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Abstract

In this paper we study non-invertible hyperbolic maps f and the relation between the stable
dimension (i.e the Hausdorff dimension of the intersection between local stable manifolds of f and
a given basic set Λ) and the preimage counting function of the map f restricted to the fractal
set Λ. The case of diffeomorphisms on surfaces was considered in [5] where thermodynamic
formalism was used to study the stable/unstable dimensions. In the case of endomorphisms, the
non-invertibility generates new phenomena and new difficulties due to the overlappings coming
from the different preimages of points, and also due to the variations of the number of preimages
belonging to Λ (as compared to [7]). We show that, if the number of preimages belonging to Λ
of any point is less or equal than a continuous function ω(·) on Λ, then the stable dimension at
every point is larger or equal than the zero of the pressure function t → P (tΦs − logω(·)). As
a consequence we obtain that, if d is the maximum value of the preimage counting function on
Λ and if there exists x ∈ Λ with the stable dimension at x equal to the zero td of the pressure
function t → P (tΦs − log d), then the number of preimages in Λ of any point y is equal to d,
and the stable dimension is td everywhere on Λ. This has further consequences to estimating
the stable dimension for non-invertible skew products with overlaps in fibers.

Mathematics Subject Classification 2000: Primary 37D35, 37A05; Secondary 37D20.
Keywords: Hyperbolic endomorphisms, topological pressure, Hausdorff dimension, preimages.
Research of the first author supported in part by project ”Numerical invariants and geometric

properties for classes of dynamical systems”, PN II-CNCSIS cod 1191, from the Romanian Ministry
of Education and Research.

1 Introduction

Relations between Hausdorff dimension and the zero of topological pressure have been first found
in the case of rational maps of one variable, by Bowen ([2]) and Ruelle ([11]).

Theorem (Ruelle). Let f be a rational map which is hyperbolic on its Julia set J(f). Then the
Hausdorff dimension of J(f) is equal to the zero of the pressure function t → P (tΦu), where
Φu(z) := − log |Df(z)|, z ∈ J(f). In particular the Hausdorff dimension of the Julia set depends
real analytically on parameters when the parameters (i.e the map f) are perturbed holomorphically.

And for surface diffeomorphisms, Manning and McCluskey proved in [5] that:
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Theorem (Manning, McCluskey). Let Λ be a basic set for a C1 axiom A diffeomorphism f : M2 →
M2 with a (1, 1) splitting TΛ = Es ⊕ Eu. Then HD(W s(x) ∩ Λ) = ts and HD(W u(x) ∩ Λ) = tu,
where ts, tu are the unique zeros of the pressure functions t→ P (tΦs) and respectively t→ P (tΦu).
Moreover ts depends continuously on f in the C1 topology on diffeomorphisms.

In [7], Mihailescu and Urbanski studied the Hausdorff dimension of the intersection between local
stable manifolds and basic sets for non-invertible holomorphic maps of several variables. Here the
multidimensional setting and the fact that the map is non-invertible generate new phenomena and
obstacles. In [13], Simon studied a certain class of skew products exhibiting a type of transversality
condition giving that the attractor Λ is the union of smooth curves that intersect each other in at
most one point and that at this point the angle between their tangents is greater than a positive
constant, if their first preimages are different.

Transversality type conditions were studied also in [14]. In [9] we introduced a different form of
transversality, for parametrized families of skew products in order to prove a Bowen type formula
for the stable dimension for almost all parameters. In that paper there are many examples which
satisfy this transversality condition including some skew products with iterated function systems
in their base and examples from higher dimensional complex dynamics. However we do not know
if transversality (in any form) is generic in some way. Also in [12], Schmeling studied attractors for
the Belykh family depending on three parameters; there exists an open subset of parameters for
which the corresponding maps are not injective and we have a bifurcation picture of invertibility
according to the parameters. There are also many other examples of hyperbolic noninvertible maps;
for instance holomorphic maps on P2C obtained from perturbations of hyperbolic product maps
(P (z), Q(w)), or skew products (P (z), Q(z, w)) (we will talk about these in the end), solenoids with
overlaps, or the family of horseshoes with overlaps introduced by Bothe ([1]). Bothe proved in fact
that the set of such non-invertible horseshoes with overlaps has non-empty interior in some sense.

Our paper answers to the case when the transversality condition is not present or, even if it is
present, to the case of those parameters for which we do not have necessarily a Bowen type equation
for the stable dimension. In particular our work gives estimates for the stable dimension based on
the number of preimages that points in the basic set Λ, have in Λ. This allows us flexibility in
choosing continuous functions which bound the number of preimages and thus, it allows to use
thermodynamical formalism of equilibrium states in Corollary 1 in order to prove a rigidity type
result about the stable dimension.

Moreover in this paper we do not assume in general that Λ is an attractor (unlike in [13] or
[12]), instead Λ is just a basic set (as defined below). First let us remind some definitions:

Definition 1. a) Let X be a compact metric space and f : X → X a continuous map. For a point
x from X, we say that a point y ∈ X is an f -preimage of x if f(y) = x; we will call such a point y
also a 1-preimage of x. If fk(z) = x for some z ∈ X, k ≥ 1, then we say that z is a k-preimage
of x.

b) We will say that a finite sequence C = (x, x−1, . . . , x−n), n ≥ 1 is a finite prehistory of x
if f(x−n) = x−n+1, . . . , f(x−1) = x; in this case we will say that n is the length of C and x−n will
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be called the final preimage associated to C.
c) We will say that an infinite sequence C = (x, x−1, . . .) is a full prehistory (or simply a

prehistory) of x if we have f(x−i−1 = x−i, i ≥ 0. We will assume that notationally x = x0.
d) A full prehistory of x will also be denoted by x̂ = (x, x−1, x−2, . . .). The space of all

prehistories from X is denoted by X̂ and we have the shift map f̂(x̂) = (f(x), x, x−1, . . .). The
map f̂ is a homeomorphism on X̂. The pair (X̂, f̂) is called the natural extension (or inverse
limit) of (X, f).

