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Abstract. We consider the dynamics of semi-hyperbolic semigroups generated by finitely
many rational maps on the Riemann sphere. Assuming that the nice open set condition
holds it is proved that there exists a geometric measure on the Julia set with exponent
h equal to the Hausdorff dimension of the Julia set. Both h-dimensional Hausdorff and
packing measures are finite and positive on the Julia set and are mutually equivalent with
Radon-Nikodym derivatives uniformly separated from zero and infinity. All three fractal
dimensions, Hausdorff, packing and box counting are equal. It is also proved that for
the canonically associated skew-product map there exists a unique h-conformal measure.
Furthermore, it is shown that this conformal measure admits a unique Borel probability
absolutely continuous invariant (under the skew-product map) measure. In fact these two
measures are equivalent, and the invariant measure is metrically exact, hence ergodic.
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1. Introduction

In this paper, we frequently use the notation from [36]. A “rational semigroup” G is

a semigroup generated by a family of non-constant rational maps g : Ĉ → Ĉ, where Ĉ
denotes the Riemann sphere, with the semigroup operation being functional composition.
For a rational semigroup G, we set

F (G) := {z ∈ Ĉ | G is normal in a neighborhood of z}

and

J(G) := Ĉ \ F (G).
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F (G) is called the Fatou set of G and J(G) is called the Julia set of G. If G is generated
by a family {fi}i, then we write G = 〈f1, f2, . . .〉.

The work on the dynamics of rational semigroups was initiated by Hinkkanen and Martin
([14]), who were interested in the role of the dynamics of polynomial semigroups while
studying various one-complex-dimensional moduli spaces for discrete groups, and by F.
Ren’s group ([50]), who studied such semigroups from the perspective of random complex

dynamics. The theory of the dynamics of rational semigroups on Ĉ has developed in many
directions since the 1990s ([14, 50, 15, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 45, 42,
32, 43]).

Since the Julia set J(G) of a rational semigroup G generated by finitely many elements
f1, . . ., fu has backward self-similarity, i.e.,

(1.1) J(G) = f−1
1 (J(G)) ∪ · · · ∪ f−1

u (J(G))

(see [36]), it can be viewed as a significant generalization and extension of both, the theory
of iteration of rational maps (see [23]), and conformal iterated function systems (see [22]).
For example, the Sierpiński gasket can be regarded as the Julia set of a rational semigroup.
The theory of the dynamics of rational semigroups borrows and develops tools from both
of these theories. It has also developed its own unique methods, notably the skew product
approach (see [36, 37, 38, 39, 42, 45], and [46]). We remark that by (1.1), the analysis
of the Julia sets of rational semigroups somewhat resembles “backward iterated functions
systems”, however since each map fj is not in general injective (critical points), some
qualitatively different extra effort in the cases of semigroups is needed.

The theory of the dynamics of rational semigroups is intimately related to that of the
random dynamics of rational maps. For the study of random complex dynamics, the reader
may consult [13, 4, 5, 3, 2, 16, 24]. We remark that the complex dynamical systems can be
used to describe some mathematical models. For example, the behavior of the population of
a certain species can be described as the dynamical system of a polynomial f(z) = az(1−z)
such that f preserves the unit interval and the postcritical set in the plane is bounded (cf.
[10]). From this point of view, it is very important to consider the random dynamics of
polynomials. For the random dynamics of polynomials on the unit interval, see [33].

The deep relation between these fields (rational semigroups, random complex dynamics,
and (backward) IFS) is explained in detail in the subsequent papers ([40, 41, 42, 43, 44])
of the first author.

In this paper, we investigate the Hausdorff, packing, and box dimension of the Julia sets of
semi-hyperbolic rational semigroups G = 〈f1, . . . , fu〉 satisfying the nice open set condition.
We will show that these dimensions coincide, that 0 < Hh(J(G)), Ph(J(G)) < ∞, where h
is the Hausdorff dimension of J(G) and Hh (resp. Ph) denotes the h-dimensional Hausdorff
(resp. packing) measure, that h is equal to the critical exponent of the Poincaré series of

the semigroup G, that there exists a unique h-conformal measure m̃h on the Julia set J(f̃)

of the “skew product map” f̃ , that there exists a unique Borel probability measure µ̃h on
J(f̃) which is absolutely continuous with respect to m̃h, and that µ̃h is metrically exact
and equivalent with m̃h. The precise statements of these results are given in Theorem 1.11.
In order to prove these results, we develop and combine the idea of usual iteration of non-
recurrent critical point maps ([47]), conformal iterated function systems ([22]), and the
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dynamics of expanding rational semigroups ([38]). However, as we mentioned before, since
the generators may have critical points in the Julia set, we need some careful treatment on
the critical points in the Julia set and some observation on the overlapping of the backward
images of the Julia set under the elements of the semigroup.

Our approach develops the methods from [38], [47], and [48]. In order to prove that a
conformal measure exists, is atomless, and, ultimately, geometric, we expand the concepts
of estimability of measures, which originally appeared in [47], we introduce a partial order
in the set of critical points, and a stratification of invariant subsets of the Julia set. As an
entirely new tool to all [38], [47], and [48], we introduce the concept of essential families
of inverse branches. This concept, supported by the notion of nice open set, is extremely
useful in the realm of semi-hyperbolic rational semigroups, at it would also (without nice
open set) substantially simplified considerations in the expanding case.

In the second part of the paper, devoted to proving the existence and uniqueness of an
invariant (with respect to the canonical skew-product) probability measure equivalent with
the h-conformal measure, the most challenging task is to prove the uniqueness of the latter.
We do it by bringing up and elaborating the tool of Vitali relations due to Federer (see [12]),
the tool which has not come up in [47], [48] nor [38]. We rely here heavily on deep results
from [12]. The second tool, already employed in [48] and subsequent papers of the second
author, is the Marco Martens method of producing σ-finite invariant measures absolutely
continuous with respect to a given quasi invariant measure. We apply and develop this
method, proving in particular its validity for abstract measure spaces and not only for σ-
compact measure spaces. This is possible because of our use of Banach limits rather than
weak convergence of measures.

We remark that as illustrated in [41, 40, 44], estimating the Hausdorff dimension of
the Julia sets of rational semigroups plays an important role when we investigate random
complex dynamics and its associated Markov process on Ĉ. For example, when we consider
the random dynamics of a compact family Γ of polynomials of degree greater than or equal
to two, then the function T∞ : Ĉ → [0, 1] of probability of tending to ∞ ∈ Ĉ varies only
inside the Julia set of rational semigroup generated by Γ, and under some condition, this
T∞ : Ĉ → [0, 1] is continuous on Ĉ and varies precisely on J(G). If the Hausdorff dimension

of the Julia set is strictly less than two, then it means that T∞ : Ĉ → [0, 1] is a complex
version of devil’s staircase (Cantor function) ([40, 41, 44]).

In order to present the precise statements of the main result, we give some basic notations.
For each meromorphic function ϕ, we denote by |ϕ′(z)|s the norm of the derivative with
respect to the spherical metric. Moreover, we denote by CV (ϕ) the set of critical values of
ϕ.

Given a set A ⊂ C and r > 0, the symbol B(A, r) denotes the Euclidean open r-
neighborhood of the set A. Moreover, diam(A) denotes the diameter of A with respect to

the Euclidean distance. Moreover, given a subset A of Ĉ, Bs(A, r) denotes the spherical
open r-neighborhood of the set B. Moreover, diams(A) denotes the diameter of A with
respect to the spherical distance.

Let u ∈ N. In this paper, an element of (Rat)u is called a multi-map.
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Let f = (f1, . . . , fu) ∈ (Rat)u be a multi-map and let G = 〈f1, . . ., fu〉 be the rational
semigroup generated by {f1, . . . , fu}. Then, we use the following notation. Let Σu :=
{1, . . ., u}N be the space of one-sided sequences of u-symbols endowed with the product

topology. This is a compact metric space. Let f̃ : Σu × Ĉ → Σu × Ĉ be the skew product
map associated with f = (f1, . . ., fu) given by the formula

f̃(ω, z) = (σ(ω), fω1(z)),

where (ω, z) ∈ Σu × Ĉ, ω = (ω1, ω2, . . .), and σ : Σu → Σu denotes the shift map. We

denote by p1 : Σu × Ĉ → Σu the projection onto Σu and p2 : Σu × Ĉ → Ĉ the projection
onto Ĉ. That is,

p1(ω, z) = ω and p2(ω, z) = z.

Under the canonical identification p−1
1 {ω} ∼= Ĉ, each fiber p−1

1 {ω} is a Riemann surface

which is isomorphic to Ĉ. Let Σ∗
u :=

∪
n∈N{1, . . . , u}n. For each ω = (ω1, . . . , ωn) ∈ Σ∗

u, let

fω := fωn ◦ · · · ◦ fω1 . Moreover, let τ ∈ Σ∗
u, x ∈ Ĉ, and n ∈ N. Suppose that z = fτ (x)

is not a critical value of fτ . Then we denote by f−1
τ,x the inverse branch of fτ mapping z

to x. Furthermore, we denote by f̃
−|τ |
τ,x the inverse branch of f̃ |τ | such that f̃

−|τ |
τ,x (ω, y) =

(τω, f−1
τ,x(y)).

Let Crit(f̃) :=
∪

ω∈Σu
{v ∈ p−1

1 {ω} | v is a critical point of f̃ |p−1
1 {ω} → p−1

1 {σ(ω)}} (⊂
Σu × Ĉ) be the set of critical points of f̃ . For each n ∈ N and (ω, z) ∈ Σu × Ĉ, we set

(f̃n)′(ω, z) := (fωn ◦ · · · ◦ fω1)
′(z).

For each ω ∈ Σu we define

Jω := {z ∈ Ĉ | {fωn ◦ · · · ◦ fω1}n∈N is not normal in any neighborhood of z}

and we then set

J(f̃) := ∪w∈Σu{ω} × Jω,

where the closure is taken in the product space Σu × Ĉ. By definition, J(f̃) is compact.

Furthermore, by Proposition 3.2 in [36], J(f̃) is completely invariant under f̃ , f̃ is an open

map on J(f̃), (f̃ , J(f̃)) is topologically exact under a mild condition, and J(f̃) is equal to

the closure of the set of repelling periodic points of f̃ provided that ]J(G) ≥ 3, where we say

that a periodic point (ω, z) of f̃ with period n is repelling if |(f̃n)′(ω, z)| > 1. Furthermore,

p2(J(f̃)) = J(G).

Definition 1.1. Let G be a rational semigroup and let F be a subset of Ĉ. We set G(F ) =∪
g∈G g(F ) and G−1(F ) =

∪
g∈G g−1(F ). Moreover, we set G∗ = G∪{Id}, where Id denotes

the identity map on Ĉ. Furthermore, let E(G) := {z ∈ Ĉ | ]
∪

g∈G g−1({z}) < ∞}.

Proposition 1.2 (Proposition 3.2(f) in [36]). (topological exactness) Let G = 〈f1, . . . , fu〉
be a finitely generated rational semigroup. Suppose ]J(G) ≥ 3 and E(G) ⊂ F (G). Then,
the action of the semigroup G on the Julia set J(G) is topologically exact, meaning that for
every non-empty open set U ⊂ J(G) there exist g1, g2, . . . , gn ∈ G such that

g1(U) ∪ g2(U) ∪ . . . gn(U) ⊃ J(G).
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Definition 1.3. A rational semigroup G is called semi-hyperbolic if and only if there exists
an N ∈ N and a δ > 0 such that for each x ∈ J(G) and g ∈ G,

deg(g : V → Bs(x, δ)) ≤ N

for each connected component V of g−1(Bs(x, δ)).

Definition 1.4. Let f = (f1, . . . , fu) ∈ (Rat)u be a multi-map and let G = 〈f1, . . . , fu〉.
Moreover, let U be a non-empty open subset of Ĉ. We say that G (or f) satisfies the open
set condition with U if (f, U) satisfies the following two properties:

(osc1) f−1
1 (U) ∪ f−1

2 (U) ∪ . . . f−1
u (U) ⊂ U ,

(osc2) f−1
i (U) ∩ f−1

2 (U) = ∅ whenever i 6= j.

Moreover, we say that G (or f) satisfies the nice open set condition with U if (f, U) satisfies
the above (osc1), (osc2), and the following (osc3).

(osc3) ∃(α ∈ (0, 1))∀(0 < r ≤ 1)∀(x ∈ U) l2(U ∩ Bs(x, r)) ≥ αl2(Bs(x, r)), where l2
denotes the 2-dimensional Lebesgue measure on Ĉ.

Remark 1.5. Condition (osc3) is not needed if our semigroup G is expanding (see [38] or
note that our proofs would use only (osc1) and (osc2) under this assumption). Condition
(osc3) is satisfied in the theory of conformal infinite iterated function systems (see [21],
comp. [22]), where it follows from the open set condition and the cone condition. Moreover,
condition (osc3) holds for example if the boundary of U is smooth enough; piecewise smooth
with no exterior cusps suffices. Furthermore, (osc3) holds if U is a John domain (see [6]).

Definition 1.6 ([38]). Let G be a countable rational semigroup. For any t ≥ 0 and z ∈ Ĉ,
we set SG(z, t) :=

∑
g∈G

∑
g(y)=z |g′(y)|−t

s , counting multiplicities. We also set SG(z) :=

inf{t ≥ 0 : SG(z, t) < ∞} (if no t exists with SG(z, t) < ∞, then we set SG(z) :=

∞). Furthermore, we set s0(G) := inf{SG(z) : z ∈ Ĉ}. This s0(G) is called the critical
exponent of the Poincaré series of G.

Definition 1.7 ([38]). Let f = (f1, . . . , fu) ∈ (Rat)u, t ≥ 0, and z ∈ Ĉ. We put Tf (z, t) :=∑
ω∈Σ∗

u

∑
fω(y)=z |f ′

ω(y)|−t
s , counting multiplicities. Moreover, we set Tf (z) := inf{t ≥ 0 :

Tf (z, t) < ∞} (if no t exists with Tf (z, t) < ∞, then we set Tf (z) = ∞). Furthermore,

we set t0(f) := inf{Tf (z) : z ∈ Ĉ}. This t0(f) is called the critical exponent of the
Poincaré series of f = (f1, . . . , fu) ∈ (Rat)u.

Remark 1.8. Let f = (f1, . . . , fu) ∈ (Rat)u, t ≥ 0 , z ∈ Ĉ and let G = 〈f1, . . . , fu〉.
Then, SG(t, z) ≤ Tf (t, z), SG(z) ≤ Tf (z), and s0(G) ≤ t0(f). Note that for almost every
f ∈ (Rat)u with respect to the Lebesgue measure, G = 〈f1, . . . , fu〉 is a free semigroup and
so we have SG(t, z) = Tf (t, z), SG(z) = Tf (z), and s0(G) = t0(f).

Definition 1.9. Let ϕ : J(f̃) → R be a function. Let ν be a Borel probability measure on

J(f̃). We say that ν is a ϕ-conformal measure for the map f̃ : J(f̃) → J(f̃) if for each

Borel subset A of J(f̃) such that f̃ |A : A → J(f̃) is injective, we have ν(f̃(A)) =
∫

A
ϕ dν.

A |f̃ ′|ts-conformal measure ν is sometimes called a t-conformal measure. When J(G) ⊂ C,

a |f̃ ′|t-conformal measure is also sometimes called a t-conformal measure.
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Definition 1.10. Let G = 〈f1, . . . , fu〉 and let t ≥ 0. For all z ∈ Ĉ \ G∗(
∪u

j=1 CV(fj)), we

set Pz(t) := lim supn→∞
1
n

log
∑

|ω|=n

∑
x∈f−1

ω (z) |f ′
ω(x)|−t

s .

The main result of this paper is the following.

Theorem 1.11 (see Lemma 7.2, Lemma 7.3, Theorem 7.16, Corollary 7.18 and Theo-
rem 8.4). Let f = (f1, . . . , fu) ∈ (Rat)u be a multi-map. Let G = 〈f1, . . . , fu〉. Suppose

that there exists an element g of G such that deg(g) ≥ 2, that each element of Aut(Ĉ) ∩G
(if this is not empty) is loxodromic, that G is semi-hyperbolic, and that G satisfies the nice
open set condition. Then, we have the following.

(a) J(G)∩G∗(
∪u

j=1 CV(fj)) is nowhere dense in J(G) and, for each t ≥ 0, the function

z 7→ Pz(t) is constant throughout a neighborhood of J(G) \ G∗(
∪u

j=1 CV(fj)) in Ĉ.

We denote by P (t) the constant.
(b) The function t 7→ P (t) has a unique zero. This zero is denoted by h = h(f).

(c) There exists a unique |f̃ ′|hs -conformal measure m̃h for the map f̃ : J(f̃) → J(f̃).
(d) Let mh := m̃h ◦ p−1

2 . Then there exists a constant C ≥ 1 such that

C−1 ≤ mh(Bs(z, r))

rh
≤ C

for all z ∈ J(G) and all r ∈ (0, 1].
(e) h(f) = HD(J(G)) = PD(J(G)) = BD(J(G)), where HD, PD, BD denotes the Haus-

dorff dimension, packing dimension, and box dimension, respectively, with respect

to the spherical distance in Ĉ. Moreover, for each z ∈ J(G) \ G∗(
∪u

j=1 CV(fj)), we

have h(f) = Tf (z) = t0(f) = SG(z) = s0(G).
(f) Let Hh and Ph be the h-dimensional Hausdorff dimension and h-dimensional packing

measure respectively. Then, all the measures Hh, Ph, and mh are mutually equivalent
with Radon-Nikodym derivatives uniformly separated away from zero and infinity.

(g) 0 < Hh(J(G)), Ph(J(G)) < ∞.

(h) There exists a unique Borel probability f̃ -invariant measure µ̃h on J(f̃) which is
absolutely continuous with respect to m̃h. The measure µ̃h is metrically exact and
equivalent with m̃h.

The proof of Theorem 1.11 will be given in the following Sections 2–8. In Section 9,
we give some examples of semi-hyperbolic rational semigroups satisfying the nice open set
condition.

2. Preliminaries

2.1. Distortion and Measures. All the points (numbers) appearing in this paper are
complex unless it is clear from the context that they are real. In particular x and y are
always assumed to be complex numbers and not the real and imaginary parts of a complex
number.

Theorem 2.1. (Koebe’s 1
4
-Theorem) If z ∈ C, r > 0 and H : B(z, r) → C is an arbitrary

univalent analytic function, then H(B(z, r)) ⊃ B(H(z), 4−1|H ′(z)|r).
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Theorem 2.2. (Koebe’s Distortion Theorem, I) There exists a function k : [0, 1) → [1,∞)
such that for any z ∈ C, r > 0, t ∈ [0, 1) and any univalent analytic function H : B(z, r) →
C we have that

sup{|H ′(w)| : w ∈ B(z, tr)} ≤ k(t) inf{|H ′(w)| : w ∈ B(z, tr)}.
We put K = k(1/2).

The following is a straightforward consequence of these two distortion theorems.

