
θ n(x)

)′
( f n

x (z))|h. (5.5)

or, equivalently,

logνx,h(B(z,r))
logr

≥ h+
hQθ n(x)

logr
+

hQθ s+1(x)ξ
α

logr
+
−h log

(∣∣∣( f s+1−n
θ n(x)

)′
( f n

x (z))
∣∣∣)

logr

+
−h logξ

logr
+
−Pn

x (h)
logr

. (5.6)
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Our goal is to show that

liminf
r→0

logνx,h(B(z,r))
logr

≥ h for a.e. x ∈ X and all z ∈Jx.

Since the function x 7→ Qx is measurable and almost everywhere finite, there exists
M > 0 such that m(A) > 0, where A = {x ∈ X : Qx ≤M}. Fix n = nk ≥ 0 to be the
largest integer less than or equal to k such that θ n(x) ∈ A and s = sk to be the least
integer greater than or equal to k such that θ s+1(x) ∈ A. It follows from Birkhoff’s
Ergodic Theorem that limk→∞ sk/nk = 1. Of course if for k ≥ 1 we take any rk > 0
such that k(z,rk) = k, then limk→∞ rk = 0.

Now, note that by (5.2), the formula

f−n
y (B( f n

x (z),ξ ))⊂ B(z,exp(Qθ n(x)ξ
α)|( f n

x )
′(z)|−1

ξ )

yields r ≤ exp(Qθ n(x)ξ
α)|( f n

x )
′(z)|−1ξ . Equivalently,

− logr ≥ log |( f n
x )
′(z)|−ξ

α Qθ n(x)− logξ .

Since log |( f n
x )
′(z)| ≥ logγn

x and since the function x 7→ logγx is integrable and

χ = min{1,
∫

logγ dm}> 0

we get from Birkhoff’s Ergodic Theorem that for a.e. x ∈ X and all r > 0 small
enough (so k and nk and sk large enough too)

− logr ≥ χ

2
n≥ χ

3
s. (5.7)

Remember that θ n(x) ∈ A and θ s+1(x) ∈ A. We thus obtain from (5.6) that

liminf
r→0

logνx,h(B(z,r))
logr

≥ h−3h limsup
k→∞

1
s

log
(∣∣∣( f s+1−n

θ n(x)

)′
( f n

x (z))
∣∣∣)−2

1
n

Pn
x (h).

(5.8)
for a.e. x ∈ X and all z ∈Jx. But as

∫
Px(h)dm(x) = 0, we have by Birkhoff’s

Ergodic Theorem that

lim
n→∞

1
n

Pn
x (h) = 0. (5.9)

Also, since the measure µh is f -invariant, it follows from Birkhoff’s Ergodic Theo-
rem that there exists a measurable set X0 ⊂ X such that for every x ∈ X0 there exists
at least one (in fact of full measure µx,h) zx ∈Jx such that

lim
j→∞

1
j

log
∣∣∣( f j

x
)′
(zx)
∣∣∣= χ̂ :=

∫
J

log | f ′x(z)|dµh(x,z) ∈ (0,+∞).

Hence, remembering that θ n(x) and θ s+1(x) belong to A, we get
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limsup
k→∞

1
s

log
(∣∣∣( f s+1−n

θ n(x)

)′
( f n

x (z))
∣∣∣)

= limsup
k→∞

1
s

(
log
∣∣∣( f s+1

x
)′
(z)
∣∣∣− log

∣∣∣( f n
x
)′
(z)
∣∣∣)

= limsup
k→∞

1
s

(
log
∣∣∣( f s+1

x
)′
(zx)
∣∣∣− log

∣∣∣( f n
x
)′
(zx)
∣∣∣)

≤ limsup
k→∞

1
s

log
∣∣∣( f s+1

x
)′
(zx)
∣∣∣ − liminf

k→∞

1
s

log
∣∣∣( f n

x
)′
(zx)
∣∣∣ = χ̂ − χ̂ = 0 .

Inserting this and (5.9) to (5.8) we get that

liminf
r→0

logνx,h(B(z,r))
logr

≥ h. (5.10)

Keep x ∈ X , z ∈Jx and r ∈ (0,ξ ]. Now, let l = l(z,r) be the least integer ≥ 0
such that

f−l
y (B( f l

x(z),ξ ))⊂ B(z,r). (5.11)

Then, by Lemma 3.28,

νx,h(B(z,r))≥ νx,h( f−l
y (B( f l

x(z),ξ )))

≥ D1(θ
l(x))exp

(
−Q

θ l(x)
)
|( f l

x)
′(z)|−l exp(−Pl

x(h)).
(5.12)

On the other hand f−(l−1)
y (B( f l−1

x (z),ξ )) 6⊂ B(z,r). But, since

f−(l−1)
y (B( f l−1

x (z),ξ ))⊂ B(y,exp(Q
θ l−1(x)ξ α)|( f l−1

x )′(z)|−1
ξ ),

we get
r ≤ ξ exp(Q

θ l−1(x)ξ
α)|( f l−1

x )′(y)|−1. (5.13)

Thus |( f l−1
x )′(z)|−1 ≥ ξ−1 exp

(
−Q

θ l−1(x)ξ
α
)
r. Inserting this to (5.12) we obtain,

νx,h(B(z,r))≥ ξ
−hD1(θ

l(x))e−Q
θ l (x) |( f

θ l−1(x))
′( f l−1

x (z))|−h·

exp
(
−hQ

θ l−1(x)ξ
α
)
rh exp(−Pl

x(h)). (5.14)

Now, given any integer j ≥ 1 large enough, take R j > 0 to be the least radius r > 0
such that

f− j
y (B( f j

x (z),ξ ))⊂ B(z,r) .

Then l(y,R j) = j. Since the function Q is measurable and almost everywhere finite,
and θ is a measure-preserving transformation, there exist a set Γ ⊂ X with positive
measure m and a constant E > 0 such that Qx ≤ E, D1(x) ≤ E and Qθ−1(x) ≤ E
for all x ∈ Γ . It follows from Birkhoff’s Ergodic Theorem and ergodicity of the
map θ : X → X that there exists a measurable set X1 ⊂ X with m(X1) = 1 such that
for every x ∈ X1 there exists an unbounded increasing sequence ( ji)∞

i=1 such that
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θ ji(x) ∈ Γ for all i≥ 1. Formula (5.13) then yields

− logR ji ≥−Eξ
α + logξ + log |( f ji−1

x (z)| ≥ −Eξ
α + logξ + logγ

ji−1
x ≥ χ

2
ji,

where the last inequality was written because of the same argument as (5.7) was,
intersecting also X1 with an apropriate measurable set of measure 1. Now we get
from (5.14) that

logνx,h
(
B(z,R ji)

)
logR ji

≤ h+
2logE

χ ji
− 2E

χ ji
− 2h

χ

1
ji

log ||( f
θ ji−1(x))

′||∞−
2hξ α E

χ ji

− 2h logξ

χ ji
− 2

χ

1
ji

P ji
x (h).

Noting that
∫

X Px(t)dm(x) = 0 and applying Birkhoff’s Ergodic Theorem, we see
that the last term in the above estimate converges to zero. Also 1

ji
log ||( f

θ ji−1(x))
′||∞

converges to zero because of Birkhoff’s Ergodic Theorem and integrability of the
function x 7→ log || f ′x||∞. Since all the other terms obviously converge to zero, we
thus get for a.e. x ∈ X and all z ∈Jx, that

liminf
r→0

logνx,h(B(z,r))
logr

≤ liminf
i→∞

logνx,h
(
B(z,R ji)

)
logR ji

≤ h.

Combining this with (5.10), we obtain that

liminf
r→0

logνx,h(B(z,r))
logr

= h

for a.e. x ∈ X and all z ∈Jx. This gives that HD(Jx) = h for a.e. x ∈ X . We are
done. ut

5.2 Quasi-deterministic and essential systems

We now investigate the fractal structure of the Julia sets and we will see that the ran-
dom systems naturally split into two classes depending on the asymptotic behavior
of Birkhoff’s sums of the topological pressure Pn

x (h).

Definition 5.3 Let f be a conformal uniformly expanding random map. It is called
essentially random if for m-a.e. x ∈ X,

limsup
n→∞

Pn
x (h) = +∞ and liminf

n→∞
Pn

x (h) =−∞, (5.15)

where h is the Bowen’s parameter coming from Theorem 5.2. The map f is called
quasi-deterministic if for m–a.e. x ∈ X there exists Lx > 0 such that
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−Lx ≤ Pn
x (h)≤ Lx for m-almost all x ∈ X and all n≥ 0 . (5.16)

Remark 5.4 Because of ergodicity of the transformation θ : X→X, for a uniformly
conformal random map to be essential it suffices to know that the condition (5.15)
is satisfied for a set of points x ∈ X with a positive measure m.

Remark 5.5 If the number

σ
2(P(h)) = lim

n→∞

1
n

∫ (
Sn(P(h))

)2
dm > 0

and if the Law of Iterated Logarithm holds, i.e. if

−
√

2σ2(P(h)) = liminf
n→∞

Pn
x (h)√

n log logn
≤ limsup

n→∞

Pn
x (h)√

n log logn
=
√

2σ2(P(h))

m-a.e., then our conformal random map is essential. It is essential even if only the
Central Limit Theorem holds, i.e. if

m
({

x ∈ X :
Pn

x (h)√
n

< r
})
→ 1

σ
√

2π

∫ r

−∞

e−s2/2σ2(P(h)) ds.

Remark 5.6 If there exists a bounded everywhere defined measurable function u :
X →R such that Px(h) = u(x)−u◦θ(x) (i.e. if P(h) is a coboundary) for all x ∈ X,
then our system is quasi-deterministic.

For every α > 0 let H α refer to the α-dimensional Hausdorff measure and let
Pα refer to the α-dimensional packing measure. Recall that a Borel probability
measure µ defined on a metric space M is geometric with an exponent α if and only
if there exist A≥ 1 and R > 0 such that

A−1rα ≤ µ(B(z,r))≤ Arα

for all z ∈M and all 0 ≤ r ≤ R. The most significant basic properties of geometric
measures are the following:
(GM1) The measures µ , H α , and Pα are all mutually equivalent with Radon-
Nikodym derivatives separated away from zero and infinity.
(GM2) 0 < H α(M),Pα(M)<+∞.
(GM3) HD(M) = h.

The main result of this section is the following.

Theorem 5.7 Suppose f : J →J is a conformal uniformly expanding random
map.
(a) If the system f : J →J is essential, then H h(Jx) = 0 and Ph(Jx) = +∞

for m-a.e. x ∈ X.
(b) If, on the other hand, the system f : J →J is quasi-deterministic, then for
every x ∈ X νh

x is a geometric measure with exponent h and therefore (GM1)-(GM3)
hold.
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Proof. Part (a). Remember that by its very definition EP(h) =
∫

Px(h)dm(x) = 0. By
Definition 5.3 there exists a measurable set X1 with m(X1) = 1 such that for every
x ∈ X1 there exists an increasing unbounded sequence (n j)

∞
j=1 (depending on x) of

positive integers such that
lim
j→∞

P
n j
x (h) =−∞. (5.17)

Since we are in the uniformly expanding case, the formula (5.12) from the proof of
Theorem 5.2 (Bowen’s Formula) takes on the following simplified form

νx(B(z,r))≥ D−1rh exp
(
−Pl(z,r)

x (h)
)

(5.18)

with some D ≥ 1 and all z ∈Jx. Since the map is uniformly expanding, for all
j≥ 1 large enough, there exists r j > 0 such that l(z,r j) = n j. So disregarding finitely
many terms, we may assume without loss of generality, that this is true for all j≥ 1.
Clearly lim j→∞ r j = 0. It thus follows from (5.18) that

νx,h(B(z,r j))≥ D−1rh
j exp

(
−P

n j
x (h)

)
for all x ∈ X1, all z ∈Jx and all j ≥ 1. Therefore, by (5.17),

limsup
r→0

νx,h(B(z,r))
rh ≥ limsup

j→∞

νx,h(B(z,r j))

rh
j

≥ D−1 limsup
j→∞

exp
(
−P

n j
x (h)

)
=+∞

which implies that H h(Jx) = 0.

The proof for packing measures is similar. By Definition 5.3 there exists a mea-
surable set X2 with m(X2) = 1 such that for every x ∈ X2 there exists an increasing
unbounded sequence (s j)

∞
j=1 (depending on x) of positive integers such that

lim
j→∞

P
s j
x (h) = +∞. (5.19)

Since we are in the expanding case, formula (5.5) from the proof of Theorem 5.2
(Bowen’s Formula), applied with s = k(z,r), takes on the following simplified form.

νx(B(z,r))≤ Drh exp
(
−Pk(z,r)

x (h)
)

(5.20)

with D ≥ 1 sufficiently large, all x ∈ X2 and all z ∈Jx. By our uniform assump-
tions, for all j ≥ 1 large enough, there exists R j > 0 such that k(z,R j) = s j. Clearly
lim j→∞ R j = 0. It thus follows from (5.20) that

νx,h(B(z,r j))≤ DRh
j exp

(
−P

s j
x (h)

)
for all x ∈ X2, all z ∈Jx and all j ≥ 1. Therefore, using (5.19), we get

liminf
r→0

νx,h(B(z,r))
rh ≤ liminf

j→∞

νx,h(B(z,R j))

Rh
j

≤ D liminf
j→∞

exp
(
−P

s j
x (h)

)
= 0.
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Thus Ph(Jx) = +∞. We are done with part (a).

Suppose now that the map f : J →J is quasi-deterministic. It then follows from
Definition 5.3 and (5.18) along with (5.20), that for every x ∈ X and for every r > 0
small enough independently of x ∈ X , we have.

(LxD)−1rh ≤ νx,h(B(y,r))≤ LxDrh, x ∈ X , z ∈Jx.

This means that each νx,h, x ∈ X , is a geometric measure with exponent h and the
theorem follows. ut

As a straightforward consequence of this theorem we get a corollary transpar-
ently stating that essential conformal random systems are entirely new objects, dras-
tically different from deterministic self-conformal sets.

Corollary 5.8 Suppose that conformal random map f : J →J is essential. Then
for m-a.e. x ∈ X the following hold.
(1) The fiber Jx is not bi-Lipschitz equivalent to any deterministic nor quasi-
deterministic self-conformal set.
(2) Jx is not a geometric circle nor even a piecewise smooth curve.
(3) If Jx has a non-degenerate connected component (for example if Jx is con-
nected), then h = HD(Jx)> 1.
(4) Let d be the dimension of the ambient Riemannian space Y . Then HD(Jx)< d.

Proof. Item (1) follows immediately from Theorem 5.7(a) and (b3). Item (3) from
Theorem 5.7(a) and the observation that H 1(W ) > 0 whenever W is connected.
The proof of (4) is similar. Since (3) obviously implies (2), we are done. ut

5.3 Random Cantor Set

Here is a first example of an essentially random system. Define

f0(x) = 3x(mod1) for x ∈ [0,1/3]∪ [2/3,1]

and
f1(x) = 4x(mod1) for x ∈ [0,1/4]∪ [3/4,1].

Let X = {0,1}Z, θ be the shift transformation and m be the standard Bernoulli
measure. For x = (. . . ,x−1,x0,x1, . . .) ∈ X define fx = fx0 , f n

x = fθ n−1(x) ◦ fθ n−2(x) ◦
. . .◦ fx and

Jx =
∞⋂

n=0

( f n
x )
−1([0,1]).

The skew product map defined on
⋃

x∈X Jx by the formula

f (x,y) = (θ(x), fx(y))
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generates a conformal random expanding system. We shall show that this system is
essential. To simplify the next calculation, we define recurrently:

ξx(1) =
{

3 if x0 = 0
4 if x0 = 1 , ξx(n) = ξθ n−1(x)(1)ξx(n−1).

Consider the potential ϕ t defined by the formula ϕ t
x =−t logξx(1). Then

Snϕ
t
x =−t logξx(n).