It can be remarked that X̂ has a compact metric space structure ([6] for more on these notions).

Definition 2. a) Let f : U →M be a smooth (say C2) map defined on an open set U in a smooth
Riemannian manifold M . Consider also a basic set Λ for f , i.e a compact subset of U with the
following properties:

1) f(Λ) = Λ and f is transitive on Λ.
2) there exists an open neighbourhood V of Λ such that Λ = ∩

n∈Z
fn(V ).

b) We say that f is hyperbolic on Λ if there exists a continuous splitting of the tangent
bundle over Λ̂, TΛ̂(M), as Tx̂M = Esx⊕Eux̂ , where Tx̂M = {(x̂, v), v ∈ TxM}; the subspaces Esx, E

u
x̂

are invariant, i.e Dfx(Esx) ⊂ Esfx, Dfx(Eux̂) ⊂ Eu
f̂ x̂

and the derivative of f contracts, respectively
expands uniformly on Esx and Eux̂ .

c) If f is hyperbolic on Λ there exist local stable, and local unstable manifolds, namely
W s
r (x, f) := {y ∈ U, d(f iy, f ix) ≤ r, i ≥ 0}, and respectively
W u
r (x̂, f) = {y ∈ U, there exists a full prehistory of y in Λ, ŷ, s.t d(y−j , x−j) ≤ r, j ≥ 0}. They

will also be denoted by W s
r (x) and respectively W u

r (x̂) when no confusion upon f may arise.
d) We mean by stable dimension at x ∈ Λ the Hausdorff dimension HD(W s

r (x) ∩ Λ); it will
be denoted by δs(x).

The sets W s
r (x),W u

r (x̂) have indeed the structure of manifolds of dimensions equal to the
respective dimensions of Esx, E

u
x̂ ; the local unstable manifolds depend in general on the whole

prehistories, whereas the local stable manifolds depend only on their base point. In general for a
non-invertible map we may have infinitely many local unstable manifolds passing through a point
x ∈ Λ (as was proved in [10]); this is complicating further the situation.

Also, let us notice that we work with general basic sets as defined above, i.e intersections of
fn(V ) for all n ∈ Z, and not just with attractors (which require only intersections of fn(V ) for
n ≥ 0). Clearly, any attractor Λ, for which there exists a neighbourhood V so that f(V ) ⊂ V , is
also a basic set.

Coming back to the hyperbolic non-invertible higher dimensional case, in [7] we showed that

Theorem. Assume f is a holomorphic endomorphism on P2C and that f is hyperbolic on a basic
set Λ of unstable index 1; suppose also that the critical set of f , Cf does not intersect Λ, and that
each point x from Λ has at least d f-preimages in Λ. Then HD(W s

r (x) ∩ Λ) ≤ ts0, where ts0 is the
unique zero of the function t→ P (t log |Dfs(y)− log d). Therefore this estimate is independent of
x ∈ Λ.
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In the conformal hyperbolic non-invertible case (for instance for hyperbolic holomorphic maps
on projective spaces), the situation is different than in the diffeomorphism case; this is due to
the non-existence of inverse iterates and also to the fact that when taking forward images of balls
centered at different preimages of the same point, these images may overlap. Also since the number
of preimages belonging to Λ of a point x can vary when x ranges in Λ, it follows that the multiplicities
of covers from [7] are not constant so we cannot apply the successive elimination process from [7].

To illustrate some of the new phenomena/difficulties that appear in the non-invertible case, in
[7] we proved that

Theorem (Behavior of endomorphisms at perturbation). Given the map fε(z, w) = (z2 + aεz +
bεw + c + dεzw + eεw2, w2), there exist small positive constants c(a, b, d, e) and ε(a, b, c, d, e) such
that, for b 6= 0, 0 6= |c| < c(a, b, d, e) and 0 < ε < ε(a, b, c, d, e) we have that fε is injective on its
basic set Λε close to Λ := {p0(c)} × S1 (where p0(c) is the attracting fixed point for z → z2 + c).

In particular there exists a positive constant α(c) such that HD(W s
r (y, fε) ∩ Λε) > α(c) for all

ε > 0 small enough and all y ∈ Λε.

This result implies that the stable dimension for fε does not depend real analytically (not even
continuously) on the parameters when we perturb the map f(z, w) = (z2 + c, w2), since the stable
dimension of f relative to Λ is equal to zero (as the intersection W s

r (x, f) ∩ Λ consists of only one
point). But, as the previous Theorem proves, HD(W s

r (y, fε) ∩ Λε) > α(c) > 0, for all ε > 0 small.
Therefore, for non-invertible maps the situation is significantly different and the methods from

the one variable case or from the diffeomorphism case do not apply in general.
One must be careful also about the different preimages belonging to Λ, whose number may vary.

Locally near Λ a point x may have a constant number of f -preimages, but some of these preimages
may not be in Λ. However we need for the estimate of stable dimension only those preimages from
Λ, since Λ is f -invariant.

We will employ in the sequel maps of the following type:

Definition 3. Let M be a smooth (say C2) Riemannian manifold and f : U → M a smooth
finite-to-one map defined on an open set U of M . Assume that f is hyperbolic on the basic set
Λ ⊂ U and that f is conformal on stable manifolds. Also suppose that the critical set Cf of f does
not intersect Λ. We will say that f is then a c-hyperbolic map on Λ.