Lemma 2.3. Suppose that D ⊂ C is an open set, z ∈ D and H : D → C is an analytic
map which has an analytic inverse H−1

z defined on B(H(z), 2R) for some R > 0. Then for
every 0 ≤ r ≤ R

B(z,K−1r|H ′(z)|−1) ⊂ H−1
z (B(H(z), r)) ⊂ B(z,Kr|H ′(z)|−1).

We also use the following more geometric versions of Koebe’s Distortion Theorems in-
volving moduli of annuli.

Theorem 2.4. (Koebe’s Distortion Theorem, II) There exists a function w : (0, +∞) →
[1,∞) such that for any two open topological disks Q1 ⊂ Q2 ⊂ C with Mod(Q2 \ Q1) ≥ t
and any univalent analytic function H : Q2 → C we have

sup{|H ′(ξ)| : ξ ∈ Q1} ≤ w(t) inf{|H ′(ξ)| : ξ ∈ Q1}.

Definition 2.5. If : D → C is an analytic map, z ∈ C, and r > 0, then by

Comp(z,H, r)

we denote the connected component of H−1(B(H(z), r)) that contains z.

Given an analytic function H defined throughout a region D ⊂ C, we put

Crit(H) = {z ∈ D : H ′(z) = 0}.
Suppose now that c is a critical point of an analytic map H : D → C. Then there exists
R = R(H, c) > 0 and A = A(H, c) ≥ 1 such that

A−1|z − c|q ≤ |H(z) − H(c)| ≤ A|z − c|q

and
A−1|z − c|q−1 ≤ |H ′(z)| ≤ A|z − c|q−1

for every z ∈ Comp(c,H,R), and that

H(Comp(c,H,R)) = B(H(c), R),
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where q = q(H, c) is the order of H at the critical point c. In particular

Comp(c,H,R) ⊂ B(c, (AR)1/q).

Moreover, by taking R > 0 sufficiently small, we can ensure that the above two inequalities
hold for every z ∈ B(c, (AR)1/q) and the ball B(c, (AR)1/q) can be expressed as a union
of q closed topological disks with smooth boundaries and mutually disjoint interiors such
that the map H restricted to each of these interiors, is injective.

In the sequel we require the following technical lemma proven in [47] as Lemma 2.11.

Lemma 2.6. Let H : D → C be an analytic function. Suppose that an analytic map
Q ◦ H : D → C, a radius R > 0 and a point z ∈ D are such that

Comp(H(z), Q, 2R) ∩ Crit(Q) = ∅ and Comp(z,Q ◦ H,R) ∩ Crit(H) 6= ∅. (a)

If c belongs to the last intersection, A = A(H, c), and q is the order of H at c, and

diam
(
Comp(z,Q ◦ H,R)

)
≤ (AR(H, c))1/q, (b)

then
|z − c| ≤ KA2|(Q ◦ H)′(z)|−1R.

Proof. In view of Lemma 2.3

Comp(H(z), Q,R) ⊂ B(H(z), KR|Q′(H(z))|−1).

So, since H(c) ∈ Comp(H(z), Q,R), we get

H(c) ∈ B(H(z), KR|Q′(H(z))|−1).

Thus, using this and (b) we obtain

A−1|z − c|q ≤ |H(z) − H(c)|
≤ KR|Q′(H(z))|−1

= KR|(Q ◦ H)′(z)|−1|H ′(z)|
≤ KR|(Q ◦ H)′(z)|−1A|z − c|q−1.

So, |z − c| ≤ KA2|(Q ◦ H)′(z)|−1R. ¤

Developing the appropriate concepts from [47] we now shall define the notions of estimabili-
ties (upper, lower and strongly lower) of measures, and we shall prove some of its properties
and consequences.

Definition 2.7. Suppose m is a Borel finite measure on Borel set X ⊂ Rn.

(1) (Upper Estimability) The measure m is said to be upper t-estimable at a point x ∈ X
if there exist L > 0 and R > 0 such that

m(B(x, r)) ≤ Lrt

for all 0 ≤ r ≤ R. The number L is referred to as the upper estimability constant of
the measure m at x and the number R is referred to as the upper estimability radius
of the measure m at x. If there exists an L > 0 and an R > 0 such that the measure
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m is upper t-estimable at each point of X with the upper estimability constant L
and the upper estimability radius R, the measure m is said to be uniformly upper
t-estimable.

(2) (Lower Estimability) The measure m is said to be lower t-estimable at a point x ∈ X
if there exists an L > 0 and an R > 0 such that

m(B(x, r)) ≥ Lrt

for all 0 ≤ r ≤ R. The number L is referred to as the upper estimability constant
of the measure m at x and the number R is referred to as the upper estimability
radius of the measure m at x. If there exists an L > 0 and an R > 0 such that
the measure m is lower t-estimable at each point of X with the lower estimability
constant L and the lower estimability radius R, then the measure m is said to be
uniformly lower t-estimable.

(3) (Strongly Lower Estimability) The measure m is said to be strongly lower t-estimable
at a point x ∈ X if there exists an L > 0, a λ ∈ (0,∞), and an R > 0 such that

m(B(y, λr)) ≥ Lrt

for every y ∈ B(x,R) for all 0 ≤ r ≤ R. The number L is referred to as the lower
estimability constant of the measure m at x, the number R is referred to as the
lower estimability radius of the measure m at x, and λ is referred to as the lower
estimability size of the measure m at x. If there exists an L > 0, a λ, and an
R > 0 such that the measure m is strongly lower t-estimable at each point of X with
the lower estimability constant L, the lower estimability radius R, and the lower
estimability size λ, then the measure m is said to be uniformly lower t-estimable.

Suppose U and V are open subsets of C, z is a point of U , and H : U → V is an analytic
map. Fix t ≥ 0. A pair (m1,m2) of finite Borel measures respectively on U and V is called
upper t-conformal for H if and only if

m2(H(A)) ≥
∫

A

|H ′|tdm1

for all Borel sets A ⊂ U such that the restriction H|A is injective. The pair (m1,m2) is
called t-conformal if the above inequality sign can be replaced by equality. We will need
the following lemmas.

Lemma 2.8. Suppose U and V are open subsets of C and H : U → V is an analytic
map which has an analytic inverse H−1

z defined on B(H(z), 2R) for some R > 0. Suppose
(m1,m2) is a t-conformal pair of measures for H. Suppose m2 is strongly lower t-estimable
at H(z) with estimability constant L, estimability radius 0 < r0 ≤ R/2, and the lower
estimability size λ ≤ 1. Then the measure m1 is strongly lower t-estimable at z with lower
estimability constant L, lower estimability radius K−1|H ′(z)|−1r0, and lower estimability
size K2λ.
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Proof. Let 0 ≤ r ≤ r0. Consider x ∈ B(z,K−1r|H ′(z)|−1). Then by Lemma 2.3 H(x) ∈
B(H(z), r) and therefore m2(B(H(x), λr)) ≥ Lrt. Since

B(H(x), λr) ⊂ B(H(z), 2r) ⊂ B(H(z), R)

we have

H−1
z

(
B(H(x), λr)

)
⊂ B(x,Kλr|H ′(z)|−1) = B(x,K2λ(K−1|H ′(z)|−1r)).

Thus

m1

(
B(x,K2λ(K−1|H ′(z)|−1r)) ≥ K−t|H ′(z)|−tLrt = L(K−1|H ′(z)|−1r)t.

The proof is finished. ¤

Lemma 2.9. Suppose U and V are open subsets of C and H : U → V is an analytic
map. Let c ∈ U be a critical point of H of order q. Suppose (m1,m2) is a t-conformal pair
of measures for H. If m2 is lower t-estimable at H(c) with estimability constant L and
estimability radius 0 < T ≤ R(H, c), then the measure m1 is lower t-estimable at c with
estimability constant A−2tL and estimability radius (A(c)T )1/q.

Proof. Put A = A(c). Let 0 < r ≤ T. Notice that B(H(c), r) = H(Comp(c,H, r)). If x ∈
Comp(c,H, r), then A−1|x− c|q ≤ |H(x)−H(c)| < r which implies that x ∈ B(c, (Ar)1/q).
Thus B(H(c), r) ⊂ H(B(c, (Ar)1/q) and therefore

Lrt ≤ m2(B(H(c), r))

≤ m2

(
H(B(c, (Ar)1/q))

)
≤

∫
B(c,(Ar)1/q)

|H ′(z)|t dm1(z)

≤
∫

B(c,(Ar)1/q)

At(|z − c|q−1)t dm1(z)

≤ At(Ar)
q−1

q
tm1(B(c, (Ar)1/q)).

So, m1(B(c, (Ar)1/q)) ≥ A−2tL((Ar)1/q)t. ¤

Lemma 2.10. Suppose U and V are open subsets of C and H : U → V is an analytic map.
Let c ∈ U be a critical point of H of order q. Suppose (m1,m2) is an upper t-conformal
pair of measures for H such that m1({c}) = 0. If m2 is upper t-estimable at H(c) with
estimability constant L and estimability radius 0 < T < R(H, c), then the measure m1 is
upper t-estimable at c with estimability constant q(2A(c)2)t(2t/q − 1)−1L and estimability
radius (A(c)−1T )1/q.

Proof. Put A = A(c). Take any 0 < s ≤ T . then H(B(c, (A−1s)1/q)) ⊂ B(H(c), s). Set
R(c, a, b) = {z : a ≤ |z − c| < b} and abbreviate R(c, 2−1/q(A−1s)1/q, (A−1s)1/q) to R(c).
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Using our assumptions and the fact that the map H is q-to-1 on B(c, (A−1s)1/q), we obtain

Lst ≥ m2(B(H(c), s))

≥ m2

(
H(B(c, (A−1s)1/q))

)
≥ q−1

∫
B(c,(A−1s)1/q)

|H ′(z)|t dm1(z)

≥ q−1

∫
R(c)

|H ′(z)|t dm1(z)

≥ q−1A−t(2−1A−1s)
q−1

q
tm1(R(c)).

So, m1

(
R(c, 2−1/q(A−1s)1/q, (A−1s)1/q)

)
≤ q2t(1− 1

q
)A2tL((A−1s)1/q)t and therefore for any

0 < r ≤ T ,

m1

(
B(c, (A−1r)1/q)

)
= m1

( ∞∪
n=0

R
(
c, 2−

n+1
q (A−1r)1/q, 2−

n
q (A−1r)1/q)

)
=

∞∑
n=0

m1

(
R(c, 2−

1
q (A−12−nr)1/q, (A−12−nr)1/q)

)
≤ q(21− 1

q A2)tL

∞∑
n=0

(A−12−nr)t/q

= q(21− 1
q A2)t L

1 − 2−
t
q

((A−1r)1/q)t

= q(2A2)t(2t/q − 1)−1L((A−1r)1/q)t.

The proof is finished. ¤

Lemma 2.11. Suppose U and V are open subsets of C and H : U → V is an analytic
map. Let c ∈ U be a critical point of H of order q. Suppose (m1,m2) is a t-conformal
pair of measures for H. If m2 is strongly lower t-estimable at H(c) with estimability
constant L, estimability radius 0 < T < R(H, c)/3, and the lower estimability size λ.
Then the measure m1 is strongly lower t-estimable at c with lower estimability constant

L̃ = L min{K−t, (A(c)2λ)
1−q

q
t}, lower estimability radius (A−1T )1/q, and lower estimability

size λ̃ = (2q+1KA2λ)1/q.

Proof. As in the proof of the previous lemma put A = A(c). Let 0 < r ≤ T and let

x ∈ B(c, (A−1r)1/q). If λ̃(A−1r)1/q ≥ 2|x − c|, then

B(x, λ̃(A−1r)1/q) ⊃ B(c, λ̃(A−1r)1/q/2)

= B(c, (2K)1/q(Aλr)1/q)

⊃ B(c, (Aλr)1/q).

It follows from the assumptions that m2 is lower t-estimable at H(c) with lower estimability
constant λ−tL and lower estimability radius λT . Therefore, in view of Lemma 2.9 the
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critical point c is lower t-estimable with lower estimability constant A−2tλ−tL and lower
estimability radius (AλT )1/q. Thus

(2.1)
m1

(
B(x, λ̃(A−1r)1/q)

)
≥ A−2tλ−tL(Aλr)t/q

= (A2λ)
1−q

q
tL((A−1r)1/q)t.

So, suppose that

(2.2) λ̃(A−1r)1/q < 2|x − c|.

Since c is a critical point we have

|H ′(x)| ≥ A−1|x − c|q−1 ≥ A−1λ̃q−1(A−1r)
q−1

q 21−q,

which means that

(2.3)
λ̃(A−1r)1/q ≥ A−1λ̃qA−1r21−q|H ′(x)|−1

= 4Kλr|H ′(x)|−1 ≥ Kλr|H ′(x)|−1.

In view of (2.2)

|H(x) − H(c)| ≥ A−1|x − c|q ≥ A−12−qλ̃qA−1r = 2Kλr ≥ 2λr

which implies that

(2.4) H(c) /∈ B(H(x), 2λr).

Since |H(x) − H(c)| ≤ A|x − c|q ≤ R(H, c)/3, we have B(H(x), 2λr) ⊂ B(H(c), R(H, c)).
So, (2.4) implies the existence of a holomorphic inverse branch H−1

x : B(H(x), 2λr) → C of
H which sends H(x) to x. Since, by the assumptions, the measure m2 is lower t-estimable
at H(x) with lower estimability constant λ−tL and lower estimability radius λr, it follows
from the proof of Lemma 2.8 that the measure m1 is lower t-estimable at x with lower
estimability constant K−2tλ−tL and lower estimability radius Kλr|H ′(x)|−1. Thus, using
(2.3), we get

m2

(
B(x, λ̃(A−1r)1/q)

)
≥ m2

(
B(x,K−1λr|H ′(x)|−1))

≥ K−2tλ−tL(Kλr|H ′(x)|−1)t

≥ K−tLrtA−t|x − c|(1−q)t

≥ K−tL(A−1r)t(A−1r)
1−q

q
t

= K−tL((A−1r)1/q)t.

In view of this and (2.1) the proof is completed. ¤
By writing A ¹ B we mean that there exists a positive constant C such that A ≤ CB

for all A and B under consideration. Then A º B means that B ¹ A, and A ³ B says
that A ¹ B and B ¹ A.
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2.2. Open Set Condition and Essential Families. In this section, starting with the
open set condition, we develop the machinery of essential families of inverse branches. We
first prove the following two lemmas.

Lemma 2.12. Let G = 〈f1, . . . , fu〉 be a rational semigroup satisfying the nice open set
condition with U. Let j ∈ {1, . . . , u} and let c ∈ f−1

j (U) be a critical point of fj. Then there

exist constants ζj,c > 0, ξj,c > 0, and Tj,c > 0 such that for each x ∈ Bs(c, ζj,c)∩f−1
j (U) and

for each 0 < r < Tj,c, l2(f
−1
j (U) ∩ Bs(x, r)) ≥ ξj,cr

2.

Proof. By conjugating G by an element of Aut(Ĉ), we may assume that ∞ 6∈ f−1
j ({fj(c)}).

Let W be an open neighborhood of fj(c) in C such that f−1
j (W ) ⊂ C. Let m1 := l2,e|f−1

j (U∩W )

and m2 := l2,e|U∩W , where l2,e denotes the Euclidian measure on C. Then (m1,m2) is a
2-conformal pair for fj. By the nice open set condition, there exist constants C > 0 and
0 < R < ∞ such that for each y ∈ U ∩ W and for each 0 < r < R, m2(B(y, r)) ≥ Cr2. By
using the method of the proof of Lemma 2.11, it is easy to see that there exist constants
ζ ′
j,c > 0, ξj,c > 0 and T ′

j,c > 0 such that for each x ∈ B(c, ζ ′
j,c) ∩ f−1

j (U) and for each

0 < r < T ′
j,c, m2(B(x, r)) ≥ ξ′j,cr

2. Thus, the statement of our lemma holds. We are
done. ¤

Combining Lemma 2.12 and Koebe’s Distortion Theorem, we immediately obtain the
following lemma.

Lemma 2.13. Let G = 〈f1, . . . , fu〉 be a rational semigroup satisfying the nice open set
condition with U. Then, there exist constants ξ > 0 and T > 0 such that for each j =
1, . . . , u and for each x ∈ f−1

j (U), l2(f
−1
j (U) ∩ Bs(x, r)) ≥ ξr2.

Let Σ∗
u be the family of finite words over the alphabet {1, 2, . . . , u}. For every τ ∈ Σ∗

u,
we denote by |τ | the n such that τ ∈ {1, . . . , u}n. For every τ ∈ Σu we set |τ | = ∞.
Moreover, for every τ = (τ1, τ2, . . .) ∈ Σ∗

u ∪ Σu and n ∈ N with n ≤ |τ |, we set τ |n :=
(τ1, τ2, . . . , τn) ∈ Σ∗

u. For every τ ∈ Σ∗
u, we set τ̂ = τ ||τ |−1, τ∗ := τ|τ |, and [τ ] := {ω ∈ Σu |

ω||τ | = τ}. Furthermore, for every ω ∈ Σ∗
u ∪ Σu and a, b ∈ N with a < b ≤ |ω|, we set

ωb
a := (ωa, . . . , ωb) ∈ Σ∗

u. For every ω, τ ∈ Σ∗
u, we say that ω and τ are comparable if either

(1) |τ | ≤ |ω| and ω ∈ [τ ], or (2) |ω| ≤ |τ | and τ ∈ [ω]. We say that ω, τ are incomparable
if they are not comparable.

For every family F ⊂ Σ∗
u let

F̂ = {τ̂ : τ ∈ F} and F∗ = {τ∗ : τ ∈ F}.

Definition 2.14. Let G = 〈f1, . . . , fu〉 be a rational semigroup satisfying the nice open
set condition. Suppose that J(G) ⊂ C. Fix a number M > 0, a number a > 0, and V ,
an open subset of Σu. Suppose x ∈ J(G) and r ∈ (0, 1]. A family F ⊂ Σ∗

u is called
(M,a, V )-essential for the pair (x, r) provided that the following conditions are satisfied.

(ess0) For every τ ∈ F , fτ (x) ∈ J(G).
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(ess1) For every τ ∈ F there exists a number Rτ with 0 < Rτ < a and an f−1
τ̂ ,x :

B(fτ̂ (x), 2Rτ ) → C, an analytic inverse branch of f−1
τ̂ sending fτ̂ (x) to x, such

that

M−1Rτ ≤ |f ′
τ̂ (x)|r ≤ 1

4
Rτ .

(ess2) The family F consists of mutually incomparable words.
(ess3)

∪
τ∈F [τ ] = V .

If V = Σu, the family F is simply called (M,a)-essential for the pair (x, r).

We shall prove the following.

Proposition 2.15. Let G = 〈f1, . . . , fu〉 be a rational semigroup satisfying the nice open
set condition with U. Suppose that J(G) ⊂ C. Then, for every number M > 0 and for every
a > 0 there exists an integer #(M,a) ≥ 1 with the following properties. If V is an open
subset of Σu, x ∈ J(G), r ∈ (0, 1], and F ⊂ Σ∗

u is an (M,a, V )-essential family for (x, r),
then we have the following.