Let Cn be a cylinder of the order n that is Cn is a subset of Jx of diameter (ξx(n))−1

such that f n
x |Cn is one-to-one and onto Jθ n(x). We can project the measure m on Jx

and we call this measure µx. In other words, µx is such a measure that all cylinders
of level n have the measure 1/2n. Then by Law of Large Numbers for m-almost
every x

lim
n→∞

log µx(Cn)

logdiam(Cn)
=

log2
(1/n) logξx(n)

=
log4

log12
=: h.

Therefore the Hausdorff dimension of Jx is for m-almost every x constant and equal
to h. Next note that

µx(Cn)

diam(Cn)h = exp(−SnPx) (5.21)

where
Px := log2−h logξx(1).

This will give us the value of the Hausdorff and packing measure. So let Z0,Z1, . . .
be independent random variables, each having the same distribution such that the
probability of Zn = log2− h log3 is equal to the probability of Zn = log2− h log4
and is equal to 1/2. The expected value of Zn, EP, is zero and its standard deviation
σ > 0. Then the Law of the Iterated Logarithm tells us that the following equalities

liminf
n→∞

Z1 + . . .+Zn√
n log logn

=−
√

2σ and limsup
n→∞

Z1 + . . .+Zn√
n log logn

=
√

2σ

hold with probability one. Then, by (5.21),

limsup
n→∞

µx(Cn)

diam(Cn)h = ∞ and liminf
n→∞

µx(Cn)

diam(Cn)h = 0

for m-almost every x. In particular, the Hausdorff measure of almost every fiber Jx
vanishes and the packing measure is infinite. Note also that the Hausdorff dimension
of fibers is not constant as clearly HD(J0∞) = log2/ log3, whereas HD(J1∞) =
log2/ log4 = 1/2.





Chapter 6
Multifractal analysis

The second direction of our study of fractal properties of conformal random expand-
ing maps is to investigate the multifractal spectrum of Gibbs measures on fibers. We
show that the multifractal formalism is valid. It seems that it is impossible to do it
with a method inspired by the proof of Bowen’s formula since one gets full measure
sets for each real α and not one full measure set Xma such that for all x ∈ Xma, the
multifractal spectrum of the Gibbs measure on the fiber over x is given by the Leg-
endre transform of a temperature function which is independent of x ∈ Xma. In order
to overcome this problem we work out a different proof in which we minimize the
use Birkhoff’s Ergodic Theorem and instead we base the proof on the definition of
Gibbs measures and the behavior of the Perron-Frobenius operator. In this point we
were partially motivated by the approach presented in Falconer’s book [15]

Another issue we would like to bring up here is real analyticity of the multifractal
spectrum which we establish for uniformly expanding systems. The proof is based
on real-analiticity results for the expected pressure which are treaded separately in
Chapter 9 since this part involves different methods.

6.1 Concave Legendre Transform

Let ϕ ∈ Hm(J ) be such that EP(ϕ) = 0. Fix q ∈ R. We will not use the function
qx and therefore this will not cause any confusion. Define auxiliary potentials

ϕq,x,t(y) := q(ϕx(y)−Px(ϕ))− t log | f ′x(y)|.

By Lemma 9.5, the function (q, t) 7→ EP(q, t) := EP(ϕq,t) is convex. Moreover,
since log | f ′x(y)| ≥ logγx > 0, it follows from Lemma 9.6 that for every q ∈ R there
exists a unique T (q) ∈ R such that

EP(ϕq,T (q)) = 0.

57
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The function q 7→ T (q) defined implicitly by this formula is referred to as the tem-
perature function. Put

ϕq := ϕq,T (q)

By DT we denote the set of differentiability points of the temperature function
T . By convexity of EP, for λ ∈ (0,1),

EP(λq1 +(1−λ )q2,λT (q1)+(1−λ )T (q2))

≤ λEP(q1,T (q1))+(1−λ )EP(q2,T (q2)) = 0.

Since t 7→ EP(λq1 +(1−λ )q2, t) is decreasing,

T (λq1 +(1−λ )q2)≤ λT (q1)+(1−λ )T (q2).

Hence the function q 7→ T (q) is convex and continuous. Furthermore, it follows
from its convexity that the function T is differentiable everywhere but a countable
set, where it is left and right differentiable. Define

L(T )(α) := inf
−∞<q<∞

(
αq+T (q)

)
,

where
α ∈ Dom(L) =

[
lim

q→−∞
−T ′(q−), lim

q→∞
−T ′(q+)

]
.

We call L the concave Legendre transform. This transform is related to the (classi-
cal) Legendre transform L by the formula L(T )(α) =−L(T )(−α). The transform
L sends convex functions to concave ones and, if q ∈ DT , then

L(T )(−T ′(q)) =−T ′(q)q+T (q).

Lemma 6.1 Let q ∈ DT . Then for every ε > 0 there exists δε > 0, such that, for all
δ ∈ (0,δε), we have

EP((1+δ )q,T (q)+(qT ′(q)+ ε)δ )< 0

and
EP((1−δ )q,T (q)+(−qT ′(q)+ ε)δ )< 0.

Proof. Since the temperature function T is differentiable at the point q, we may
write

T (q+δq) = T (q)+T ′(q)δq+o(δ ).

for all δ > 0 sufficiently small, say δ ∈ (0,δ (1)
ε ). So,

T (q)+(qT ′(q)+ ε)δ −T ((1+δ )q) = εδ +o(δ )> 0.

Then, in virtue of Lemma 9.6, we get that

EP((1+δ )q,T (q)+(qT ′(q)+ ε)δ )< EP((1+δ )q),T ((1+δ )q)) = 0,
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meaning that the first assertion of our lemma is proved. The second one is proved
similarly producing a positive number δ

(2)
ε . Setting then δε = min{δ (1)

ε ,δ
(2)
ε } com-

pletes the proof. ut

6.2 Multifractal Spectrum

Let µ be the invariant Gibbs measure for ϕ and let ν be the ϕ-conformal measure.
For every α ∈ R define

Kx(α) :=
{

y ∈Jx : dµx(y) := lim
r→0

log µx(B(y,r))
logr

= α

}
.

and

K′x :=
{

y ∈Jx : the limit lim
r→0

log µx(B(y,r))
logr

does not exist
}
.

This gives us the multifractal decomposition

Jx :=
⊎

α≥0

Kx(α)]K′x.

The multifractal spectrum is the family of functions {gµx}x∈X given by the formulas

gµx(α) := HD(Kx(α)).

The function dµx(y) is called the local dimension of the measure µx at the point y.
Since for m almost every x ∈ X the measures µx and νx are equivalent with Radon-
Nikodym derivatives uniformly separated from 0 and infinity (though the bounds
may and usually do depend on x), we conclude that we get the same set Kx(α) if in
its definition the measure µx is replaced by νx. Our goal now is to get a ”smooth”
formula for gµx .

Let µq and νq be the measures for the potential ϕq given by Theorem 3.1. The
main technical result of this section is this.

Proposition 6.2 For every q ∈ DT there exists a measurable set Xma ⊂ X with
m(Xma) = 1 and such that, for every x ∈ Xma, and all q ∈ DT , we have

gµx(−T ′(q)) =−qT ′(q)+T (q)

Proof. Firstly, by Lemma 9.4, for every 0 < R ≤ ξ there exists a measurable func-
tion DR : X → (0,+∞) such that for all q ∈R, all x ∈ X , all y ∈Jx, and all integers
n≥ 0, we have

D−q∗
R (θ n(x))≤

νq,x( f−n
y (B( f n(y),R)))

exp
(
q(Snϕ(y)−Pn

x (ϕ))
)
|( f n

x )
′(y)|−T (q)

≤ Dq∗
R (θ n(x)), (6.1)
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where q∗ := (q,T (q))∗ as defined in (9.1). In what follows we keep the notation
from the proof of Theorem 5.2. The formulas (5.2) and (5.11) then give for every
j ≥ l and every 0≤ i≤ k, that

D−q∗

ξ
(θ j(x)))−1 exp

(
q(S jϕ(y)−P j

x (ϕ))
)
|( f j

x )
′(y)|−T (q) ≤

≤ νq,x(B(y,r))≤

≤ Dq∗

ξ
(θ i(x)))exp

(
q(Siϕ(y)−Pi

x(ϕ))
)
|( f i

x)
′(y)|−T (q).

(6.2)

By Qx we denote the measurable function given by Lemma 2.3 for the function
− log | f ′|. Let X∗ be an essential set for the functions X 3 x 7→ Rx, X 3 x 7→ a(x), x 7→
Qx, and X 3 x 7→ Dξ (x) with constants R̂, â, Q̂ and D̂ξ . Let (n j)

∞
1 be the positively

visiting sequence for X∗ at x. Let XE
′ be the set given by Lemma 9.5 for potentials

φq,t , q, t ∈ R2. Let
X ′+ := XE

′∩X ′+X∗ .

Let us first prove the upper bound on gµx(−T ′(q)). Fix x∈ X ′+. Fix ε1 > 0. For every
j ≥ 1 let {wk(xn j) : 1≤ k ≤ a(xn j)} be a ξ spanning set of Jxn j

. As EP(φq) = 0, it

follows from Lemma 9.6 that γ := 1
2EP(φq,T (q)+ε1)< 0. So, in virtue of Lemma 9.5,

there exists C ≥ 1 such that

Lφq,T (q)+ε1
,x1(wk(xn j))≤Ce−γn j (6.3)

for all j ≤ 1 and all k = 1,2, . . . ,a(θ n j(x)) ≤ â. Now, fix an arbitrary ε2 ∈ R such
that qε2 ≥ 0. For every integer l ≥ 1 let

Kx(ε2, l) =
{

y ∈ Kx(−T ′(q)) :−T ′(q)− 1
2
|ε2| ≤

logνx(B(y,r))
logr

≤−T ′(q)+
1
2
|ε2|

for all 0 < r ≤ 1/l
}
.

Note that

Kx(−T ′(q)) =
∞⋃

l=1

Kx(ε2, l). (6.4)

Let

Γn j(x) =

z ∈
a(xn j )⋃
k=1

f
−n j
x (wk(xn j)) : Kx(ε2, l)∩ f

−n j
z (B( f n j(z),ξ/2)) 6= /0

 .

Then
Kx(ε2, l)⊂

⋃
z∈Γn j(x)

f
−n j
z (B( f n j(z),ξ/2)). (6.5)

For every z ∈ Γn j(x), say z ∈ f
−n j
x (wk(xn j)), choose
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ẑ ∈ Kx(ε2, l)∩ f
−n j
z (B(wk(xn j),ξ/2)).

Then B
(
wk(xn j),ξ/2

)
⊂ B( f n j(z),ξ ), and therefore

f
−n j
z (B(wk(xn j),ξ/2))⊂ f

−n j
ẑ

(
B( f n j(ẑ),ξ )

)
.

It follows from this and (6.5) that

Kx(ε2, l)⊂
⋃

z∈Γn j (x)

f
−n j
ẑ (B( f n j(ẑ),ξ )). (6.6)

Put
r(1)j (ẑ) = Q̂−1|( f

n j
x )′(ẑ)|−1 and r(2)j (ẑ) = Q̂|( f

n j
x )′(ẑ)|−1

We then have

B
(
ẑ,r(1)j (ẑ)

)
⊂ f

−n j
ẑ (B( f n j(ẑ),ξ ))⊂ B

(
ẑ,r(2)j (ẑ)

)
.

Therefore, assuming j≥ 1 to be sufficiently large so that the radii r(1)j (ẑ) and r(1)j (ẑ)
are sufficiently small, particularly ≤ 1/l, we get

logνx
(

f
−n j
ẑ (B( f n j(ẑ),ξ ))

)
− log |( f

n j
x )′(ẑ)|

≤
logνx

(
B(ẑ), Q̂−1|( f

n j
x )′(ẑ)|−1

)
− log |( f

n j
x )′(ẑ)|

≤
logνx

(
B(ẑ),r(1)j (ẑ))

)
log(r(1)j (ẑ))+ log Q̂

≤−T ′(q)+ |ε2|.

and

logνx
(

f
−n j
ẑ (B( f n j(ẑ),ξ ))

)
− log |( f

n j
x )′(ẑ)|

≥
logνx

(
B(ẑ), Q̂|( f

n j
x )′(ẑ)|−1

)
− log |( f

n j
x )′(ẑ)|

≥
logνx

(
B(ẑ),r(2)j (ẑ))

)
log(r(2)j (ẑ))− log Q̂

≥−T ′(q)−|ε2|.

Hence,

|q|
(
logνx

(
f
−n j
ẑ (B( f n j(ẑ),ξ ))

)
− (T ′(q)+ |ε2|) log |( f

n j
x )′(ẑ)|

)
≤ 0

and

|q|
(
logνx

(
f
−n j
ẑ (B( f n j(ẑ),ξ ))

)
− (T ′(q)−|ε2|) log |( f

n j
x )′(ẑ)|

)
≥ 0.

So, in either case (as ε2q > 0),

−q
(
logνx

(
f
−n j
ẑ (B( f n j(ẑ),ξ ))

)
− (T ′(q)−|ε2|) log |( f

n j
x )′(ẑ)|

)
≤ 0
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or equivalently,

ν
−q
x
(

f
−n j
ẑ (B( f n j(ẑ),ξ ))

)
|( f n j)′(ẑ)|qT ′(q)−ε2q ≤ 1. (6.7)

Put t = −qT ′(q)+T (q)+ ε1 + ε2q. Using (6.7) and (6.3) we can then estimate as
follows.

∑
z∈Γn j (x)

diam−qT ′(q)+T (q)+ε1+ε2q( f
−n j
ẑ (B( f n j(ẑ),ξ ))

)
=

= ∑
z∈Γn j (x)

diamT (q)+ε1
(

f
−n j
ẑ (B( f n j(ẑ),ξ ))

)
diam−qT ′(q)+ε2q( f

−n j
ẑ (B( f n j(ẑ),ξ ))

)
≤ ∑

z∈Γn j (x)
(Q̂ξ

−1)t |( f n j)′(z)|−(T (q)+ε1)(Q̂ξ )−t |( f n j)′(ẑ)|qT ′(q)−ε2q

= (Q̂ξ
−1)2t

∑
z∈Γn j (x)

exp
(
q(Sn j ϕ(z)−P

n j
x (ϕ))− (T (q)+ ε1 log |( f

n j
x )′(z)|

)
·

· exp
(
q(P

n j
x (ϕ)−Sn j ϕ(z)

)
|( f n j)′(ẑ)|qT ′(q)−ε2q

≤ (Q̂ξ
−1)2teqQ̂φ ∑

z∈Γn j (x)
(Q̂ξ

−1)2t
∑

z∈Γn j (x)
exp
(
q(Sn j ϕ(z)−P

n j
x (ϕ))−

− (T (q)+ ε1) log |( f
n j
x )′(z)|

)
exp
(
q(P

n j
x (ϕ)−Sn j ϕ(ẑ))

)
|( f n j)′(ẑ)|qT ′(q)−ε2q

≤ (Q̂ξ
−1)2teqQ̂φ ∑

z∈Γn j (x)
(Q̂ξ

−1)2t
∑

z∈Γn j (x)
exp
(
q(Sn j ϕ(z)−P

n j
x (ϕ))−

− (T (q)+ ε1) log |( f
n j
x )′(z)|

)
ν
−q
x
(

f
−n j
ẑ (B( f n j(ẑ),ξ ))

)
|( f n j)′(ẑ)|qT ′(q)−ε2q

≤ (Q̂ξ
−1)2teqQ̂φ ∑

z∈Γn j(x)

(Q̂ξ
−1)2t

∑
z∈Γn j (x)

exp
(
q(Sn j ϕ(z)−P

n j
x (ϕ))−

− (T (q)+ ε1) log |( f
n j
x )′(z)|

)
≤ (Q̂ξ

−1)2teqQ̂φ

a(xn j )

∑
k=1

Lφq,T (q)+ε1
,x1(wk(xn j))

≤C(Q̂ξ
−1)2teqQ̂φ a(xn j)e

−γn j ≤C(Q̂ξ
−1)2teqQ̂φ ae−γn j .