Definition 4. Let f be a c-hyperbolic function on a basic set Λ, and let an arbitrary point x from
Λ. We shall denote by d(x) the number of f -preimages of x belonging to Λ and the function d(·)
will be called the preimage counting function on Λ.

We remark that the number of preimages d(x) may vary when x ranges in Λ. This is bringing
as we mentioned, additional significant difficulties for the estimate of the stable dimension.

In Theorem 1 we will prove that if the function d(·) is smaller or equal than a locally constant
function ω(·) on Λ, then the stable dimension δs(x) at any point x ∈ Λ is larger or equal than the
unique zero tω of the pressure function t→ P (tΦs − logω), where Φs(y) := log |Dfs(y)|, y ∈ Λ.
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We refine this result in Theorem 2 for the case when ω is any continuous function on Λ; this
is a large extension of the class of maps for which we can estimate the stable dimension and it is
improving the estimate from [7].

Then in Corollary 1 we shall prove that if there exists at least a point x ∈ Λ where the stable
dimension δs(x) is equal to the unique zero td of the pressure function t→ P (tΦs− log d), where d is
the maximum value for d(·) on Λ, then d(·) is identically equal to d on Λ, and the stable dimension
will be td everywhere on Λ. In Corollary 2 we obtain an estimate for the stable dimension of fractal
sets in the fibers of some non-invertible hyperbolic skew products, having finite IFS (iterated
function systems) in the base, and related to [9]. And in Corollaries 3, 4 we give cases when the
stable dimension is non-zero.

2 Main results for the non-invertible case.

For the rest of the paper, we will work with a c-hyperbolic mapping f on a basic set Λ. We recall
that by d(x) we denoted the number of f -preimages of x belonging to the fixed basic set Λ; d(·)
is called the preimage counting function associated to f and Λ. It is important to know first
some simple topological properties of d(·).

Lemma 1. Let f be a c-hyperbolic map on a basic set Λ. Then the preimage counting function
d(·) is upper semi-continuous and bounded on Λ.

Proof. Indeed let us take a point x ∈ Λ and a sequence xn converging towards x in Λ. Then
let an integer value d′ such that for any n large enough, there are at least d′ f -preimages of xn
denoted by y(n, 1), . . . , y(n, d′) in Λ. By taking eventually a subsequence of (xn)n, it happens that
the respective preimages will accumulate to certain points y(1), . . . , y(d′) in Λ. Also, since the
critical set Cf does not intersect Λ there exists a positive ε0 such that the mutual distances between
y(1), . . . , y(d′) are larger than ε0. Now, since f is continuous on Λ it follows that y(1), . . . y(d′) are
different preimages of x, hence d(x) ≥ d′. Since this is true for any subsequence (xn)n conveging
to x, it implies that d(·) is upper semicontinuous on Λ. And since Λ is compact this means that
d(·) is bounded.

We will prove now the first Theorem of the paper about the case when the preimage counting
function is bounded above by a locally constant function. After this we shall state and prove also
the theorem in the case when the preimage counting function is bounded above by a continuous
function; the idea of proof is essentially the same, but in the first case it is easier to see the method
of proof.

Theorem 1. Let a smooth function f : U → M defined on an open set of a smooth Riemannian
manifold M and assume that f is c-hyperbolic on a basic set Λ ⊂ U . Assume that there exists a
locally constant function ω on Λ such that d(x) ≤ ω(x), x ∈ Λ. Then δs(x) ≥ tω, where tω is the
unique zero of the pressure function t→ P (tΦs − logω).
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Proof. Let us fix a point x ∈ Λ and denote by W := W s
r (x) ∩ Λ. Let also ε > 0 small. Since

Λ is compact, we can cover it with a finite number of balls B(z1, ε/2), . . . B(zk, ε/2). From the
transitivity property of f on Λ, it follows that for all j ∈ {1, . . . k}, there exists mj = mj(ε) such
that any local unstable manifold of type W u

ε (ŷ) intersects the set f−mj (W ) ∩ Λ, for all ŷ ∈ Λ̂, y ∈
B(zj , ε/2).

Since f is locally bi-Lipschitz near Λ (f being smooth), we obtain that HD(W ) = HD(f−mjW∩
Λ). Take an arbitrary number t > δs(x); then there exists a covering {Ui}i∈Ij of f−mjW ∩ Λ such
that

∑
i∈Ij

(diamUi)t <
1
2k

(1)

Then we consider the union I :=
k
∪
j=1

Ij . Thus we obtain a collection of sets Ui, i ∈ I such that

any local unstable manifold W u
ε (ŷ) intersects at least one such Ui and from (1) we obtain

∑
i∈I

(diamUi)t <
1
2

(2)

Now consider i ∈ I and suppose that diamUi > 0. We can assume in fact that Ui is contained
in a local stable manifold. Let us introduce a type of tubular unstable set used in [8] for the inverse
pressure: for a finite prehistory C = (x, x−1, . . . , x−n) of x in Λ, define

Λ(C, ε) := {y ∈ U, there exists a prehistory of y, (y, y−1, . . . , y−n), s.t d(y−j , x−j) < ε, j = 0, . . . , n}

By stable diameter of Λ(C, ε) we will understand the diameter of the intersection Λ(C, ε) ∩
W s
r (x).

We will detail now how to take some special prehistories C of points in Ui. For a point y ∈ Ui,
consider a prehistory C of y in Λ of length n such that if C = (y, . . . , y−n), then n is the largest
integer such that ε|Dfns (y−n)| > diamUi. We will call such a prehistory C a maximal prehistory
relative to Ui and its length will be denoted also by n(C). Obviously we cannot have just any
length for such a maximal prehistory, so let us denote by ni1, . . . , niqi all the different lengths of
Ui-maximal prehistories. From construction it is clear that Ui ⊂ Λ(C, ε) for C as above.