(a)

B(x, r) ⊂ f−1
τ̂ ,x

(
B(fτ̂ (x), Rτ )

)
⊂

∪
γ∈F

f−1
γ̂,x

(
B(fγ̂(x), Rγ)

)
⊂ B(x,KMr)

for all τ ∈ F .
(b)

J(f̃) ∩ (V × B(x, r)) ⊂
∪
τ∈F

f̃
−|τ̂ |
τ̂ ,x

(
p−1

2 (B(fτ̂ (x), Rτ ))
)

=
∪
τ∈F

[τ ] × f−1
τ̂ ,x

(
B(fτ̂ (x), Rτ )

)
.

(c) #F ≤ #(M,a).

Proof. Item (a) follows immediately from Theorem 2.1 (1
4
-Koebe’s Distortion Theorem),

and Theorem 2.2. The equality part in item (b) is obvious. In order to prove the inclusion

take (ω, z) ∈ J(f̃) ∩ (V × B(x, r)). By item (ess3) of Definition 2.14 there exists τ ∈ F
such that ω ∈ [τ ]. But then, by the first in item (a), (ω, z) ∈ [τ ] × f−1

τ̂ ,x

(
B(fτ̂ (x), Rτ )

)
and

item (b) is entirely proved. Let us deal with item (c). By item (osc2) of Definition 1.4,

{f−1
τ̂ ,x((fτ∗|B(fτ̂ (x),Rτ ))

−1(U))}τ∈F

is a family of mutually disjoint sets. Hence, using also (a), we get

(2.5) Στ∈F l2(f
−1
τ̂ ,x((fτ∗ |B(fτ̂ (x),Rτ ))

−1(U))) ≤ l2(B(x,KMr)) = Cπ(KM)2r2,

where C > 0 is a constant independent of r,M , and a. Let La := ξ min{(T/a)2, 1}, where
ξ and T come from Lemma 2.13. By Lemma 2.13, we obtain that for each j = 1, . . . , u ,

for each y ∈ f−1
j (U), and for each 0 < b ≤ a,

(2.6) l2(B(y, b) ∩ f−1
j (U)) ≥ Lab

2.
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It follows from Theorem 2.2, (2.6), and (ess1) that for all τ ∈ F , we have

l2
(
f−1

τ̂ ,x((fτ∗|B(fτ̂ (x),Rτ ))
−1(U))

)
≥ K−2|f ′

τ̂ (x)|−2l2((fτ∗|B(fτ̂ (x),Rτ ))
−1(U))

≥ K−2|f ′
τ (x)|−2l2(B(fτ̂ (x), Rτ ) ∩ f−1

τ∗ (U))

≥ K−2|fτ̂ (x)|−2LaR
2
τ

≥ K−216Lar
2.

Combining this with (2.5) we get that #F ≤ (16La)
−1CK4πM2. We are done. ¤

3. Basic Properties of semi-hyperbolic Rational Semigroups

In this section define semi-hyperbolic rational semigroups and we collect and prove their
dynamical properties which will be needed in the sequel.

Definition 3.1. A rational semigroup G is called semi-hyperbolic if and only if there exists
an N ∈ N and a δ > 0 such that for each x ∈ J(G) and g ∈ G,

deg(g : V → Bs(x, δ)) ≤ N

for each connected component V of g−1(Bs(x, δ)).

The crucial tool, which makes all further considerations possible, is given by the following
semigroup version of Mane’s Theorem proved in [37].

Theorem 3.2. Let G = 〈f1, . . . , fu〉 be a finitely generated rational semigroup. Assume that

there exists an element of G with the degree at least two, that each element of Aut(Ĉ) ∩ G
(if this is not empty) is loxodromic, and that F (G) 6= ∅. Then, G is semi-hyperbolic if and
only if all of the following conditions are satisfied.

(a) For each z ∈ J(G) there exists a neighborhood U of z in Ĉ such that for any sequence

{gn}∞n=1 in G, any domain V in Ĉ and any point ζ ∈ U , the sequence {gn}∞n=1 does
not converge to ζ locally uniformly on V.

(b) For each j = 1, . . . , u, each c ∈ Crit(fj) ∩ J(G) satisfies dist(c,G∗(fj(c))) > 0.

The first author proved in [37] the following.

Theorem 3.3. Let G = 〈f1, . . . , fu〉 be a semi-hyperbolic finitely generated rational semi-
group. Assume that there exists an element of G with the degree at least two, that each
element of Aut(Ĉ)∩G (if this is not empty) is loxodromic, and that F (G) 6= ∅. Then there
exist R > 0, C > 0, and α > 0 such that if x ∈ J(G), ω ∈ Σ∗

u and V is a connected
component of f−1

ω (Bs(x,R)), then V is simply connected and diams(V ) ≤ Ce−α|ω|.

Throughout the rest of the paper, we assume the following:
Assumption (∗):

• Let f = (f1, . . . , fu) ∈ (Rat)u be a multi-map and let G = 〈f1, . . . , fu〉.
• There exists an element g of G such that deg(g) ≥ 2.
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• Each element of Aut(Ĉ) ∩ G (if this is not empty) is loxodromic.
• G is semi-hyperbolic.
• G satisfies the nice open set condition.

In order to prove the main results (Theorem 1.11 etc.), in virtue of [47] and [48], we may
assume that u ≥ 2. If u ≥ 2, then the open set condition implies that F (G) 6= ∅. Hence,

conjugating G by some element of Aut(Ĉ) if necessary, we may assume that J(G) ⊂ C.
Thus, throughout the rest of the paper, in addition to the above assumption, we also assume
that

• u ≥ 2 and J(G) ⊂ C.

Note that in Theorem 1.11, we work with the spherical distance. However, throughout the
rest of the paper, we will work with the Euclidian distance. If we want to get the results
on the spherical distance (and this would include the case u = 1), then we have only to
consider some minor modifications in our argument.

We now give further notation. A pair (c, j) ∈ Ĉ×{1, 2, . . . , u} is called critical if f ′
i(c) = 0.

The set of all critical pairs of f will be denoted by CP(f). Let Crit(f) be the union of∪u
j=1 Crit(fj). For every c ∈ Crit(f) put

c+ = {fj(c) : (c, j) ∈ CP(f)}.
The set c+ is called the set of critical values of c. For any subset A of Crit(f) put

A+ = {c+ : c ∈ A}.

For each (c, j) ∈ CP(f) let q(c, j) be the local order of fj at c. For any set F ⊂ Ĉ, set

ωG(F ) =
∞∩

n=0

∪
|ω|≥n

φω(F ).

The latter is called the ω-limit set of F with respect to the semigroup G. Similarly, for
every set B ⊂ Σu × Ĉ,

ω(B) =
∞∩

N=0

∪
n≥N

f̃n(B),

and this set is called the ω-limit set of F with respect to the skew product map f̃ : Σu×Ĉ →
Σu × Ĉ.

Given ω ∈ Σ∗
u, j ∈ {1, 2, . . . , u}, z ∈ f̃−1

ω (J(f̃)) and r > 0, we say that a critical pair (c, j)
sticks to Comp(z, fω, r) if c ∈ Comp(z, fω, r) and j = ω1. We then write

(c, j) ∼ Comp(z, fω, r).

Set

A = Af := max{A(fj, c) : (c, j) ∈ CP(f)} and Rf := min{R(fj, c) : (c, j) ∈ CP(f)}.
For A, B, any two subsets of a metric space put

dist(A,B) = inf{dist(a, b) : a ∈ A, b ∈ B}
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and

Dist(A,B) = sup{dist(a, b) : a ∈ A, b ∈ B}.
Fix a positive β smaller than the following four positive numbers (a)–(d).

(a) min{dist(c,G∗(c+)) : c ∈ Crit(f)∩J(G)}, (b) Rf , (c) min{|c′−c| : c, c′ ∈ Crit(f)∩J(G), c 6= c′},

and

(d) dist(
u∪

j=1

CV (fj) ∩ F (G), J(G)),

where, (a) is positive because of semi-hyperbolicity (Theorem 3.2). It immediately follows
from Theorem 3.3 that there exists γ ∈ (0, 1/4) so small that if g ∈ G∗ and g(x) ∈ J(G),
then

(3.1) Comp(x, g, 2γ) ⊂ C and diam(Comp(x, g, 2γ)) < β.

We shall prove the following.

Lemma 3.4. Fix η ∈ (0, β), an integer n ≥ 0 and (ω, z) ∈ J(f̃). Suppose that for every
0 ≤ k ≤ n − 1,

diam
(
Comp

(
fω|k(z), fω|nk+1

, η
))

≤ β.

Then each connected component Comp
(
fω|k(z), fω|nk+1

, η
)

is sticked to by at most one critical

pair (c, j) of f ; and if a critical pair (c, j) sticks to a component Comp
(
fω|k(z), fω|nk+1

, η
)
,

then fj(c) ∈ J(G). Furthermore, each critical pair of f sticks to at most one of all these
components Comp

(
fω|k(z), fω|nk+1

, η).

Proof. The first part is obvious by the choice of β. In order to prove the second part
suppose that

(c, ωk+1) ∼ Comp
(
fω|k(z), fω|nk+1

, η
)

and (c, ωl+1) ∼ Comp
(
fω|l(z), fω|nl+1

, η
)

with some 0 ≤ k < l ≤ n − 1 and ωk+1 = ωl+1. Then both c and fω|lk+1
(c) belong to

Comp
(
fω|l(z), fω|nl+1

, η
)
, and therefore,

|fω|lk+1
(c) − c| ≤ diam

(
Comp

(
fω|l(z), fω|nl+1

, η
))

≤ β,

contrary to the choice of β. ¤

Let

κ = Π(c,j)∈CP(f)q(c, j)
−1.

Lemma 3.5. If g ∈ G and z ∈ g−1(J(G)), then

Mod
(
Comp(z, g, 2γ) \ Comp(z, g, γ)

)
≥ κ log 2

#CP(f)
.
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Proof. By Lemma 3.4 there exists a geometric annulus R ⊂ B(g(z), 2γ) \ B(g(z), γ)
centered at g(z) and with modulus ≥ log 2/#CP(f) and such that g−1(R)∩Comp(z, g, 2γ)∩
Crit(f) = ∅. Since covering maps increase moduli of annuli by factors at most equal to
their degrees, we conclude that

Mod
(
Comp(z, g, 2γ) \ Comp(z, g, γ)

)
≥ Mod(Rg) ≥

log 2/#CP(f)

Π(c,j)∈CP(f)q(c, j)
=

κ log 2

#CP(f)
,

where Rg ⊂ Comp(z, g, 2γ) is the connected component of R enclosing Comp(z, g, γ). ¤

As an immediate consequence of this lemma and Theorem 2.4 we get the following.

Lemma 3.6. Let ω ∈ Σ∗
u and suppose fω(z) ∈ J(G). If 0 ≤ k ≤ |ω| and the map

fω|k : Comp(z, fω, 2γ) → Comp(fω|k(z), f
ω||ω|

k+1
, 2γ) is univalent, then

|f ′
ω|k(y)|

|f ′
ω|k(x)|

≤ const

for all x, y ∈ Comp(z, fω, γ), where const is a number depending only on #CP(f) and κ.

Lemma 3.7. Suppose that g ∈ G and g(z) ∈ J(f̃). Suppose also that Q(1) ⊂ Q(2) ⊂
B(g(z), γ) are connected sets. If Q

(2)
g is a connected component of g−1(Q(2)) contained in

Comp(z, g, γ) and Q
(1)
g is a connected component of g−1(Q(1)) contained in Q

(2)
g , then

diam
(
Q

(1)
g

)
diam

(
Q

(2)
g

) ≥ Γ
diam

(
Q(1)

)
diam

(
Q(2)

) .

with some universal constant Γ > 0.

Proof. Write g = fω, where ω ∈ Σ∗
u and put n = |ω|. For every 0 ≤ j ≤ n, set

Q
(1)
j = fω|n−j

(Q(1)
g ) and Q

(2)
j = fω|n−j

(Q(2)
g ).

Let 1 ≤ n1 ≤ . . . ≤ nv ≤ n be all the integers k between 1 and n such that

Crit(fωn−k+1
) ∩ Comp(fω|n−k

(z), fωn
n−k+1

, 2γ) 6= ∅.

Fix 1 ≤ i ≤ v. If j ∈ [ni, ni+1 − 1] (we set nv+1 = n − 1), then by Lemma 3.6 there exists
a universal constant T > 0 such that

(3.2)
diam(Q

(1)
j )

diam(Q
(2)
j )

≥ T
diam(Q

(1)
ni )

diam(Q
(2)
ni )

.

Since, in view of Lemma 3.4, v ≤ #CP(f), in order to conclude the proof it is enough to
show the existence of a universal constant E > 0 such that for every 1 ≤ i ≤ u

diam(Q
(1)
ni )

diam(Q
(2)
ni )

≥ E
diam(Q

(1)
ni−1)

diam(Q
(2)
ni−1)

.
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Indeed, let c be the critical point in Comp(fω|n−ni
(z), fω|nni+1

, 2γ) and let q be its order.

Since both sets Q
(1)
ni and Q

(1)
ni are connected, we get for j = 1, 2 that

diam(Q
(j)
ni−1) ³ diam(Q(j)

ni
) sup{|f ′

ωn−ni+1
(x)| : x ∈ Q(j)

ni
}

³ diam(Q(j)
ni

)Dist(c,Q(i)
ni

).

Hence
diam(Q

(1)
ni )

diam(Q
(2)
ni )

³
diam(Q

(1)
ni−1)

Dist(c,Q
(1)
ni )

· Dist(c,Q
(2)
ni )

diam(Q
(2)
ni−1)

≥
diam(Q

(1)
ni−1)

diam(Q
(2)
ni−1)

.

The proof is finished. ¤

4. Partial Order in Crit(f) ∩ J(G) and Stratification of J(G)

In this section we introduce a partial order in the critical set Crit(f)∩J(G) and stratification
of J(G). They will be used to do the inductive steps in the proofs of the main theorems of
our paper. We start with the following.

Lemma 4.1. The set ωG((Crit(f) ∩ J(G))+) is nowhere dense in J(G).

Proof. Suppose on the contrary that the interior (relative to J(G)) of ωG((Crit(f) ∩
J(G))+) is not empty. Then, there exists a critical point c ∈ Crit(f) ∩ J(G) such that
ωG(c+)) has non-empty interior. But then, in virtue of Proposition 1.2 there would exist
finitely many elements g1, g2, . . . , gn ∈ G such that ωG(c+) ⊃ g1(ωG(c+)) ∪ g2(ωG(c+)) ∪
. . . ∪ gn(ωG(c+)) ⊂ J(G). Hence c ∈ ωG(c+), contrary to the non-recurrence condition
(Theorem 3.2). ¤

Now we introduce in Crit(f)∩ J(G) a relation < which, in view of Lemma 4.2 below, is an
ordering relation. Put

c1 < c2 ⇔ c1 ∈ ωG(c2+).

Lemma 4.2. If c1 < c2 and c2 < c3, then c1 < c3.

Proof. Since c2 ∈ ωG(c3+), we have ωG(c2+) ⊂ ωG(c3+). Along with c1 ∈ ωG(c2+) this
implies that c1 ∈ ωG(c3+), meaning that c1 < c3. ¤

Lemma 4.3. There exists no c ∈ Crit(f) ∩ J(G) such that c < c.

Proof. Indeed, c < c means that c ∈ ωG(c+), contrary to the non-recurrence condition.
¤

Since the set Crit(f) ∩ J(G) is finite, as an immediate of this lemma and Lemma 4.2 we
get the following.
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Lemma 4.4. There is no infinite linear subset of the partially ordered set (Crit(f)∩J(G), <).

Now define inductively a sequence {Cri(f)} of subsets of Crit(f)∩J(G) by setting Cr0(f) =
∅ and

(4.1) Cri+1(f) =

{
c ∈ (Crit(f) ∩ J(G)) \

i∪
j=0

Crj(f) : c′ < c,⇒ c′ ∈
i∪

j=0

Crj(f)

}
.

Lemma 4.5. The following four statements hold.

(a) The sets {Cri(f)} are mutually disjoint.
(b) ∃p≥1 ∀i≥p+1 Cri(f) = ∅.
(c) Cr0(f) ∪ . . . ∪ Crp(f) = Crit(f) ∩ J(G).
(d) Cr1(f) 6= ∅.

Proof. By definition Cri+1(f)∩
∪i

j=0 Crj(f) = ∅, whence disjointness in (a) is clear. As the

set Crit(f)∩J(G) is finite, (b) follows from (a). Take p to be the minimal number satisfying
(b) and suppose that (Crit(f) ∩ J(G)) \

∪p
j=0 Crj(f) 6= ∅. Take c ∈ (Crit(f) ∩ J(G)) \∪p

j=0 Crj(f). Since Crp+1 = ∅, there would thus exist c′ ∈ (Crit(f) ∩ J(G)) \
∪p

j=0 Crj(f)
such that c′ < c. Iterating this procedure we would obtain an infinite sequence c1 = c >
c′ = c2 > c3 > . . ., contrary to Lemma 4.4. Now, part (d) follows from (c) and (4.1). ¤

For every (τ, z) ∈ J(f̃) put

Crit(τ, z) = Crit(f̃) ∩ ω(τ, z) and Crit(τ, z)+ = p2(Crit(f̃) ∩ ω(τ, z))+.

Lemma 4.6. If (τ, z) ∈ J(f̃), then

p2(ω(τ, z)) 6⊂ G∗(Crit(τ, z)+).

Proof. Suppose on the contrary that

(4.2) p2(ω(τ, z)) ⊂ G∗(Crit(τ, z)+).

Consequently, Crit(τ, z) 6= ∅. Let (τ 1, c1) ∈ Crit(τ, z). This means that (τ 1, c1) ∈ ω(τ, z),
and it follows from (4.2) that there exists (τ 2, c2) ∈ Crit(τ, z) such that either c1 ∈ ωG(c2+)
or c1 = g1(c2) for some g1 ∈ G of the form fω with f ′

ω1
(c2) = 0. Iterating this procedure

we obtain an infinite sequence ((τ j, cj))
∞
j=1 of points in Crit(τ, z) such that for every j ≥ 1

either cj ∈ ωG(cj+1+) or cj = gj(cj+1) for some gj ∈ G of the form fρ with f ′
ρ1

(cj+1) = 0.
Consider an arbitrary block ck, ck+1, . . . , cl such that cj = gj(cj+1) for every k ≤ j ≤ l − 1,
and suppose that l−(k−1) ≥ #(Crit(f)∩J(G)). Then there are two indices k ≤ a < b ≤ l
such that ca = cb. Hence ga◦ga+1◦ . . .◦gb−1(cb) = ca = cb and (ga◦ga+1◦ . . .◦gb−1)

′(cb) = 0.
This however contradicts our assumption that the Julia set of G contains no superstable
fixed points. In consequence, the length of the block ck, ck+1, . . . , cl is bounded above by
#(Crit(f) ∩ J(G)). Therefore, there exists an infinite sequence (jn)∞n=1 such that cjn ∈
ωG(cjn+1+) for all n ≥ 1. This however contradicts Lemma 4.4 and finishes the proof. ¤
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Now, for every i = 0, 1, . . . , p, set

Si(f) = Cr0(f) ∪ Cr1(f) ∪ . . . ∪ Cri(f).