Letting j→ ∞ and looking also at (6.6), we thus conclude that H t(Kx(ε2, l)) = 0.
In virtue of (6.4) this implies that H t(Kx(−T ′(q))) = 0. Since ε1 > 0 and ε2q > 0
were arbitrary, it follows that

gµx(−T ′(q)) = HD(Kx(−T ′(q)))≤−qT ′(q)+T (q). (6.8)

Let us now prove the opposite inequality. For every s≥ 1 let s− be the largest integer
in [0,s−1] such that θ s−(x) ∈ X∗ and let s+ be the least integer in [s+1,+∞) such
that θ s+(x) ∈ X∗. It follows from (6.2) applied with j = l+ and i = k−, that (5.4) is
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true with s+1 replaced by k+, and (5.13) is true with l−1 replaced by l−, that

logνq,x(B(y,r))
logr

≤
−q∗ log D̂ξ +q

(
Sl+ϕ(y)−Pl+

x (ϕ)
)
−T (q) log |( f l+

x )′(y)|
logξ +ξ α Q̂− log |( f l−

x )′(y)|

and

logνq,x(B(y,r))
logr

≥
q∗ log D̂ξ +q

(
Sk−ϕ(y)−Pk−

x (ϕ)
)
−T (q) log |( f k−

x )′(y)|
logξ −ξ α Q̂− log |( f k+

x )′(y)|
.

Hence,

limsup
r→0

logνq,x(B(y,r))
logr

≤

≤ limsup
n→∞

(
q

Pn+
x (ϕ)−Sn+ϕ(y)
log |( f n−

x )′(y)|

)
+T (q)limsup

n→∞

log |( f n+
x )′(y)|

log |( f n−
x )′(y)|

(6.9)

and

liminf
r→0

logνq,x(B(y,r))
logr

≥

≥ liminf
n→∞

(
q

Pn−
x (ϕ)−Sn−ϕ(y)
log |( f n+

x )′(y)|

)
+T (q)liminf

n→∞

log |( f n−
x )′(y)|

log |( f n+
x )′(y)|

. (6.10)

Now, given ε > 0 and δε > 0 ascribed to ε according to Lemma 6.1, fix an arbitrary
δ ∈ (0,δε ]. Set

φ
(1) = φ

(1)
ε,δ = φ(1+δ )q,T (q)+(qT ′(q)+ε)δ exp

(
−(1+δ )P(φq)

)
and

φ
(2) = φ

(2)
ε,δ = φ(1−δ )q,T (q)+(−qT ′(q)+ε)δ exp

(
−(1+δ )P(φq)

)
.

Since

EP(φ (1)) = EP(φ(1+δ )q,T (q)+(qT ′(q)+ε)δ

)
+(1+δ )

∫
P(φq)dm

= EP(φ(1+δ )q,T (q)+(qT ′(q)+ε)δ

)
and

EP(φ (2)) = EP(φ(1−δ )q,T (q)+(−qT ′(q)+ε)δ

)
+(1−δ )

∫
P(φq)dm

= EP(φ(1−δ )q,T (q)+(−qT ′(q)+ε)δ

)
,

it follows from Lemma 6.1 and Lemma 9.5, there exists = κ(q,ε,δ ) ∈ (0,1) such
that for all k = 1,2, and all n ≥ 1 sufficiently large, we have 1

n logL n
φ
(k)
x
(1)(w) ≤

logκ for all x ∈ X ′+ and all w ∈Jθ n(x). Equivalently,
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L n
φ
(k)
x
(1)(w)≤ κ

n. (6.11)

Now, for all x ∈ X ′+, all j ≥ 1, all 1≤ k ≤ a(θ n j(x)≤ â, and all z ∈ f
−n j
x (wk(xn j)),

define

A(z) :=
{

y ∈ f
−n j
z (B(wk(xn j),ξ )) : B( f n j(y),R)⊂ B(wk(xn j),ξ )

}
.

Note that
a(xn j )⋃
k=1

⋃
z∈ f

−n j
x (wk(xn j ))

A(z) = J (x). (6.12)

Fix any q ∈ DT and set

∆ε = sup
0<δ≤δε

{
max{((1+δ )q,T (q)+(qT ′(q)+ ε)δ )∗,

((1−δ )q,T (q)+(−qT ′(q)+ ε)δ )∗}
}
.

Let x ∈ X ′+. Set
M := exp

(
Q̂δ (−qT ′(q)+T (q)− ε)

)
.

Then, using (6.12), Lemma 2.3 (for the potential (x,z) 7→ log | f ′x(z)|, (6.2), and
(6.11), we obtain

νq,x
(
{y ∈Jx : νq,x

(
f
−n j
y (B( f n j(y),R))

)
≥ |( f

n j
x )′(y)|−(−qT ′(q)+T (q))+ε}

)
=

= νq,x
(
{y ∈Jx : νq,x

(
f
−n j
y (B( f n j(y),R))

)
|( f

n j
x )′(y)|−qT ′(q)+T (q)−ε ≥ 1}

)
= νq,x

(
{y ∈Jx : ν

δ
q,x
(

f
−n j
y (B( f n j(y),R))

)
|( f

n j
x )′(y)|δ (−qT ′(q)+T (q)−ε) ≥ 1}

)
≤
∫

Jx

ν
δ
q,x
(

f
−n j
y (B( f n j(y),R))

)
|( f

n j
x )′(y)|δ (−qT ′(q)+T (q)−ε)dνq,x(y)

≤
a(xn j )

∑
k=1

∑
z∈ f

−n j
x (wk(xn j ))

∫
A(z)

ν
δ
q,x
(

f
−n j
y (B( f n j(y),R)))

)
|( f

n j
x )′(y)|δ (−qT ′(q)+T (q)−ε)dνq,x(y)

≤
a(xn j )

∑
k=1

∑
z∈ f

−n j
x (wk(xn j ))

ν
δ
q,x
(

f
−n j
z (B(wk(xn j),ξ )))

)
|( f

n j
x )′(z)|δ (−qT ′(q)+T (q)−ε)Mνq,x(A(z))

≤M
a(xn j )

∑
k=1

∑
z∈ f

−n j
x (wk(xn j ))

ν
δ
q,x
(

f
−n j
z (B(wk(xn j),ξ )))

)
|( f

n j
x )′(z)|δ (−qT ′(q)+T (q)−ε)·
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·νq,x
(

f
−n j
z (B(wk(xn j),ξ )))

)
= M

a(xn j )

∑
k=1

∑
z∈ f

−n j
x (wk(xn j ))

ν
1+δ
q,x
(

f
−n j
z (B(wk(xn j),ξ )))

)
|( f

n j
x )′(z)|δ (−qT ′(q)+T (q)−ε)

≤MD∆ε

ξ

a(xn j )

∑
k=1

∑
z∈ f

−n j
x (wk(xn j ))

exp
(
(1+δ )q

(
Sn j φ(z)−P

n j
x (φ(z)

)
− (1+δ )Px(φ

n j
q )
)

|( f
n j
x )′(z)|−(T (q)(1+δ )+δ (qT ′(q)−T (q)+ε)) exp(−(1+δ )P

n j
x (φq(z)))

= MD∆ε

ξ

a(xn j )

∑
k=1

∑
z∈ f

−n j
x (wk(xn j ))

exp
(
(1+δ )q

(
Sn j φ(z)−P

n j
x (φ(z)

)
− (1+δ )Px(φ

n j
q )
)

· |( f
n j
x )′(z)|−(T (q)+(qT ′(q)+ε)δ ) exp(−(1+δ )P

n j
x (φq(z)))

= MD∆ε

ξ

a(xn j )

∑
k=1

L
n j

φ
(1)
x
(1)(wk(xn j))≤MD∆ε

ξ
aκ

n j . (6.13)

Therefore,

∞

∑
j=1

νq,x
(
{y∈Jx : µq,x

(
f
−n j
y (B( f n j(y),R))

)
≥ |( f

n j
x )′(y)|−(−qT ′(q)+T (q))+ε}

)
<+∞.

Hence, by the Borel-Cantelli Lemma, there exists a measurable set J q
1,ε,x ⊂Jx

such that νq,x(J
q

1,ε,x) = 1 and

#
{

j ≥ 1 : νq,x
(
{y ∈Jx : µq,x

(
f
−n j
y (B( f n j(y),R))

)
≥ |( f

n j
x )′(y)|−(−qT ′(q)+T (q))−ε}

)}
< ∞. (6.14)

Arguing similarly, with the function φ (1) replaced by φ (2), we produce a measurable
set J q

2,ε,x ⊂Jx such that νq,x(J
q

2,ε,x) = 1 and

#
{

j ≥ 1 : νq,x
(
{y ∈Jx : µq,x

(
f
−n j
y (B( f n j(y),R))

)
≤ |( f

n j
x )′(y)|−(−qT ′(q)+T (q))+ε}

)}
< ∞. (6.15)

Set

J q
x =

∞⋂
n=1

J q
1,1/n,x∩J q

2,1/n,x.

Then νq,x(J
q

x ) = 1 and, it follows from (6.13) and (6.1), that for all y ∈J q
x , we

have
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lim
j→∞

q(P
n j
x (ϕ)−Sn j ϕ(y))

log |( f
n j
x )′(y)|

=−qT ′(q)

Since limn→∞
n−
n+

= 1, it thus follows from (6.9) and (6.10) that

dνq,x(y) =−qT ′(q)+T (q), (6.16)

and (recall that ν1,x = νx and T (1) = 0)

lim
r→0

logνx(B(x,r))
logr

=−T ′(q)

for all y ∈ J q
x . As the latter formula implies that J q

x ⊂ K(−T ′(q)), and as
νq,x(J

q
x ) = 1, applying (6.16), we get that

gµx(−T ′(q)) = HD(Kx(−T ′(q)))≥ HD(J q
x )) =−qT ′(q)+T (q).

Combining this formula with (6.8) completes the proof. ut

As an immediate consequence of this proposition we get the following theorem.

Theorem 6.3 Suppose that f (x,z) = (θ(x), fx(z)) is a conformal random expand-
ing map. Then the Legendre conjugate, g : Range(−T ′)→ [0,+∞), to the temper-
ature function R 3 q 7→ T (q) is differentiable everywhere except a countable set of
points, call it D∗T , and there exists a measurable set Xma ⊂ X with m(Xma) = 1 such
that for every α ∈ D∗T ) and every x ∈ Xma, we have

gµx(α) = g(α).

6.3 Analyticity of the multifractal spectrum for uniformly
expanding random maps

Now, as in Chapter 9.4, we assume that we deal with a conformal uniform random
expanding map. In particular, the essential infimum of γx is larger than some γ > 1
and functions Hx, nξ (x), j(x) are finite. In addition, we have that there exist con-
stants L and c > 0 such that

Snϕx(y)≤−nc+L (6.17)

for every y ∈Jx and n and EP(ϕ) = 0. With these assumptions we can get the
following property of the function T .

Proposition 6.4 Suppose that f : J →J is a conformal uniformly random ex-
panding map. Then the temperature function T is real-analytic and for every q, we
have
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T ′(q) =

∫
J ϕdµq∫

J log | f ′|dµq
< 0. (6.18)

Proof. The potentials

ϕq,x,t(y) := q(ϕx(y)−Px(ϕ))− t log | f ′x(y)|.

extend by the the same formula to holomorphic functions C×C3 (q, t) 7→ ϕq,x,t(y).
Since these functions are in fact linear, we see that the assumptions of Theorem 9.17
are satisfied, and therefore the function R×R 3 (q, t) 7→ EP(q, t) is real-analytic.
Since | f ′x(y)|> 0, in virtue of Proposition 9.18 we obtain that

∂EP(q, t)
dt

=−
∫

J
log | f ′x|dµq,x,tdm(x)< 0. (6.19)

Hence, we can apply the Implicit Function Theorem to conclude that the tempera-
ture function R 3 q 7→ T (q) ∈ R, satisfying the equation,

EP(q,T (q)) = 0,

is real-analytic. Hence,

0 =
dEP(ϕq)

dq
=

∂EP(q, t)
∂q

∣∣∣
t=T (q)

+
∂EP(q, t)

∂ t

∣∣∣
t=T (q)

T ′(q).

Then

T ′(q) =−
∂EP(q,t)

∂q

∣∣
t=T (q)

∂EP(q,t)
∂ t

∣∣
t=T (q)

=−
∫
J (ϕx−Px)dµq,xdm(x)∫
J − log | f ′x|dµq,xdm(x)

=

∫
J ϕxdµq,xdm(x)−

∫
X Pxdm(x)∫

J log | f ′x|dµq,xdm(x)
=

∫
J ϕdµq∫

J log | f ′|dµq
.

So, we obtain (6.18). It follows, in particular, that

T ′(q)< 0, (6.20)

since by (6.17), the integral
∫
J ϕdµq is negative. ut

Combining this proposition with Proposition 6.2 we get the following result
which concludes this section.

Theorem 6.5 Suppose that f : J →J is a conformal uniformly random expand-
ing map. Then the Legendre conjugate, g : Range(−T ′)→ [0,+∞), to the temper-
ature function R 3 q 7→ T (q) is real-analytic, and there exists a measurable set
Xma ⊂ X with m(Xma) = 1 such that for every α ∈ Range(−T ′) and every x ∈ Xma,
we have

gµx(α) = g(α).





Chapter 7
Expanding in the mean

In this chapter we show that the main achievements of this manuscript, including
thermodynamical formalism, Bowen’s formula and multifractal analysis, also hold
for a class of random maps satisfying an allegedly weaker expanding condition∫

logγxdm(x)> 0.

We start with a precise definition of this class. Then we explain how this case can
be reduced to random expanding maps by looking at an appropriate induced map.
The picture is completed by providing and discussing a concret map that is not
expanding but expanding in the mean.

7.1 Definition of maps expanding in the mean

Let T : J →J be a skew-product map as defined in Section 2.2 satisfying the
properties of Measurability of the Degree and Topological Exactness. Such a ran-
dom map is called expanding in the mean, if for some ξ > 0 and some measurable
function X 3 x 7→ γx ∈ R+ with ∫

logγxdm(x)> 0

we have that all inverse branches of every T n
x are well defined on balls of radii ξ

and are (γn
x )
−1–Lipschitz continuous. More precisely, for every y = (x,z) ∈J and

every n ∈ N, there exists

T−n
y : Bθ n(x)(T

n(y),ξ )→Jx

such that

69
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1. T n ◦T−n
y = Id|Bθn(x)(T n(y),ξ ) and T−n

y (T n
x (z)) = z,

2. ρ(T−n
y (z1),T−n

y (z2))≤ (γn
x )
−1ρ(z1,z2) for all z1,z2 ∈ Bθ n(x)

(
T n(y),ξ

)
.

7.2 Associated induced map

In this section we show how the expanding in the mean maps can be reduced to our
setting from Section 2.3.

Let T : J →J be an expanding in the mean random map. To this map and to a
set A⊂ X of positive measure we associate an induced map T in the following way.
Let τA be the first return map to the set A, that is

τA(x) = min{n≥ 1 : θ
n(x) ∈ A}.

Define also

θA(x) := θ
τA(x)(x) and γA,x :=

τA(x)−1

∏
j=0

γθ j(x).

Then the induced map T is the random map over (A,B,mA) defined by

T x = T τA(x)
x for a.e. x ∈ A.

The following lemma show that the set A can be chosen such that T is an expand-
ing random map.

Lemma 7.1 There exists a measurable set A⊂ X with m(A)> 0 such that

γA,x > 1 for all x ∈ A .

Proof. First, define inductively

A1 := {x : logγx > 0}

and, for k ≥ 1,
Ak+1 := {x ∈ Ak : logγAk,x > 0}.

Since
0 <

∫
X

logγxdm(x) =
∫

A1

logγA1,xdm(x) =
∫

Ak

logγAk,xdm(x),

we have that m(Ak)> 0 for all k≥ 1. Obviously, the sequence (Ak)
∞
k=1 is decreasing.

Let

A =
∞⋂

k=1

Ak and E = X \A .

Notice that the points x ∈ E have the property that logγn
x ≤ 0 for some n≥ 1.
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Claim: m(A)> 0.

