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Abstract. A new result for stability of Markov semigroups is presented. We apply this
result to the equation of the passive tracer in a compressible random flow showing that
the velocity of a particle converges weakly to some random vector.

1. Introduction

The main aim of this paper is to show the utility of lower bound technique in the theory
of Markov semigroups acting on measures. For the first time this technique was used by
Lasota and Yorke in [10]. The authors proved therein the existence and uniqueness of an
absolutely continuous invariant measure for the Frobenius-Perron operator corresponding
to piecewise monotonic transformations (see [10]). The methods developed by Lasota and
Yorke were applied to Markov operators and semigroups of Markov operators defined on
densities (see [9] and the references therein).

Lower bound technique demonstrates its utility in examining Markov semigroups acting
on measures as well (see [11]).

Our paper is closely related to paper [8] where we established sufficient conditions for
the existence of an invariant measure for Markov semigroups. Here we extend these results
and formulate criteria for stability. We also prove some results concerning the sweeping
property of a Markov semigroup.

In the second part of our paper these results are applied to general stochastic differential
equations. Finally, we show that a good example of application of our results is the
equation describing the passive tracer in a compressible random flow. Further references
to this equation may be found in [6]. Indeed, applying our results we obtain then that the
velocity of the passive tracer converges weakly to some random vector.

2. Markov semigroups

Let (X, ρ) be a Polish space and let B(X) denote the σ-algebra of Borel sets. By Bb(X)
we denote the space of bounded Borel–measurable functions equipped with the supremum
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norm. Let (Pt)t≥0 be the Markovian semigroup defined on Bb(X). For each t ≥ 0 we
have Pt1 = 1 and Ptψ ≥ 0 if ψ ≥ 0. Throughout this paper we shall assume that the
semigroup is Feller, i.e. Pt(Cb(X)) ⊂ Cb(X) for all t > 0 and stochastically continuous,
i.e. for ψ ∈ Cb(X) and x ∈ X we have lim

t→0+
Ptψ(x) = ψ(x). Here Cb(X) is the subspace of

bounded continuous functions. By Lb(X) we will denote the subspace of bounded Lipschitz
functions. LetM1 denote the space of all probability Borel measures on X. By suppµ we
denote the support of the measure µ. ByM1(A) for A ∈ B(X) we denote the subspace of
probability Borel measures that are supported in A.

We say that µ∗ ∈M1 is invariant for (Pt)t≥0 if∫
X

Ptψ(x)µ∗(dx) =

∫
X

ψ(x)µ∗(dx)

for every ψ ∈ Bb(X) and t ≥ 0. Alternatively, we can say that P ∗t µ∗ = µ∗ for all t ≥ 0,
where (P ∗t )t≥0 denotes the semigroup dual to (Pt)t≥0, i.e. for a given Borel measure µ and
t ≥ 0 we set

P ∗t µ(A) :=

∫
X

Pt1A(x)µ(dx) for A ∈ B(X).

Let µ∗ ∈ M1 be an invariant measure for a semigroup (Pt)t≥0. The semigroup (Pt)t≥0

is called asymptotically stable if the sequence (P ∗t µ)t≥0 converges weakly to µ∗ for any
µ ∈M1. We shall denote this by w-limt→∞ P

∗
t µ = µ∗.

We say that a transition semigroup (Pt)t≥0 has the e-property if the family {Ptψ}t≥0 is
equicontinuous at every point x of X for any bounded and Lipschitz continuous function
ψ.

We say that a semigroup (Pt)t≥0 is sweeping from some family Ξ ⊂ B(X) if

lim
t→∞

P ∗t µ(A) = 0

for every set A ∈ Ξ and every measure µ ∈M1.
For a given t > 0 and µ ∈ M1 define Qtµ := t−1

∫ t
0
P ∗s µds. When t = 0 we adopt the

convention Q0µ := µ. We also write Qt(x, ·) in the particular case when µ = δx. Let

(2.1) T :=
{
x ∈ X : the family of measures

(
Qt(x, ·)

)
t≥0

is tight
}
.

Proposition 1. Assume that (Pt)t≥0 has the e-property. Then the set T is a Gδ–set. In
particular T is Borel measurable.

Proof. Let x ∈ T and let n ∈ N. Since (Qt(x, ·))t≥0 is tight, there is a compact set Kx,n ⊂ X
such that

Qt(x,Kx,n) > 1− 1/n for t ≥ 0.

Let fx,n ∈ Lb(X) be an arbitrary function satisfying

1Kx,n ≤ fx,n ≤ 1
K

1/n
x,n
,
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where Kε := {y ∈ X : dist (y,K) < ε}, ε > 0, denotes an ε-neighborhood of K ⊂ X. By
the e–property we may choose δx,n > 0 such that

|Ptfx,n(x)− Ptfx,n(y)| < 1/n for t ≥ 0 and y ∈ B(x, δx,n).