Fix i ∈ {0, 1, . . . , p−1} consider an arbitrary point c′ ∈
∪

c∈Cri+1(f) ωG(c+)∩Crit(f)∩J(G).

Then there exists c ∈ Cri+1(f) such that c′ ∈ ωG(c+) which equivalently means that c′ < c.
Thus, by (4.1) we get c′ ∈ Si(f). So,

(4.3)
∪

c∈Cri+1(f)

ωG(c+) ∩
(
(Crit(f) ∩ J(G)) \ Si(f)

)
= ∅.

Since the set
∪

c∈Cri+1(f) ωG(c+) is compact and (Crit(f)∩J(G))\Si(f) is finite, we therefore
get

(4.4) δi = dist

 ∪
c∈Cri+1(f)

ωG(c+), (Crit(f) ∩ J(G)) \ Si(f)

 > 0.

Set
ρ = min{δi/2 : i = 0, 1, . . . , p − 1}

and for every i = 0, 1, . . . , p define

(4.5) Ji(G) = {z ∈ J(G) : dist
(
G∗(z), (Crit(f) ∩ J(G)) \ Si(f)

)
≥ ρ}.

We end this section with the following two lemmas concerning the sets Ji(G).

Lemma 4.7. ∅ 6= J0(G) ⊂ J1(G) ⊂ . . . ⊂ Jp(G) = J(G).

Proof. Since Si+1(f) ⊃ Si(f), the inclusions Ji(G) ⊂ Ji+1(G) are obvious. Since Sp(f) =
Crit(f) ∩ J(G) (see Lemma 4.5), it holds Jp(G) = J(G). We get from (4.4) that

dist

 ∪
c∈Cr1(f)

ωG(c+), (Crit(f) ∩ J(G)) \ S0(f)

 = δ0 ≥ 2ρ ≥ ρ.

Thus,
∪

c∈Cr1(f) ωG(c+) ⊂ J0(G), and since Cr1(f) 6= ∅ (see Lemma 4.5), we conclude that

J0(G) 6= ∅. The proof is complete. ¤

Lemma 4.8. There exists l = l(f) ≥ 0 so large that for all i = 0, 1, . . . , p − 1 we have∪
c∈Cri+1(f)

ωG(c+)∩J(G) ⊂
∪
|τ |≥l

fτ (Cri+1(f)+)∩J(G) = G∗
( ∪
|τ |=l

fτ (Cri+1(f)+)
)
∩J(G) ⊂ Ji(G).

Proof. The left-hand inclusion is obvious regardless of what l(f) is. The equal-
ity part of the assertion is obvious. In order to prove the right-hand inclusion fix i ∈
{0, 1, . . . , p − 1}. By the definition of the ω-limit sets of G there exists li ≥ 0 such that
for every c ∈ Cri+1(f) we have dist

(∪
|τ |≥li

fτ (c+),
∪

c′∈Cri+1(f) ωG(c′+)
)

< δi/2. Thus, by

(4.4), dist
(∪

|τ |≥li
fτ (c+), (Crit(f) ∩ J(G)) \ Si(f)

)
> δi/2 ≥ ρ. Hence, for every τ ∈ Σ∗

u

with |τ | ≥ li, we have dist
(
fτ (c+), (Crit(f) ∩ J(G)) \ Si(f)

)
> ρ. Thus fτ (c+) ⊂ Ji(G).

Therefore,
∪

|τ |≥li
fτ (c+) ⊂ Ji(G), and consequently,

∪
|τ |≥li

fτ (Cri+1(f)+) ⊂ Ji(G). Since
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Ji(G) is a closed set, this yields that
∪

|τ |≥li
fτ (Cri+1(f)+) ⊂ Ji(G). Setting l(f) = max{li :

i = 0, 1, . . . , p − 1} completes the proof. ¤

5. Holomorphic Inverse Branches.

In this section we prove the existence of suitable holomorphic inverse branches, our basic
tools throughout the paper. Set

Sing(f̃) =
∪
n≥0

f̃−n(Crit(f̃))

and

Sing(f) =
∪

g∈G∗

g−1(Crit(f)).

Proposition 5.1. For each (τ, z) ∈ J(f̃) \ Sing(f̃), there exists a number η(τ, z) with
0 < η(τ, z) < γ, an increasing sequence (nj)

∞
j=1 of positive integers and a point (τ̂ , ẑ) ∈

ω(τ, z) \ p−1
2

(
G∗(Crit(τ, z)+)

)
with the following two properties.

(a) limj→∞ f̃nj(τ, z) = (τ̂ , ẑ),
(b) Comp

(
z, fτ |nj

, η(τ, z)
)
∩ Crit(fτ |nj

) = ∅

Proof. In view of Lemma 4.6 there exists a point (τ̂ , ẑ) ∈ ω(τ, z) such that ẑ /∈
G∗(Crit(τ, z)+). Let

η =
1

2
dist

(
ẑ, G∗(Crit(τ, z)+)

)
.

Then there exists an infinite increasing sequence (nj)
∞
j=1 of positive integers such that

(5.1) lim
j→∞

f̃nj(τ, z) = (τ̂ , ẑ)

and

(5.2) fτ |nj
(z) /∈ B

(
G∗(Crit(τ, z)+), η

)
for all j ≥ 1. We claim that there exists η(τ, z) > 0 such that for all j ≥ 1 large enough

Comp
(
z, fτ |nj

, η(τ, z)
)
∩ Crit(fτ |nj

) = ∅.

Indeed, otherwise we find an increasing subsequence (ji)
∞
i=1 and a decreasing to zero se-

quence of positive numbers ηi < η such that

Comp
(
z, fτ |nji

, ηi

)
∩ Crit(fτ |nji

) 6= ∅.

Let c̃i ∈ Comp
(
z, fτ |nji

, ηi

)
∩ Crit(fτ |nji

). Then there exist 0 ≤ pi ≤ nji
− 1 and

(5.3) ci ∈ Crit(fτpi+1)

such that ci = fτ |pi
(c̃i). Since limi→∞ ηi = 0, it follows from Theorem 3.3 that limi→∞ c̃i = z.

Since (τ, z) /∈
∪

n≥0 f̃−n(Crit(f̃)), this implies that limi→∞ pi = +∞. But then, making use
of Theorem 3.3 again and of the formula (σpi(τ), ci) = fpi(τ, c̃i), we conclude that the set
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of accumulation points of the sequence ((σpi(τ), ci))
∞
1 is contained in ω(τ, z). Fix (τ∞, c)

to be one of these accumulation points. Since Crit(f̃) is closed we conclude that

(5.4) (τ∞, c) ∈ Crit(τ, z).

Since that set Crit(f) is finite, passing to a subsequence, we may assume without loss of
generality that (ci)

∞
1 is a constant sequence, so equal to c. Since c = fτ |pi

(c̃i), we get∣∣∣∣fτ |nji
(z) − f

τ |
nji
pi+1

(c)

∣∣∣∣ =
∣∣∣fτ |nji

(z) − fτ |nji
(c̃i)

∣∣∣ < ηi < η.

But, looking at (5.3) and (5.4), we conclude that f
τ |

nji
pi+1

(c) ∈ G∗(Crit(τ, z)+). We thus

arrived at a contradiction with (5.2), and the proof is finished. ¤

Corollary 5.2. If (τ, z) ∈ J(f̃) \ Sing(f̃), then lim supn→∞ |(f ′
τ |n(z)| = +∞.

Proof. Let (nj)
∞
j=1 and η(τ, z) be produced by Proposition 5.1. Then, by this proposition

and Theorem 3.3, the family
{

f−1
τ |nj ,z : B

(
fτ |nj

(z), η(τ, z)
)
→ C

}∞

j=1
of holomorphic inverse

branches of fτ |nj
sending fτ |nj

(z) to z is well defined and normal. As a matter of fact

we mean here this family restricted to the disk B(ẑ, η(τ, z)/2) and j ≥ 1 large enough.
Therefore by Theorem 3.3 again, limj→∞ |(f ′

τ |nj
(z)|−1 = 0 and we are done. ¤

We end this section with the following. Let ‖f̃ ′‖ = supw∈J(f̃) |f̃ ′(w)|.

Proposition 5.3. Fix θ ∈ (0, min{1, γ}). For all (τ, z) ∈ J(f̃) and r > 0 there exists a
minimal integer s = s(θ, (τ, z), r) ≥ 0 with the following properties (a) and (b).

(a) |(f̃ s)′(τ, z)| 6= 0.

(b) Either r|(f̃ s)′(τ, z)| > ||f̃ ′||−1) or there exists c ∈ Crit(fτs+1) such that fτs+1(c) ∈
J(G) and

|fτ |s(z) − c| ≤ θr|f ′
τ |s(z)|.

In addition, for this s, we have
(c) θr|f ′

τ |s(z)| ≤ θ < γ and

Comp
(
z, fτ |s , (KA2

f )
−12−#Crit(f)θr|f ′

τ |s(z)|
)
∩ Crit(fτ |s) = ∅.

Proof. In view of Corollary 5.2 the set of integers (≥ 0) satisfying conditions (a) and (b)
is not empty. Let s be the minimum of those numbers. Then conditions (a) and (b) are
satisfied. If s = 0 then (c) is also satisfied since the identity map has no critical points.

So, we may assume that s ≥ 1. By the definition of s we have r|(f̃ s−1)′(τ, z)| ≤ ||f̃ ′||−1,
whence

θr|f ′
τ |s(z)| = θr|(f̃ s)′(τ, z)| = θr|(f̃ s−1)′(τ, z)| · |f̃ ′(f̃ s−1(τ, z))|

≤ θ||f̃ ′||−1||f̃ ′|| = θ < γ.

Thus, (3.1) yield for all 0 ≤ j ≤ s that

diam
(
Comp

(
fτ |s−j

(z), fτ |ss−j+1
, θr|f ′

τ |s(z)|
))

≤ β.
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It therefore follows from Lemma 3.4 that there exist 0 ≤ p ≤ #Crit(f), an increasing
sequence of integers 1 ≤ k1 < k2 < . . . < kp ≤ s and mutually distinct critical pairs
(c1, τs−k1+1), (c2, τs−k2+1), . . . , (cp, τs−kp+1) such that fτs−kl+1

(cl) ∈ J(G) and

Comp
(
fτ |s−kl

(z), fτ |ss−kl+1
, θr|f ′

τ |s(z)|
)
∩ Crit(fτs−kl+1

) = {cl}

for every l = 1, 2, . . . , p, and, in addition, if j /∈ {k1, k2, . . . , kp}, then

(5.5) Comp
(
fτ |s−j

(z), fτ |ss−j+1
, θr|f ′

τ |s(z)|
)
∩ Crit(fτs−j+1

) = ∅.

Setting k0 = 0, we shall prove by induction that for every 0 ≤ l ≤ p, we have

(5.6) Comp
(
fτ |s−kl

(z), fτ |ss−kl+1
, (KA2

f )
−12−lθr|f ′

τ |s(z)|
)
∩ Crit(fτ |ss−kl+1

) = ∅,

where fτs
v

= Id if s < v. Indeed, for l = 0 there is nothing to prove. So, suppose that (5.6)
is true for some 0 ≤ l ≤ p − 1. Then using (5.5) we get

Comp
(
fτ |s−kl+1+1

(z), fτ |ss−kl+1+2
, (KA2

f )
−12−lθr|f ′

τ |s(z)|
)
∩ Crit(fτ |ss−kl+1+2

) = ∅.

So, if

cl+1 ∈ Comp
(
fτ |s−kl+1

(z), fτ |ss−kl+1+1
, (KA2

f )
−12−(l+1)θr|f ′

τ |s(z)|
)
,

then, by Lemma 2.6 applied to holomorphic maps H = fτs−kl+1+1
and Q = fτ |ss−kl+1+2

, z

being fτ |s−kl+1
(z) and the radius R = (KA2

f )
−12−(l+1)θr|f ′

τ |s(z)| < γ, we get∣∣∣fτ |s−kl+1
(z) − cl+1

∣∣∣ ≤ KA2
f

∣∣∣f ′
τ |ss−kl+1+1

(
fτ |s−kl+1

(z)
)∣∣∣−1

(KA2
f )

−12−(l+1)θr|f ′
τ |s(z)|

= 2−(l+1)θr|f ′
τ |s−kl+1

(z)|

≤ θr|f ′
τ |s−kl+1

(z)|,

which along with the facts that cl+1 ∈ Crit
(
fτ |s−kl+1+1

)
and fτs−kl+1+1

(cl+1) ∈ J(G) contra-

dicts the definition of s and proves (5.6) for l + 1. In particular, it follows from (5.6) with
l = p and (5.5) with j = kp + 1, kp + 2, . . . , s, that

Comp
(
z, fτ |s , (KA2

f )
−12−#Crit(f)θr|f ′

τ |s(z)|
)
∩ Crit(fτ |s) = ∅.

We are done. ¤

6. Geometric Measures Theory and Conformal Measures; Preliminaries

In this section we deal in detail with Hausdorff and packing measures and we also establish
some geometrical properties of conformal measures.



25

6.1. Preliminaries from Geometric Measure Theory; Hausdorff and Packing
Measures. Given a subset A of a metric space (X, d), a countable family {B(xi, ri)}∞i=1 of
open balls centered at the set A is said to be a packing of A if and only if for any pair i 6= j

d(xi, xj) > ri + rj.

Given t ≥ 0, the t-dimensional outer Hausdorff measure Ht(A) of the set A is defined as

Ht(A) = sup
ε>0

inf
{ ∞∑

i=1

rt
i

}
where infimum is taken over all covers {B(xi, ri)}∞i=1 of the set A by open balls centered at
A with radii which do not exceed ε.

The t-dimensional outer packing measure Πt(A) of the set A is defined as

Πt(A) = inf
∪Ai=A

{∑
i

Πt
∗(Ai)

}
(Ai are arbitrary subsets of A), where

Πt
∗(A) = sup

ε>0
sup

{ ∞∑
i=1

rt
i

}
.

Here the second supremum is taken over all packings {B(xi, ri)}∞i=1 of the set A by open
balls centered at A with radii which do not exceed ε. These two outer measures define
countable additive measures on Borel σ-algebra of X.

The definition of the Hausdorff dimension HD(A) of the set A is the following

HD(A) = inf{t : Ht(A) = 0} = sup{t : Ht(A) = ∞}.
Let ν be a Borel probability measure on X which is positive on open sets. Define the
function ρ = ρt(ν) : X × (0,∞) → (0,∞) by

ρ(x, r) =
ν(B(x, r))

rt

The following two theorems (see [26, 11], and [20]) are for our aims the key facts from
geometric measure theory. Their proofs are an easy consequence of Besicovič covering
theorem (see [26]) or a more elementary 4r-covering theorem (see [20]).

Theorem 6.1. Let X = Rn for some n ≥ 1. Then there exists a constant b(n) depending
only on n with the following properties. If A is a Borel subset of Rn and C > 0 is a positive
constant such that

(1) for all x ∈ A

lim sup
r→0

ρ(x, r) ≥ C−1,

then for every Borel subset E ⊂ A we have Ht(E) ≤ b(n)Cρ(E) and, in particular,
Ht(A) < ∞,
or
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(2) for all x ∈ A
lim sup

r→0
ρ(x, r) ≤ C−1,

then for every Borel subset E ⊂ A we have Ht(E) ≥ Cρ(E).
(1)’ If t > 0 then (1) holds under the weaker assumption that the hypothesis of part (1)

is satisfied on the complement of a countable set.

Theorem 6.2. Let X = Rn for some n ≥ 1. Then there exists a constant b(n) depending
only on n with the following properties. If A is a Borel subset of Rn and C > 0 is a positive
constant such that

(1) for all x ∈ A
lim inf

r→0
ρ(x, r) ≤ C−1,

then for every Borel subset E ⊂ A we have Πt(E) ≥ Cb(n)−1ρ(E),
or

(2) for all x ∈ A
lim inf

r→0
ρ(x, r) ≥ C−1,

then Πt(E) ≤ Cρ(E) and, consequently, Πt(A) < ∞.
(1’) If ρ is non–atomic then (1) holds under the weaker assumption that the hypothesis

of part (1) is satisfied on the complement of a countable set.

7. Conformal Measures; Existence, Uniqueness, and Continuity

For every t ≥ 0 and every function φ : J(f̃) → C let Ltφ : J(f̃) → C be defined by the
following formula:

Ltφ(y) =
∑

x∈f̃−1(y)

|f̃ ′(x)|−tφ(x).

Ltφ(y) is finite if and only if y /∈ Crit(f̃). Otherwise Ltφ(y) is declared to be +∞. Iterating
this formula we get for all n ≥ 1 that

Ln
t φ(y) =

∑
x∈f̃−n(y)

|(f̃n)′(x)|−tφ(x).

If y ∈ J(f̃) \ p−1
2 (G∗(Crit(f)+)), then Ln

t 11(y) is finite for all n ≥ 0. If ψ : Ĉ → C, then

define Ltψ : Ĉ → C by the formula

Ltψ(z) =
s∑

i=1

∑
x∈f−1

i (z)

|f ′
i(x)|−tψ(x).

It will be always clear from the context whether Lt is applied to a function defined on J(f̃)
or on a compact neighborhood A of J(G). Iterating this formula we get for all n ≥ 1 that

(7.1) Ln
t ψ(z) =

∑
|ω|=n

∑
x∈f−1

ω (z)

|f ′
ω(x)|−tψ(x).
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Note that if ψ̃ : J(f̃) → C is defined by the formula ψ̃(τ, z) = ψ(z), then

Ln
t ψ̃(τ, z) = Ln

t ψ(z)

for all (τ, z) ∈ J(f̃). Without confusion we put 1̃1 = 11. Note that Ln
t ψ(z) is finite for all

z ∈ A \ G∗(Crit(f)+). For all z ∈ A \ G∗(Crit(f)+) set

Pz(t) = lim sup
n→∞

1

n
logLn

t 11(z) ∈ (−∞, +∞].

Definition 7.1. Denote by PCV(f̃) the closure of the postcritical set of f̃ , i.e.

PCV(f̃) =
∞∪

n=1

f̃n(Crit(f̃)).

Lemma 7.2. G∗(Crit(f)+) ∩ J(G) is a nowhere dense subset of J(G) and PCV(f̃) is a

nowhere dense subset of J(f̃).

Proof. Since, by Lemma 4.1, ωG(Crit(f)+) ∩ J(G) is nowhere dense in J(G) and since
the set G∗(Crit(f)+) is countable, it follows from the Baire Category Theorem the set

G∗(Crit(f)+) ∩ J(G) is nowhere dense. In order to prove the second part of our lemma,

suppose that PCV(f̃) is not nowhere dense in J(f̃). This means that PCV(f̃) has non-
empty interior, and therefore, because of it forward invariance and topological exactness
of the map f̃ : J(f̃) → J(f̃), we have PCV(f̃) = J(f̃). Hence J(G) = p2(J(f̃)) =

p2(PCV(f̃)) ⊂ G∗(Crit(f)+) ∩ J(G), contrary to, the already proved, first part of the
lemma. ¤

We shall prove the following.