If on the contrary m(A) = limk→∞ m(Ak) = 0, then m(E) = 1. Since the measure
m is θ–invariant, we have that m(E∞) = 1 where

E∞ =
∞⋂

n=0

θ
−n(E) .

For x ∈ E∞ we have that logγn
x ≤ 0 for infinitely many n ≥ 1. This contradicts

Birkhoff’s Ergodic Theorem since, by hypothesis,
∫

logγx > 0. Therefore the set
A has positive measure.

Since m(A) > 0, τA is almost surely finite. Now let x ∈ A. Then, for every point
θ j(x), j = 1, . . . ,τA(x)−1, we can find k( j) such that θ j(x) ∈ X \Ak( j). Put

K(x) = max{k( j) : j = 1, . . . ,τA(x)−1}+1.

Hence x and θA(x) are in AK(x) and θ j(x) /∈ AK(x) for j = 1, . . . ,τA(x)− 1. Hence
τA(x) = τAK(x)(x), and therefore

γA,x = γAK(x),x > 1.

ut

In the following A ⊂ X will be some set coming from Lemma 7.1 and T = T τA

the associated induced map. For this map, we have to consider the following appro-
priated class of Hölder potentials. First, to every y = (x,z) we associate the neigh-
borhood

U(z) =
∞⋃

n=0

T−n
y
(
Bθ n(x)

(
T n(y),ξ

))
⊂Jx.

Fix α ∈ (0,1]. As in Section 2.7 a function ϕ ∈ C 1(J ) is called Hölder continu-
ous with an exponent α provided that there exists a measurable function H : X →
[1,+∞), x 7→ Hx, such that ∫

X
logHxdm(x)< ∞ (7.1)

and
vα(ϕx)≤ Hx for a.e. x ∈ X .

The subtlety here is that the infimum in the definition (2.11) of vα is now taken
over all z1,z2 ∈Jx with z1,z2 ∈U(z), z ∈Jx. For example, any function, which is
Hx–Hölder on the entire set Jx is fine.

Let T be an expanding in the mean random map and ϕ a Hölder potential accord-
ing to the definition above. Having associated to T the induced map T , one naturally
has to replace the potential ϕ by the induced potential
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ϕx(z) =
τA(x)−1

∑
j=0

ϕθ j(x)(T
j

x (z)).

Although, it is not clear if the potential ϕ satisfies the condition (7.1), the choice of
the neighborhoods U(z) and the definition of Hölder potentials make that Lemma 2.3
still holds. This gives us an important control of the distortion which is what is
needed in the rest of the paper rather than the condition (7.1) leading to it. The
hypothesis (7.1) is only used in the proof of Lemma 2.3.

7.3 Back to the original system

In this section we explain how to get the Thermodynamic Formalism for the original
system.

With the preceeding notations, for the expanding induced map T the Thermo-
dynamical Formalism of Chapter 3 and, in particular, the Theorems 3.1 and 3.2
do apply. We denote by νx, µx and qx, x ∈ A, the resulting conformal and invari-
ant measures and the invariant density respectively for T . We now explain how the
corresponding objects can be recovered for the original map T . Notice that this is
possible since we only induced in the base system.

First, we consider the case of the conformal measures. Let νx, x ∈ A be the mea-
sure such that

L
∗
xνθA(x) = λ xνx.

If x ∈ A we put νx = νx. If x /∈ A, then by ergodicity of θ , almost surely there exists
k ∈ N, such that θ k(x) ∈ A and θ j(x) /∈ A for j = 0, . . . ,k−1. Then we put

νx =
(L k

x )
∗ν

θ k(x)

L k
x (1)

. (7.2)

Therefore, the family {νx}x∈X ′ is a family of probability measures well defined for X
in a subset X ′ of X with full measure. This family of measures has the conformality
property

L ∗
x ν

θ k(x) = λxνx.

where λx = νθ(x)(Lx1), x ∈ X ′. Notice also that EP(ϕ) = EP(ϕ).
Similarly, from the family {µx}x∈A of T -invariant measures one can recover a

family {µx}x∈X of invariant measures for the original map T . Indeed, for x ∈ A and
j = 0, . . . ,τA(x)−1 it suffices to put

µθ j(x) = µx ◦T− j
x .

Then, with qθ j(x) = L j
x (qx), we have that

dµθ j(x) = qθ j(x)dνθ j(x).
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Hence Theorem 3.1 and Theorem 3.2 among with all statistical consequences
hold for the original map. Moreover, since EP(ϕ t) = EP(ϕt) their zeros coincide
and consequently Bowen’s Formula and the Multifractal Analysis are also true for
conformal expanding in the mean random maps.

7.4 An example

Here is an example of an expanding in the mean random system. Define

f0(x) =
{ 1

2 x+ 15
2 x2 if x ∈ [0,1/3]

16x−15 if x ∈ [15/16,1]

and
f1(x) = 16x(mod1) for x ∈ [0,1/16]∪ [15/16,1].

Let X = {0,1}Z, θ be the shift transformation and m be the standard Bernoulli
measure. For x = (. . . ,x−1,x0,x1, . . .) ∈ X define

fx = fx0 , f n
x = fθ n−1(x) ◦ fθ n−2(x) ◦ . . .◦ fx

and

Jx =
∞⋂

n=0

( f n
x )
−1([0,1]).

For this map, γ0 = 1/2 and γ1 = 16 are the best expanding constants that one can
take. With these constants we have∫

logγxdm(x)> 0.

Therefore, the map is expanding in the mean but not expanding.
Note that the size of each component of f−n

x ([0,1]) is bounded by

an = 16−n1(1/2)−n0 , (7.3)

where ni := #{ j = 0, . . . ,n−1 : x j = i}, i = 0,1. Since

lim
n→∞

n0

n
= lim

n→∞

n1

n
=

1
2

almost surely, we have that limn→∞ an = 0. Hence, for almost every x ∈ X , Jx is a
Cantor set. Moreover, by (7.3), almost surely we have, that,

EP(t)≤ lim
n→∞

1
n

log2n16−n1t(1/2)−n0t
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≤ log2− t
(

lim
n→∞

n1

n
log16− n0

n
log2

)
= log2

(
1− 3

2
t
)
.

Therefore, by Bowen’s Formula, the Hausdorff dimension of almost every fiber Jx
is smaller than or equal to 2/3. Notice however that for some choices of x ∈ X the
fiber Jx contains open intervals.



Chapter 8
Classical Expanding Random Systems

Having treated a very general situation up to here, we now focus on more concrete
random repellers and, in the next section, random maps that have been considered
by Denker and Gordin. The Cantor example of Chapter 5.3 and random perturba-
tions of hyperbolic rational functions like the examples considered by Brück and
Büger are typical random maps that we consider now. We classify them into quasi-
deterministic and essential systems and analyze then their fractal geometric prop-
erties. Here as a consequence of the techniques we have developed, we positively
answer the question of Brück and Büger (see [9] and Question 5.4 in [8]) of whether
the Hausdorff dimension of almost all (most) naturally defined random Julia sets is
strictly larger than 1. We also show that in this same setting the Hausdorff dimension
of almost all Julia sets is strictly less than 2.

8.1 Definition of Classical Expanding Random Systems

Let (Y,ρ) be a compact metric space normalized by diam(Y ) = 1 and let U ⊂ Y . A
repeller over U will be a continuous open and surjective map T : VT →U where VT ,
the closure of the domain of T , is a subset of U . Let γ > 1 and consider

R = R(U,γ) = {T : VT →U γ–expanding repeller over U} .

Concerning the randomness we will consider classical independently and identically
distributed (i.i.d.) choices. More precisely, we suppose the repellers

Tx0 ,Tx1 , ...,Txn , ... (8.1)

are chosen i.i.d. with respect to some arbitrary probability space (I,F0,m0). This
gives rise to a random repeller T n

x0
= Txn−1 ◦ ... ◦Tx0 , n ≥ 1. The natural associated

Julia set is
Jx =

⋂
n≥1

T−n
x0

(U) where x = (x0,x1, ...) .

75
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Notice that compactness of Y together with the expanding assumption, we recall
that γ-expanding means that the distance of all points z1,z2 with ρ(z1,z2) ≤ ηT is
expanded by the factor γ , implies that Jx is compact and also that the maps T ∈R
are of bounded degree. A random repeller is therefore the most classical form of a
uniformly expanding random system.

The link with the setting of the preceding sections goes via natural extension. Set
X = IZ, take the Bernoulli measure m = mZ

0 and let the ergodic invariant map θ be
the shift map σ : IZ→ IZ. If π : X → I is the projection on the 0th coordinate and if
x 7→ Tx is a map from I to R then the repeller (8.1) is given by the skew-product

T (x,z) =
(
σ(x),Tπ(x)(z)

)
, (x,z) ∈J =

⋃
x∈X

{x}×Jx . (8.2)

The particularity of such a map is that the mappings Tx do only depend on the 0th

coordinate. It is natural to make the same assumption for the potentials i.e. ϕx =
ϕπ(x). We furthermore consider the following continuity assumptions:
(T0) I is a bounded metric space.
(T1) (x,z) 7→ T−1

x (z) is continuous from J to K (U), the space of all non-empty
compact subsets of U equipped with the Hausdorff distance.
(T2) For every z ∈U , the map x 7→ ϕx(z) is continuous.

A classical expanding random system is a random repeller together with a poten-
tial depending only on the 0th–coordinate such that the conditions (T0), (T1) and
(T2) hold.

Example 8.1 Suppose V,U are open subsets of C with V compactly contained in
U and consider the set R(V,U) of all holomorphic repellers T : VT → U having
uniformly bounded degree and a domain VT ⊂V . This space has natural topologies,
for example the one induced by the distance

ρ
(
T1,T2

)
= dH

(
VT1 ,VT2

)
+‖(T1−T2)|VT1∩VT2

‖∞ ,

where dH denotes the Hausdorff metric. Taking then geometric potentials−t log |T ′|
we get one of the most natural example of classical expanding random system.

Proposition 8.2 The pressure function x 7→ Px(ϕ) of a classical expanding random
system is continous.

Proof. We have to show that x 7→ λx is continuous and since L n
x 1(y)/L

n−1
x1

1(y)
converges uniformly to λx for every y ∈U (see Lemma 3.32) it suffices to show that
x 7→L n

x 1(y) does depend continuously on x ∈ X . In order to do so, we first show
that condition (T1) implies continuity of the function (x,y) 7→ #T−1

x (y).
Let (x,y) ∈ X ×U and fix 0 < ξ ′ < ξ such that B(w1,ξ

′)∩B(w2,ξ
′) = /0 for all

disjoint w1,w2 ∈ T−1
x (y). From (T1) follows that there exists δ > 0 such that

dH(T−1
x (y),T−1

x′ (y′))≤ ξ

2
, whenever ρ

(
(x,y),(x′,y′)

)
≤ δ .
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But this implies that for every w ∈ T−1
x (y) there exists at least one preimage w′ ∈

T−1
x′ (y′)∩B(w,ξ ′). Consequently #T−1

x′ (y′)≥ #T−1
x (y). Equality follows since Tx′ is

injective on every ball of radius ξ ′, a consequence of the expanding condition.
Let x ∈ X , let W be a neighborhood of x and let y ∈U . From what was proved

before we have that for every w ∈ T−1
x (y), there exists a continuous function x′ 7→

zw(x′) defined on W such that Tx′(zw(x′)) = y, zw(x) = w and

T−1
x′ (y) = {zw(x′) : w ∈ T−1

x (y)}.

The proposition follows now from the continuity of ϕx, i.e. from (T2). ut

We say that a function g : IZ → R is past independent if g(ω) = g(τ) for any
ω,τ ∈ IZ with ω|∞0 = τ|∞0 . Fix κ ∈ (0,1) and for every function g : IZ→ R set

vκ(g) = sup
n≥0
{vκ,n(g)},

where
vκ,n(g) = κ

−n sup{|g(ω)−g(τ)| : ω|n0 = τ|n0}.

Denote by Hκ the space of all bounded Borel measurable functions g : IZ→ R for
which vκ(g) < +∞. Note that all functions in Hκ are past independent. Let Z− be
the set of negative integers. If I is a metrizable space and d is a bounded metric on
I, then the formula

d+(ω,τ) =
∞

∑
n=0

2−nd(ωn,τn)

defines a pseudo-metric on IZ, and for every τ ∈ IZ, the pseudo-metric d+ restricted
to {τ}×N, becomes a metric which induces the product (Tychonoff) topology on
{τ}×N.

Theorem 8.3 Suppose that T : J →J and φ : J →R form a classical expand-
ing random system. Let λ : IZ→ (0,+∞) be the corresponding function coming from
Theorem 3.1. Then both functions λ and P(φ) belong to Hκ with some κ ∈ (0,1),
and both are continuous with respect to the pseudo-metric d+.

Proof. Let y ∈ U be any point. Fix n ≥ 0 and ω,τ ∈ IZ with ω|n0 = τ|n0. By
Lemma 3.32, we have∣∣∣∣∣L n+1

ω 1(y)
L n

σ(ω)
1(y)

−λω

∣∣∣∣∣≤ Aκ
n and

∣∣∣∣∣L n+1
τ 1(y)

L n
σ(τ)

1(y)
−λτ

∣∣∣∣∣≤ Aκ
n

with some constants A > 0 and κ ∈ (0,1). Since, by our assumptions, L n+1
ω 1(y) =

L n+1
τ 1(y) and L n

σ(ω)1(y) = L n
σ(τ)1(y), we conclude that |λω −λτ | ≤ 2Aκn. So,

vκ(λ )≤ 2A.

Since, by Proposition 8.2, the function λ : IZ→ (0,+∞) is continuous, it is therefore
bounded above and separated from zero. In conclusion, both functions λ and P(φ)
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belong to Hκ with some κ ∈ (0,1), and both are continuous with respect to the
pseudo-metric d+. ut

Corollary 8.4 Suppose that T : J →J and φ : IZ→R form a classical expand-
ing random system. Then the number (asymptotic variance of P(φ))

σ
2(P(φ)) = lim

n→∞

1
n

∫ (
Sn(P(φ))−nEP(φ)

)2
dm≥ 0

exists, and the Law of Iterated Logarithm holds, i.e. m-a.e we have

−
√

2σ2(P(φ)) = liminf
n→∞

Pn
x −nEP(φ)√

n log logn
≤ limsup

n→∞

Pn
x (φ)−nEP(φ)√

n log logn
=
√

2σ2(P(φ)).

Proof. Let π : IZ → I be the canonical projection onto the 0th coordinate and
let G = π−1(B), where B is the σ -algebra of Borel sets of I. We want to ap-
ply Theorem 1.11.1 from [24]. Condition (1.11.6) is satisfied with the function φ

(object being here as in Theorem 1.11.1 and by no means our potential!) identi-
cally equal to zero since |m(A∩ B)−m(A)m(B)| = 0 for every A ∈ G m

0 := G ∩
σ−1(G )∩ . . .σ−m(G ) and B ∈ G ∞

n =
⋂+∞

j=n σ− j(G ), whenever n > m. The inte-
gral

∫
|P(φ)|2+δ dm is finite (for every δ > 0) since, by Theorem 8.3, the pres-

sure function P(φ) is bounded. This then implies that for all n ≥ 1, |P(φ)(ω)−
E (P(φ)|G n

0 )(ω)| ≤ vκ(P(φ))κn, where vκ(P(φ))<+∞. Therefore,∫
|P(φ)−E (P(φ)|G n

0 )|dm≤ vκ(P(φ))κn,

whence condition (1.11.7) from [24] holds. Finally, P(φ) is G ∞
0 -measurable, since

P(φ) belonging to Hκ is past independent. We have thus checked all the assump-
tions of Theorem 1.11.1 from [24] and, its application yields the existence of the
asymptotic variance of P(φ) and the required Law of Iterated Logarithm to hold.

ut

Proposition 8.5 Let g ∈ Hκ . Then σ2(g) = 0 if and only if there exists u ∈
C((supp(m0))

Z) such that g−m(g) = u−u◦σ holds throughout (supp(m0))
Z.