Now let us denote the set of Ui-maximal prehistories by Ci and let us assume that Fi is a
minimal set of points of type y−n(C) for C ∈ Ci, such that for any C ∈ Ci, there exists z ∈ Fi with
y−n(C) ∈ Bn(C)(z, ε) (where in general Bm(z, ε) denotes the Bowen ball, i.e the set of points whose
orbits are within ε distance of the orbit of z up to order m).

Denote the corresponding set of prehistories from Ci ending with the points of Fi, by C∗i . Hence
C∗i ⊂ Ci, i ∈ I. If z ∈ Fi, we will denote also by n(z) the length of the corresponding prehistory
C ∈ C∗i having z as final preimage.

Without loss of generality we may assume that the preimage counting function is equal to ω

and thus locally constant, this giving in fact the case when the stable dimension is minimal under
the assumption d(·) ≤ ω(·) on Λ . Since d(·) takes only finitely many values on Λ, we denote them
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by d1, . . . , dp. In this setting, denote by Vj := {z ∈ Λ, d(z) = dj}, j = 1, . . . , p; thus these sets are
closed and mutually disjointed. In general, Vj ’s may be taken to be the level sets of the locally
constant map ω. Assume that d(Vj , Vk) > ε0 > 0, j 6= k, for some positive constant ε0. Since the
critical set of f does not intersect Λ, different f -preimages of any arbitrary point x ∈ Λ are at a
positive distance apart; this distance may be assumed to be larger than ε0 too.

Let us take now a point ξ ∈ V1, hence ξ has d1 f -preimages denoted by ξ1, . . . , ξd1 . These are
simple preimages due to the fact that Cf ∩ Λ = ∅. Assume that there exists a sequence of points y
from Λ which converges towards ξ, and let y1, . . . , yd1 be the d1 preimages of y. Assume also that
d({y1, . . . , yd1}, {ξ1, . . . , ξd1}) > α > 0, for all points y in this sequence. Then the points y1, . . . , yd1
accumulate (eventually for a subsequence) to some points y∗1, . . . , y

∗
d1

which are preimages of ξ. But
due to the condition on the distances between the sets of preimages, it follows that there exists at
least a point y∗j which is not in the set {ξ1, . . . , ξd1}. This implies then that ξ has more than d1

preimages in Λ, hence contradiction.
So each point ξ ∈ Λ has a neighbourhood V (ξ) such that any point y ∈ V (ξ) has d1 preimages

in Λ close to the preimages ξ1, . . . , ξd1 of ξ. Now, if for any η > 0, η << ε0 there exists a point
y(η) ∈ Λ such that there exists a point z(η) ∈ B(y(η), η) with the preimages of z(η) in Λ far from
the preimages of y(η) in Λ, then we can take a subsequence of y(η) converging towards a point w ∈ Λ
which has the property that in any neighbourhood there are points z(η) with preimages far from
the preimages of w, hence a contradiction with the fact proved earlier. So there exists a positive ε1

such that if d(y, z) < ε1, then the preimages of y in Λ are close (i.e closer than d(y, z) · sup
Λ
|Dfs|−1)

to the preimages of z in Λ. In this we used implicitly the fact that the preimages of any point from
Λ have multiplicity 1, since Cf ∩ Λ = ∅.

In particular, for C ∈ Ci, C = (y, . . . , y−n(C)), and z ∈ Bn(C)(y−n(C), ε) we have that fk(z) has
the same number of f -preimages in Λ as fk(y−n(C)) and moreover, these preimages are close to the
f -preimages of fk(y−n(C)), for k = 0, . . . , n(C) (namely ε sup

Λ
|Dfs|−1-close).

Consider now the set of points of the form y−n(C) for some C ∈ Ci a Ui-maximal prehistory;
from the definition we know that Fi is minimal and for any C ∈ Ci there is a prehistory C∗ =
(fn(C)z, . . . , z) ∈ C∗i such that n(C) = n(C∗) and y−n(C) ∈ Bn(C)(z, ε).

The prehistories in C∗i may have different lengths. But if for example z ∈ Fi and f(z) ∈ Vj then
there exists dj − 1 other points in f−1(f(z)) ∩ Λ and these points will generate other prehistories
from C∗i . Due to the above considerations we can assume without loss of generality that the set Fi
is given by prehistories of a single point y ∈ Ui. Also we may assume that these points y ∈ Ui do
not belong to other sets Uj , j 6= i.

Let us arrange now the lengths of prehistories from C∗i as

ni,qi > ni,qi−1 > . . . > ni,1

Then denote by Fi,ni,qi
the set of points z ∈ Fi which correspond to prehistories in C∗i of length

ni,qi . Denote also the cardinality of Fi,ni,qi
by Ni,ni,qi

.
Then let us take the set Fi,ni,qi

−1 as the union of f(Fi,ni,qi
) and the set of points z ∈ Fi which

7



correspond to prehistories of length ni,qi − 1. The cardinality of Fi,ni,qi
−1 is denoted by Ni,ni,qi

−1.
We do this until reaching Ni,0 which is equal to 1, since these are considered as prehistories of a
single point y from Ui. We now define:

Ni,ni,qi
(j1, . . . , jni,qi

) := Card{z ∈ Fi,ni,qi
, f(z) ∈ Vj1 , . . . , fni,qi (z) ∈ Vjni,qi

}

and similarly Ni,ni,qi
−1(j1, . . . , jni,qi

−1) := Card{ζ ∈ Fi,ni,qi
−1, f(ζ) ∈ Vj1 , . . . , f

ni,qi
−1(z) ∈

Vjni,qi
−1}, etc.