For y ∈ B(x, δx,n) we have

(2.2)

Qt(y,K1/n
x,n ) ≥

∫
X

fx,n(z)Qt(y, dz) =
1

t

∫ t

0

Psf
x,n(y)ds

≥ 1

t

∫ t

0

Psf
x,n(x)ds− 1/n

=

∫
X

fx,n(z)Qt(x, dz)− 1/n

≥ Qt(x,Kx,n)− 1/n ≥ 1− 2/n for t ≥ 0.

Set

Gn =
⋃
x∈T

B(x, δx,n) for n ≥ 1.

To finish the proof we show that

T =
∞⋂
n=1

Gn.

Obviously T ⊂
⋂∞
n=1Gn. Now let y ∈

⋂∞
n=1Gn. Then for any n ∈ N there exists yn ∈ T

such that y ∈ B(yn, δyn,n). From (2.2) it follows that

Qt(y,K1/n
yn ) ≥ 1− 1/n for t ≥ 0.

LeCam’s theorem (see [2]) shows that (Qt(y, ·))t≥0 is tight. This completes the proof. �

Lemma 1. Let Γt : X → 2X , t ≥ 0, be the multifunction given by the formula

(2.3) Γt(x) = suppP ∗t δx for x ∈ X.

If (Pt)t≥0 has the e-property, then

(2.4) Γt(T ) ⊂ T for t ≥ 0.

Proof. Assume, contrary to our claim, that ΓT (x) \ T 6= ∅ for some T > 0 and x ∈ T . Let
y ∈ ΓT (x) \ T . From the definition of T and Theorem 3.1 in [12] it follows that there exist
a strictly increasing sequence of positive numbers (Ti)i≥1 satisfying limi→+∞ Ti = +∞, a
positive number ε and a sequence of compact sets (Ki)i≥1 such that

(2.5) QTi(x,Ki) ≥ ε, ∀ i ≥ 1

and

(2.6) min{ρ(x, y) : x ∈ Ki, y ∈ Kj} ≥ ε for i 6= j.

This part of the proof parallels mostly the proof of Proposition 2.1 in [13] but we provide
it here in full for the convenience of the reader and since some details are different. Indeed,
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we claim that there exist sequences (f̃n)n≥1 ⊂ Lb(X), (νn)n≥1 ⊂ M1(B(x, 1/n)) and an
increasing sequence of integers (mn)n≥1 such that

(2.7) 1Kmn ≤ f̃n ≤ 1
K
ε/4
mn

and Lip(f̃n) ≤ 4/ε, for n ≥ 1.

Here Lip(f) := sup{|f(x)− f(y)|ρ−1(x, y) : x 6= y}. Moreover,

(2.8) Qtνn

(
∞⋃
i=n

Kε/4
mi

)
≤ ε/4 for t ≥ 0

and

(2.9) |Ptfn(x)− Ptfn(y)| < ε/4 for t ≥ 0, y ∈ supp νn,

f1 := 0 and fn :=
∑n−1

i=1 f̃i, n ≥ 2. The above is shown by induction on n. Let
n = 1. Since y ∈ suppP ∗T δx, we have P ∗T δx(B(y, δ)) > 0 for all δ > 0. Define the
probability measure ν1 by the formula ν1(·) = (P ∗T δx(B(y, 1)))−1P ∗T δx(· ∩ B(y, 1)). Since
ν1 ≤ (P ∗T δx(B(y, 1)))−1P ∗T δx, from the fact that x ∈ T and Lemma 2 in [8] it follows that
the family (Qtν1)t≥0 is tight. Thus, there exists a compact set K such that

(2.10) Qtν1(K
c) ≤ ε/4 for t ≥ 0.

Note however that K ∩Kε/4
i 6= ∅ only for finitely many i-s, by (2.6). Hence there exists an

integer m1 such that

Qtν1

(
∞⋃

i=m1

K
ε/4
i

)
≤ ε/4 for t ≥ 0.

Let f̃1 be an arbitrary Lipschitz function satisfying 1Km1
≤ f̃1 ≤ 1

K
ε/4
m1

and Lip(f̃1) ≤ 4/ε.

Assume now that for a given n ≥ 1 we have already constructed f̃1, . . . , f̃n, ν1, . . . , νn,
m1, . . . ,mn satisfying (2.7)-(2.9). Since (Ptfn+1)t≥0 is equicontinuous we can choose δ <
1/(n + 1) such that |Ptfn+1(x) − Ptfn+1(y)| < ε/4 for all t ≥ 0 and y ∈ B(x, δ). Suppose
furthermore that νn+1 := (P ∗T δx(B(x, δ)))−1P ∗T δx(· ∩ B(x, δ)). Since the measure is sup-
ported in B(x, δ) condition (2.9) holds with fn+1 in place of fn and νn+1 in place of νn.
Tightness of (Qtνn+1)t≥0 can be argued in the same way as in case n = 1. In consequence,
one can find mn+1 > mn such that

Qtνn+1

 ∞⋃
i=mn+1

K
ε/4
i

 ≤ ε/4 for t ≥ 0.

