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Abstract. We derive the multifractal analysis of the conformal measure (or equivalently,
the invariant measure) associated to a family of weights imposed upon a (multi-dimensional)
graph directed Markov system (GDMS) using balls as the filtration. This analysis is done
over a subset of J which is often large. In particular, it coincides with the limit set when
the GDMS under scrutiny satisfies a boundary separation condition. It also applies to more
general situations such as real or complex continued fractions.

1. Introduction

Multifractal formalism origins from physics and mathematics (among others, see [6], [2],
[3] and [4]). In this latter paper, strong hints of parallels between multifractal theory and the
theory of statistical physics were suggested. Some of the first rigorous mathematical results
on multifractals can be found in [1] and [15]. Since then, many papers have been written on
this subject (for instance, see [10], [11], [12] and [14]). In particular, Pesin [13] developed a
general framework in which multifractal formalism can be derived.

We now briefly describe our setting. Let µ be a Borel probability measure on a metric
space X. The measure µ is said to have local dimension α at a point x ∈ X if

lim
r→0

log µ(B(x, r))

log r
= α.

For each number α ≥ 0, let Xµ(α) be the set of points x ∈ X where the measure µ has local
dimension α, and let fµ(α) be the Hausdorff dimension of the set Xµ(α). The map α 7→ fµ(α)
is called the (fine Hausdorff) multifractal spectrum of the measure µ.

The multifractal analysis of equilibrium states for a natural potential function and a nat-
ural family of Hölder continuous weights was performed in [5] for infinite conformal iterated
function systems and in [9] for infinite conformal graph directed Markov systems. In both
cases, the authors used at every point in the limit set of the given system the natural filtration
generated by the initial blocks of the word that encodes the point. In other terms, the analysis
was carried out using cylinders.
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the work has been done while the second author was visiting the Max Planck Institute in Bonn, Germany.
He wishes to thank the institute for its support.
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Aiming to give the multifractal analysis a transparent geometrical meaning, we shall derive
in the sequel the multifractal analysis for cofinitely regular graph directed Markov systems
(GDMSs) using as the filtration a base of balls centred at the given point. Until now, the
question of the analysis of balls, which has already been solved in the case of finite systems,
remained open for infinite systems.

We conduct our analysis over the full set of parameters on which it can be expected to hold.
Moreover, we perform it on a large and dynamically significant subset Jr of the limit set J .
In fact, under a mild boundary separation condition (for example, the separation condition)
the sets Jr and J coincide. An additional geometric flavor of our analysis results from the
fact that we concentrate on a geometrically meaningful family of Hölder continuous weights.
All our results apply to a large class of GDMSs, one- and multi-dimensional alike, including
real and complex continued fractions.

Let us describe the content of the paper more precisely. In section 2, we recall the basic
definition of conformal graph directed Markov system. In section 3, we describe the Hölder
families of weights F and Fq,t we shall work with and study the properties of the pressure
P (q, t) and temperature T (q) they determine. In section 4, we carry out the multifractal
analysis of the conformal measure mF (or equivalently, the invariant measure µF ) associated
to a family of weights F . This analysis is done over a subset Jr of J and conducted by
means of balls. In particular, we show that for each α there is an auxiliary measure that
witnesses the Hausdorff dimension of the set Jr,µ(α) and that the fr,µ(α) curve is the Legendre
transform of the temperature function T (q). In section 5, we derive the multifractal analysis
of the conformal measure mF (or equivalently, the invariant measure µF ) under additional
conditions on the GDMS. In subsection 5.1, we observe that Jr = J for all GDMSs which
satisfy a boundary separation condition. Real continued fractions with the digit 1 deleted are
an important example of such systems. In subsection 5.2, we derive the multifractal analysis
over J under three conditions and show that there are families of one-dimensional conformal
iterated function systems that meet these three conditions. Real continued fractions (with or
without the digit 1) are a good example of such a family.