Then from the above construction we have that

Ni,ni,qi
(1, j2, . . . , jni,qi

)
d1

+ . . .+
Ni,ni,qi

(p, j2, . . . , jni,qi
)

dp
≤ Ni,ni,qi

−1(j2, . . . , jni,qi
) (3)

Next we obtain

Ni,ni,qi
−1(1, j3, . . . , jni,qi

)
d1

+ . . .+
Ni,ni,qi

−1(p, j3, . . . , jni,qi
)

dp
≤ Ni,ni,qi

−2(j3, . . . , jni,qi
), (4)

and we can combine this inequality with (3). By induction we obtain then that for all i ∈ I,

Σi :=
∑
z∈Fi

1

d
m1(z)
1 · . . . · dmp(z)

p

≤ 1, (5)

where for each z ∈ Fi, m1(z) represents the number of times that the orbit z, f(z), . . . , fn(z)z

hits V1, . . ., and mp(z) := number of times that the above orbit hits Vp. We assumed that the
points y chosen inside Ui do not belong to other Uj , j 6= i, and that the points of Fi are preimages
(of different orders) of y ∈ Ui.

Let us assume also that N is the largest integer ni,j , 1 ≤ j ≤ qi, i ∈ I; since I is finite, it follows
that N <∞.

We know from construction of Fi that any preimage of type y−n(C) for C a maximal prehistory
associated to Ui belongs to a Bowen ball of type Bn(C)(z, ε), for some z ∈ Fi.

Any local unstable manifold of size ε is contained in the union ∪
C∈C∗i

Λ(C, ε), and we want to

extend these prehistories as to obtain in the end a common (or close) length for all of them. More
precisely we will extend these prehistories until we reach a length between n and n+N , for a large
integer n. The idea is the following: let z ∈ Fi corresponding to a prehistory C ∈ C∗i of length
n(C); then z itself is covered by ∪

j∈I
∪

C∈C∗j
Λ(C, ε), hence there exists j ∈ I and a prehistory D ∈ C∗j

such that z ∈ Λ(D, ε). We will concatenate now like in [8] the prehistories C and D and will
obtain Λ(CD, ε) := {y,∃(y, . . . , y−n(C))prehistory of y ε− shadowing C, and y−n(C) ∈ Λ(D, ε)}; so
we follow the prehistories of preimages until we reach a length between n and n+N for some large
n.

To this end, consider the set Sn of all the multiples (s, j1, . . . , js, p1, . . . , ps) such that s ∈
N∗, j1, . . . , js ∈ I, 1 ≤ pk ≤ qjk , k = 1, . . . , s and n ≤ nj1,p1 + . . .+ njs,ps < n+N .
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For such an element of Sn, we start with a prehistory C1 = (ζ, . . . , ζ−nj1,p1
), ζ ∈ Uj1 , then

we assume ζ−nj1,p1
∈ Λ(C2, ε) with C2 a prehistory of length nj2,p2 of a point in Uj2 , etc. This

procedure will give in the end a final preimage ζ−nj1,p1
−...−njs,ps

∈ Λ and we denote by Fn the set
of all such final points obtained by the above procedure.

Since for any Fi, i ∈ I we covered all the possible preimages y−n(C) corresponding to maximal
Ui-prehistories C in Λ from Ci, it follows that Fn is (n, ε)-spanning for Λ.

For 1 ≤ k ≤ qi, denote by Ñik(m1, . . . ,mp) the number of elements ξ of Fi such that n(ξ) = ni,k

and so that in the ni,k-forward orbit of ξ there are exactly m1 iterates belonging to V1, . . . ,mp

iterates belonging to Vp. By taking the product of the inequalities from (5) for j1, . . . , js, we obtain
that

∑
1≤p1≤qj1 ,1≤ps≤qjs

∑
m1+...+mp=nj1,p1

Ñj1p1(m1, . . . ,mp)
dm1

1 . . . d
mp
p

· . . . ·
∑

l1+...+lp=njs,ps

Ñjsps(l1, . . . , lp)

dl11 . . . d
lp
p

≤ 1 (6)

So, if Pn(tΦs−log d(·)) := inf{
∑
z∈F

exp(Sn(tΦs−log d(·))(z), F (n, ε)−spanning for Λ} and since

Fn is (n, ε)-spanning, we obtain:

Pn(tΦs − log d(·)) ≤
∑
z∈Fn

exp(Sn(tΦs − log d(·))(z) ≤

≤
∑

(s,j1,...,js,p1,...,ps)∈Sn

∑
m1+...+mp=nj1,p1

Ñj1p1(m1, . . . ,mp)
dm1

1 . . . d
mp
p

. . .
∑

l1+...+lp=njs,ps

Ñjsps(ls, . . . , lp)

dl11 . . . d
lp
p

·

· (diamUj1)t . . . (diamUjs)t ≤
∑

s,j1,...,js

(diamUj1)t . . . (diamUjs)t,

(7)

after using (6).
Therefore, by using (2)

Pn(tΦs − log d(·)) ≤
∑
s

∑
j1,...,js

(diamUj1)t . . . (diamUjs)t =

=
∑
s

(
∑
j∈I

(diamUj)t)s ≤
∑
s

(
1
2

)s < 2
(8)

But P (tΦs − log d(·)) = lim
ε→0

lim sup
n→∞

1
n logPn(tΦs − log d(·)). This implies that t ≥ td(·), where

td(·) is the unique zero of the pressure function t→ P (tΦs − log d(·)).
If we have that the preimage counting function d(·) is only smaller or equal than ω(·) at any

point x ∈ Λ, it follows that t ≥ tω in the same way.
But t was taken arbitrarily larger than HD(W s

r (x)∩Λ), so we obtain the announced inequality

HD(W s
r (x) ∩ Λ) ≥ tω, ∀x ∈ Λ
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Theorem 2. In the same setting as in Theorem 1, assume that there exists a continuous function
ω on Λ such that for any point z ∈ Λ, we have d(z) ≤ ω(z). Then δs(x) ≥ tω, for any x ∈ Λ, where
tω is the unique zero of the pressure function t→ P (tΦs − logω).