Finally, we let f̃n+1 be an arbitrary continuous function satisfying (2.7).

Observe that conditions (2.6) and (2.7) imply that the series f :=
∑∞

i=1 f̃i is uniformly
convergent and f ∈ Lb(X). We easily check (see the argument given in [8]) that∫

X

QTmn (y, dw)f(w)−
∫
X

QTmnνn(dw)f(w) > ε/2.
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Hence, there must be a sequence (tn, yn) such that tn ∈ [0, Tmn ], yn ∈ supp νn ⊂ B(x, 1/n)
for which Ptnf(y) − Ptnf(yn) > ε/2, n ≥ 1. This clearly contradicts equicontinuity of
(Ptf)t≥0 at the point y. �

Remark 1. From the proof of Lemma 1 it follows that if (Qtµ)t≥0 is tight for some µ ∈M1,
then suppµ ⊂ T .

In [8] it has been proved the following theorem.

Theorem 1. Assume that (Pt)t≥0 has the e-property and that there exists z ∈ X such that
for every δ > 0 and x ∈ X,

(2.11) lim inf
t→∞

Qt(x,B(z, δ)) > 0.

Then (Pt)t≥0 admits a unique invariant probability measure µ∗. Moreover

(2.12) w-lim
t→∞

Qtν = µ∗

for any ν ∈M1 that is supported in T .

In [8] we have also provided an example showing that the set T for the semigroup (Pt)t≥0

satisfying the assumptions of the above theorem may not be the entire space X.

Remark 2. From the above theorem it follows that if a probability measure ν is supported
in T , then (Qtν)t≥0 is weakly convergent. Hence (Qtν)t≥0 is tight, by Alexandrov’s theorem.

Remark 3. Let (Pt)t≥0 satisfy the assumptions of Theorem 1 and let µ∗ be its invariant
measure. Then z ∈ suppµ∗. Indeed, by Fatou’s lemma and (2.11) we have

µ∗(B(z, r)) = lim inf
t→∞

Qtµ∗(B(z, r)) = lim inf
t→∞

∫
X

Qtδx(B(z, r))µ∗(dx)

≥
∫
X

lim inf
t→∞

Qtδx(B(z, r))µ∗(dx) > 0 for any r > 0.

Proposition 2. If (Pt)t≥0 satisfies the assumption of Theorem 1, then the set T given by
(2.1) is closed.

Proof. Assume, contrary to our claim, that x ∈ cl T \ T . Since (Qt(x, ·))t≥0 is not tight,
there exists (see Theorem 3.1 in [12]) a strictly increasing sequence of positive numbers
(Ti)i≥1 with limi→+∞ Ti = +∞, a positive numbers ε and a sequence of compact sets
(Ki)i≥1 such that

(2.13) QTi(x,Ki) ≥ ε for all i ≥ 1

and

(2.14) min{ρ(x, y) : x ∈ Ki, y ∈ Kj} ≥ ε for i 6= j.

Let µ∗ be a unique probability measure for (Pt)t≥0, by Theorem 1. By Ulam’s lemma
we may choose a compact set K ⊂ X such that

(2.15) µ∗(K) > 1− ε/2.
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Since K is compact, there exists N0 ∈ N such that

(2.16) K
ε/3
i ∩K = ∅ for i ≥ N0.

Further, let f be an arbitrary Lipschitz function such that

(2.17)
∞∑

i=N0

1Ki(x) ≤ f(x) ≤
∞∑

i=N0

1
K
ε/3
i

(x) for x ∈ X.

Since (Ptf)t≥0 is equicontinuous, we may choose r > 0 such that

(2.18) |Ptf(x)− Ptf(y)| < ε/2 for y ∈ B(x, r) and t ≥ 0.

Since x ∈ cl T , we have T ∩B(x, r) 6= ∅. Fix y ∈ T ∩B(x, r). From (2.13) it follows that

QTi(x,
∞⋃

i=N0

Ki) ≥ ε for i ≥ N0.

By the definition of f we obtain then

1

Ti

∫ Ti

0

Psf(x)ds =

∫
X

f(y)QTi(x, dy) ≥ QTi(x,
∞⋃

i=N0

Ki) ≥ ε.

Consequently, by (2.18) we have

1

Ti

∫ Ti

0

Psf(y)ds ≥ 1

Ti

∫ Ti

0

Psf(x)ds− 1

Ti

∫ Ti

0

|Psf(x)− Psf(y)|ds

≥ ε− ε/2 = ε/2,

which, in turn, by (2.16) gives

(2.19) QTi(y,
∞⋃

i=N0+1

K
ε/6
i ) ≥ 1

Ti

∫ Ti

0

Psf(y)ds > ε/2.