Proof. Denote the topological support of m0 by S. The implication that the coho-
mology equation implies vanishing of σ2 is obvious. In order to prove the other
implication, assume without loss of generality that m(g) = 0. Because of Theorem
2.51 from [16]) there exists u ∈ L2(m) independent of the past (as so is g) such that

g = u−u◦σ (8.3)

in the space L2(m). Our goal now is to show that u has a continuous version and
(8.3) holds at all points of SZ. In view of Lusin’s Theorem there exists a compact
set K ⊂ SZ such that m(K) > 1/2 and the function u|K is continuous. So, in view
of Birkhoff’s Ergodic Theorem there exists a Borel set B⊂ SZ such that m(B) = 1,
for every ω ∈ B, σ−n(ω) ∈ K with asymptotic frequency > 1/2, u is well-defined
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on
⋃+∞

n=−∞ σ−n(B), and (8.3) holds on
⋃+∞

n=−∞ σ−n(B). Let Z− = {−1,−2, . . .} and
let {mτ}τ∈IZ− be the canonical system of conditional measures for the partition
{{τ}× IN}

τ∈IZ− with respect to the measure m. Clearly, each measure mτ , projected
to IN, coincides with m+. Since m(B) = 1, there exists a Borel set F ⊂ SZ− such
that m−(F) = 1 and mτ(B∩ ({τ}× IN)) = 1 for all τ ∈ F , where m− is the infinite
product measure on SZ− . Fix τ ∈F and set Z = pN(B∩({τ}×IN)), where pN : IZ→
IN is the natural projection from IZ to IN. The property that mτ(B∩ ({τ}× IN)) = 1
implies that Z = SN. Now, it immediately follows from the definitions of Z and B
that for all x,y ∈ Z there exists an increasing sequence (nk)

∞
k=1 of positive integers

such that σ−nk(τx),σ−nk(τy) ∈ K for all k ≥ 1. For every 0 < q≤ nk we have from
(8.3) that

nk−q

∑
j=0

(
g(σ j(σ−nk(τy)))−g(σ j(σ−nk(τx)))

)
+

nk

∑
j=nk−q+1

(
g(σ j(σ−nk(τy)))−g(σ j(σ−nk(τx)))

)
= (u(σ−nk(τy))−u(σ−nk(τx))+(u(τx)−u(τy)).

Since g ∈ Hκ , we have

nk−q

∑
j=0

(
g(σ j(σ−nk(τy)))−g(σ j(σ−nk(τy)))

)
≤

nk−q

∑
j=0
|g(σ j(σ−nk(τy)))−g(σ j(σ−nk(τy)))|

≤
nk−q

∑
j=0

vκ(g)κnk− j ≤ vκ(g)(1−κ)−1
κ

q.

Now, fix ε > 0. Take q≥ 1 so large that vκ(g)(1−κ)−1κq < ε/2. Since the function
g : IZ→ R is uniformly continuous with respect to the pseudometric d, there exists
δ > 0 such that |g(b)− g(a)| < ε

2q whenever d(a,b) < δ . Assume that d(x,y) < δ

(so d(σ−i(τx),σ−i(τy)) < δ for all i ≥ 0) It follows now that for every k ≥ 1 we
have

|u(τx)−u(τy)| ≤ vκ(g)(1−κ)−1
κ

q +q
ε

2q
+ |u(σ−nk(τy))−u(σ−nk(τx))|

≤ ε

2
+

ε

2
+ |u(σ−nk(τy))−u(σ−nk(τx))|

= ε +
ε

2
+ |u(σ−nk(τy))−u(σ−nk(τx))|.

Since σ−nk(τx),σ−nk(τy) ∈ K for all k≥ 1, since limk→∞ d(σ−nk(τx),σ−nk(τy)) =
0, and since the function u, restricted to K, is uniformly continuous, we conclude
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that
lim
k→∞
|u(σ−nk(τy))−u(σ−nk(τx))|= 0 .

We therefore get that |u(τx)−u(τy)| < ε and this shows that the function u is uni-
formly continuous (with respect to the metric d) on the set

W =
⋃

τ∈F

B∩ ({τ}× IN)

Since W = SZ (as m(W ) = 1) and since u is independent of the past, we conclude
that u extends continuously to SZ. Since both sides of (8.3) are continuous functions,
and the equality in (8.3) holds on the dense set W ∩σ−1(W ), we are done. ut

8.2 Classical Conformal Expanding Random Systems

If a classical system is conformal in the sense of Definition 5.1 and if the potential
is of the form ϕ =−t log | f ′| for some t ∈R then we will call it classical conformal
expanding random system

Theorem 8.6 Suppose f : J →J is a classical conformal expanding random
system. Then the following hold.
(a) The asymptotic variance σ2(P(h)) exists.
(b) If σ2(P(h)) > 0, then the system f : J →J is essential, H h(Jx) = 0 and
Ph(Jx) = +∞ for m-a.e. x ∈ IZ.
(c) If, on the other hand, σ2(P(h)) = 0, then the system f : J →J , reduced in the
base to the topological support of m (equal to supp(m0)

Z), is quasi-deterministic,
and then for every x ∈ supp(m), we have:
(c1) νh

x is a geometric measure with exponent h.
(c2) The measures νh

x , H h|Jx , and Ph|Jx are all mutually equivalent with Radon-
Nikodym derivatives separated away from zero and infinity independently of x ∈ IZ

and y ∈Jx.
(c3) 0 < H h(Jx),Ph(Jx)<+∞ and HD(Jx) = h.

Proof. It follows from Corollary 8.4 that the asymptotic variance σ2(P(h)) exists.
Combining this corollary (the Law of Iterated Logarithm) with Remark 5.5, we con-
clude that the system f : J →J is essential. Hence, item (b) follows from The-
orem 5.7(a). If, on the other hand, σ2(P(h)) = 0, then the system f : J →J ,
reduced in the base to the topological support of m (equal to supp(m0)

Z), is
quasi-deterministic because of Proposition 8.5, Theorem 8.3 (P(h) ∈Hκ ), and Re-
mark 5.6. Items (c1)-(c4) follow now from Theorem 5.7(b1)-(b4). We are done. ut

As a consequence of this theorem we get the following.

Theorem 8.7 Suppose f : J →J is a classical conformal expanding random
system. Then the following hold.
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(a) Suppose that for every x ∈ IZ, the fiber Jx is connected. If there exists at least
one w ∈ supp(m) such that HD(Jw)> 1, then HD(Jx)> 1 for m-a.e. x ∈ IZ.
(b) Let d be the dimension of the ambient Riemannian space Y . If there exists at
least one w∈ supp(m) such that HD(Jw)< d, then HD(Jx)< d for m-a.e. x ∈ IZ.

Proof. Let us proof first item (a). By Theorem 8.6(a) the asymptotic variance
σ2(P(h)) exists. If σ2(P(h))> 0, then by Theorem 8.6(a) the system f : J →J is
essential. Thus the proof is concluded in exactly the same way as the proof of The-
orem 5.8(3). If, on the other hand, σ2(P(h)) = 0, then the assertion of (a) follows
from Theorem 8.6(c4) and the fact that HD(Jw)> 1 and w ∈ supp(m).

Let us now prove item (b). If σ2(P(h))> 0, then, as in the proof of item (a), the
claim is proved in exactly the same way as the proof of Theorem 5.8(4). If, on the
other hand, σ2(P(h)) = 0, then the assertion of (b) follows from Theorem 8.6(c4)
and the fact that HD(Jw)< d and w ∈ supp(m). We are done. ut

8.3 Complex Dynamics and Brück and Büger Polynomial
Systems

We now want to describe some classes of examples coming from complex dynamics.
They will be classical conformal expanding random systems as well as G-systems
defined later in this section. Indeed, having a sequence of rational functions F =
{ fn}∞

n=0 on the Riemann sphere Ĉ we say that a point z ∈ Ĉ is a member of the
Fatou set of this sequence if and only if there exists an open set Uz containing z such
that the family of maps { fn|Uz}∞

n=0 is normal in the sense of Montel. The Julia set
J (F) is defined to be the complement (in Ĉ) of the Fatou set of F . For every k≥ 0
put Fk = { fk+n}∞

n=0 and observe that

J (Fk+1) = fk(J (Fk)). (8.4)

Now, consider the maps

fc(z) = fd,c(z) = zd + c, d ≥ 2.

Notice that for every ε > 0 there exists δε > 0 such that if |c| ≤ δε , then

fc(B(0,ε))⊂ B(0,ε).

Consequently, if ω ∈ B(0,ε)Z, then J ({ fωn}∞
n=0)⊂ {z ∈ C : |z| ≥ ε} and

| f ′ωk
(z)| ≥ dε

d−1 (8.5)

for all z ∈J ({ fωk+n}∞
n=0). Let δ (d) = sup

{
δε : ε > d−1

√
1/d
}
. Fix 0 < δ < δ (d).

Then there exists ε > d−1
√

1/d such that δ < δε . Therefore, by (8.5),
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| f ′ωk
(z)| ≥ dε

d−1 (8.6)

for all ω ∈ B(0,δ )Z, all k ≥ 0 and all z ∈J ({ fωk+n}∞
n=0). A straight calculation

([8], p. 349) shows that δ (2) = 1/4. Keep 0 < δ < δ (d) fixed. Let

Fd,δ = { fd,c : c ∈ B(0,δ )}.

Consider an arbitrary ergodic measure-preserving transformation θ : X → X . Let m
be the corresponding invariant probability measure. Let also H : X →Fd,δ be an
arbitrary measurable function. Set fd,x = H(x) for all x ∈ X . For every x ∈ X let Jx
be the Julia set of the sequence { fθ n(x)}∞

n=0, and then J =
⋃

x∈X Jx. Note that,
because of (8.4), fd,x(Jx) = Jθ(x). Thus, the map

fd,δ ,θ ,H(x,y) = (θ(x), fd,x(y)) x ∈ X , y ∈Jx, (8.7)

defines a skew product map in the sense of Chapter 2.2 of our paper. In view of (8.7),
when θ : X → X is invertible, fd,δ ,θ ,H is a distance expanding random system, and,
since all the maps fx are conformal, fd,δ ,θ ,H is a conformal measurably expanding
system in the sense of Definition 5.1. As an immediate consequence of Theorem 5.2
we get the following.

Theorem 8.8 Let θ : X → X be an invertible measurable map preserving a prob-
ability measure m. Fix an integer d ≥ 1 and 0 < δ < δ (d). Let H : X →Fd,δ be
an arbitrary measurable function. Finally, let fd,δ ,θ ,H be the distance expanding
random system defined by formula (8.7). Then for almost all x ∈ X the Hausdorff
dimension of the Julia set Jx is equal to the unique zero of the expected value of
the pressure function.

Theorem 8.9 For the conformal measurably expanding systems fd,δ ,θ ,H defined in
Theorem 8.8 the multifractal theorem, Theorem 6.4 holds.

We now define and deal with Brück and Büger polynomial systems. We still keep
d ≥ 2 and 0 < δ < δ (d) fixed. Let X = B(0,δ )Z and let

θ : B(0,δ )Z→ B(0,δ )Z

to be the shift map denoted in the sequel by σ . Consider any Borel probability
measure m0 on B(0,δ ) which is different from δ0, the Dirac δ measure supported
at 0. Define H : X →Fd,δ by the formula H(ω) = fd,ω0 . The corresponding skew-
product map fd,δ : J →J is then given by the formula

fd,δ (ω,z) = (σ(ω), fd,ω0(z)) = (σ(ω),zd +ω0),

and fd,δ ,ω(z) = zd +ω0 acts from Jω to Jσ(ω), where Jω = J (( fd,ωn)
∞
n=0).

Then f : J →J is called Brück and Büger polynomial systems. Clearly, f : J →
J is a classical conformal expanding random system.

In [8] Brück speculated on page 365 that if δ < 1/4 and m0 is the normalized
Lebesgue measure on B(0,δ ), then HD(Jω) > 1 for m+-a.e. ω ∈ B(0,δ )N with
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respect to the skew-product map

(ω,z) 7→ (σ(ω),z2 +ω0).

In [9] this problem was explicitly formulated by Brück and Büger as Question 5.4.
Below (Theorem 8.10) we prove a more general result (with regard the measure on
B(0,δ ) and the integer d ≥ 2 being arbitrary), which contains the positive answer
to the Brück and Büger question as a special case. In [8] Brück also proved that if
δ < 1/4 and the above skew product is considered then λ2(Jω) = 0 for all ω ∈
B(0,δ )N, where λ2 denotes the planar Lebesgue measure on C. As a special case
of Theorem 8.10 below we get a partial strengthening of Brück’s result saying that
HD(Jω)< 2 for m+-a.e. ω ∈ B(0,δ )N. Our results are formulated for the product
measure m on B(0,δ )Z, but as m+ is the projection from B(0,δ )Z to B(0,δ )N and
as the Julia sets Jω , ω ∈ B(0,δ )Z depend only on ω|+∞

0 , i.e. on the future of ω , the
analogous results for m+ and B(0,δ )N follow immediately. Proving what we have
just announced, note that if ω0 ∈ supp(m0)\{0}, then

HD(Jω∞
0
)) = HD(J ( fω0)) ∈ (1,2)

(the equality holds already on the level of sets: Jω∞
0
=J ( fω0)), and by [9], all the

sets Jω , ω ∈ B(0,δ )Z, are Jordan curves. Hence, since f : J →J is a classical
conformal expanding random system, as an immediate application of Theorem 8.7
we get the following.

Theorem 8.10 If d ≥ 2 is an integer, 0 < δ < δ (d), the skew-product map fd,δ :
J →J is given by the formula

fd,δ (ω,z) = (σ(ω), fd,ω0(z)) = (σ(ω),zd +ω0),

and m0 is an arbitrary Borel probability measure on B(0,δ ), different from δ0, the
Dirac δ measure supported at 0, then for m-almost every ω ∈ B(0,δ )Z we have
1 < HD(Jω)< 2.

8.4 Denker-Gordin Systems

We now want to discuss another class of expanding random maps. This is the setting
from [12]. In order to describe this setting suppose that X0 and Z0 are compact
metric spaces and that θ0 : X0→ X0 and T0 : Z0→ Z0 are open topologically exact
distance expanding maps in the sense as in [24]. We assume that T0 is a skew-
product over Z0, i.e. for every x ∈ X0 there exists a compact metric space Jx such
that Z0 =

⋃
X∈X0
{x}×Jx and the following diagram commutes
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Z0
T0 - Z0

X0

π

? θ0 - X0

π

?

where π(x,y) = x and the projection π : Z0→ X0 is an open map. Additionally, we
assume that there exists L such that

dX0(θ0(x),θ0(x′))≤ LdX (x,x′) (8.8)

for all x ∈ X and that there exists ξ1 > 0 such that, for all x,x′ satisfying dX0(x,x
′)<

ξ1 there exist y,y′ such that

d
(
(x,y),(x′,y′)

)
< ξ . (8.9)

We then refer to T0 : Z0→ Z0 and θ0 : X0→ X0 as a DG-system. Note that

T0({x}×Jx)⊂ {θ0(x)}×Jθ0(x)

and this gives rise to the map Tx : Jx→Jθ0(x).
Since T0 is distance expanding, conditions uniform openness, measurably ex-

panding measurability of the degree, topological exactness (see Chapter 2) hold
with some constants γx ≥ γ > 1, deg(Tx) ≤ N1 < +∞ and the number nr = nr(x)
in fact independent of x. Scrutinizing the proof of Remark 2.9 in [12] one sees that
Lipschitz continuity (Denker and Gordin assume differentiability) suffices for it to
go through and Lipschitz continuity is incorporated in the definition of expanding
maps in [24]. Now assume that φ : Z → R is a Hölder continuous map. Then the
hypothesis of Theorems 2.10, 3.1, and 3.2 from [12] are satisfied. Their claims are
summarized in the following.