Lemma 7.3. The function z 7→ Pz(t) is constant throughout a neighborhood of J(G) \
G∗(Crit(f)+).

Proof. For every z ∈ J(G) \ G∗(Crit(f)+) fix Uz = {w | |w − z| < r}, an open round
disk centered at z and such that {w | |w − z| < 2r} is disjoint from G∗(Crit(f)+). It then
directly follows from Koebe’s Distortion Theorem that the function w 7→ Pw(t) is constant

on Uz. Now, fix z1, z2 ∈ J(G) \G∗(Crit(f)+). By [14, Lemma 3.2], there exists g = fω ∈ G
such that g(Uz1)∩Uz2 ∩J(G) 6= ∅. Fix x ∈ Uz1 such that g(x) ∈ Uz2 ∩J(G). Then x ∈ J(G)

and for every n ≥ 1, Ln+|ω|
t 11(g(x)) ≥ |g′(x)|−tLn

t 11(x). Therefore, Pg(x)t ≥ Px(t). Hence
Pz2(t) ≥ Pz1(t). Exchanging the roles of z1 and z2, we get Pz1(t) ≥ Pz2(t), and we are done.
¤

By Lemma 7.2 the set J(G) \ G∗(Crit(f)+) is not empty. Denote by P(t) the constant

common value of the function z 7→ Pz(t) on J(G) \ G∗(Crit(f)+). P(t) is called the
topological pressure of t. Its basic properties are contained in the following.

Lemma 7.4. The function t 7→ P(t), t ≥ 0, has the following properties.
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(a) P(t) is non-increasing. In particular P(t) < +∞ as clearly P(0) < +∞.
(b) P(t) is convex and, hence, continuous.
(c) P(0) ≥ log 2 > 0.
(d) P(2) ≤ 0.

Proof. Fix z ∈ J(G) \ G∗(Crit(f)+). Since the family of all analytic inverse branches of
all elements of G is normal in some neighborhood of z (see [36, Lemma 4.5]) and all its limit
functions are constant (see Theorem 3.3), limn→∞ max{|f ′

ω(x)| : |ω| = n, x ∈ f−1
ω (z)} = ∞.

So, item (a) follows directly from (7.1). Item (b), that is convexity of P(t) follows directly
from (7.1) and Hölder inequality. Item (c) follows from the fact that max{u, max{deg(fj) :

1 ≤ j ≤ u}} ≥ 2. For the proof of item (d) let U ⊂ Ĉ be the set coming from the nice

open set condition. Fix z ∈ J(G) \ G∗(Crit(f)+). Let Uz = B
(
z, 1

2
dist(z,G∗(Crit(f)+))

)
.

It follows from Koebe’s Distortion Theorem that

|(g−1
∗ )′(z)|2 ≤ CK2 l2(g

−1
∗ (Uz ∩ U))

l2(Uz ∩ U)

for all g ∈ G and all analytic inverse branches g−1
∗ of g defined on B (z, dist(z,G∗(Crit(f)+))),

where C > 0 is a constant independent of g. Since, by the open set condition, all the sets
g−1
∗ (Uz ∩ U) are mutually disjoint, we thus get

Ln
211(z) ≤ CK2 l2(

∪
g−1
∗ (Uz ∩ U))

l2(Uz ∩ U)
≤ CK2l2(U)

l2(Uz ∩ U)
.

Hence P(2) = Pz(2) ≤ 0 and we are done. ¤

We say that a measure m̃t on J(f̃) is eP(t)|f̃ ′|t-conformal provided that

m̃t(f̃(A)) =

∫
A

eP(t)|f̃ ′|tdm̃t

for all Borel sets A ⊂ J(f̃) such that f̃ |A is injective. If P(t) = 0, the measure m̃t is

simply referred to as t-conformal. Fix z ∈ J(G) \ G∗(Crit(f)+). Observe that the critical
parameter for the series

Ss(z) =
∞∑

n=1

e−snLn
t 11(z)

is equal to the topological pressure P(t), i.e. Ss(z) = +∞ if s < P (t) and Ss(z) < +∞ if

s > P(t). For every σ-finite Borel measure on J(f̃) let L∗n
t m be given by the formula

L∗n
t m(A) = m(Ln

t 11A), A ⊂ J(f̃).

Notice that if (τ, ξ) ∈ J(f̃) \
∪∞

n=1 f̃n(Crit(f̃)), then for all Borel sets A ⊂ J(f̃) we have

L∗n
t δ(τ,ξ)(A) = δ(τ,ξ)(Ln

t 11A) = Ln
t 11A(τ, ξ) =

∑
|ω|=n

∑
x∈A∩f−1

ω (ξ)

|f ′
ω(x)|−t ≤ Ln

t 11(ξ) < ∞.

In particular, L∗n
t δ(τ,ξ)(J(f̃)) ≤ Ln

t 11(ξ) < ∞. Hence, if s > P(t), then

(7.2) ν̃s = S−1
s (ξ)

∞∑
n=1

e−snL∗n
t δ(τ,ξ)
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is a Borel probability measure on J(f̃). Now, for every Borel set A ⊂ J(f̃) we have

L∗n
t δ(τ,ξ)(A) = δ(τ,ξ)(Ln

t 11A) = Ln
t 11A(τ, ξ) =

∑
(γ,z)∈f̃−n(τ,ξ)∩A

|(f̃n)′(γ, z)|−t.

So, L∗n
t δ(τ,ξ)(f̃

−n(τ, ξ)) = 1. Hence, denoting

νs = ν̃s ◦ p−1
2 ,

we get the following.

Lemma 7.5. We have ν̃s (
∪∞

n=0 f−n(τ, ξ)) = 1 and νs(G
−1(ξ)) = 1.

In what follows that we are in the divergence type, i.e. SP(t)(ξ) = +∞. For the convergence
type situation the usual modifications involving slowly varying functions have to be done,
the details can be found in [9]. The following lemma is proved by a direct straightforward
calculations.

Lemma 7.6. For every s > P(t) the following hold.

(a) ν̃s is a Borel probability measure.

(b) For every continuous function g : J(f̃) → R, we have

∫
gdν̃s = S−1

s (ξ)
∞∑

n=1

e−snLn
t gdδ(τ,ξ) = S−1

s (ξ)
∞∑

n=1

e−snLn
t g(τ, ξ).

(c)

e−sL∗
t ν̃s = S−1

s (ξ)
∞∑

n=1

e−s(n+1)L∗(n+1)
t δ(τ,ξ) = ν̃s − S−1

s (ξ)(e−sL∗
t δ(τ,ξ)).

Now we can easily prove the following.

Proposition 7.7. For every t ≥ 0 there exists an eP(t)|f̃ ′|t-conformal measure m̃t for the

map f̃ : J(f̃) → J(f̃).

Proof. Since lims↘P(t) Ss(ξ) = +∞, it suffices to take as m̃t any weak limit of ν̃s when
s ↘ P(t), and to apply Lemma 7.6(c). ¤
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Consider now a Borel set A ⊂ J(f̃) such that f̃ |A is injective. It then follows from
Lemma 7.6(c) that
(7.3)

ν̃s(A) = e−sL∗
t ν̃s(11A) + S−1

s (ξ)e−sL∗
t δ(τ,ξ)(11A)

= e−s

∫
Lt(11|A)dν̃s + e−sS−1

s (ξ)

∫
Lt(11|A)dδ(τ,ξ)

= e−s

∫ ∑
y∈f̃−1(x)

|f̃ ′(y)|−t11A(y)dν̃s(x) + e−sS−1
s (ξ)Lt(11|A)(τ, ξ)

= e−s

∫
f̃(A)

|(f̃ |−1
A )′(x)|tdν̃s(x) +

{
0 if A ∩ f̃−1(τ, ξ) = ∅
e−sS−1

s (ξ)|f̃ ′(y)|−t if A ∩ f̃−1(τ, ξ) = {y}.

Suppose now that (ω, x) ∈ J(f̃) and there exists a (unique) continuous inverse branch
φ−1

(ω,x) : Σu × B(fω1(x), 2R) → Σu × C of f sending (σ(ω), fω1(x)) to (ω, x). It then follows

from (7.3) and Lemma 7.6(c) that for every set A ⊂ Σu × B(fω1(x), 2R), we have that

(7.4) ν̃s(φ
−1
(ω,x)(A)) = e−s

∫
A

|(φ−1
(ω,x))

′|tdν̃s + e−sS−1
s (ξ)|(φ−1

(ω,x))
′(τ, ξ)|tδ(τ,ξ)(A)

From now on throughout the paper we assume that

(7.5) P(t) ≥ 0.

We also require that

(7.6) ξ /∈ G∗(Crit(f)+).

Our goal now is to show that the measure

mt = m̃t ◦ p−1
2

is uniformly upper t-estimable. For every critical point c ∈ Crit(f) let

I(c) = {1 ≤ i ≤ u : f ′
i(c) = 0}

and let

Σ(c) =
∪

i∈I(c)

[i] ⊂ Σu.

Now suppose that Γ is a closed subset of J(G) such that g(Γ) ∩ J(G) ⊂ Γ for each g ∈ Γ,

and that m̃ is a Borel probability measure on J(f̃).

Definition 7.8. The measure m̃ is said to be nearly upper t-conformal respective to Γ
provided that there exists an S > 0 such that the following conditions are satisfied.

(a) For every z ∈ Γ

m̃(f̃(A)) ≥
∫

A

|f̃ ′|tdm̃

for every Borel sets A ⊂ J(f̃) ∩ p−1
2 (B(z, S)) such that f̃ |A is injective.
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(b) For every c ∈ Crit(f) such that
∪

|τ |=l fτ (c+) ∩ J(G) ⊂ Γ (the integer l = l(f) ≥ 0

coming from Lemma 4.8) and every 1 ≤ j ≤ l + 1,

m̃(f̃ j(A)) ≥
∫

A

|(f̃ j)′|tdm̃

for every Borel sets A ⊂ J(f̃) ∩ p−1
2 (B(c, S)) such that f̃ j|A is injective.

(c) m̃(Σ(c) × {c}) = 0 for every point c ∈ Γ ∩ Crit(f).

The constant S is said to be the nearly upper conformality radius. If Γ = J(G), we simply
say that m̃ is nearly upper t-conformal. In any case put

m = m̃ ◦ p−1
2 .

Let us prove the following.

Lemma 7.9. Suppose that Γ is a closed subset of J(G) such that g(Γ) ∩ J(G) ⊂ Γ for

each g ∈ G, and that m̃ is a Borel probability nearly upper t-conformal measure on J(f̃)
respective to Γ. Fix i ∈ {0, 1, . . . , p} and suppose that for every critical point c ∈ Si(f) ∩ Γ
the measure m̃|Σ(c)×Ĉ ◦ p−1

2 is upper t-estimable at c. Then the measure m is uniformly

upper t-estimable at all points z ∈ Ji(G) ∩ Γ.

Proof. Since Γ is a closed set and Crit(f) is finite, the number ∆ = dist(Γ, Crit(f) \ Γ)
is positive (if Crit(f) \ Γ = ∅ then we put ∆ = ∞). Fix θ ∈ (0, min{1, γ}) so small that

(7.7) θ||f ′||−1 < min{∆, ρ}.

Put

α = θ(KA2
f )

−12−#Crit(f).

Let z ∈ Ji(G) ∩ Γ. Fix τ ∈ Σu such that (τ, z) ∈ J(f̃), i.e. τ ∈ p1(J(f̃) ∩ p−1
2 (z)).

Assume r ∈ (0, Rf ] to be sufficiently small. Let s(τ, r) = s(θ, (τ, z), 8α−1r) ≥ 0 be the
integer produced in Proposition 5.3. Set Rτ |s(τ,r)+1

= 4r|f ′
τ |s(τ,r)

(z)|. It then follows from

Proposition 5.3 that the family

F(z, r) = {τ |s(τ,r)+1 : τ ∈ p1(J(f̃) ∩ p−1
2 (z))}

is (4, γ, V )-essential for the pair (z, r), where V =
∪
{[τ |s+1] : τ ∈ p1(J(f̃) ∩ p−1

2 (z))}.
Keep τ ∈ p1(J(f̃) ∩ p−1

2 (z)) and s = s(τ, r). Suppose that the first alternative of (b)
in Proposition 5.3 holds. Then 8α−1r|f ′

τ |s(z)| > ||f ′||−1. So, using Koebe’s Distortion
Theorem, and assuming θ is small enough, we get from nearly upper t-conformality of m̃
respective to Γ that

(7.8)

m̃
(
f−s

τ |s,z([τs+1] × B(fτ |s(z), Rτ |s+1))
)
≤ m̃

(
f−s

τ |s,z(p
−1
2 (B(fτ |s(z), Rτ |s+1)))

)
≤ Kt|f ′

τ |s(z)|−tm̃p−1
2

(
B(fτ |s(z), Rτ |s+1))

)
≤ Kt|f ′

τ |s(z)|−t

≤ (8Kα−1‖f̃ ′‖)trt.
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Now Suppose 8α−1r|f ′
τ |s(z)| ≤ ‖f̃ ′‖−1 which particular implies that the second alternative

of (b) in Proposition 5.3 holds. Let c ∈ Crit(fτs+1) such that fτ |s+1(c) ∈ J(G) come

from item (b) of this proposition. Since z ∈ Ji(G) (and θ‖f̃ ′‖−1 < ρ), it follows from
(4.5) and Proposition 5.3 that c ∈ Si(f). Since 8α−1r|f ′

τ |s(z)| ≤ ||f ′||−1, it follows from

Proposition 5.3(b) and (7.7) that |fτ |s(z) − c| ≤ θ||f ′||−1 < ∆. Thus c ∈ Γ. Hence,
making use of Proposition 5.3(b), (c), as well as Koebe’s Distortion Theorem, nearly upper
t-conformality of m̃, and our t-upper estimability assumption, and assuming θ is small
enough, we get with some universal constant C1 that

m̃
(
f−s

τ |s,z([τs+1] × B(fτ |s(z), Rτ |s+1))
)

≤ Kt|f ′
τ |s(z)|−tm̃

(
[τs+1] × B(fτ |s(z), Rτ |s+1)

)
≤ Kt|f ′

τ |s(z)|−tm̃|Σ(c)×Ĉ ◦ p−1
2

(
B(fτ |s(z), Rτ |s+1)

)
≤ Kt|f ′

τ |s(z)|−tm̃|Σ(c)×Ĉ ◦ p−1
2

(
B(c, Rτ |s+1 + 8θα−1r|f ′

τ |s(z)|)
)

≤ Kt|f ′
τ |s(z)|−tm̃|Σ(c)×Ĉ ◦ p−1

2

(
B(c, 4(1 + 2θα−1)r|f ′

τ |s(z)|)
)

≤ Kt|f ′
τ |s(z)|−tC1

(
4(1 + 2θα−1)r|f ′

τ |s(z)|
)t

= C1(4K(1 + 2θα−1))trt.

Combining this with (7.8) and applying Proposition 2.15, we get that

(7.9) m(B(z, r)) ≤ #4,γC1 max{8Kα−1‖f̃ ′‖, 4K(1 + 2θα−1)}trt.

We are done. ¤

Lemma 7.10. There are two functions (R,S) 7→ R∗ and L 7→ L̂ with the following property.

• Suppose that Γ is a closed subset of J(G) such that g(Γ) ∩ J(G) ⊂ Γ for each
g ∈ G, and that m̃ is a Borel probability nearly upper t-conformal measure on
J(f̃) respective to Γ with nearly upper conformality radius S. Fix i ∈ {0, 1, . . . , p}
and suppose that the measure m is uniformly upper t-estimable at all points z ∈
Ji(G)∩Γ with corresponding estimability constant L and estimability radius R. Then

the measure m̃|Σ(c)×Ĉ ◦ p−1
2 is t-upper estimable, with upper estimability constant L̂

and radius R∗ at every point c ∈ Cri+1(f) such that
∪

|ω|=l fω(c+) ∩ J(G) ⊂ Γ.

Proof. Fix c ∈ Cri+1(f) such that
∪

|ω|=l fω(c+) ⊂ Γ and also j ∈ {0, 1, . . . , u} such that

f ′
j(c) = 0. Consider an arbitrary τ ∈ Σu such that τ1 = j and (τ, c) ∈ J(f̃). In view of

Lemma 4.8

fτ |l+1
(c) ∈ Ji(G) ∩ Γ.

Let R > 0 (sufficiently small) be the radius resulting from uniform t-upper estimability at
all points of Ji(G) ∩ Γ. Let Dτ |l+1

(c) be the connected component of f−1
τ |l+1

(B(fτ |l+1
(c), R))

containing c. Set

ντ |l+1
= m̃|[τ |l+1]×Ĉ ◦ p−1

2 |Dτ |l+1
(c).
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Applying nearly upper t-conformality of m̃ we get for every Borel set A ⊂ Dτ |l+1
(c) \ {c}

such that fτ |l+1
|A is injective, the following.

m(fτ |l+1
(A)) = m̃(Σu × fτ |l+1

(A))) = m̃(f l+1([τ |l+1] × A)) ≥
∫

A

|f ′
τ |l+1

(x)|tdντ |l+1
(x).

It therefore follows from Lemma 2.10 and item (c) of Definition 7.8 that the measure ντ |l+1

is upper t-estimable at c with upper estimability constant L0 and radius R0 independent
of m̃ (but possibly R0 depends on (R,S) and L0 depends on L). Let

F = {τ |l+1 : (τ, c) ∈ J(f̃) and f ′
τ1

(c) = 0}.

Let Dc =
∩

ω∈F Dω(c). Since #F ≤ ul+1 and since

m̃|Σ(c)×Ĉ ◦ p−1
2 |Dc =

∑
ω∈F

νω|Dc ,

we conclude that the measure m̃|Σ(c)×Ĉ ◦ p−1
2 is t-upper estimable at the point c with upper

estimability constant L̂ and radius R∗ independent of m̃. We are done. ¤

Now, a straightforward inductive reasoning based on Lemma 7.9 and (7.9), (which also give
the base of induction since S0(f) = ∅), and Lemma 7.10 yields the following.

Lemma 7.11. Suppose that Γ is a closed subset of J(G) such that g(Γ) ∩ J(G) ⊂ Γ for

each g ∈ G, and that m̃ is a Borel probability nearly upper t-conformal measure on J(f̃)
respective to Γ with nearly upper conformality radius S. Then the measure m = m̃ ◦ p−1

2 is
uniformly upper t-estimable at every point of Γ and m̃|Σ(c)×Ĉ◦p−1

2 is upper t-estimable, with

upper estimability constants and radii independent of the measure m̃ (but possibly dependent
on S), at every point c ∈ Γ ∩ Crit(f).

Now we are in the position to prove the following.

Lemma 7.12. If P(t) ≥ 0, then the measure mt = m̃t ◦p−1
2 is uniformly upper t-estimable.