On the other hand, from the fact that w-limt→∞Q
tδy = µ∗, it follows that

lim inf
t→∞

Qt(y,Kε/6) ≥ µ∗(K) > 1− ε/2,

by the Alexandrov theorem and condition (2.15). Thus, by (2.16) we have

lim sup
t→∞

Qt(y,
∞⋃

i=N0

K
ε/6
i ) ≤ lim sup

t→∞
Qt(y,X \Kε/6)

≤ 1− lim inf
t→∞

Qt(y,Kε/6) ≤ 1− (1− ε/2) = ε/2,

which contradicts condition (2.19). This finishes the proof. �

The following lemma is a straightforward application of the Arzela–Ascoli theorem.
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Lemma 2. Let F be a family of uniformly bounded and equicontinuous functions. Then

sup
f∈F

∣∣∣∣∫
X

fdµn −
∫
X

fdµ∗

∣∣∣∣→ 0 as n→∞,

provided w-limn→∞ µn = µ∗ for µn, µ∗ ∈M1.

The proof is standard and we leave it for the reader. Indeed, it is enough to observe
that by the Prokhorov theorem (see [1]) we may assume, without loss of generality, that
X is compact. Application of the Arzela–Ascoli theorem finishes then the proof.

For a given closed set A ⊂ X and positive constants η and α with α < 1, we set

Mη
α(A) := {µ ∈M1 : ∃ γ < η lim inf

t→∞
P ∗t µ(Aγ) > 1− α}.

Observe that Mη
α(A) is a convex set and

(2.20) P ∗t (Mη
α(A)) ⊂Mη

α(A) for all t ≥ 0.

The following lemma will be useful in the sequel.

Lemma 3. Let (Pt)t≥0 have the e–property. Then for every closed set A ⊂ X and positive
constants η, α with α < 1, the set Mη

α(A) is open in the weak topology of M1.

Proof. Let positive constants η, α with α < 1 and a closed set A ⊂ X be given. Fix
µ ∈Mη

α(A). To finish the proof it is enough to show that for every sequence of probability
Borel measures (µn)n≥1 that converges weakly to µ, we have µn ∈ Mη

α(A) for all n large
enough. By the definition of the set Mη

α(A) there exists γ < η such that

lim inf
t→∞

P ∗t µ(Aγ) > 1− α.

Choose σ > 0 such that γ + σ < η and let ϕ be a Lipschitz function such that

1Aγ (x) ≤ ϕ(x) ≤ 1Aγ+σ(x) for all x ∈ X.

Fix (µn)n≥1 such that w-limn→∞ µn = µ. Since (Pt)t≥0 has the e–property, the family
{Ptϕ}t≥0 is equicontinuous and

(2.21) sup
t≥0

∣∣∣∣∫
X

P tϕdµn −
∫
X

P tϕdµ

∣∣∣∣→ 0,

by Lemma 2. On the other hand, we know that

(2.22)

∫
X

Ptϕdµ =

∫
X

ϕdP ∗t µ ≥
∫
X

1AγdP
∗
t µ

≥ P ∗t µ(Aγ) ≥ 1− α + Θ

for t large enough and some Θ > 0. From (2.21) and (2.22) it follows that∫
X

Ptϕdµn > 1− α + Θ/2
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for n and t large enough. Since∫
X

Ptϕdµn =

∫
X

ϕdP ∗t µn ≤ P ∗t µn(Aη+γ),

we finally obtain

lim inf
t→∞

P ∗t µn(Aη+γ) > 1− α

for n large enough. This completes the proof. �

Proposition 3. If (Pt)t≥0 satisfies the assumptions of Theorem 1, then (Pt)t≥0 is sweeping
from compact sets disjoint from T .

Proof. Assume, contrary to our claim, that there exists a compact set K disjoint from T ,
a positive constant α and a probability measure µ such that

(2.23) lim sup
t→∞

P ∗t µ(K) > α.

Since the assumptions of Proposition 2 are satisfied, T is closed. Therefore there exists
η > 0 such that

inf{ρ(x, y) : x ∈ K, y ∈ T } > η.

Set M̃ := Mη
α/2(T ) and observe that M̃ 6= ∅. Indeed, from Lemma 1 we obtain that

δz ∈ M̃. Since M̃ is open in the weak topology, by Lemma 3 there exists σ > 0 such that

ν ∈ M̃ provided that supp ν ⊂ B(z, σ).
Let x ∈ K. Since lim inft→∞Q

t(x,B(z, σ/2)) > 0, there exists tx > 0 such that αx :=
P ∗txδx(B(z, σ/2)) > 0. Further, since P ∗t∗ is a Feller operator, there exists rx > 0 such that
P ∗txδy(B(z, σ/2)) > αx/2. Obviously,

K ⊂
⋃
x∈K

B(x, rx)

and since K is compact, there exist, say, x1, . . . , xm ∈ K such that

K ⊂
m⋃
i=1

B(xi, rxi).