Theorem 8.11 Suppose that T0 : Z0→ Z0 and θ0 : X0→ X0 form a DG system and
that φ : Z→ R is a Hölder continuous potential. Then there exists a Hölder contin-
uous function P(φ) : X0 → R, a measurable collection {νx}x∈X0 and a continuous
function q : Z0→ [0,+∞) such that
(a) νθ0(x)(A) = exp

(
Px(φ)

)∫
A e−φx dνx for all x ∈ X0 and all Borel sets A⊂Jx such

that Tx|A is one-to-one.
(b)
∫
Jx

qxdνx = 1 for all x ∈ X0.
(c) Denoting for every x ∈ X0 by µx the measure qxνx we have

∑
w∈θ

−1
0 (x)

µw(T−1
w (A)) = µx(A) for every Borel set A⊂Jx .

This would mean that we got all the objects produced in Chapter 3 of our paper.
However, the map θ0 : X0→ X0 need not be, and apart from the case when X0 is fi-
nite, is not invertible. But to remedy this situation is easy. We consider the projective
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limit (Rokhlin’s natural extension) θ : X → X of θ0 : X0→ X0. Precisely,

X = {(xn)n≤0 : θ0(xn) = xn+1∀n≤−1}

and
θ
(
(xn)n≤0

)
= (θ0(xn))n≤0.

Then θ : X → X becomes invertible and the diagram

X
θ - X

X0

p

? θ0 - X0

p

?

(8.10)

commutes, where p
(
(xn)n ≤ 0

)
= x0. If in addition, as we assume from now on, the

space X is endowed with a Borel probability θ0-invariant ergodic measure m0, then
there exists a unique θ -invariant probability measure measure m such that m◦π−1 =
m0. Let

Z :=
⋃
x∈X

{x}×Jx0 .

We define the map T : Z → Z by the formula T (x,y) = (θ(x),Tx0(y)) and the po-
tential X 3 x 7→ φ(x0) from X to R. We keep for it the same symbol φ . Clearly the
quadruple (T,θ ,m,φ) is a Hölder fiber system as defined in Chapter 2 of our paper.
It follows from Theorem 8.11 along with the definition of θ a commutativity of the
diagram (8.10) for x ∈ X all the objects Px(φ) = Px0(φ), λx = exp(Px(φ)), qx = qx0 ,
νx = νx0 , and µx = µx0 enjoy all the properties required in Theorem 3.1 and Theo-
rem 3.2; in particular they are unique. From now on we assume that the measure m
is a Gibbs state of a Hölder continuous potential on X (having nothing to do with φ

or P(φ); it is only needed for the Law of Iterated Logarithm to hold). We call the
quadruple (T,θ ,m,φ) DG*-system.

The following Hölder continuity theorem appeared in the paper [12]. We provide
here an alternative proof under weaker assumptions.

Theorem 8.12 If dX (x,x′)< ξ , then |λx−λx′ | ≤ Hdα
X (x,x

′).

Proof. Let n be such that

dX (θ
2n−1(x),θ 2n−1(x′))< ξ1 and dX (θ

2n(x),θ 2n(x′))≥ ξ1. (8.11)

Let z ∈ T−2n+1(y) and z′ ∈ T−2n+1(y′). Then for all k = 0, . . . ,n−1

|ϕ(T k(z))−ϕ(T k(z′))| ≤Cdα(T k(z),T k(z′))≤Cγ
−αn

γ
−α(n−k−1)

ξ .

Then

|Snϕ(z)−Snϕ(z′)| ≤ Cξ γ−αn

1− γ−α
.
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Put C′ :=Cξ/(1− γ−α). Then

∣∣∣ log
L n

x 1(w)
L n

x′1(w
′)

∣∣∣≤C′γ−αn and
∣∣∣ log

L n−1
θ(x)1(w)

L n−1
θ(x′)1(w

′)

∣∣∣≤C′γ−αn.

Then ∣∣∣ log
L n

x 1(w)
L n−1

θ(x)1(w)
− log

L n
x′1(w

′)

L n−1
θ(x′)1(w

′)

∣∣∣≤ 2C′γ−αn. (8.12)

Let α ′ := (α logγ)/(2logL). Then by (8.11)

γ
−nα = L−2nα ′ ≤ (d(θ 2n(x),θ 2n(x′)))α ′

ξ α ′
1 L−2nα ′

≤ (d(x,x′))α ′

ξ α ′
1

.

Then (8.12) finishes the proof. ut

Since the map θ0 : X0 → X0 is expanding, since m is a Gibbs state, and since
P(φ) : X0 → R is Hölder continuous, it is well-known (see [24] for example) that
the following asymptotic variance exists

σ
2(P(φ)) = lim

n→∞

1
n

∫ (
Sn(P(φ))−nEP(φ)

)2
dm.

The following theorem of Livsic flavor is (by now) well-known (see [24]).

Theorem 8.13 Suppose (T,θ ,m,φ) is a DG*-system. Then the following are equiv-
alent.
(a) σ2(P(φ)) = 0.
(b) The function P(φ) is cohomologous to a constant in the class of real-valued con-
tinuous functions on X (resp. X0), meaning that there exists a continuous function
u : X → R (resp. u : X0→ R) such that

P(φ)− (u−u◦θ) (resp. P(φ)− (u−u◦θ0))

is a constant.
(c) The function P(φ) is cohomologous to a constant in the class of real-valued
Hölder continuous functions on X (resp. X0), meaning that there exists a Hölder
continuous function u : X → R (resp. u : X → R) such that

P(φ)− (u−u◦θ) (resp. P(φ)− (u−u◦θ0))

is a constant.
(d) There exists R ∈ R such that Pn

x (φ) = nR for all n ≥ 1 and all periodic points
x ∈ X (resp. X0).

As a matter of fact such theorem is formulated in [24] for non-invertible (θ0) maps
only but it also holds for the Rokhlin’s natural extension θ . The following theorem
follows directly from [24] and Theorem 8.11 (Hölder continuity of P(φ)).
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Theorem 8.14 (the Law of Iterated Logarithm) If (T,θ ,m,φ) is a DG*-system and
if σ2(P(φ))> 0, then m-a.e. we have

−
√

2σ2(P(φ))= liminf
n→∞

Pn
x (φ)−nEP(φ)√

n log logn
≤ limsup

n→∞

Pn
x (φ)−nEP(φ)√

n log logn
=
√

2σ2(P(φ)).

8.5 Conformal DG*-Systems

Now we turn to geometry. This section dealing with, below defined, conformal
DG*-systems is a continuation of the previous one in the setting of conformal
systems. We shall show that these systems naturally split into essential and quasi-
deterministic, and will establish their fractal and geometric properties. Suppose that
( f0,θ0) is a DG-system endowed with a Gibbs measure m0 at the base. Suppose also
that this system is a random conformal expanding repeller in the sense of Chapter 5
and that the function φ : Z→ R given by the formula

φ(x,y) =− log | f ′x(y)|,

is Hölder continuous.

Definition 8.15 The corresponding system ( f ,θ ,m)= ( f ,θ ,m,φ) (with θ the Rokhlin
natural extension of θ0 as described above) is called conformal DG*-system.

For every t ∈ R the potential φt = tφ , considered in Chapter 5, is also Hölder
continuous. As in Chapter 5 denote its topological pressure by P(t). Recall that h
is a unique solution to the equation EP(t) = 0. By Theorem 5.2 (Bowen’s Formula)
HD(Jx) = h for m-a.e. x ∈ X . As an immediate consequence of Theorem 5.7, The-
orem 8.14, and Remark 5.6, we get the following.

Theorem 8.16 Suppose ( f ,θ ,m)= ( f ,θ ,m,φ) is a random conformal DG*-system.
(a) If σ2(P(h))> 0, then the system ( f ,θ ,m) is essential, and then

H h(Jx) = 0 and Ph(Jx) = +∞.

(b) If, on the other hand, σ2(P(h)) = 0, then ( f ,θ ,m) = ( f ,θ ,m,φ) is quasi-
deterministic, and then for every x ∈ X, we have that νh

x is a geometric measure
with exponent h and, consequently, the geometric properties (GM1)-(GM3) hold.

Exactly as Corollary 5.8 is a consequence of Theorem 5.7, the following corol-
lary is a consequence of Theorem 8.16.

Corollary 8.17 Suppose ( f ,θ ,m) = ( f ,θ ,m,φ) is a conformal DG*-system and
σ2(P(h)) > 0. Then the system ( f ,θ ,m) is essential, and for m-a.e. x ∈ X the fol-
lowing hold.
1. The fiber Jx is not bi-Lipschitz equivalent to any deterministic nor quasi-
deterministic self-conformal set.
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2. Jx is not a geometric circle nor even a piecewise smooth curve.
3. If Jx has a non-degenerate connected component (for example if Jx is con-
nected), then

h = HD(Jx)> 1.

4. Let d be the dimension of the ambient Riemannian space Y . Then HD(Jx)< d.

Now, in the same way as Theorem 8.7 is a consequence of Theorem 8.6, Corol-
lary 8.17 yields the following.

Theorem 8.18 Suppose ( f ,θ ,m) = ( f ,θ ,m,φ) is a conformal DG*-system. Then
the following hold.
(a) Suppose that for every x ∈ X, the fiber Jx is connected. If there exists at least
one w ∈ supp(m) such that HD(Jw)> 1, then

HD(Jx)> 1 for m-a.e. x ∈ IZ .

(b) Let d be the dimension of the ambient Riemannian space Y . If there exists at
least one w ∈ X such that HD(Jw)< d, then HD(Jx)< d for m-a.e. x ∈ X.

We end this subsection and the entire section with a concrete example of a con-
formal DG*-system. In particular, the three above results apply to it. Let

X := S1
δd

= {z ∈ C : |z|= δ}.

Fix an integer k ≥ 2. Define the map θ0 : X → X by the formula θ0(x) = δ 1−kxk.
Then θ ′0(x) = kδ 1−kxk−1 and therefore |θ ′0(x)|= k≥ 2 for all x∈ X . The normalized
Lebesgue measure λ0 on X is invariant under θ0. Define the map H : X →Fd by
setting H(x) = fx. Then

fθ0,H,0(x,y) = (kδ
1−kxk−1,gd + x).

Note that
(

fθ0,H,0,θ0,λ0) is a uniformly conformal DG-system and let ( fθ ,H ,θ ,λ )
be the corresponding random conformal G-system, both in the sense of Chapter 5.
Theorem 8.16, Theorem 8.18, and Corollary 8.17 apply.

8.6 Random expanding maps on smooth manifold

We now complete the previous examples with some remarks on random maps on
smooth manifolds. Let (M,ρ) be a smooth compact Riemannian manifold. We recall
that a differentiable endomorphism f : M → M is expanding if there exists γ > 1
such that

|| f ′x(v)|| ≥ γ||v|| for all x ∈M and all v ∈ TxM .

The largest constant γ > 1 enjoying this property is denoted by γ( f ). If γ > 1, we
denote by Eγ(M) the set of all expanding endomorphisms of M for which γ( f )≥ γ .
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We also set
E(M) =

⋃
γ>1

Eγ(M),

i.e. E(M) is the set of all expanding endomorphisms of M.

8.7 Topological exactness

We shall prove the following.

Proposition 8.19 Suppose that M is a connected and compact manifold and that
fn ∈ E(M), n≥ 1, are endomorphisms such that

limn→∞

n

∏
j=1

γ( f j) = +∞ .

Denote Fk = fk ◦ fk−1 ◦ . . . ◦ f1, k ≥ 1. Then, for every r > 0 there exist k ≥ 1 such
that

Fk(B(x,r)) = M for every x ∈M .

In particular, if U is a non-empty open subset of M, then there exists k≥ 1 such that
Fk(U) = M.

Proof. Let f ∈ E(M), set γ = γ( f ) and notice first of all that for such a map the
implicit function theorem applies and yields that f is an open map. The manifold M
being connected, it follows that f is surjective. Moreover, if β is any path starting at
a point y = f (x), then there is a lift α starting at x. The expanding property implies
that

length(β ) = length( f ◦α)≥ γ length(α) .

In particular, if β is a geodesic between y = f (x) and a point y′ ∈M, then there is a
point x′ ∈M such that f (x′) = y′ and

ρ(y,y′)≥ γ ρ(x,x′) .

This shows that for every r > 0 and every x ∈M we have

f (B(x,r))⊃ B( f (x),γr) .

The proposition follows now from the compactness of M. ut

8.8 Stationary measures

Let M be an n–dimensional compact Riemannian manifold and let I be a set
equipped with a probabilistic measure m0. To every a ∈ I we associate a differen-
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tiable expanding transformation fa of M into itself. Put X = IZ and let m be the prod-
uct measure induced by m0. For x= . . .a−1a0a1 . . . consider ϕx :=− log |det f ′a0

|. We
assume that all our assumptions are satisfied. Then the measure ν = volM (where
volM is the normalized Riemannian volume on M) is the fixed point of the operator
L ∗

x,ϕ with λx = 1. Let qx be the function given by Theorem 3.1, and let µx be the
measure determined by dµx/dνx = qx.

We write IZ = I−N× IN where points from I−N are denoted by x− = . . .a−2a−1
and from IN by x+ = a0a1 . . .. Then x−x+ means x = . . .a−1a0a1 . . .. Note that qx
does not depend on x+, since nor does L n

x−n1(y). Then we can write qx− := qx and
µx− := µx. Since µx(g◦ fa0) = µθ(x) we have that

µx−(g◦ fa) = µx−a(g) (8.13)

for every a ∈ I.
Define a measure µ∗ by dµ∗ = dµx−dm−(x−) where m− is the product measure

on I−N. Then by (8.13)∫
µ
∗(g◦ fa)dm0(a) =

∫
µx−(g◦ fa)dm−(x−)

=
∫ ∫

µx−a(g)dm−(x−)dm0(a) = µ
∗(g).

Therefore, µ∗ is a stationary measure (see for example [28]).



Chapter 9
Real Analyticity of Pressure

Here we provide, in particular, the real analyticity results that where used in the
proof of the real analyticity of the multifractal spectrum (Chapter 6.3). We putted
this part at the end of the manuscript since, as already mentioned, it is of different
nature. It is heavily based on ideas of Rugh [26] and uses the Hilbert metric on
appropriately chosen cones.

9.1 The pressure as a function of a parameter

Here, we will have a careful close look at the measurable bounds obtained in Chap-
ter 3 from which we deduce that the theorems from that section can be proved to
hold for every parameter and almost every x (common for all parameters).

In this section we only assume that T : J →J is a measurable expanding
random map. Let ϕ(1),ϕ(2) ∈Hm(J ) and let t = (t1, t2) ∈ R2. Put

|t| := max{|t1|, |t2|} and t∗ := max{1, |t|}. (9.1)

Set ϕt =: t1ϕ(1)+ t2ϕ(2) and

ϕ := |ϕ(1)|+ |ϕ(2)|. (9.2)

Fix α > 0 and a measurable log-integrable function H : X → [0,+∞) such that
ϕ(1),ϕ(2) ∈H α

m (J ,H). Then for all x ∈ X and all y1,y2 ∈Jx, we have

|ϕt,x(y2)−ϕt,x(y1)| ≤ Hx|t1|ρα
x (y2,y1)+Hx|t2|ρα

x (y2,y1)≤ 2|t|Hxρ
α
x (y2,y1)

Therefore ϕt ∈H α
m (J ,2|t|H) ⊂H α

m (J ,2t∗H). Also, for all x ∈ X and all y ∈
Jx, we have

|Snϕt,x(y)| ≤ |t1||Snϕ
(1)
x (y)|+ |t2||Snϕ

(2)
x (y)| ≤ |t||Snϕx(y)| ≤ |t|||Snϕx||∞.

91
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This implies
||Snϕt,x||∞ ≤ |t|||Snϕx||∞ ≤ t∗||Snϕx||∞. (9.3)

Concerning the potential ϕ , we get

|ϕx(y2)−ϕx(y1)| ≤
∣∣∣|ϕ(1)

x (y2)−ϕ
(1)
x (y1)

∣∣∣+ ∣∣∣ϕ(2)
x (y2)−ϕ

(2)
x (y1)

∣∣∣≤ 2Hxρ
α
x (y2,y1).