Proof. The proof is similar to the one of the previous Theorem. We consider as before the set
of Ui-maximal prehistories Ci and an associated minimal set Fi of final preimages given by these
prehistories (see Definition 1 and previous proof).

Using the fact that the preimage counting function d(·) is upper semicontinuous on Λ we find
again that for each point z ∈ Λ there exists a neighbourhood of z such that each point y in this
neighbourhood has at most d(z) preimages and they are close to some of the preimages of z (however
the point y may have strictly less than d(z) preimages in Λ).

Again we will have that Ni0 = 1 since in the minimal set Fi we can take only preimages of
a point y ∈ Ui where ω(·) is largest on Ui. If not, then we can complete the prehistories of y
with prehistories of other points but the total number will be the same as if we were considering
prehistories of a single point from Ui.

From the continuity of ω on Λ there exists a positive function ρ(ε) defined for small ε > 0, with
the following property:

if y, z ∈ Λ, and d(y, z) < ε, then |ω(y)− ω(z)| ≤ ρ(ε) (9)

Since ω is continuous it follows that ρ(ε)→ 0 when ε→ 0, and we can assume that ρ has been
taken such that it is an increasing function.

Now we notice that, if y ∈ Bn(z, ε), then for any 0 ≤ j ≤ n, d(f jy) ≤ ω(f jz) + ρ(ε), since by
assumption d(f jy) ≤ ω(f jy). Thus the number of preimages of f jy, d(f jy) may differ from d(f jz)
by at most 1, but still d(f jy) is less or equal than ω(f jz) + ρ(ε), where ρ(ε) →

ε→0
0.

We take as before the set Fn of final preimages of type y−nj1,p1
−...njs,ps

, over all sequences
(s, j1, . . . , js, p1, . . . , ps) such that j1, . . . , js ∈ I and 1 ≤ p1 ≤ qj1 , 1 ≤ ps ≤ qjs with n ≤ nj1,p1 +
. . .+ njs,ps < n+N . This set of sequences is denoted again by Sn as in the proof of Theorem 1.

Now as we mentioned, the preimage counting function is smaller or equal than ω and ω varies
with at most ρ(ε) on a ball of radius ε, thus we can apply this at every iterate (up to order n)
for points in a Bowen ball Bn(z, ε). We will have then the analogues of inequalities (5) and (6),
namely:

Σi :=
∑
z∈Fi

1
(ω(fz) + ρ(ε)) . . . (ω(fn(C)z) + ρ(ε))

≤ 1, (10)

where we assumed that C = (fn(C)(z), . . . , z) is the prehistory from C∗i whose final preimage is
z, for z ∈ Fi. We will denote the length n(C) associated to the above C, by n(z).

Since ω is continuous on Λ, it will take only finitely many positive integer values, denoted again
by d1, . . . , dp arranged as d1 < . . . < dp. And similarly, by taking the product of the inequalities
(10) for j1, . . . , js we shall obtain:

10



∑
1≤p1≤qj1 ,1≤ps≤qjs

∑
z∈Fj1

,n(z)=nj1,p1

1
(ω(fz) + ρ(ε)) . . . (ω(fn(z)z) + ρ(ε)

· . . .

·
∑

z∈Fjs ,n(z)=njs,ps

1
(ω(fz) + ρ(ε)) . . . (ω(fn(z)z) + ρ(ε))

≤ 1
(11)

Then since by construction the set Fn is (n, ε)-spanning for Λ with respect to f (since we cover
all final preimages with Fi), we can finish the proof by using (11) in the same way as in the proof
of Theorem 1.

Therefore we obtain that t ≥ t(ε) for ε > 0 small, with t(ε) being the unique zero of the pressure
function t→ Pε(tΦs−log(ω+ρ(ε))), where in general Pε(g) := lim sup

n

1
n log inf{

∑
z∈F

exp(Sn(g)(z)), F (n, ε)−

spanning for Λ} for g continuous on Λ.
Let us take now some T arbitrarily larger than t and η > 0 small; then T > t ≥ t(η). But

if 0 < ε < η, we get that ρ(ε) ≤ ρ(η), so tΦs − log(ω + ρ(ε)) ≥ TΦs − log(ω + ρ(η)). Now since
t ≥ t(ε) for all ε small, it follows that 0 ≥ Pε(tΦs − log(ω + ρ(ε))) ≥ Pε(TΦs − log(ω + ρ(η))) for
all ε > 0 small enough. But recalling the definition of the topological pressure P (g) = lim

ε→0
Pε(g),

for all g continuous, we obtain that

P (TΦs − log(ω + ρ(η))) ≤ 0 (12)

Now let tω be the unique zero of the pressure function t→ P (tΦs− logω). From the continuity
of the pressure with respect to the potential, it follows that tω is the limit of the zeros of the
pressure functions t→ P (tΦs − log(ω + ρ(η))) when η converges to 0. Hence from (12),

T ≥ tω

Therefore since T was chosen arbitrarily larger than t which in turn was chosen arbitrarily
larger than HD(W s

r (x) ∩ Λ), we obtain the conclusion,

HD(W s
r (x) ∩ Λ) ≥ tω

We are now ready to prove some consequences of these results.
More precisely we consider first what happens if there exists a point x ∈ Λ such that the stable

dimension at x is the smallest one possible.