Set Θ := min1≤i≤m αxi/2. Define the constant

γ := sup{β ≥ 0 : P ∗t0µ ≥ βν for some ν ∈ M̃ and t0 > 0}.

Choose ν ∈ M̃ and t0 > 0 such that P ∗t0µ ≥ βν holds with β > γ−Θα/(2m). Observe that

if P ∗t0µ ≥ βν for some ν ∈ M̃, then from (2.20) it follows that P ∗t µ ≥ βνt for t ≥ t0 with

some νt ∈ M̃. Therefore we may assume that P ∗t0µ(K) > α, by (2.23), and consequently

(P ∗t0µ− βν)(K) ≥ α− α/2 = α/2.

Hence there exists j ∈ {1, . . . ,m} such that

(P ∗t0µ− βν)(B(xj, rxj)) ≥ α/(2m).
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Further, we have

P ∗txj (P
∗
t0
µ− βν)(B(z, σ)) =

∫
X

1B(z,σ)(x)(P ∗txj+t0µ− βP
∗
txj
ν)(dx)

=

∫
X

Ptxj1B(z,σ)(x)(P ∗t0µ− βν)(dx) =

∫
P ∗txj δx(B(z, σ))(P ∗t0µ− βν)(dx)

≥
∫
B(xj ,rxj )

P ∗txj δx(B(z, σ))(P ∗t0µ− βν)(dx) ≥ Θα/(2m).

Set

ν̃(·) =
(P ∗txj+t0µ− βP

∗
txj
ν)(· ∩B(z, σ))

(P ∗txj+t0µ− βP
∗
txj
ν)(B(z, σ))

and observe that ν̃ ∈ M̃, since supp ν̃ ⊂ B(z, σ). Let

ν̂ = β(β + Θα/(2m))−1P ∗txj ν + Θα/(2m)(β + Θα/(2m))−1ν̃.

Since P ∗txj ν, ν̃ ∈ M̃ and M̃ is convex, we obtain that ν̂ ∈ M̃. Further

P ∗txj+t0µ ≥ (β + Θα/(2m))ν̂,

which is impossible as β + Θα/(2m) > γ. This completes the proof. �

Our note is aimed at proving the following generalization of Theorem 1.

Theorem 2. Let (Pt)t≥0 satisfy the assumptions of Theorem 1 and let µ∗ be its invariant
measure. Assume also that

(2.24) lim inf
t→∞

P ∗t δz(B(z, δ)) > 0,

with z such as in Theorem 1. Then

(2.25) w-lim
t→∞

P ∗t ν = µ∗

for any ν ∈M1 that is supported in T .

Proof. We divide the proof into two steps.
Step I: We are going to show that for every δ > 0 there exists α > 0 such that

(2.26) lim inf
t→∞

P ∗t ν(B(z, δ)) > α

for every ν ∈ M1 supported in T . To do this fix δ > 0. From the e–property it follows
that there exists η > 0 such tht

(2.27) lim inf
t→∞

P ∗t δy(B(z, δ)) >
1

2
lim inf
t→∞

P ∗t δz(B(z, δ/2)) for y ∈ B(z, η).

It is shown in the same way as condition (3.42) in Lemma 4 in [8]. Set

γ :=
1

2
lim inf
t→∞

P ∗t δz(B(z, δ/2)) and ϑ := µ∗(B(z, η))/2.
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From condition (2.24) and Remark 2, we obtain γ, ϑ > 0. To finish this part of the proof
we show that condition (2.26) holds with α = γϑ. Fix ν ∈ M1 supported in T . From
Theorem 1 and Alexandrov’s theorem we have

lim inf
t→∞

Qtν(B(z, η)) ≥ µ∗(B(z, η)).

Hence there exists t0 > 0 such that

P ∗t0ν(B(z, η)) > ϑ.

Consequently,

(2.28)

lim inf
t→∞

P ∗t ν(B(z, δ)) = lim inf
t→∞

P ∗t+t0ν(B(z, δ))

Fatou’s lemma

≥
∫
X

lim inf
t→∞

P ∗t δx(B(z, δ))P ∗t0ν(dx)

≥
∫
B(z,η))

lim inf
t→∞

P ∗t δx(B(z, δ))P ∗t0ν(dx) > γϑ = α.

Since ν was an arbitrary probability measure supported in T , Step I is complete.

Step II: To finish the proof we will show that

(2.29) lim sup
t→∞

∣∣∣∣∫
X

Ptf(x)ν1(dx)−
∫
X

Ptf(x)ν2(dx)

∣∣∣∣ = 0

for any f ∈ Lb(X) and ν1, ν2 ∈ M1 supported in T . Fix an ε > 0 and let f ∈ Lb(X). By
the e–property we may find γ > 0 such that

(2.30) |Ptf(y1)− Ptf(y2)| < ε/2

for t ≥ 0 and y1, y2 ∈ B(z, γ). Fix ν1, ν2 ∈ M1 that are supported in T . From Step I we
may choose α > 0 such that condition (2.26) holds. By induction we will define a sequence
of positve reals (ti)i≥0 and four sequences of probability measures (νi1)i≥0, (νi2)i≥0, (µi1)i≥0,
(µi2)i≥0 such that supp νki ⊂ B(z, γ), suppµki ⊂ T for k = 1, 2, i ≥ 1 and

(2.31) P ∗tkµ
k−1
i = ανki + (1− α)µki for i = 1, 2 and k ≥ 1.