Proof. Fix s > P(t) ≥ 0 and consider the measure ν̃s defined in (7.2). We want to apply

Lemma 7.11 with Γ = G∗(Crit(f)+ ∩ J(G))∩ J(G) and m̃ = ν̃s. For this we have to check
that ν̃s is nearly upper t-conformal respective to Γ. Condition (c) of Definition 7.8 follows
directly from Lemma 7.5 and the fact that ξ /∈ G(Crit(f)) (see (7.6)). Since ξ /∈ Γ and
G(Γ) ∩ J(G) ⊂ Γ, there exists an S0 > 0 such that ξ /∈

∪u
j=1 fj(B(Γ, S0)) ∩ J(G). Formula

(7.4) then yields that for every z ∈ Γ,

ν̃s(f̃(A)) = es

∫
A

|f̃ ′|tdν̃s ≥
∫

A

|f̃ ′|tdν̃s

for every Borel set A ⊂ Σu × B(z, S0) such that f̃ |A is injective. Thus, condition (a) of
Definition 7.8 is also verified. Condition (b) of this definition follows by iterating the above

argument l + 1 times and keeping in mind that ξ /∈ G∗(Crit(f)+). Hence, there exists a
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constant S such that for each s > P (t), ν̃s is nearly upper t-conformal respective to Γ with
nearly upper conformality radius S. Therefore, Lemma 7.11 applies and we conclude that
all measures ν̃s|Σ(c)×Ĉ ◦ p−1

2 are upper t-estimable at respective points c ∈ Crit(f) ∩ J(G)

with estimability constants and radii independent of s > P(t). Therefore, m̃t, a weak limit
of measures ν̃s, s > P(t), (see the proof of Proposition 7.7)) also enjoys the property that
m̃t|Σ(c)×Ĉ ◦ p−1

2 is upper t-estimable at respective points c ∈ Crit(f) ∩ J(G). Consequently

m̃t(Σ(c)×{c}) = 0. Having this we immediately see from Proposition 7.7 that the measure
m̃t is nearly upper t-conformal, i.e. respective to Γ = J(G). So, applying Lemma 7.11, we
conclude that the measure mt = m̃t ◦ p−1

2 is uniformly upper t-estimable at every point of
Γ = J(G). We are done. ¤

Now we assume that t = h, i.e. P(t) = 0 and we deal with the problem of lower estimability.
It is easier than the upper one. We start with the following.

Lemma 7.13. Fix i ∈ {0, 1, . . . , p} and suppose that for every critical point c ∈ Si(f) and
every j ∈ I(c) the measure m̃h|[j]×Ĉ ◦ p−1

2 is strongly lower h-estimable at c with sufficiently
small lower estimability size. Then mh is uniformly strongly lower h-estimable at all points
of Ji(G).

Proof. Let θ ∈ (0, min{1, γ}) be such that θ‖f̃ ′‖−1 < ρ. Put α := θ−1KA2
f2

]Crit(f)+5.

λ = max{λ(c) : c ∈ Si(f)},

where all λ(c) are lower estimability sizes at respective critical points c. Fix z ∈ Ji(G)\Si(f)

and take τ ∈ Σu such that (τ, z) ∈ J(f̃). Assume r > 0 to be sufficiently small. Let
s = s(θ, (τ, z), αr) ≥ 0 be the integer produced in Proposition 5.3 for the point z and
radius r. A straightforward calculation based on Proposition 7.7 shows that

ν1 = m̃h|[τ |s]×f−1
(τ |s,z)

(B(fτ |s (z),32r|f ′
τ |s

(z)|)) ◦ p−1
2 and ν2 = mh|B(fτ |s (z),32r|f ′

τ |s
(z)|)

form an h-conformal pair of measures with respect to the map

fτ |s : f−1
τ |s,z(B(fτ |s(z), 32r|f ′

τ |s(z)|)) → B(fτ |s(z), 32r|f ′
τ |s(z)|).

By Koebe’s 1
4
-Theorem (Theorem 2.1) for every x ∈ B(z, r) we have

(7.10) B(x, r) ⊂ f−1
τ |s,z

(
B(fτ |s(z), 8r|f ′

τ |s(z)|)
)
.

So,

B(fτ |s(x), r|f ′
τ |s(z)|) ⊂ B(fτ |s(z), 9r|f ′

τ |s(z)|).

By Koebe’s Distortion Theorem we also get (with small enough λ)

B(x, λr) ⊃ f−1
τ |s,z

(
B

(
fτ |s(x), K−1λr|f ′

τ |s(z)|
))

.
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In virtue of Koebe’s Distortion Theorem and t-conformality of the pair (ν1, ν2), we get as
a consequence of all of this that

mh(B(x, λr)) ≥ ν1(B(x, λr)) ≥ ν1

(
f−1

τ |s,z

(
B

(
fτ |s(x), K−1λr|f ′

τ |s(z)|
)))

=

∫
B
(

fτ |s (x),K−1λr|f ′
τ |s

(z)|
) |(f−1

τ |s,z)
′|hdν2

≥ K−h|f ′
τ |s(z)|−hν2

(
B

(
fτ |s(x), K−1λr|f ′

τ |s(z)|
))

.

Suppose now that the first alternative in Proposition 5.3(b) holds. We then can continue
the above estimate as follows.

(7.11)
mh(B(x, λr)) ≥ K−h|f ′

τ |s(z)|−hν2

(
B

(
fτ |s(x), K−1λ||f ′||−1

))
= K−h|f ′

τ |s(z)|−hmh

(
B

(
fτ |s(x), K−1λ||f ′||−1

))
By conformality the measure m̃h is positive on open subsets of J(f̃), and so, the measure
mh is positive on open subsets of J(G). Therefore, for every R > 0,

MR = inf{mh(B(w,R) : w ∈ J(G)} > 0.

Hence, (7.11) gives that

mh(B(x, λr)) ≥ K−hMK−1λ||f ′||−1 |f ′
τ |s(z)|−h

By minimality of s = s(θ, (τ, z), αr) we have αr|f ′
τ |s−1

(z)| ≤ ||f ′||−1 (s ≥ 1 assuming r > 0

to be sufficiently small). Hence |f ′
τ |s(z)| ≤ (αr)−1, and therefore

mh(B(x, λr)) ≥ K−hMK−1λ||f ′||−1αhrh.

So suppose that αr‖(f̃ s)′(τ, z)‖ ≤ ‖f̃ ′‖−1 and the second alternative in Proposition 5.3(b)
holds. Let c ∈ Crit(fτs+1) be such that fτs+1(c) ∈ J(G) and |fτ |s(z) − c| ≤ θαr|f ′

τ |s(z)| ≤
θ‖f̃ ′‖−1 < ρ. Since z ∈ Ji(G), we obtain c ∈ Si(f). Then, using (7.10), we get

fτ |s(x) ∈ B(fτ |s(z), 8r|f ′
τ |s(z)|) ⊂ B(c, (θα + 8)r|f ′

τ |s(z)|)
and

B
(
fτ |s(x), λ(θα+8)r|f ′

τ |s(z)|
)
⊂ B

(
fτ |s(z), (8+λ(θα+8))r|f ′

τ |s(z)|
)
⊂ B

(
fτ |s(z), 9r|f ′

τ |s(z)|
)

if λ > 0 is small enough. Hence, using conformality of the pair (ν1, ν2), Koebe’s Distortion
Theorem, the fact that τs+1 ∈ I(c), and the lower h-estimability m̃h|[τs+1]×Ĉ ◦ p−1

2 at the
point c, we get that

mh(B(x,Kλ(θα + 8)r) ≥ ν1(B(x,Kλ(θα + 8)r) ≥ ν1

(
f−1

(τ |s,z)

(
B

(
fτ |s(x), λ(θα + 8)r|f ′

τ |s(z)|
)))

≥ K−h|f ′
τ |s(z)|−hν2

(
B

(
fτ |s(x), λ(θα + 8)r|f ′

τ |s(z)|
))

≥ K−h|f ′
τ |s(z)|−hm̃h|[τs+1]×Ĉ ◦ p−1

2

(
B

(
fτ |s(x), λ(θα + 8)r|f ′

τ |s(z)|
))

≥ K−h|f ′
τ |s(z)|−hL0((θα + 8)r|f ′

τ |s(z)|)h

= L0((θα + 8)K−1)hrh,

where L0 is a constant independent of x and r. So, we are done with the lower estimability
size Kλ(θα + 8). ¤
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Now we shall prove the following.

Lemma 7.14. Fix i ∈ {0, 1, . . . , p} and suppose that the measure mh is uniformly strongly
lower h-estimable at all points of Ji(G). Then the measure m̃h|[j]×Ĉ ◦ p−1

2 is strongly lower

h-estimable at every critical point c ∈ Cri+1(f) and every j ∈ I(c).

Proof. Fix c ∈ Cri+1(f) and then an arbitrary j ∈ I(c). Next consider an arbitrary τ ∈
Σu such that τ1 = j and (τ, c) ∈ J(f̃). Now, ignoring Γ, follow the proof of Lemma 7.10 up
to the definition of the measure ντ |l+1

. It follows from conformality of m̃h that the measure

ντ |l+1
on Dτ |l+1

(c) and m̃h|Σu×B(fτ |l+1
(c),R) ◦ p−1

2 = mh|B(fτ |l+1
(c),R) form an h-conformal pair

of measures for the map fτ |l+1
: Dτ |l+1

(c) → B(fτ |l+1
(c), R). So the measure ντ |l+1

is strongly
lower h-estimable at c in virtue of our assumption and Lemma 2.11. Since Dτ |l+1

(c) is an

open neighborhood of c and [τ |l+1] × Dτ |l+1
(c) ⊂ [j] × Ĉ, we thus see that the measure

m̃h|[j]×Ĉ ◦ p−1
2 is strongly lower h-estimable at c. We are done. ¤

The second main result of this section is this.

Lemma 7.15. The measure mh = m̃h ◦ p−1
2 is uniformly strongly lower h-estimable.

Proof. Having Jp(G) = J(G) (Lemma 4.7) the proof of this lemma is the obvious
mathematical induction based on Lemma 7.13 and Lemma 7.14 as inductive steps and
Lemma 7.13 with i = 0 (then Si(G) = ∅ and its hypothesis are vacuously fulfilled) serving
as the base of induction. ¤

Since every uniformly strongly lower h-estimable measure is uniformly lower h-estimable,
as an immediate consequence of Lemma 7.12, Lemma 7.15, and [11, 19, 26], we obtain the
following main result of this section and one of the two main results of the entire paper.

Theorem 7.16. Under Assumption (∗), we have the following.

(a) The measure mh = m̃h◦p−1
2 is geometric meaning that there exists a constant C ≥ 1

such that

C−1 ≤ mh(B(z, r))

rh
≤ C

for all z ∈ J(G) and all r ∈ (0, 1].

Consequently,

(b) h = HD(J(G)) = PD(J(G)) = BD(J(G)).
(c) HD(J(G)) is the unique zero of t 7→ P (t).
(d) All the measures Hh, Ph, and mh are mutually equivalent with Radon-Nikodym

derivatives uniformly separated away from zero and infinity.

In particular

(e) 0 < Hh(J(G))), Ph(J(G))) < +∞.
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Definition 7.17. The unique zero of t 7→ P (t) is denoted by h = h(f). Note that h(f) =
HD(J(G)) = PD(J(G)) = BD(J(G)).

Corollary 7.18. Under Assumption (∗), for each z ∈ J(G)\G∗(Crit(f)+), we have h(f) =
Tf (z) = t0(f) = SG(z) = s0(G) = HD(J(G)) = PD(J(G)) = BD(J(G)).

Proof. Let z ∈ J(G) \G∗(Crit(f)+). Since G satisfies the open set condition, G is a free
semigroup. Hence Tf (z) = SG(z) and t0(f) = s0(G). Moreover, by [37, Theorem 5.7], we
have HD(J(G)) ≤ s0(G) ≤ SG(z). We now let a > h(f). Since h(f) is the unique zero of
P (t) and since t 7→ P (t) is non-increasing function, we have P (a) < 0. Hence there exists
a number v < 0 such that for each n ∈ N,

∑
|ω|=n

∑
x∈f−1

ω (z) |f ′
ω(x)|−a ≤ env. Therefore

Tf (z) ≤ a. Thus Tf (z) ≤ h(f). Since h(f) = HD(J(G)), it follows that h(f) = Tf (z) =
t0(f) = SG(z) = s0(G) = HD(J(G)) = PD(J(G)) = BD(J(G)). We are done. ¤

It follows from Theorem 7.16 that the measure mh is atomless. We thus get the following.

Corollary 7.19. Under Assumption (∗), we have m̃h(Sing(f̃)) = 0.

Proof. Indeed, the set Crit(f) is finite and so, G−1(Crit(f)) is countable. For all n ≥ 0
we have

f̃−n(Crit(f̃)) ⊂ p−1
2 (p2(f̃

−n(Crit(f̃)))) ⊂ p−1
2 (G−1(Crit(f))).

Hence, m̃h(f̃
−n(Crit(f̃))) ≤ mh(G

−1(Crit(f))) = 0. Since Sing(f̃) =
∪∞

n=0 f̃−n(Crit(f̃)),
we are thus done. ¤

8. Invariant Measures

In this section we prove that there exists a unique Borel probability f̃ -invariant measure
on J(f̃) which is absolutely continuous with respect to m̃h. This measure is proved to be
metrically exact, in particular ergodic.

Frequently in order to denote that a Borel measure µ is absolutely continuous with
respect to ν we write µ ≺ ν. We do not use any special symbol to record equivalence of
measures (mutual absolute continuity).

We use some notations from [1]. Given a σ-finite measure space Let (X,F , µ) be a
σ-finite measure space and let T : X → X be a measurable almost everywhere defined
transformation. T is said to be nonsingular if and only if for any A ∈ F , µ(T−1(A)) ⇔
µ(A) = 0. T is said to be ergodic with respect to µ, or µ is said to be ergodic with respect
to T , if and only if µ(A) = 0 or µ(X \A) = 0 whenever the measurable set A is T -invariant,
meaning that T−1(A) = A. For a nonsingular transformation T : X → X, the measure µ
is said to be conservative with respect to T or T conservative with respect to µ if and only
if for every measurable set A with µ(A) > 0,

µ({z ∈ A :
∞∑

n=0

1A ◦ T n(z) < +∞}) = 0.
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Note that by [1, Proposition 1.2.2], for a nonsingular transformation T : X → X, µ is
ergodic and conservative with respect to T if and only if for any A ∈ F with µ(A) > 0,

µ({z ∈ X |
∞∑

n=0

1A ◦ T n(z) < +∞}) = 0.

Finally, the measure µ is said to be T -invariant, or T is said to preserve the measure µ
if and only if µ ◦ T−1 = µ. It follows from Birkhoff’s Ergodic Theorem that every finite
ergodic T -invariant measure µ is conservative, for infinite measures this is not longer true.
Finally, two ergodic invariant measures defined on the same σ-algebra are either singular
or they coincide up to a multiplicative constant.

Definition 8.1. Suppose that (X,F , ν) is a probability space and T : X → X is a measur-
able map such that T (A) ∈ F whenever A ∈ F . The map T : X → X is said to be weakly
metrically exact provided that lim supn→∞ µ(T n(A)) = 1 whenever A ∈ F and µ(A) > 0.

We need the following two facts about weak metrical exactness, the first being straightfor-
ward (see the argument in [1, page 15]), the latter more involved (see [26]).

Fact 8.2. If a nonsingular measurable transformation T : X → X of a probability space
(X,F , ν) is weakly metrically exact, then it is ergodic and conservative.

Fact 8.3. A measure-preserving transformation T : X → X of a probability space (X,F , µ)
is weakly metrically exact if and only if it is exact, which means that limn→∞ µ(T n(A)) = 1
whenever A ∈ F and µ(A) > 0, or equivalently, the σ-algebra

∩
n≥0 T−n(F) consists of

sets of measure 0 and 1 only. Note that if T : X → X is exact, then the Rokhlin’s natural
extension (T̃ , X̃, µ̃) of (T,X, µ) is K-mixing.

The precise formulation of our main result in this section is the following.

Theorem 8.4. m̃h is a unique h-conformal measure for the map f̃ : J(f̃) → J(f̃). There

exists a unique Borel probability f̃ -invariant measure µ̃h on J(f̃) which is absolutely con-
tinuous with respect to m̃h. The measure µ̃h is metrically exact and equivalent with m̃h.

The proof of this theorem will consist of several steps. We start with the following.

Lemma 8.5. Every h-conformal measure ν for f̃ : J(f̃) → J(f̃) is equivalent to m̃h.

Proof. Fix an integer v ≥ 1 and let

Jv = {(τ, z) ∈ J(f̃) \ Sing(f) : η(τ, z) ≥ 1/v},
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where η(τ, z) > 0 is the number produced in Proposition 5.1. We may assume that η(τ, z) ≤
1. Let also (τ̂ , ẑ) and (nj)

∞
1 be the objects produced in this proposition. Fix (τ, z) ∈ Jv.

Disregarding finitely many js we may assume without loss of generality that

|fτ |nj
(z) − ẑ| <

1

4
η(τ, z).

Let

(8.1)

Bj(τ, z) = [τ |nj
] × f−1

τ |nj ,z

(
B

(
fτ |nj

(z),
1

2
η(τ, z)

))
and

rj(τ, z) =
1

2
Kη(τ, z)|f ′

τ |nj
(z)|−1.

By Koebe’s Distortion Theorem and Proposition 5.1 we get that,

(8.2)

ν(Bj(τ, z)) = ν
(
f̃
−nj

τ |nj ,z

(
Σu × B

(
fτ |nj

(z),
1

2
η(τ, z)

)))
≥ K−h|f ′

τ |nj
(z)|−hν

(
Σu × B

(
fτ |nj

(z),
1

2
η(τ, z)

))
= K−h|f ′

τ |nj
(z)|−hν ◦ p−1

2

(
B

(
fτ |nj

(z),
1

2
η(τ, z)

))
≥ M(2v)−1,νK

−h|f ′
τ |nj

(z)|−h

≥ M(2v)−1,ν(2K
−1η−1(τ, z))hrh

j (τ, z)

≥ 2hM(2v)−1,νK
−hrh

j (τ, z),

where MR,v := inf{ν ◦ p−1
2 (B(w,R)) | w ∈ J(G)} > 0. Now fix E, an arbitrary Borel set

contained in Jv. Fix also ε > 0. Since the measure ν is regular, by Theorem 3.3 there
exists j(τ, z) ≥ 1 such that, with B(τ, z) = Bj(τ,z)(τ, z) and r(τ, z) = rj(τ,z)(τ, z), we have

(8.3) ν

 ∪
(τ,z)∈E

B(τ, z)

 ≤ ν(E) + ε.