Thus
ϕ ∈H α

m (J ,2H). (9.4)

Denote by Ct , Ct,max, Ct,min, Dξ ,t and βt(s), the respective functions associated to the
potential ϕt as in Chapter 3.2. If the index t is missing, these numbers, as usually,
refer to the potential ϕ given by (9.2). Using (9.3) and (9.4), we then immediately
get

Dξ ,t(x)≥ Dt∗
ξ ,ϕ , (9.5)

Ct(x)≤ exp
(
Qx(2t∗H)

)
max

0≤k≤ j

{
exp
(
2t∗||Skϕx−k ||∞

)}
≤
(

exp
(
Qx(2H)

)
max

0≤k≤ j

{
exp
(
2||Skϕx−k ||∞

)})t∗

=Ct∗
ϕ ,

(9.6)

Ct,min(x)≥ exp
(
−Qx(2t∗H)

)
exp
(
−2t∗||Snϕx||∞

)
=Cmin(x)t∗ , (9.7)

Ct,max(x) = exp
(
Qx(2t∗H)

)
deg(T n

x )exp
(
2t∗||Snϕx||∞

)
≤Cmax(x)t∗ , (9.8)

and therefore,

βt,x(s)≥
(

Cmin(x)
Cϕ(x)

)t∗ (s−1)2t∗Hx−1γ−α
x−1

4t∗sQx
=

(
Cmin(x)
Cϕ(x)

)t∗ (s−1)Hx−1γ−α
x−1

2sQx

≥
(

Cmin(x)
Cϕ(x)

)t∗
(
(s−1)Hx−1γ−α

x−1

2sQx

)t∗

= β
t∗
x (s).

Finally we are going to look at the function A(x) and the constant B obtained in
Proposition 3.17. We fix the set

G := {x : βx ≥M and j(x)≤ J}

as defined by (3.35). Note that by (9.1), for x ∈ G we have, βx,t ≥Mt∗ . Denote by
G′− the corresponding visiting set for backward iterates of θ , and by (nk)

∞
1 the corre-

sponding visiting sequence. In particular limk→∞
k
nk
≥ 3

4J . Putting Bt =
4J2√

1−Mt∗

and
At(x) := max{2Ct∗

max(x)B
−Jk∗x
t ,Ct∗

ϕ (x)+Ct∗
max(x)},

as an immediate consequence of Proposition 3.17 and its proof along with our esti-
mates above, we obtain the following.

Proposition 9.1 For every t ∈ R2, for every x ∈ G′−, and every gx ∈Λ s
t,x
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‖L̃ n
x−n,tgx−n −qt,x‖∞ ≤ At(x)Bn

t .

More generally, if gx ∈H α(Jx), then∣∣∣∣∣∣L̂ n
t,xgx−

(∫
gxdµt,x

)
1

∣∣∣∣∣∣
∞

≤Ct∗
ϕ (θ

n(x))
(∫
|gx|dµt,x +4

vα(gxqt,x)

t∗Qx

)
At∗(θ

n(x))Bn
t∗ .

In here and in the sequel, by qt,x, Λ s
t,x and Lt,x we denote the respective objects for

the potential ϕt .

Remark 9.2 It follows from the estimates of all involved measurable functions, that,
for R > 0 and t ∈R such that |t| ≤ R, the functions At and Bt in Proposition 9.1 can
be replaced by Amax{R,1} and Bmax{R,1} respectively.

Now, let us look at Proposition 3.19. Similarly as with the set G, we consider the
set XA defined by (3.38) with A(x) generated by ϕ . So, if x ∈ XA, then At(x) ≤ At
for some finite number At which depends on t. Denote by X ′A,+ the corresponding
visiting set intersected with G′+. Therefore, the following is a consequence of the
proof of Proposition 3.19 and the formula (3.43).

Proposition 9.3 For every R > 0, every x ∈ X ′A,+, and every gx ∈ C (Jx) we have
that

lim
n→∞

sup
|t|≤R

{∣∣∣∣∣∣L̂ n
t,xgx−

(∫
gxdµt,x

)
1θ n(x)

∣∣∣∣∣∣
∞

}
= 0.

Moreover, we obtain the following consequence of Lemma 3.28 and (9.5).

Lemma 9.4 There exist a set X ′ ⊂ X of full measure, and a measurable function
X 3 x 7→ D1(x) with the following property. Let x ∈ X ′, let w ∈Jx and let n ≥ 0.
Put y = (x,w). Then

(D1(θ
n(x)))−t∗ ≤

νt,x(T−n
y (B(T n(y),ξ )))

exp(Snϕt(y)−SnPx(ϕt))
≤ (D1(θ

n(x)))t∗

for all t ∈ R2.

For all t ∈ R2 set
EP(t) := EP(ϕt).

We now shall prove the following.

Lemma 9.5 The function EP : R2→ R is convex, and therefore, continuous. There
exists a measurable set XE

′ such that m(XE
′) = 1 and for all x ∈ XE

′ and all t ∈ R2,
the limit

lim
n→∞

1
n

logL n
t,x1(wn) (9.9)

exists, and is equal to EP(t).
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Proof. By Lemma 4.6 and Lemma 3.27 we know that for every t ∈ R2 there exists
a measurable X ′t with m(X ′t ) = 1 and such that

lim
n→∞

1
n

logL n
t,x1(wn) = lim

n→∞

1
n

logλ
n
t,x = EP(t) (9.10)

for all x ∈ X ′t . Fix λ ∈ [0,1) and let t = (t1, t2) and t ′ = (t ′1, t
′
2) ∈ R2. Hölder’s in-

equality implies that all the functions R2 3 t 7→ 1
n logL n

t,x1(wn), n≥ 1, are convex.
It thus follows from (9.10), that the function R2 3 t 7→ EP(t) is convex, whence
continuous. Let

XE
′ =

⋂
t∈Q2

X ′t .

Since the set Q2 is countable, we have that m(XE
′) = 1. Along with (9.10), and den-

sity of Q2 in R2, the convexity of the functions R2 3 t 7→ 1
n logL n

t,x1(wn) implies
that for all x ∈ XE

′ and all t ∈ R2, the limit limn→∞
1
n logL n

t,x1(wn) exists and rep-
resents a convex function, whence continuous. Since for all t ∈ Q2 this continuous
function is equal to the continuous function EP, we conclude that for all x ∈ XE

′ and
all t ∈ R2, we have

lim
n→∞

1
n

logL n
t,x1(wn) = EP(t).

We are done. ut

Lemma 9.6 Fix t2 ∈ R and assume that there exist measurable functions L : X 3
x 7→ Lx ∈ R and c : X 3 x 7→ cx > 0 such that

Snϕx,1(z)≤−ncx +Lx for every z ∈Jx and n≥ 1 . (9.11)

Then the function R 3 t1 7→ EP(t1, t2) ∈ R is strictly decreasing and

lim
t1→+∞

EP(t1, t2) =−∞ and lim
t1→−∞

EP(t1, t2) = +∞ m−a.e. (9.12)

Proof. Fix x ∈ XE
′. Let t1 < t ′1. Then by (9.11)

∑
z∈T−n

x (wn)

exp
(
Snϕ(t1,t2)(z)

)
= ∑

z∈T−n
x (wn)

exp
(
t1Snϕ1(z)

)
exp
(
t2Snϕ2(z)

)
= ∑

z∈T−n
x (wn)

exp
(
t ′1Snϕ1(z)

)
exp
(
t2Snϕ2(z)

)
exp
(
(t1− t ′1)Snϕ1(z)

)
≥ ∑

z∈T−n
x (wn)

exp
(
t ′1Snϕ2(z)

)
exp
(
t2Snϕ2(z)

)
exp
(
(t1− t ′1)(Lx−ncx)

)
= ∑

z∈T−n
x (wn)

exp
(
Snϕ(t ′1,t2)

(z)
)

exp
(
(t ′1− t1)(ncx−Lx)

)
Therefore,

1
n

logL n
t,x1(wn)≥

1
n

logL n
(t ′1,t2),x

1(wn)+(t ′1− t1)(cx−Lx/n) .
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Hence, letting n→ ∞, we get from Lemma 9.5 that EP(t1, t2) ≥ EP(t ′1, t2)+ (t ′1−
t1)cx. It directly follows from this inequality that the function t1 7→ EP(t1, t2) is
strictly decreasing, that limt1→+∞ EP(t1, t2) = −∞ and that limt1→−∞ EP(t1, t2) =
+∞. ut

9.2 Real cones

We adapt the approach of Rugh [26] based on complex cones and establish real
analyticity of the pressure function. Via Legendre transformation, this completes
the proof of real analyticity of the multifractal spectrum (see Chapter 6).

Let Hx :=HR,x :=H α(Jx) and let HC,x :=HR,x⊕ iHR,x its complexification.

C s
x := C s

R,x := {g ∈Hx : g(w1)≤ esQxρα (w1,w2)g(w2) if ρ(w1,w2)≤ ξ}. (9.13)

Whenever it is clear what we mean by s, we also denote this cone by Cx.
By C+

x we denote the subset of all non-zero functions from C s
x . For l ∈ (Hx)

∗,
the dual space of Hx, we define

K(C s
x , l) := sup

g∈C+
x

||l||α ||g||α
|〈l,g〉|

.

Then the aperture of C s
x is

K(C s
x ) := inf{K(C s

x , l) : l ∈ (Hx)
∗, l 6= 0}.

Lemma 9.7 K(C s
x )< ∞. This property of a cone is called an outer regularity.

Proof. Let wk ∈Jx, k = 0, . . . ,N be such that
⋃Lx

k=1 B(wk,ξ ) = Jx. Define

l0(g) :=
Lx

∑
k=1

g(wk). (9.14)

Then by Lemma 3.11 we have

||g||α ≤
(

sQx(exp(sQxξ
α))+1

)
||g||∞

≤
(

sQx(exp(sQxξ
α))+1

)
exp(sQxξ

α)l0(g).

Note that ‖l0‖α = Lx, since l0(g) ≤ Lx||g||∞ ≤ Lx||g||α and l0(1) = Lx = Lx||1||α .
Hence

‖l0‖α‖g‖α

〈l0,g〉
≤ K′x := Lx

(
sQx(exp(sQxξ

α))+1
)

exp(sQxξ
α). (9.15)

ut
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Let

s′x :=
sQx−1γ−α

x−1
+Hx−1γ−α

x−1

Qx
.

By (3.33) for s > 1, s′x < s. Moreover, like in (3.32) we have the following.

Lemma 9.8 Let g ∈ C s
x and let w1,w2 ∈Jθ(x) with ρ(w1,w2) ≤ ξ . Then, for y ∈

T−1
x (w1)

eϕ(y)

eϕ(T−1
y (w2))

g(y)
g(T−1

y (w2))
≤ exp

{
s′

θ(x)Qθ(x)ρ
α(w1,w2)

}
. (9.16)

Consequently
Lxg(w1)

Lxg(w2)
≤ exp

{
s′

θ(x)Qθ(x)ρ
α(w1,w2)

}
,

Lemma 9.9 There is a measurable function CR : X → (0,∞) such that

L i
x−i

g(w)

L i
x−i

g(z)
≤CR(x) for every i≥ j(x) and g ∈ C s

x .

Proof. First, let i = j(x). Let a ∈ T−i
x−i

(z) be such that

eSiϕ(a)g(a) = sup
y∈T−i

x−i (z)
eSiϕ(y)g(y).

By definition of j(x), for any point w∈Jx there exists b∈ T−i
x−i

(w)∩B(a,ξ ). There-
fore

L i
x−i

g(w)≥ eSiϕx−i (b)g(z)≥ exp(Siϕx−i(b)−Siϕx−i(a))e
Siϕx−i (a)e−sQx g(a)

≥
exp(−2‖S j(x)ϕx− j(x)‖∞− sQx)

deg(T j
x− j)

L i
x−i

g(z)≥ (CR(x))−1L i
x−i

g(z)

where

CR(x) :=

exp
(
− sQx−2‖S j(x)ϕx− j(x)‖∞

)
deg(T j(x)

x− j )

−1

≥ 1. (9.17)

The case i > j(x) follows from the previous one, since L
i− j(x)

x−i gx−i ∈ C s
x− j(x)

. ut

Let s > 1 and s′ < s. Define

τx := τx,s,s′ := sup
r∈(0,ξ ]

1− exp
(
− (s+ s′)Qxrα

)
1− exp

(
− (s− s′)Qxrα

) ≤ s+ s′

s− s′
. (9.18)

Lemma 9.10 For gx, fx ∈ C s′
x ,
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τx
supy∈Jx

|gx(y)|
infy∈Jx | fx(y)|

fx−gx ∈ C s
R,x.

Proof. For all w,z ∈Jx with ρx(z,w)< ξ ,

τx‖gx/ fx‖∞

(
exp
(
sQxρ

α
x (z,w)

)
fx(z)− fx(w)

)
≥ τx‖gx/ fx‖∞

(
exp
(
sQxρ

α
x (z,w)

)
− exp

(
s′Qxρ

α
x (z,w)

))
fx(z)

≥
(

exp
(
sQxρ

α
x (z,w)

)
− exp

(
− s′Qxρ

α
x (z,w)

))
gx(z)

≥ exp
(
sQxρ

α
x (z,w)

)
gx(z)−gx(w).

Then exp
(
sQxρα

x (z,w)
)(

τx‖g/ f‖∞ fx(z)−gx(z)
)
≥ τx‖g/ f‖∞ fx(w)−gx(w). ut

We say that gx ∈ C s
x is balanced if

fx(y1)

fx(y2)
≤CR(x) for all y1,y2 ∈Jx. (9.19)

Let gx, fx ∈ C s
x . Put βx,s( fx,gx) := inf{τ > 0 : τ fx−gx ∈ C s

x } and define the Hilbert
projective distance Pdist : C s

x ×C s
x → R by the formula

Pdistx( fx,gx) := Pdistx,s( fx,gx) := log(βx,s( fx,gx) ·βx,s(gx, fx)).

Let
∆x := diamC s

x,R
(L j

x− j
(C s

x− j ,R)),

where diamC s
x,R

is the diameter with respect to the projective distance and j = j(x).
Then by Lemma 9.8, Lemma 9.9 and Lemma 9.10 we get the following.

Lemma 9.11 If gx, fx ∈ C s′
x are balanced, then

Pdistx( fx,gx)≤ 2log
( s+ s′

s− s′
·CR(x)

)
and, consequently,

∆x ≤ 2log
( s+ s′

s− s′
·CR(x)

)
.

9.3 Canonical complexification

Following the ideas of Rugh [26] we now extend real cones to complex ones. Define
C ∗x := {l ∈ (Hx)

∗ : l|Cx ≥ 0} and

C s
C,x := {g ∈HC,x : ∀l1,l2∈C ∗x Re〈l1,g〉〈l2,g〉 ≥ 0}.
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Denote also by C+
C,x the set of all g∈C s

C,x such that g 6≡ 0. There are other equivalent
definitions of C s

C,x. The first one is called polarization identity by Rugh in [26,
Proposition 5.2].

Proposition 9.12 (Polarization identity)

C s
C,x = {a( f ∗+ ig∗) : f ∗±g∗ ∈ C+

R,x and a ∈ C}.

In our case we can also define C s
C,x as follows. Let ρ(w,w′)< ξ . Define

lw,w′(g) := g(w)− e−sQxρα (w,w′)g(w′)

and
Fx := {lw,w′ : ρ(w,w′)< ξ} ⊂ C ∗x .

Then
C s

x = {g ∈Hx : ∀l∈Fx l(g)≥ 0}.

Later in this section we use the following two facts about geometry of complex
numbers. The first one is obvious and the second is Lemma 9.3 from [26].

Lemma 9.13 Given c1,c2 > 0 there exist p1, p2 > 0 such that if s0 := c1 p2 and

Z ∈ {reiu : 1≤ 1+ s2
0, |u| ≤ 2p1 +2s0},

then there exist α,β ,γ > 0 such that ReZ ≥ α , ReZ ≤ β , ImZ ≤ γ and γc2 < α .