If k = 0, we set t0 = 0, ν1
1 = µ1

1 = ν1 and ν1
2 = µ1

2 = ν2. If k ≥ 1 and tk−1, ν
k−1
1 , νk−1

2 ,
µk−1

1 , µk−1
2 are given, by Step I and the fact that suppµk−1

i ⊂ T , i = 1, 2, we may choose
tk > 0 such that

(2.32) P ∗tkµ
k−1
i (B(z, γ)) > α for i = 1, 2.

Now we define

(2.33) νki (·) =
P ∗tkµ

k−1
i (· ∩B(z, γ))

P ∗tkµ
k−1
i (B(z, γ))

for i = 1, 2,

(2.34) µki (·) =
1

1− α
(
P ∗tkµ

k−1
i (·)− ανki (·)

)
for i = 1, 2.
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From (2.32) it follows that µki ∈ M1. Further supp νki ⊂ B(z, γ) for i = 1, 2. Obviously,
condition (2.31) holds. Hence suppµki ⊂ suppP ∗tkµ

k−1
i . On the other hand, from Lemma 1

and Proposition 2 it follows that suppP ∗tkµ
k−1
i ⊂ T for i = 1, 2 and consequently suppµki ⊂

T for i = 1, 2.
Using (2.32) it is easy to verify that

(2.35)
P ∗t1+...+tk+t

νi = αP ∗t2+...+tk+t
ν1
i + α(1− α)P ∗t3+...+tk+t

ν2
i

+ . . .+ α(1− α)k−1P ∗t ν
k
i + (1− α)kP ∗t µ

k
i

for i = 1, 2, k ≥ 1 and t ≥ 0. Since∣∣∣∣∫
X

f(y)P ∗t ν
k
1 (dy)−

∫
X

f(y)P ∗t ν
k
2 (dy)

∣∣∣∣ =

∣∣∣∣∫
X

Ptf(y)νk1 (dy)−
∫
X

Ptf(y)νk2 (dy)

∣∣∣∣ ≤ ε/2,

for all t ≥ 0, by (2.30), we conclude from (2.35) that

lim sup
t→∞

∣∣∣∣∫
X

Ptf(x)ν1(dx)−
∫
X

Ptf(x)ν2(dx)

∣∣∣∣ ≤ ε.

Since ε > 0 was arbitrary, this finishes Step II. The proof is complete. �

3. An application to stochastic partial differential equations

Using Theorems 2 we establish the stability for the family defined by the stochastic
evolution equation of the form

(3.1) dZ(t) = (AZ(t) + F (Z(t))) dt+RdW (t).

Here we assume that X is a real separable Hilbert space, A is the generator of a C0-
semigroup S = (S(t))t≥0 acting on X , F is a mapping (not necessarily continuous) from
D(F ) ⊂ X to X , R is a bounded linear operator from another Hilbert space H to X ,
and W = (W (t))t≥0 is a cylindrical Wiener process on H defined over a certain filtered
probability space (Ω,F , (Ft)t≥0,P).

Let Z0 be an F0-measurable random variable. By a solution of (3.1) starting from Z0

we mean a solution to the stochastic integral equation (the so called mild solution)

Z(t) = S(t)Z0 +

∫ t

0

S(t− s)F (Z(s))ds+

∫ t

0

S(t− s)RdW (s), t ≥ 0,

see e.g. [3], where the stochastic integral appearing on the right hand side is understood
in the sense of Itô. We suppose that for every x ∈ X there is a unique mild solution
Zx = (Zx

t )t≥0 of (3.1) starting from x, and that (3.1) defines in that way a Markov family.
We assume that for any x ∈ X , the process Zx(t), t ≥ 0 is stochastically continuous.

The corresponding transition semigroup is given by Ptψ(x) = Eψ(Zx(t)), t ≥ 0, ψ ∈
Bb(X ), x ∈ X . We assume that it is Feller.

A function Φ: X 7→ [0,+∞) will be called a Lyapunov function, if it is measurable and

lim
‖x‖X→∞

Φ(x) =∞.
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We shall assume that the deterministic equation

(3.2)
dY (t)

dt
= AY (t) + F (Y (t)), Y (0) = x

defines a continuous semi-dynamical system, i.e. for each x ∈ X there exists a unique
continuous solution to (3.2) that we denote by Y x = (Y x(t), t ≥ 0) and for a given t the
mapping x 7→ Y x(t) is measurable. Furthermore, we have Y Y x(t)(s) = Y x(t + s) for all
t, s ≥ 0 and x ∈ X .