Corollary 1. Assume that f is c-hyperbolic on a basic set Λ and that the preimage counting function
d(·) reaches a maximum value of d on Λ. If there exists a point x ∈ Λ such that δs(x) = td, where
td is the unique zero of the pressure function t→ P (tΦs− log d), then d(y) = d,∀y ∈ Λ. And hence
the stable dimension at every point of Λ is equal to td.

Proof. We know that there exists a point x ∈ Λ with δs(x) = td. Assume that there exists an open
set V ⊂ Λ such that d(y) ≤ d− 1, y ∈ V and let also W open inside V such that W̄ ⊂ V .

11



Then we can take a Lipschitz function Ψ with Ψ(z) = d− 1, z ∈ W̄ , Ψ(z) = d, for z outside V ,
and d− 1 ≤ Ψ ≤ d on V \ W̄ . Thus we have d(y) ≤ Ψ(y), y ∈ Λ.

But then from Theorem 2, it follows that δs(x) ≥ tΨ, where tΨ denotes the unique zero of the
function t→ P (tΦs − log Ψ); hence, since δs(x) = td, it means that td ≥ tΨ. But also Ψ ≤ d on Λ
so tΨ ≥ td, therefore td = tΨ.

Let us consider now an equilibrium measure µd for the Holder continuous potential tdΦs− log d.
So, from the definition of equilibrium measures ([4]) and since P (tdΦs − log d) = 0, we have:∫

(tdΦs − log d)dµd + hµd
= 0, (13)

where hµ denotes in general the metric entropy of the f -invariant probability measure µ on Λ.
But then from the Variational Principle applied to the potential tΨΦs − log Ψ ([4]), we obtain∫

(tΨΦs − log Ψ)dµd + hµd
≤ P (tΨΦs − log Ψ) = 0 (14)

Recall also that we proved above that td = tΨ, so consequently:∫
(tdΦs − log Ψ)dµd + hµd

≤
∫

(tdΦs − log d)dµd + hµd
= 0

This implies that ∫
log Ψdµd ≥

∫
(log d)dµd (15)

On the other hand µd is an equilibrium measure, hence it is positive on open sets, since any
open set contains a Bowen ball and thus one can use the estimates for the equilibrium measures
on Bowen balls similar to the ones for homeomorphisms from [4]. These estimates were proved in
[4] (Lemma 20.3.4) for homeomorphisms with specification; we know however that hyperbolicity
implies specification ([4]). For the case of noninvertible maps they follow by using the lift to the
inverse limit Λ̂. Indeed let us denote by Bn(z, ε, f) := {w ∈ Λ, d(f iz, f iw) < ε, i = 0 . . . n − 1} a
Bowen ball relative to f |Λ, by Bn(ẑ, ε, f̂) := {ŵ ∈ Λ̂, d(f̂ iẑ, f̂ iŵ) < ε, i = 0 . . . n− 1} a Bowen ball
relative to f̂ : Λ̂→ Λ̂, and by π : Λ̂→ Λ the canonical projection. Then we have that there exists
a k = k(ε) ≥ 1 such that f̂k(π−1Bn(y, ε, f)) ⊂ Bn−k(f̂kŷ, 2ε, f̂) ⊂ Λ̂. Then if φ is some Holder
potential and µφ denotes the equilibrium state of φ with µ̂φ its unique lifting to Λ̂, it follows that
µφ(Bn(y, ε, f)) = µ̂φ(f̂kπ−1(Bn(y, ε, f))) ≤ µ̂φ(Bn−k(f̂kŷ, 2ε, f̂)) ≤ A2εe

Sn−kφ(fky)−(n−k)P (φ) ≤
Ãεe

Snφ(y)−nP (φ), for any y ∈ Λ, n ≥ 1, for some positive constant Ãε depending on ε, φ, f . Con-
versely we have π(Bn(ŷ, ε, f̂)) ⊂ Bn(y, ε, f), thus we get the lower bound for µφ(Bn(y, ε, f)) from
the lower bound for µ̂φ(Bn(ŷ, ε, f̂)), since f̂ is an expansive homeomorphism with specification on
Λ̂. In conclusion the estimates

Bεe
Snφ(y)−nP (φ) ≤ µφ(Bn(y, ε, f)) ≤ AεeSnφ(y)−nP (φ),∀y ∈ Λ, n ≥ 1,

hold also for hyperbolic noninvertible maps f on Λ. Thus we showed indeed that the equilibrium
measure µd (of the potential tdΦs− log d) is positive on Bowen balls, hence also on non-empty open
sets.
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Coming back to the proof of the Corollary, we chose Ψ with 0 ≤ Ψ ≤ d on Λ, and log Ψ ≤
log(d− 1) < log d on W . Hence if µd is positive on open sets, we obtain then a contradiction with
(15).

Hence the preimage counting function d(·) must be equal to d on a dense set in Λ. But recall
that d(·) is upper semicontinuous (Lemma 1), therefore d(y) = d,∀y ∈ Λ.

Finally we can apply the above theorems for the case of hyperbolic skew products with overlaps
in the stable fibers and having a finite IFS (iterated function system) in the base.

Let us consider a finite union of compact sets X1, . . . , Xm in an open set S ⊂ Rl and denote
by X := X1 ∪ . . . ∪ Xm. Consider also a continuous expanding topologically transitive function
f : X → X. Assume also that f is injective on each Xi and that f(Xi) = X(i, 1)∪. . .∪X(i,mi), i =
1, . . . ,m, where X(i, j) are sets from the same collection {X1, . . . , Xm}.

The source-model for this is the case of an expanding map f : I1∪ . . .∪ Im → I1∪ . . .∪ Im, with
I1, . . . , Im compact subintervals in [0, 1], such that f(Ij) is a union of some of the same subintervals,
i.e f(Ij) = I(j, 1) ∪ . . . ∪ I(j,mj), j = 1, . . . ,m.