Lemma 9.14 Let z1,z2 ∈ C be such that Rez1 > Rez2 and define u ∈ C though

ei Imz1u≡ ez1 − ez2

eRez1 − eRez2
.

Then

|Argu| ≤ | Im(z1− z2)|
Re(z1− z2)

and 1≤ |u2| ≤ 1+
( Im(z1− z2)

Re(z1− z2)

)2
.

Let ϕ = Reϕ + i Imϕ be such that Reϕ, Imϕ ∈H α(J ). We now consider the
corresponding complex Perron-Frobenius operators Lx,ϕ defined by

Lx,ϕ gx(w) = ∑
Tx(z)=w

eϕx(z)gx(z), w ∈Jθ(x).

Lemma 9.15 Let w,w′,z,z′ ∈Jx such that ρ(w,w′)< ξ and ρ(z,z′)< ξ . Then, for
all g1,g2 ∈ C s

x,R,

lw,w′(Lx,ϕ g1)lz,z′(Lx,ϕ g2)

lw,w′(Lx,Reϕ g1)lz,z′(Lx,Reϕ g2)
= Z

where
Z ∈ Ax := {reiu : 1≤ r ≤ 1+ s2

0, |u| ≤ 2|| Imϕ||∞ +2s0}. (9.20)

and
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s0 :=
vα(Imϕ)γ−α

x

(s− s′
θ(x))Qθ(x)

(9.21)

Proof. For y ∈ T−1
x (w), by y′ we denote T−1

y (w′). Then for g ∈ Cx

lw,w′(Lx,ϕ g) := Lx,ϕ g(w)− e−sQxρα (w,w′)Lx,ϕ g(w′)

= ∑
y∈T−1

x (w)

eϕ(y)g(y)− e−sQxρα (w,w′)eϕ(y′)g(y′) = ∑
y∈T−1

x (w)

ny(ϕ,g),

where
ny(ϕ,g) := eϕ(y)g(y)− e−sQxρα (w,w′)eϕ(y′)g(y′).

Define implicitly uy so that ny(Reϕ,g)ei Imϕ(y)uy = ny(ϕ,g). Put z1 := ϕ(y) +
logg(y) and z2 :=−sQxρα(w,w′)+ϕ(y′)+ logg(y′). Then

ei Imz1uy =
ez1 − ez2

eRez1 − eRez2
.

By (9.16)

Reϕ(y)− logg(y)− (Reϕ(y′)+ logg(y′))≥−s′
θ(x)Qθ(x)ρ

α(w1,w2).

Hence
Re(z1− z2)≥ (s− s′

θ(x))Qθ(x)ρ
α(w1,w2).

We also have that

| Im(z1− z2)| ≤ vα(Imϕ)γ−α
x ρ

α(w1,w2),

since Im(z1− z2) = Imϕ(y)− Imϕ(y′). Therefore, by Lemma 9.14

|Arguy| ≤ s0 :=
vα(Imϕ)γ−α

x

(s− s′
θ(x))Qθ(x)

and 1≤ |uy|2 ≤ 1+ s2
0.

Since

lw,w′(Lx,ϕ g) = ∑
y∈T−1

x (w)

ny(ϕ,g) = ∑
y∈T−1

x (w)

ei Imϕ(y)uyny(Reϕ,g),

lw,w′(Lx,ϕ g)
lw,w′(Lx,Reϕ g)

= Z

where
Z ∈ Ax := {reiu : 1≤ r ≤ 1+ s2

0, |u| ≤ 2|| Imϕ||∞ +2s0}.

Similarly
lw,w′(Lx,ϕ g1)lz,z′(Lx,ϕ g2)

lw,w′(Lx,Reϕ g1)lz,z′(Lx,Reϕ g2)
= Z



100 9 Real Analyticity of Pressure

for possibly another Z ∈ Ax. ut

Let p1, p2 be the real numbers given by Lemma 9.13 with

c1 =
γ−α

x

(s− s′x)Qx
and c2 = cosh

∆x

2
.

Having Lemma 9.15, Lemma 9.13 and Lemma 9.11 the following proposition is
a consequence of the proof of Theorem 6.3 in [26].

Proposition 9.16 Let j = j(x). If

‖ ImS jϕx− j‖∞ ≤ p1 and vα(ImS jϕx− j)≤ p2, (9.22)

then
L j

x− j
(C s

C,x− j
)⊂ C s

C,x.

Let l0 (the functional defined by (9.14)). Then by Lemma 5.3 in [26] we get

K := K(C s
C,x, l0) := sup

g∈C+
C,x

||l0||α ||g||α
|〈l0,g〉|

≤ Kx := 2
√

2K′x

where K′x is defined by (9.15). By l we denote the functional which is a normalized
version of (1/Lx)l0. So ||l||α = 1. Then, for every g ∈ C s

C,x,

1≤ ||g||α
〈l,g〉

≤ Kx. (9.23)

9.4 The pressure is real-analytic

We are now in position to prove the main result of this chapter. Here, we assume
that T : J →J is uniformly expanding random map. Then there exists j ∈N such
that j(x) = j for all x ∈ X . Without loss of generality we assume that j = 1.

Theorem 9.17 Let t0 = (t1, . . . , tn) ∈ Rn, R > 0 and let

D(t0,R) := {z = (z1, . . . ,zn) ∈ Cn : ∀k |zk− tk|< R}.

Assume that the following conditions are satisfied.
(a) For every x ∈ X and every w ∈Jx, z 7→ ϕz,x(w) is holomorphic on D(t0,R).
(b) For z ∈ Rn∩D(t0,R), ϕz,x ∈HR,x.
(c) For all z ∈ D(t0,R) and all x ∈ X, there exists H such that ‖ϕz,x‖α ≤ H.
(d) For every ε > 0 there exists δ > 0 such that for all z ∈ D(t0,δ ) and all x ∈ X,

‖ Imϕz,x‖α ≤ ε.

Then the function D(t0,R)∩Rn 3 z 7→ EP(ϕz) is real-analytic.
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Proof. Since we assume that the measurable constants are uniform for x ∈ X we get
that from Proposition 9.16 and condition (d) that there exists r > 0 such that, for all
z ∈ D(t0,r) and all x ∈ X ,

Lz,x−1(C
s
C,x−1

)⊂ C s
C,x.

Then by (9.23),
||L n

z,x−n(1)||α
lx(L n

z,x−n(1))
≤ K.

Therefore, by Montel Theorem, the family
L n

z,x−n (1)(w)
lx(L n

z,x−n (1))
is normal. Since, for all z ∈

Rn∩D(t0,r) and all x ∈ X we have that

L n
z,x−n(1)(w)

lx(L n
z,x−n(1))

−−−→
n→∞

qz,x(w)
lx(qz,x)

,

we conclude that there exists an analytic function z 7→ gz,x(w) such that

L n
z,x−n(1)(w)

lx(L n
z,x−n(1))

−−−→
n→∞

gz,x(w). (9.24)

Since, in addition,

Lx

(L n
z,x−n(1)(w)

lx(L n
z,x−n(1))

)
=

L n+1
z,x−n(1)(w)

lx1(L
n+1

z,x−n(1))
· lx1

(
Lz,x

(L n
z,x−n(1)(w)

lx(L n
z,x−n(1))

))
,

we therefore get that

Lx

(L n
z,x−n(1)(w)

lx(L n
z,x−n(1))

)
−−−→
n→∞

lx1(Lx(gz,x))gx1,z.

Thus, using again (9.24), we obtain Lz,x(gz,x) = lx1(Lz,x(gz,x))gx1,z. As for all z ∈
D(t0,r)∩Rn,

gz,x =
qz,x

lx(qz,x)
=

Lxqz,x

∑
N
k=0 qz,x(wk)

,

we conclude that,

lx1(Lz,xgz,x) = lx1(Lz,x
qz,x

lx(qz,x)
) = λz,x

lx1(qx1,z)

lx(qz,x)
. (9.25)

By the very definitions

lx1(Lz,xgz,x) = (1/Lx)
Lx

∑
k=1

Lz,xgz,x(wk)

and
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Lz,xgz,x(w) = ∑
y∈T−1

x (w)

eϕz,x(y)gz,x(y).

Denote gz,x(w) by F(z) and ϕz,x(w) by G(z). Then, for z = (z1, . . . ,zn) ∈ D(t0,r/2),
and Γ (u) = z+((r/2)e2πiu1 , . . . ,(r/2)e2πiun), where u = (u1, . . . ,un) ∈ [0,2π]n, by
the Cauchy Integral Formula,∣∣∣ ∂F

∂ zk
(z)
∣∣∣= ∣∣∣ 1

(2πi)2

∫
Γ

F(ξ )

(ξ1− z1) . . .(ξk− zk)2 . . .(ξ2− z2)
dξ

∣∣∣≤ 2K/r

for k = 1, . . . ,n. Similarly we obtain that∣∣∣ ∂G
∂ zk

(z)
∣∣∣≤ 2H/r

for k = 1, . . . ,n. Then, for k = 1, . . . ,n,∣∣∣∂eϕz,x(y)gz,x(y)
∂ zk

∣∣∣ = ∣∣∣ ∂ϕz,t (w)
∂ zk

eϕz,x(y)gz,x(y)+ eϕz,x(y) ∂gz,x(y)
∂ zk

∣∣∣
≤ (2H/r)eHK + eH(2K/r).

It follows that there exists Cg such that for all x ∈ X ,∣∣∣∂ lx1(Lz,xgz,x)

∂ zk

∣∣∣≤Cg. (9.26)

Using (3.19) we obtain that

C−1
ϕ ≤ qt0,x(y)≤Cϕ

and then
C−1

ϕ ≤ lx(qt0,x(y))≤Cϕ

for all x ∈ X . Moreover, it follows from Lemma 3.6 that λt0,x ≥ exp(−‖ϕt0,x‖∞).
Then

z0 := lx1(Lt0,xgt0,x) = λt,x
lx1(qt,x1)

lx(qt,x)
≥ exp(−sup

x∈X
‖ϕx‖∞)C−2

ϕ > 0.

Hence, by (9.26), there exists r1 > 0 so small that

lx1(Lz,xgz,x) ∈ D(z0,z0/2)

for all z ∈ D(t0,r1). Therefore, for all x ∈ X we can define the function

D(t0,r1) 3 z 7→ log lx1(Lz,xgz,x) ∈ C.

Now consider the holomorphic function
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z 7→
∫

log lx1(Lz,xgz,x)dm(x).

Since the measure m is θ -invariant, by (9.25)

∫
log lx1(Lz,xgz,x)dm(x) =

∫
logλz,x

lx1(qz,x1)

lx(qz,x)
dm(x)

=
∫

logλz,xdm+
∫

lx1(qz,x1)dm−
∫

lx(qz,x)dm(x) =
∫

logλz,xdm = EP(ϕt)

for z ∈ D(t0,r1)∩Rn. Therefore the function D(t0,r1)∩Rn 3 z 7→ EP(ϕz) is real-
analytic. ut

9.5 Derivative of the Pressure

Now, let T : J →J be uniformly expanding random map. Throughout the section,
we assume that ϕ ∈Hm(J ) is a potential such that there exist measurable functions
L : X 3 x 7→ Lx ∈ R and c : X 3 x 7→ cx > 0 such that

Snϕx(z)≤−ncx +Lx (9.27)

for every z ∈Jx and n and ψ ∈Hm(J ). For t ∈ R, define

ϕt := tϕ +ψ.

Let R > 0 and let |t0| ≤ R/2. Since we are in the uniform case, it follows from
Remark 9.2 that there exist constants AR and BR such that, for t ∈ [−R,R],∣∣∣∣∣∣L̃ n

t,xgx

qθ n(x)
−
(∫

gxdνt,x

)∣∣∣∣∣∣
∞

≤
(
‖gx‖∞ +2

v(gx)

Q

)
ARBn

R. (9.28)

Proposition 9.18

dEP(t)
dt

=
∫

ϕxdµ
t
xdm(x) =

∫
ϕdµ

t .

Proof. Assume without loss of generality that |t| ≤ R/2 for some R > 0. Let x 7→
y(x) ∈ Yx be a measurable function and let

EP(t,n) :=
∫ 1

n
logL n

t,x1x(y(xn))dm(x).

Then limn→∞ EP(t,n) = EP(t) by Lemma 4.6. Fix x ∈ X and put yn := y(xn). Ob-
serve that
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dL n
t,x1x(yn)

dt
= ∑

y∈T−n
x (yn)

eSn(ϕ
t
x)(y)Snϕx(y)

=
n−1

∑
j=0

∑
y∈T−n

x (yn)

eSn(ϕ
t
x)(y)ϕx j(T

j
x y) =

n−1

∑
j=0

L n
t,x(ϕx j ◦T j

x )(yn).

Since Sn(ϕ
t
x)(y) = S j(ϕ

t
x)(y)+Sn− j(ϕ

t
x j
)(T j

x y) we have that

L n
t,x(ϕx j ◦T j

x )(y(xn)) = L n− j
t,x j (ϕx jL

j
t,x1x)(y(xn)).

Then by a version of Leibniz integral rule (see for example [23], Proposition 7.8.4
p. 40)

dEP(t,n)
dt

=
∫ 1

n ∑
n−1
j=0 L n− j

x j ,t (ϕx jL
j

t,x1x)(y(xn))

L n
t,x1x(yn)

dm(x).

Since
L n− j

t,x j (ϕx jL
j

t,x1)(yn) = λ
n
x L̃ n− j

t,x j

(
ϕt,x jL̃

j
t,x1x

)
(yn)

and
L n

t,x1x(yn) = λ
n
x L̃ n

t,x1x(yn)

we have that
L n

t,x(ϕx j ◦T j
x )(yn)

L n
t,x1x(yn)

=
L̃ n− j

t,x j

(
ϕx jL̃

j
t,x1x

)
(yn)

L̃ n
t,x1x(yn)

. (9.29)

The function ϕx jL̃
j

t,x1x is uniformly bounded. So does its Hölder variation. There-
fore it follows from (9.28), that there exists a constant AR and BR such that∥∥∥L̃ n− j

t,x j

(
ϕx jL̃

j
t,x1x

)
(yn)/qxn −

(∫
ϕx jL̃

j
t,x1xdν

t
x j

)∥∥∥
∞

≤ ARBn− j
R

and ∥∥∥L̃ n
t,x(1x)(yn)/qxn −1xn

∥∥∥
∞

≤ ARBn
R,

From this by (9.29) it follows that∫
ϕx jL̃

j
t,x1xdν t

x j
−ARBn− j

R

1+ARBn
R

≤
L n

t,x(ϕx j ◦T j
x )(yn)

L n
x 1Yx(yn)

≤
∫

ϕx jL̃
j

t,x1xdν t
x j
+ARBn− j

R

1−ARBn
R

,

Since m is θ -invariant, we have that∫ ∫
ϕx jL̃t,xy j1xdν

t
x j

dm(x) =
∫ ∫

ϕxL̃
j

x− j ,t1x− j dν
t
xdm(x).

Hence, for large n,
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ϕx

(
1
n ∑

n−1
j=0 L̃ j

x− j ,t1x− j

)
dν t

xdm(x)− 1
n ∑

n−1
j=0(ARBn− j

R )

1+ARBn
R

≤ dEP(ϕ t ,n)
dt

≤

∫ ∫
ϕx

(
1
n ∑

n−1
j=0 L̃ j

x− j ,t1x− j

)
dν t

xdm(x)− 1
n ∑

n−1
j=0(ARBn− j

R )

1−ARBn
R

.

Therefore

lim
n→∞

dEP(t,n)
dt

=
∫

ϕxdµ
t
xdm(x)

uniformly for t ∈ [−R,R]. ut
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projective distance, 97
pseudo-pressure function, 18

random cantor set, 54
random compact subsets of Polish spaces, 43
random repeller, 75
random Sierpiński gasket, 5
repeller over U , 75
RPF–theorem, 17

T-invariance
of a family of measures, 40
of a family of measures, 17
of a measure, 40

temperature function, 58
topological exactness, 8
transfer

dual operators, 19
operator, 13

uniform openness, 8
uniformly expanding random map, 9

visiting sequence, 11
visiting way, 11
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