A set K ⊂ X is called a global attractor for equation (3.2) if

• it is invariant under the semi-dynamical system generated by (3.2), i.e. Y x(t) ∈ K,
t ≥ 0 for any x ∈ K,
• for any ε, R > 0 there exists T such that Y x(t) ∈ K + εB(0, 1) for t ≥ T and
‖x‖X ≤ R.

If for any ψ ∈ Bb(X ) and t ≥ 0 we have∫
X
ψ(x)ν∗(dx) =

∫
X
ψ(Y x(t))ν∗(dx),

we say that ν∗ ∈M1 is invariant for (3.2).

The family (Zx(t))t≥0, x ∈ X , is stochastically stable if for every ε, R, t > 0

(3.3) inf
x∈B(0,R)

P (‖Zx(t)− Y x(t)‖X < ε) > 0.

We derive from Theorem 2 the following result concerning stability of Z.

Theorem 3. Assume that:

• a global attractor K of the semi-dynamical system (Y x(t), t ≥ 0) defined by (3.2)
is a singleton,
• there exists a certain Lyapunov function Φ such that

sup
t≥0

E Φ(Zx(t)) <∞, for any x ∈ X ,

• the family (Zx(t))t≥0, x ∈ X , is stochastically stable and its transition semigroup
has the e-property.

Then, the corresponding transition semigroup (Pt)t≥0 is asymptotically stable.

Proof. LetK = {z}. In [8] we have checked that (Pt)t≥0 satisfies the assumption of Theorem
1 and T = X . To finish the proof it is enough to show that condition (2.24) holds. Fix
δ > 0. Since supt≥0 E(Φ(Zz(t))) < +∞ for some Lyapunov function Φ, there exists a
bounded Borel set D ⊂ X such that

(3.4) P ∗t δz(D) >
1

2
for t ≥ 0.
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On the other hand, from the fact that the family (Zx(t))t≥0, x ∈ X , is stochastically stable
we have

inf
x∈D

P(‖Zx(t)− Y x(t)‖X < ε) > 0 for any t, ε > 0.

Let t0 > 0 be such that Y x(t0) ∈ B(z, δ/2) for x ∈ D and let ε = δ/2. Then

γ := inf
x∈D

P(‖Zx(t0)− z‖X < δ) > 0.

Consequently,

lim inf
t→∞

P ∗t δz(B(z, δ)) = lim inf
t→∞

P ∗t+t0δz(B(z, δ)) = lim inf
t→∞

∫
X

1B(z,δ)(x)P ∗t+t0δz(dx)

= lim inf
t→∞

∫
X
Pt01B(z,δ)(x)P ∗t δz(dx) = lim inf

t→∞

∫
X
P ∗t0δx(B(z, δ))(x)P ∗t δz(dx)

≥ lim inf
t→∞

∫
D

P ∗t0δx(B(z, δ))(x)P ∗t δz(dx) ≥ γ lim inf
t→∞

P ∗t δz(D) > γ/2.

This completes the proof. �

4. Application to the Passive Tracer Model

In the last section we are concerned with some model of transport of a passive tracer in
a compressible random flow (see [5, 6, 7]). Applying Theorem 3 we will be able to prove
that the distribution of velocity of a particle is weakly convergent to some distribution.
This result is in the same spirit as results in [8], where was derived the weak law of large
numbers for the trajectory of a particle described by the model mentioned above.

Let us consider the ordinary differential equation

(4.1)
dx(t)

dt
= V (t,x(t)), x(0) = x0,

where V is the random field. We assume that this field is spatially periodic, i.e.

V (t, x+ 2πεj) = V (t, x), ∀ t ≥ 0, x ∈ Rd, j = 1, . . . , d,

where εj = (0, . . . , 1, . . . , 0)︸ ︷︷ ︸
j-th posiiton

, j = 1, . . . , d are unit versors in Rd. It is additionally zero

mean Gaussian, with the covariance matrix

Ri,j(t− s, x− y) := E [Vi(t, x)Vj(s, y)]

whose Fourier transform in the x-variable is given by

R̂i,j(h, k) :=
1

(2π)d

∫
Td

e−ikxRi,j(h, x)dx = e−γ(k)|h|Ei,j(k), i, j = 1, . . . , d, k ∈ Zd.

Here Td := [0, 2π)d. Let S+(d) denote the space of all non-negative definite, Hermitian
matrices. We assume that the energy spectrum E := [Ei,j] : Zd 7→ S+(d) and mixing rates
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γ : Zd 7→ (0,+∞) satisfy the following assumption: there exist m > d/2 + 1 and α ∈ (0, 1)
such that

(4.2) |||E|||2 :=
∑
k∈Zd
|γ(k)|α|k|2(m+1)Tr E(k) < +∞.