By the 4r-Covering Theorem ([20]), there exists a countable set Ê ⊂ E such that the balls

{B(z, r(τ, z)) : (τ, z) ∈ Ê} are mutually disjoint and

∪
(τ,z)∈Ê

B(z, 4r(τ, z)) ⊃
∪

(τ,z)∈E

B(z, r(τ, z)) ⊃ p2(E).
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Hence, by Theorem 7.16 and (8.2), we get

(8.4)

m̃h(E) ≤ m̃h(p
−1
2 (p2(E))) ≤

∑
(τ,z)∈Ê

m̃h ◦ p−1
2

(
B(z, 4r(τ, z))

)
=

∑
(τ,z)∈Ê

mh

(
B(z, 4r(τ, z))

)
≤ C4h

∑
(τ,z)∈Ê

rh(τ, z)

≤ C(2K)hM−1
(2v)−1,ν

∑
(τ,z)∈Ê

ν(B(τ, z))

Now, since the sets {B(z, r(τ, z)) : (τ, z) ∈ Ê} are mutually disjoint and since B(τ, z) ⊂
p−1

2 (B(z, r(τ, z))), so are disjoint the sets {B(τ, z) : (τ, z) ∈ Ê}. Thus, using (8.3), we get

(8.5) m̃h(E) ≤ C(2K)hM−1
(2v)−1,νν

 ∪
(τ,z)∈Ê

B(τ, z)

 ≤ C(2K)hM−1
(2v)−1,ν(ν(E) + ε)

Letting ε ↘ 0 we thus get

m̃h(E) ≤ C(2K)hM−1
(2v)−1,νν(E).

Consequently m̃h|Jv ≺ ν|Jv . Since, in virtue of Proposition 5.1, J(f̃) \ Sing(f̃) =
∪∞

v=1 Jv,
we get that

(8.6) m̃h|J(f̃)\Sing(f̃) ≺ ν|J(f̃)\Sing(f̃).

Now, suppose that ν(Sing(f̃)) > 0. Since f̃ ′ vanishes on Crit(f̃), the measure ν0 =

(ν(Sing(f̃)))−1ν|Sing(f̃), is h-conformal for f̃ : J(f̃) → J(f̃). But then (8.6) would be

true with ν replaced by ν0. We would thus have m̃h(J(f̃) \ Sing(f̃)) = 0. Since, by Corol-

lary 7.19, m̃h(Sing(f̃)) = 0, we would get m̃h(J(f̃)) = 0. This contradiction shows that

ν(Sing(f̃)) = 0. Consequently,

(8.7) m̃h ≺ ν.

Seeking contradiction, suppose that ν is not absolutely continuous with respect to m̃h.
Then, there exists a Borel set X ⊂ J(f̃) \ ∪∞

n=0f̃
n(Sing(f̃)) such that m̃h(X) = 0 but

ν(X) > 0. But then the measure ν restricted to the forward and backward invari-

ant set
∪

n,m∈N f̃−m(f̃n(X)) and multiplied by the reciprocal of ν
(∪

n,m∈N f̃−m(f̃n(X))
)

is h-conformal for f̃ : J(f̃) → J(f̃). But, by conformality of m̃h, and as X ⊂ J(f̃) \
∪∞

n=0f̃
n(Sing(f̃))), we conclude from m̃h(X) = 0 that m̃h

(∪
n,m∈N f̃−m(f̃n(X))

)
= 0.

Since, by (8.7), the measure m̃h is absolutely continuous with respect to ν restricted to∪
n,m∈N f̃−m(f̃n(X)), we finally get that m̃h(J(f̃)) = 0. This contradiction show that

ν ≺ m̃h. Together with (8.7) this gives that ν and m̃h are equivalent. We are done. ¤
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Combining inequalities (8.4) and (8.5) (with ν = m̃h) from the proof of Lemma 8.5, and
letting ε ↘ 0 in (8.5), we get for every Borel set E ⊂ Jv, v ≥ 1, such that p2(E) is
measurable, that

mh(p2(E)) ≤ C(2K)hM−1
(2v)−1m̃h(E).

Consequently, as J(f̃) \ Sing(f̃) =
∪∞

v=1 Jv and m̃h(Sing(f̃)) = 0, we get the following.

Lemma 8.6. If E is a Borel subset of J(f̃) such that p2(E) is measurable and m̃h(E) = 0,

then mh(p2(E)) = 0. So, by Lemma 8.5, for any h-conformal measure ν for f̃ : J(f̃) →
J(f̃), we have that ν ◦ p−1

2 (p2(E)) = 0 whenever ν(E) = 0.

Now, given (τ, z) ∈ J(f̃) \ Sing(f̃), let

B(τ,z) =
{(

(τ, z), Bj(τ, z)
)}∞

j=1
,

where the sets Bj(τ, z) are defined by formula (8.1). Let

B =
∪

(τ,z)∈J(f̃)\Sing(f̃)

B(τ,z)

and, following notation from Federer’s book [12], let

B2 := B(J(f̃) \ Sing(f̃)) = {Bj(τ, z) : (τ, z) ∈ J(f̃) \ Sing(f̃), j ≥ 1}.
We shall prove the following.

Lemma 8.7. The family B is a Vitali relation (in the sense of Federer (see [12], p. 151))

for the measure m̃h on the set J(f̃) \ Sing(f̃).

Proof. Fix (τ, z) ∈ J(f̃) \ Sing(f̃). Since p2(Bj(τ, z)) ⊂ B(z, rj(τ, z)) and since

(8.8) lim
j→∞

rj(τ, z) = 0,

we have
lim
j→∞

diam(Bj(τ, z)) = 0.

This means that the relation B is fine at the point (τ, z). Aiming to apply Theorem 2.8.17
from [12], we set

δ((Bj(ω, x))) = rj(ω, x)

for every Bj(ω, x) ∈ B2. Fix 1 < κ < +∞ (a different notation for 1 < τ < +∞ appearing
in Theorem 2.8.17 from [12]). With the notation from page 144 in [12] we have

B̂j(τ, z) =
∪

{B : B ∈ B2, B∩Bj(τ, z) 6= ∅, δ(B) ≤ κδ(Bj(τ, z))} ⊂ p−1
2

(
(B

(
z, (1 + 2κ)rj(τ, z)

))
.

So, in virtue of Theorem 7.16 and (8.2), we obtain

δ(Bj(τ, z)) +
m̃h(B̂j(τ, z))

m̃h(Bj(τ, z))
≤ rj(τ, z) +

C
(
(1 + 2κ)rj(τ, z)

)h

C−1rh
j (τ, z)

= C2(1 + 2κ)h + rj(τ, z),
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where C > 0 is a constant independent of j. Hence, using (8.8), we get

lim
j→∞

(
δ(Bj(τ, z)) +

m̃h(B̂j(τ, z))

m̃h(Bj(τ, z))

)
≤ C2(1 + 2κ)h < +∞.

Thus, all the hypothesis of Theorem 2.8.17 in [12], p. 151 are verified and the proof of our
lemma is complete. ¤

As an immediate consequence of this lemma and Theorem 2.9.11, p. 158 in [12] we get the
following.

Proposition 8.8. For every Borel set A ⊂ J(f̃) \ Sing(f̃) let

Ah =

{
(τ, z) ∈ A : lim

j→∞

m̃h(A ∩ Bj(τ, z))

m̃h(Bj(τ, z))
= 1

}
.

Then m̃h(Ah) = m̃h(A).

Now, we shall prove the following.

Lemma 8.9. The measure m̃h is weakly metrically exact for the map f̃ : J(f̃) → J(f̃). In
particular it is ergodic and conservative.

Proof. Fix a Borel set F ⊂ J(f̃) \ Sing(f̃) with m̃h(F ) > 0. By Proposition 8.8 there
exists at least one point (τ, z) ∈ Fh. Our first goal is to show that

(8.9) lim
j→∞

m̃h(f̃
nj(F ) ∩ p−1

2 (B(fτ |nj
(z), η/2))

)
m̃h

(
p−1

2 (B(fτ |nj
(z), η/2))

) = 1,

where, we recall η = η(τ, z) > 0 is the number produced in Proposition 5.1 and (nj)
∞
1 is

the corresponding sequence produced there. Indeed, suppose for the contrary that

κ =
1

2
lim inf

j→∞

m̃h

(
p−1

2 (B(fτ |nj
(z), η/2)) \ f̃nj(F )

)
m̃h

(
p−1

2 (B(fτ |nj
(z), η/2))

) > 0.

Then, disregarding finitely many ns we may assume that

m̃h

(
p−1

2 (B(fτ |nj
(z), η/2)) \ f̃nj(F )

)
m̃h

(
p−1

2 (B(fτ |nj
(z), η/2))

) ≥ κ > 0

for all j ≥ 1. But

f̃
−nj

τ |nj ,z

(
p−1

2 (B(fτ |nj
(z), η/2))\ f̃nj(F )

)
⊂

(
[τ |nj

]×B(z,
1

2
Kη

∣∣∣f ′
τ |nj

(z)
∣∣∣−1

)
)
\F = Bj(τ, z)\F
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and

m̃h

(
f̃
−nj

τ |nj ,z

(
p−1

2 (B(fτ |nj
(z), η/2)) \ fnj(F )

))
≥

≥ K−h
∣∣∣f ′

τ |nj
(z)

∣∣∣−h

m̃h

(
p−1

2 (B(fτ |nj
(z), η/2)) \ fnj(F )

)
≥ κK−h

∣∣∣f ′
τ |nj

(z)
∣∣∣−h

m̃h

(
p−1

2 (B(fτ |nj
(z), η/2))

)
= κK−h

∣∣∣f ′
τ |nj

(z)
∣∣∣−h

mh

(
B(fτ |nj

(z), η/2)
)

≥ κK−hMη/2

∣∣∣f ′
τ |nj

(z)
∣∣∣−h

.

Hence, making use of Theorem 7.16, we obtain

m̃h(Bj(τ, z) \ F ) ≥ κK−hMη/2

∣∣∣f ′
τ |nj

(z)
∣∣∣−h

= κ(K2η/2)−hMη/2r
h
j (τ, z)

≥ C−1(K2η/2)−hMη/2m̃h(Bj(τ, z)).

Thus,
m̃h(Bj(τ, z) \ F )

m̃h(Bj(τ, z))
≥ C−1(K2η/2)−hMη/2 > 0.

Letting j → ∞ this contradicts the fact that (τ, z) ∈ Fh and finishes the proof of (8.9). Now

since f̃ : J(f̃) → J(f̃) is topologically exact, there exists q ≥ 0 such that f̃ q(p−1
2 (B(w, η/2))) ⊃

J(f̃) for all w ∈ J(G). It then easily follows from (8.9) and conformality of m̃h that

lim sup
k→∞

m̃h(f̃
k(F )) ≥ lim sup

j→∞
m̃h(f̃

q+nj)(F )) = 1.

Noting also that m̃h(Sing(f̃)) = 0 (by Corollary 7.19), the weak metric exactness of m̃h is
proved. Ergodicity and conservativity follow then from Fact 8.2. We are done. ¤

Corollary 8.10. m̃h is the only h-conformal measure on J(f̃) for the map f̃ : J(f̃) → J(f̃).

Proof. Let ν be an arbitrary h-conformal measure on J(f̃) for the map f̃ : J(f̃) → J(f̃).
Since, by Lemma 8.5 the measure ν is absolutely continuous with respect m̃h, it follows
from Theorem 2.9.7 in [12], p. 155 and Lemma 8.7 that for m̃h-a.e. (τ, z) ∈ J(f̃) \Sing(f̃),

dν

dm̃h

(f̃(τ, z)) = lim
j→∞

ν(Bj(f̃(τ, z)))

m̃h(Bj(f̃(τ, z)))
= lim

j→∞

ν(f̃(Bj(τ, z)))

m̃h(f̃(Bj(τ, z)))

= lim
j→∞

∫
Bj(τ,z)

|f̃ ′|h dν∫
Bj(τ,z)

|f̃ ′|h dm̃h

= lim
j→∞

ν(Bj(τ, z))

m̃h(Bj(τ, z))
=

dν

dm̃h

(τ, z).

Since, by Lemma 8.9, the measure m̃h is ergodic, it follows that the Radon-Nikodym
derivative dν

dm̃h
is m̃h-almost everywhere constant. Since ν and m̃h are equivalent (by

Lemma 8.5) this derivative must be almost everywhere, with respect to m̃h as well as ν,
equal to 1. Thus ν = m̃h and we are done. ¤
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In order to prove the existence of a Borel probability f̃ -invariant measure on J(f̃) equivalent
to m̃h, we will use Marco-Martens method originated in [18]. This means that we shall

first produce a σ-finite f̃ -invariant measure equivalent to m̃h (this is the Marco-Martens
method) and then we will prove this measure to be finite. The heart of the Martens’
method is the following theorem which is a generalization of Proposition 2.6 from [18]. It is
a generalization in the sense that we do not assume our probability space (X,B,m) below
to be a σ-compact metric space, neither assume we that our map is conservative, instead,
we merely assume that item (6) in Definition 8.11 holds. Also, the proof we provide below
is based on the concept of Banach limits rather than (see [18]) on the notion of weak limits.

Definition 8.11. Suppose (X,B,m) is a probability space. Suppose T : X → X is a
measurable mapping, such that T (A) ∈ B whenever A ∈ B, and such that the measure m
is quasi-invariant with respect to T , meaning that m ◦T−1 ≺ m. Suppose further that there
exists a countable family {Xn}∞n=0 of subsets of X with the following properties.

(1) For all n ≥ 0, Xn ∈ B.
(2) m(X \

∪∞
n=0 Xn) = 0.

(3) For all m,n ≥ 0, there exists a j ≥ 0 such that m(Xm ∩ T−j(Xn)) > 0.
(4) For all j ≥ 0 there exists a Kj ≥ 1 such that for all A,B ∈ B with A,B ⊂ Xj and

for all n ≥ 0,

m(T−n(A))m(B) ≤ Kjm(A)m(T−n(B)).

(5)
∑∞

n=0 m(T−n(X0)) = +∞.
(6) liml→∞ m(T (

∪∞
j=l Yj)) = 0, where Yj := Xj \

∪
i<j Xi.

Then the map T : X → X is called a Marco-Martens map and {Xj}∞j=0 is called a Marco-
Martens cover.

Remark 8.12. Note that (6) is satisfied if the map T : X → X is finite-to-one. For, if T
is finite-to-one, then

∩∞
l=1 T (

∪∞
j=l Yj) = ∅.

Theorem 8.13. Let (X,B,m) be a probability space and let T : X → X be a Marco-
Martens map with a Marco-Martens cover {Xj}∞j=0. Then, there exists a σ-finite T -invariant
measure µ on X equivalent to m. In addition, 0 < µ(Xj) < +∞ for each j ≥ 0. The
measure µ is constructed in the following way: Let lB : l∞ → l∞ be a Banach limit and let
Yj := Xj \

∪
i<j Xi for each j ≥ 0. For each A ∈ B, set

mn(A) :=

∑n
k=0 m(T−k(A))∑n

k=0 m(T−k(X0))
.

If A ∈ B and A ⊂ Yj with some j ≥ 0, then we obtain (mn(A))∞n=1 ∈ l∞. We set

µ(A) := lB((mn(A))∞n=1).
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For a general measurable subset A ⊂ X, set

µ(A) :=
∞∑

j=0

µ(A ∩ Yj).

In addition, if for a measurable subset A ⊂ X, the sequence (mn(A))∞n=1 is bounded, then
we have the following formula.

(8.10) µ(A) = lB((mn(A))∞n=1) − lim
l→∞

lB((mn(A ∩
∞∪
j=l

Yj))
∞
n=0).

Furthermore, if the transformation T : X → X is ergodic (equivalently with respect to the
measure m or µ), then the T -invariant measure µ is unique up to a multiplicative constant.

In order to prove Theorem 8.13, we need several lemmas.

Lemma 8.14. If (Z,F) is a σ-algebra of sets, Z =
∪∞

j=0 Zj is a disjoint union of measur-

able sets, and for each j ≥ 0, νj is a finite measure on Zj, then the function A 7→ ν(A) :=∑∞
j=0 νj(A ∩ Zj), is a σ-finite measure on Z.

Proof. Let A ∈ F and let (An)∞n=1 be a partition of A into sets in F . Then

ν(A) =
∞∑

j=0

νj(A ∩ Zj) =
∞∑

j=0

νj(
∞∪

n=1

(An ∩ Zj))

=
∞∑

j=0

∞∑
n=1

νj(An ∩ Zj) =
∞∑

n=1

∞∑
j=0

νj(An ∩ Zj) =
∞∑

n=1

ν(An),

where we could have changed the order of summation since all terms involved were non-
negative. Thus, we have completed the proof of our lemma. ¤

We now suppose that we have the assumption of Theorem 8.13.

Lemma 8.15. For every j ≥ 0, the sequence (mn(Xj))
∞
n=1 is bounded and µ(Yj) ≤ µ(Xj) <

+∞.

Proof. In virtue of (3) of Definition 8.11 there exists a q ≥ 0 such that m(Xj∩T−q(X0)) > 0.
By (4) of Definition 8.11, we have for all n ≥ 0 that

mn(Yj) ≤ mn(Xj) ≤Kj
m(Xj)

m(Xj ∩ T−q(X0))
mn(Xj ∩ T−q(X0))

≤Kj
m(Xj)

m(Xj ∩ T−q(X0))
mn+q(X0)

∑n+q
k=0 m(T−k(X0))∑n
k=0 m(T−k(X0))

=Kj
m(Xj)

m(Xj ∩ T−q(X0))

(
1 +

∑n+q
k=n+1 m(T−k(X0))∑n

k=0 m(T−k(X0))

)

≤Kj
m(Xj)

m(Xj ∩ T−q(X0))

(
1 +

q∑n
k=0 m(T−k(X0))

)
.
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It follows from (5) of Definition 8.11 that (mn(Xj))
∞
n=1 ∈ l∞ and

µ(Yj) ≤ Kjm(Xj)/m(Xj ∩ T−q(X0)) < ∞.

Since Xj =
∪j

i=0 Yi, we are therefore done. ¤
Now, for every j ≥ 0, set µj := µ|Yj

.

Lemma 8.16. For every j ≥ 0 such that µ(Yj) > 0, and for every measurable set A ⊂ Yj,
we have

K−1
j

µ(Yj)

m(Yj)
m(A) ≤ µj(A) ≤ Kj

µ(Yj)

m(Yj)
m(A).

Proof. This is an immediate consequence of (4) of Definition 8.11 and the definition of the
measure µ. ¤
Lemma 8.17. For any j ≥ 0, µj is a (countably additive) measure on Yj.

Proof. Let j ≥ 0. We may assume without loss of generality that µj(Yj) > 0. Let A ⊂ Yj

be a measurable set and let (Ak)
∞
k=1 be a countable partition of A into measurable sets.

For every n ≥ 1 and for every l ≥ 1, we have

(8.11)

(
∞∑

k=1

mn(Ak)

)∞

n=1

−
l∑

k=1

(mn(Ak))
∞
n=1 =

(
∞∑

k=1

mn(Ak)

)∞

n=1

−

(
l∑

k=1

mn(Ak)

)∞

n=1

=

(
∞∑

k=l+1

mn(Ak)

)∞

n=1

.