We also take functions g(x, y) : X×W̃ → X×W̃ , with W̃ ⊂ Rk a neighbourhood of the closure
of an open set W , such that g is smooth (say C2) in (x, y), and such that for every x ∈ X, the
function g(x, ·) : W →W is contracting uniformly in x, and it is injective and conformal. We shall
denote the function g(x, ·) also by gx; due to the contraction, gx(W̄ ) is strictly contained in V .

We then take the compact f -invariant set X∗ := {y ∈ X, f jy ∈ X, j ≥ 0} and for each x ∈ X∗,
let us consider the fiber Λx := ∩

n≥0
∪

z∈f |−n
X∗ (x)

gfnz ◦ . . . ◦ gz(W̄ ). Then define

Λ := ∪
x∈X∗

Λx,

(see for example [9] for a similar type of skew products).
Λ is an invariant set for the skew product F (x, y) = (f(x), g(x, y)) defined on X∗ ×W , and

because of the expansion on X∗ and the contraction on vertical fibers, F is hyperbolic on Λ. Thus
we see that F is c-hyperbolic on Λ. The local stable manifolds of F are contained in the vertical
fibers {x} ×W,x ∈ X∗. We call then (F,Λ) a c-hyperbolic skew-product pair.

The important thing to notice here is that we allow the images gy(W ), coming from different
preimages y of a point x ∈ X∗ to overlap.

In this case we can apply the above Theorem 1. Indeed for each j with 1 ≤ j ≤ m, we know that
a point z ∈ X∗∩Xj has at most qj preimages in Λ, where qj is the number of subsets Xi, 1 ≤ i ≤ m
such that f(Xi) ⊃ Xj . Then we have that the preimage counting function associated to F and Λ
is smaller or equal than a locally constant function ω given by ω(x, y) := qj if x ∈ Xj , 1 ≤ j ≤ m.
However points in Λ∩ ({x}×W ) may have strictly less than qj F -preimages in Λ for x ∈ Xj ∩X∗.
Thus we obtain the following Corollary which gives a lower estimate for the stable dimension:

Corollary 2. Let a c-hyperbolic skew-product pair (F,Λ) as above. Then the stable dimension of
Λ, i.e the Hausdorff dimension of the fibers Λx, x ∈ X∗, is larger or equal than the unique zero of
the pressure function t→ P (tΦs − logω), where ω|(X∗∩Xj)×W = qj , 1 ≤ j ≤ m.
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Corollary 1 has also the following consequence:

Corollary 3. In the setting of Corollary 2, if f(Ij) contains all subintervals I1, . . . , Im, 1 ≤ j ≤ m,
it follows that F is m-to-1 on Λ if and only if ∃z ∈ Λ with δs(z) = 0. In this case we obtain
δs(y) = 0, ∀y ∈ Λ.

Proof. Since f(Ij) ⊃ I1∪ . . .∪ Im, for all j, 1 ≤ j ≤ m, we can model the dynamics of f on X∗ after
the one-sided shift on m symbols Σ+

m, whose topological entropy is equal to logm. Also let us notice
that the topological entropy of F on Λ is equal to the topological entropy of f on X∗ since on vertical
fibers we have contractions which do not add to the entropy. So htop(F |Λ) = htop(f |X∗) = logm.

From Corollary 1 and [7], it follows also that F is m-to-1 if and only if δs(z) = tm for some
point z ∈ Λ. So if F is m-to-1 on Λ, then we have δs(z) = tm; but tm = 0 since P (0 − logm) =
htop(f |X∗)− logm = logm− logm = 0.

Conversely, P (0 · Φs − logm) = htop(f |X∗) − logm = 0, so tm = 0 as being the unique zero
of the pressure. Thus if there exists a point z ∈ Λ with δs(z) = 0, then δs(z) = tm. Hence from
Corollary 1 we obtain that F is m-to-1 on Λ.

Corollary 4. In the setting of Corollary 2, assume that f(Ij) contains all the subintervals I1, . . . , Im

for j = 1, . . . ,m and that there exists x ∈ X∗ such that gξ(W ) ∩ gζ(W ) = ∅ for some 1-preimages
ξ, ζ ∈ X∗ of x, with ξ 6= ζ. Then it follows that δs(z) > 0,∀z ∈ Λ.

Proof. Since htop(F |Λ) = htop(f |X∗) = logm, we have that P (0 ·Φs− logm) = htop(f |X∗)− logm =
0, hence tm = 0. Now if there would exist a point z ∈ Λ with δs(z) = 0, then δs(z) = tm and from
Corollary 1 we have that F is m-to-1 on Λ. But since gy is injective for all y ∈ X∗ and since there
exist 1-preimages ξ, ζ of x so that gξ(W )∩ gζ(W ) = ∅, we conclude that F cannot be m-to-1 on Λ.
Therefore

δs(z) > 0, ∀z ∈ Λ

Remark: The dynamics of f on X∗ can be modeled in general after shifts of finite type. Indeed
we define the matrix A = (aij)1≤i≤m,1≤j≤m with aij = 1 if and only if f(Ii) ⊃ Ij . We can
assume that A is irreducible so that σA becomes topologically transitive on ΣA. The entropy of
this dynamical system is equal to log |λA|, where |λA| is the spectral radius of A (equal to the
maximum eigenvalue of A). A minimal (n, ε)-spanning set is obtained from cylinders of rank n+p,
where p depends only on ε ([4]). This spanning set can be used then to estimate the pressure of the
function tΦs − logω where ω(z) = qj for z ∈ Λ ∩ ((X∗ ∩Xj)×W ) and qj :=

∑
1≤i≤m

aij , 1 ≤ j ≤ m.
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