Moreover,

(4.3) inf
k∈Zd∗

γ(k) = γ∗ > 0,

(4.4) lim
|k|→+∞

γ(k) = 0,

and

(4.5)

∫ ∞
0

sup
k∈Zd∗

e−γ(k)t|k|dt <∞.

Here TrA denotes a trace of a given matrix A. We will also need the following non-
degeneracy assumptions of the spectrum

(4.6) ∀ k ∈ Zd
∗, det E(k) 6= 0.

Given r ≥ 0 we denote by Hr the Sobolev space which is the completion of

(4.7)

{
ξ ∈ C∞(Td; Rd) :

∫
Td
ξ(x)dx = 0

}
with respect to the norm ‖ξ‖2Hr :=

∑
k∈Zd∗ |k|

2r|ξ̂(k)|2, where ξ̂(k) := (2π)−d
∫

Td ξ(x)e−ix·kdx,

k ∈ Zd are the Fourier coefficients of ξ. Note that obviously Hu ⊂ Hr if u > r.
Let Ar be an operator on Hr defined by

(4.8) Ârξ(k) := −γ(k)ξ̂(k), k ∈ Zd
∗,

with the domain

(4.9) D(Ar) :=

ξ ∈ Hr :
∑
k∈Zd∗

|γ(k)|2|k|2r
∣∣∣ξ̂(k)

∣∣∣2 <∞
 .

Since the operator is self-adjoint it generates a C0-semigroup (Sr(t))t≥0 on Hr. Moreover,
for u > r, Au is the restriction of Ar and Su is the restriction of Sr. From now on, we will
omit the subscript r writing A and S instead of Ar and Sr.

Let Q be a symmetric positive-definite bounded linear operator on L2
0 := H0 given by

Q̂ξ(k) := γ(k)E(k)ξ̂(k), k ∈ Zd
∗.

Let m be the constant appearing in (4.2) and let H := Hm and V := Hm+1. Note that by
Sobolev embedding, see e.g. Theorem 7.10, p. 155 of [4], there exists a constant C > 0
such that

(4.10) ‖ξ‖C1(Td;Rd) ≤ C‖ξ‖H, ∀ ξ ∈ H.
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Let Z(s, x) := V (s, x+ x(s)) be the Lagrangian observation of the environment process,
or shortly the observation process. It is known, see [6] and [7], that Z(s, ·) solves the
equations

(4.11) dZ(t) = [AZ(t) +B(Z(t), Z(t))] dt+Q1/2dW (t), Z(0, ·) = V (0,x(0) + ·).
where W is a certain cylindrical Wiener process on some probability space A (A =
(Ω,F , (Ft)t≥0,P)) and

(4.12) B(ψ, ξ)(x) :=

(
d∑
j=1

ψj(0)
∂ξ1
∂xj

(x), . . . ,
d∑
j=1

ψj(0)
∂ξd
∂xj

(x)

)
, ψ, ξ ∈ H, x ∈ Td.

By (4.10), B(·, ·) is a continuous bilinear form acting from H×H into Hm−1.
Given ξ ∈ H let (Zξ(t))t≥0 denote the value at t ≥ 0 of a solution to (4.11) satisfying

Zξ(0, x) = ξ(x) for x ∈ Td. As usually, the transition semigroup is given by the formula:
P tψ(ξ) := Eψ(Vξ(t,xξ(t) + ·)) for ψ ∈ H. It is known (see for instance [3]) that the
Feller property and stochastic continuity hold for the transition semigroup. Moreover,
it has been proved, see [8], that this semigroup satisfies the assumptions of Theorem 3.
Having this we were able to derive that the Markov family (Zξ(t))t≥0 is mean ∗ ergodic
(see [8, 14]). Applying Theorem 3 we obtain, in turn, that the transition semigroup (Pt)t≥0

is asymptotically stable.
We are in a position to formulate the following proposition.

Proposition 4. Under assumptions (4.2)− (4.6) there exists a distribution V such that

w-lim
s→∞

dx

dt
(s) = V.

Proof. From the fact that (Pt)t≥0 is asymptotically stable it follows that the distribution
L(Z(s, x)) of the vector Z(s, x) tends weakly to µ∗, where µ∗ denotes the unique invariant
measure of (Pt)t≥0. Let r : H → R denote the function given by the formula r(x) = x(0).
From condition (4.10) we immediately obtain that r is continuous. Hence L(r(Z(s, x)))
converges weakly to µ∗ ◦ r−1. Let V = µ∗ ◦ r−1. Observation that r(Z(s, x)) = Z(s, 0) =
V (s, x(s)) = dx

dt
(s) finishes the proof. �
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Verlag AG, (2005).

Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland
E-mail address: szarek@intertele.pl

Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland
E-mail address: sleczka@ux2.math.us.edu.pl

Department of Mathematics, University of North Texas, P.O. Box 311430 Denton, TX
76203-1430, USA

E-mail address: urbanski@unt.edu