It therefore follows from (4) of Definition 8.11 that∥∥∥∥∥
(

∞∑
k=1

mn(Ak)

)∞

n=1

−
l∑

k=1

(mn(Ak))
∞
n=1

∥∥∥∥∥
∞

=

∥∥∥∥∥
(

∞∑
k=l+1

mn(Ak)

)∞

n=1

∥∥∥∥∥
≤

∥∥∥∥∥ Kj

m(Yj)

(
mn(Yj)

∞∑
k=l+1

m(Ak)

)∞

n=1

∥∥∥∥∥
∞

=
Kj

m(Yj)

∥∥∥∥∥
(

mn(Yj)
∞∑

k=l+1

m(Ak)

)∞

n=1

∥∥∥∥∥
∞

.

Since, by Lemma 8.15, (mn(Yj))
∞
n=1 ∈ l∞, and since liml→∞

∑∞
k=l+1 m(Ak) = 0, we con-

clude that liml→∞ ‖(
∑∞

k=1 mn(Ak))
∞
n=1 −

∑l
k=1(mn(Ak))

∞
n=1‖∞ = 0. This means that in the

Banach space l∞, we have (
∑∞

k=1 mn(Ak))
∞
n=1 =

∑∞
k=1(mn(Ak))

∞
n=1. Hence, using continuity

of the Banach limit lB : l∞ → l∞, we get,

µ(A) =lB((mn(A))∞n=1) = lB((mn(
∞∪

k=1

Ak))
∞
n=1) = lB((

∞∑
k=1

mn(Ak))
∞
k=1)

=
∞∑

k=1

lB((mn(Ak))
∞
n=1) =

∞∑
k=1

µ(Ak).
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We are done. ¤
Combining Lemmas 8.14, 8.15, 8.16, and 8.17, and (3) of Definition 8.11, we get the

following.

Lemma 8.18. µ is a σ-finite measure on X equivalent to m. Moreover, µ(Yj) ≤ µ(Xj) <
∞ and 0 < µ(Xj) for all j ≥ 0.

Lemma 8.19. The formula 8.10 holds.

Proof. Fix a measurable set A ⊂ X. Then, for every l ≥ 1 we have that

lB((mn(A))∞n=1) =lB

(
l∑

j=0

(mn(A ∩ Yj))
∞
n=1

)
+ lB

(
(mn(

∞∪
j=l+1

A ∩ Yj))
∞
n=1

)

=
l∑

j=0

lB((mn(A ∩ Yj))
∞
n=1) + lB

(
(mn(A ∩

∞∪
j=l+1

Yj))
∞
n=1

)
.

Hence, letting l → ∞, we get

lB((mn(A))∞n=1) =
∞∑

j=0

lB((mn(A ∩ Yj))
∞
n=1) + lim

l→∞
lB

(
(mn(A ∩

∞∪
j=l+1

Yj))
∞
n=1

)

= µ(A) + lim
l→∞

lB

(
(mn(A ∩

∞∪
j=l

Yj))
∞
n=1

)
.

We are done. ¤
Lemma 8.20. The σ-finite measure µ is T -invariant.

Proof. Let i ≥ 0 be such that m(Yi) > 0. Fix a measurable set A ⊂ Yi. Fix l ≥ 1. We then
have

mn(T−1(A) ∩
∞∪
j=l

Yj) =

∑n
k=0 m(T−k(T−1(A) ∩

∪∞
j=l Yj))∑n

k=0 m(T−k(Y0))

≤
∑n

k=0 m(T−(k+1)(A ∩ T (
∪∞

j=l Yj)))∑n
k=0 m(T−k(Y0))

≤ mn+1(A ∩ T (
∞∪
j=l

Yj)) ·
∑n+1

k=0 m(T−k(Y0))∑n
k=0 m(T−k(Y0))

≤ Ki
mn+1(Yi)

m(Yi)
· m(A ∩ T (

∞∪
j=l

Yj)) ·
∑n+1

k=0 m(T−k(Y0))∑n
k=0 m(T−k(Y0))

,

where the last inequality sign was written because of (4) of Definition 8.11 and since A ⊂ Yi.
Since, the limit when n → ∞ at last quotient is 1, we get that

lB

(
(mn(T−1(A) ∩

∞∪
j=l

Yj))
∞
n=1

)
≤ Kiµ(Yi)

m(Yi)
m(T (

∞∪
j=l

Yj)).
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Hence, in virtue of (6) of Definition 8.11,

lim
l→∞

lB

(
(mn(T−1(A) ∩

∞∪
j=l

Yj))
∞
n=1

)
≤ Kiµ(Yi)

m(Yi)
lim
l→∞

m(T (
∞∪
j=l

Yj)) = 0.

Thus, it follows from Lemma 8.19, and as A ⊂ Yi, that

µ(T−1(A)) = lB((mn(T−1(A)))∞n=1) = lB((mn(A))∞n=1) = µ(A).

For an arbitrary A ⊂ X, write A =
∪∞

j=0 A ∩ Yj and observe that

µ(T−1(A)) = µ(
∞∪

j=0

T−1(A ∩ Yj)) =
∞∑

j=0

µ(T−1(A ∩ Yj)) =
∞∑

j=0

µ(A ∩ Yj) = µ(A).

We are done. ¤

We now give the proof of Theorem 8.13.

Proof of Theorem 8.13: Combining Lemmas 8.15, 8.18, 8.19, and 8.20, we obtain the
statement of Theorem 8.13. We are done. ¤

Applying Theorem 8.13 we shall prove Theorem 8.4.

Proof of Theorem 8.4. Since the topological support of m̃h is equal to the Julia set
J(f̃) and since, by Lemma 7.2, PCV(f̃) is a nowhere dense subset of J(f̃), we have

m̃h(PCV(f̃)) < 1. Since the set PCV(f̃) is forward invariant under f̃ , it follows from

ergodicity and conservativity of m̃h (see Lemma 8.9) that m̃h(PCV(f̃)) = 0. Therefore, in
virtue of Lemma 8.6

(8.12) m̃h(p
−1
2 (p2(PCV(f̃)))) = 0.

Now, for every z ∈ J(G) \ p2(PCV(f̃)) take rz > 0 such that J(G) ∩ B(z, 2rz) ⊂ Ĉ \
p2(PCV(f̃)). Since J(G) \ p2(PCV(f̃)) is a separable metric space, Lindelöf’s Theorem

yields the existence of a countable set {zj}∞j=0 ⊂ J(G) \ p2(PCV(f̃)) such that

∞∪
j=0

B(zj, rzj
) ⊃ J(G) \ p2(PCV(f̃)).

Set

Aj := p−1
2 (B(zj, rj)).

Verifying the conditions of Definition 8.11 (with X = J(f̃), T = f̃ ,m = m̃h, Xj = Aj),

f̃ is nonsingular because of Corollary 7.19 and h-conformality of m̃h. We immediately see
that condition (1) is satisfied, that (2) holds because of (8.12), and that (3) holds because

of h-conformality of m̃h and topological exactness of the map f̃ : J(f̃) → J(f̃). Condition
(5) follows directly from ergodicity and conservativity of the measure m̃h. Condition (6)

follows since f̃ : J(f̃) → J(f̃) is finite-to-one (see Remark 8.12). Let us prove condition
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(4). Fix j ≥ 1 and two arbitrary Borel sets A, B ⊂ Aj with m̃h(A), m̃h(B) > 0. Since

B(zj, 2rzj
) ∩ p2(PCV(f̃)) = ∅, for all n ≥ 0 all continuous inverse branches

{f̃−n
∗ : p−1

2

(
B(zj, 2rzj

)
)
→ Σu × Ĉ}∗∈In

of f̃n are well-defined, where In = {1, . . . , u}n, and because of Koebe’s Distortion Theorem
and h-conformality of the measure m̃h, we have

m̃h ◦ f̃−n(A) = m̃h

( ∪
∗∈In

f̃−n
∗ (A)

)
=

∑
∗∈In

m̃h

(
f̃−n
∗ (A)

)
≤

∑
∗∈In

Kh|(f−n
∗ )′(τ, zj)|hm̃h(A)

= K2h m̃h(A)

m̃h(B)

∑
∗∈In

K−h|(f−n
∗ )′(τ, zj)|hm̃h(B)

≤ K2h m̃h(A)

m̃h(B)

∑
∗∈In

m̃h

(
f̃−n
∗ (B)

)
= K2h m̃h(A)

m̃h(B)
m̃h

( ∪
∗∈In

f̃−n
∗ (B)

)

= K2hm̃h ◦ f̃−n(B)
m̃h(A)

m̃h(B)
,

where τ is an arbitrary element of Σu. Hence,

m̃h ◦ f̃−n(A)

m̃h ◦ f̃−n(B)
≤ K2h m̃h(A)

m̃h(B)
,

and consequently, condition (4) of Definition 8.11 is satisfied. Therefore, Theorem 8.13

produces a Borel σ-finite f̃ -invariant measure µ on J(f̃), equivalent to m̃h.
Now, let us show that the measure µ is finite. Indeed, by Theorem 3.3, there exists

a δ > 0 such that for all g ∈ G∗ and for all x ∈ J(G), every connected component
W of g−1(B(x, δ)) satisfies that diam(W ) < γ and that W is simply connected. Cover

p2(PCV(f̃)) with finitely many open balls {B(z, δ) : z ∈ F}, where F is some finite subset

of p2(PCV(f̃)). for all j ≥ 1. Since J(G) \
∪

z∈F B(z, δ) is covered by finitely many balls

B(zj, rzj
), j ≥ 1, it therefore suffices to show that µ(p−1

2 (B(z, δ))) < +∞ for all z ∈ F . So,

fix z ∈ F . Since z ∈ p2(PCV(f̃)), there thus exists k ≥ 1 such that B(zk, rzk
) ⊂ B(z, δ).

By Lemma 8.15 and the formula (8.10) of Theorem 8.13, it therefore suffices to show that

(8.13) lim sup
n→∞

m̃h

(
f̃−n(p−1

2 (B(z, δ)))
)

m̃h(f̃−n(Ak))
< +∞.

In order to do this let for every τ ∈ {1, 2, . . . , s}n, the symbol Γτ denote the collection of
all connected components of f−1

τ (B(z, δ)). It follows from Theorem 7.16, Lemma 3.7 and
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[37, Corollary 1.9] that for every V ∈ Γτ , we have

(8.14)
m̃h([τ ] × V ) ≤ mh(V ) ≤ Cdiamh(V ) ≤ CΓ−h

(
diam(B(z, δ))

diam(B(zk, rzk
))

)h

diamh(Vk)

= C(δr−1
zk

Γ−1)hdiamh(Vk),

where C > 0 is a constant independent of n and τ , Vk is a connected component of
f−1

τ (B(zk, rzk
)) contained in V , and Γ is the constant in Lemma 3.7. But, from conformality

of the measure m̃h and from the fact that Vk = f−1
τ∗ (B(zk, rzk

)), where f−1
τ∗ : B(zk, 2rzk

) → Ĉ
is an analytic inverse branch of fτ , we see that

m̃h([τ ] × Vk) ≥ K−h|(f−1
τ∗ )′(zk)|hm̃h(Ak) ≥ K−h

(
K−1 diam(Vk)

2rzk

)h

m̃h(Ak)

= (2K2rzk
)−hdiamh(Vk)m̃h(Ak).

Combining this with (8.14) we get that

m̃h([τ ] × V ) ≤ C(2K2δΓ−1)h(m̃h(Ak))
−1m̃h([τ ] × Vk)

Therefore,

m̃h

(
f−n(p−1

2 (B(z, δ)))
)

=
∑
|τ |=n

∑
V ∈Γτ

m̃h([τ ] × V )

≤ C(2K2δΓ−1)h(m̃h(Ak))
−1

∑
|τ |=n

∑
V ∈Γτ

m̃h([τ ] × Vk)

≤ C(2K2δΓ−1)h(m̃h(Ak))
−1m̃h

(
f̃−n(Ak)

)
.

Thus, the upper limit in (8.13) is bounded above by C(2K2δΓ−1)h(m̃h(Ak))
−1 < +∞, and

finiteness of the measure µ is proved.
Dividing µ by µ(J(f̃)), we may assume without loss of generality that µ is a probability

measure. Since for every Borel set F ⊂ J(f̃) the sequence (µ(f̃n(F )))∞n=1 is (weakly) in-
creasing, the metric exactness of µ follows from weak metrical exactness of m̃h (Lemma 8.9)
and the fact that µ and m̃h are equivalent. Since, by metrical exactness, µ is ergodic, it is
a unique Borel probability measure absolutely continuous with respect to m̃h. The proof
is complete. ¤

9. Examples

In this section, we give some examples of semi-hyperbolic rational semigroups with nice
open set condition.

Example 9.1 ([37, 39]). Let f1(z) = z2 + 2, f2(z) = z2 − 2, and f = (f1, f2). Let G =
〈f1, f2〉. Moreover, let U := {z ∈ C | |z| < 2.}. Then, G is semi-hyperbolic but not hyperbolic
([37, Example 5.8]). Moreover, G satisfies the nice open set condition with U. Since J(G) ⊂
f−1

1 (U) ∪ f−1
2 (U) $ U , [39, Theorem 1.25] implies that J(G) is porous and HD(J(G)) <

2. Moreover, by Theorem 1.11, we have h(f) = HD(J(G)) = PD(J(G)) = BD(J(G)).
Furthermore, f−1

1 (U) ∩ f−1
2 (U) 6= ∅. See figure 1.
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Figure 1. The Julia set of 〈f1, f2〉, where f1(z) = z2 + 2, f2(z) = z2 − 2.

Proposition 9.2. (See [42]) Let f1 be a semi-hyperbolic polynomial with deg(f1) ≥ 2 such
that J(f1) is connected. Let K(f1) be the filled-in Julia set of f1 and suppose that intK(f1)
is not empty. Let b ∈ intK(f1) be a point. Let d be a positive integer such that d ≥ 2.
Suppose that (deg(f1), d) 6= (2, 2). Then, there exists a number c > 0 such that for each
λ ∈ {λ ∈ C : 0 < |λ| < c}, setting fλ = (fλ,1, fλ,2) = (f1, λ(z− b)d + b) and Gλ := 〈f1, fλ,2〉,
we have that Gλ is semi-hyperbolic and fλ satisfies the nice open set condition with an open
set Uλ, J(Gλ) is porous, HD(J(Gλ)) = h(fλ) < 2, and P (Gλ) \ {∞} is bounded in C.

Proof. We will follow the argument in [42]. Conjugating f1 by a Möbius transformation,
we may assume that b = 0 and the coefficient of the highest degree term of f1 is equal to 1.

Let r > 0 be a number such that B(0, r) ⊂ intK(f1). We set d1 := deg(f1). Let α > 0

be a number. Since d ≥ 2 and (d, d1) 6= (2, 2), it is easy to see that ( r
α
)

1
d > 2

(
2( 1

α
)

1
d−1

) 1
d1

if and only if

(9.1) log α <
d(d − 1)d1

d + d1 − d1d
(log 2 − 1

d1

log
1

2
− 1

d
log r).

We set

(9.2) c0 := exp

(
d(d − 1)d1

d + d1 − d1d
(log 2 − 1

d1

log
1

2
− 1

d
log r)

)
∈ (0,∞).

Let 0 < c < c0 be a small number and let λ ∈ C be a number with 0 < |λ| < c. Put

fλ,2(z) = λzd. Then, we obtain K(fλ,2) = {z ∈ C | |z| ≤ ( 1
|λ|)

1
d−1} and

f−1
λ,2({z ∈ C | |z| = r}) = {z ∈ C | |z| = (

r

|λ|
)

1
d}.
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Figure 2. The Julia set of 〈f 2
1 , f 2

2 〉, where f1(z) = z2 − 1, f2(z) = z2/4.

Let Dλ := B(0, 2( 1
|λ|)

1
d−1 ). Since f1(z) = zd1(1 + o(1)) (z → ∞), it follows that if c is small

enough, then for any λ ∈ C with 0 < |λ| < c,

f−1
1 (Dλ) ⊂

{
z ∈ C | |z| ≤ 2

(
2(

1

|λ|
)d−1

) 1
d1

}
.

This implies that

(9.3) f−1
1 (Dλ) ⊂ f−1

λ,2({z ∈ C | |z| < r}).

Hence, setting Uλ := intK(fλ,2)\K(f1), f−1
1 (Uλ)∪f−1

λ,2(Uλ) ⊂ Uλ and f−1
1 (Uλ)∩f−1

λ,2(Uλ) = ∅.
Furthermore, since f1 is semi-hyperbolic, Ĉ \ K(f1) is a John domain (see [6]). Hence, Uλ

satisfies (osc3). Therefore, Gλ satisfies the nice open set condition with Uλ. We have

J(Gλ) ⊂ Uλ ⊂ K(fλ,2) \ intK(f1). In particular, intK(f1) ∪ (Ĉ \ K(fλ,2)) ⊂ F (Gλ).
Furthermore, (9.3) implies that fλ,2(K(f1)) ⊂ intK(f1). Thus, we have P (Gλ) \ {∞} =
∪g∈G∗

λ
g(CV ∗(f1)∪CV ∗(fλ,2)) ⊂ K(f1), where CV ∗(·) denotes the set of all critical values in

C. Hence, P (Gλ) \ {∞} is bounded in C. Since f1 is semi-hyperbolic, there exist an N ∈ N
and a δ1 > 0 such that for each x ∈ J(f1) and for each n ∈ N, deg(fn

1 : V → B(x, δ1)) ≤ N
for each connected component V of f−n

1 (B(x, δ1). Moreover, f−1
λ,2(J(f1))∩K(h1) = ∅ and so

f−1
λ,2(J(f1)) ⊂ Ĉ \ P (Gλ). From these arguments, it follows that there exists a 0 < δ2(< δ1)

such that for each x ∈ J(f1) and each g ∈ Gλ, deg(g : V → B(x, δ2)) ≤ N for each
connected component V of g−1(B(x, δ2)). Since P (Gλ) \ {∞} ⊂ K(f1) again, we ob-
tain that there exists a 0 < δ3(< δ2) such that for each x ∈ J(Gλ) and each g ∈ Gλ,
deg(g : V → B(x, δ3)) ≤ N for each connected component V of g−1(B(x, δ3)). Thus, Gλ is
semi-hyperbolic. Since J(Gλ) ⊂ f−1

1 (Uλ)∪f−1
λ,2(Uλ) $ Uλ, [39] implies that J(Gλ) is porous

and HD(J(Gλ)) < 2. Moreover, by Theorem 1.11, we have h(fλ) = HD(J(Gλ)). We are
done. ¤

References

[1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs
Vol. 50, American Mathematical Society, 1997.



53

[2] R. Brück, Geometric properties of Julia sets of the composition of polynomials of the form z2+cn,
Pacific J. Math., 198 (2001), no. 2, 347–372.
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[5] M. Büger, On the composition of polynomials of the form z2 + cn, Math. Ann. 310 (1998), no.
4, 661–683.

[6] L. Carleson, P. W. Jones and J. -C. Yoccoz, Julia and John, Bol. Soc. Brazil. Math. 25 (1) 1994,
1-30.
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