2. Preliminaries on Graph Directed Markov Systems

Let us first describe the setting of conformal graph directed Markov systems introduced
in [9]. Graph directed Markov systems are based on a directed multigraph (V,E, i, t) and
an associated incidence matrix A. The multigraph consists of a finite set V of vertices, a
countable (finite or infinite) set of edges, and two functions i, t : E → V that indicate for
each directed edge e ∈ E its initial vertex i(e) and its terminal vertex t(e), respectively. The
matrix A : E×E → {0, 1} is an edge incidence matrix and thus tells which edges may follow
a given edge. Moreover, it respects the multigraph, that is, if Ae1e2 = 1 then t(e1) = i(e2). It
is thereafter natural to define the set of all one-sided infinite A-admissible words

E∞
A = {ω ∈ E∞ |Aωiωi+1

= 1,∀ i ∈ IN}.
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The set of all subwords of E∞
A of length n ∈ IN will be denoted by En

A, whereas the set of all
finite subwords will be denoted by E∗

A = ∪n∈INE
n
A. From a dynamical point of view, we will

consider the left shift map σ : E∞
A → E∞

A which drops the first letter of each word.
A graph directed Markov system (GDMS) consists of a directed multigraph and an edge

incidence matrix together with a set of non-empty compact subsets {Xv}v∈V of a common
Euclidean space IRd, a number 0 < s < 1, and for every e ∈ E a one-to-one contraction
ϕe : Xt(e) → Xi(e) with Lipschitz constant at most s.

A GDMS is called iterated function system (IFS) provided that Aef = 1 if and only if
t(e) = i(f) and that V is a singleton.

For ω ∈ En
A, n ∈ IN , we define

ϕω := ϕω1 ◦ ϕω2 ◦ · · · ◦ ϕωn : Xt(ω) → Xi(ω).

Note that the functions i and t extend naturally to E∗
A by setting i(ω) := i(ω1) and t(ω) =

t(ω|ω|). The main object of our interest will be the limit set J of S. This set is the image of the
symbolic space E∞

A under a coding map π. Indeed, given any ω ∈ E∞
A , the sets ϕω|n(Xt(ω|n))

form a decreasing sequence of non-empty compact sets whose diameters converge to zero.
Therefore their intersection

∞⋂
n=1

ϕω|n(Xt(ω|n))

is a singleton, and we denote its element by π(ω). This defines the coding map π : E∞
A → X,

where X :=
⊕

v∈V Xv is the disjoint union of the compact sets Xv. Clearly, π is a continuous
function when E∞

A is equipped with the topology generated by the cylinders [e]n = {ω ∈
E∞

A |ωn = e}, e ∈ E, n ∈ IN . Hence the limit set of the GDMS S is

J = π(E∞) =
⋃

ω∈E∞

∞⋂
n=1

ϕω|n(Xt(ω|n)).

Recall also (cf. section 4.2 in [9]) that a GDMS S = {ϕe}e∈E is called conformal (and
thereafter a CGDMS) if the following conditions are satisfied.

(i) For every v ∈ V , the set Xv is a compact, connected subset of IRd which is the closure
of its interior (i.e. Xv = IntIRd(Xv));

(ii) (Open set condition (OSC)) For all e, f ∈ E, e 6= f ,

ϕe(Int(Xt(e))) ∩ ϕf (Int(Xt(f))) = ∅;

(iii) For every vertex v ∈ V , there exists an open connected set Wv such that Xv ⊂ Wv ⊂
IRd and such that for every e ∈ E with t(e) = v, the map ϕe extends to a C1 conformal
diffeomorphism of Wv into Wi(e);

(iv) (Cone property) There exist γ, l > 0 such that for every v ∈ V and every x ∈ Xv there
is an open cone Con(x, γ, l) ⊂ Int(Xv) with vertex x, central angle γ, and altitude l;

(v) There are two constants L ≥ 1 and α > 0 such that∣∣∣|ϕ′e(y)| − |ϕ′e(x)|
∣∣∣ ≤ L‖(ϕ′e)−1‖−1‖y − x‖α
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for every e ∈ E and every pair of points x, y ∈ Wt(e), where |ϕ′e(x)| denotes the norm
of the derivative of ϕe at x and ‖(ϕ′e)−1‖ is the supremum norm taken over Wi(e).

Remark 2.1. According to Proposition 4.2.1 in [9], condition (v) is automatically satisfied
(with α = 1) when d ≥ 2. This condition is also fulfilled if d = 1, the alphabet E is finite and
all the ϕe’s are of class C1+ε.

The following useful fact has been proved in Lemma 4.2.2 of [9].

Lemma 2.2. For all ω ∈ E∗
A and all x, y ∈ Wt(ω) we have∣∣∣log |ϕ′ω(y)| − log |ϕ′ω(x)|

∣∣∣ ≤ L(1− s)−1‖y − x‖α.

An immediate consequence of this lemma is the famous bounded distortion property.

(v’) (Bounded Distortion Property (BDP)) There exists a constant K ≥ 1 such that

|ϕ′ω(y)| ≤ K|ϕ′ω(x)|
for every ω ∈ E∗

A and every x, y ∈ Wt(ω).

Recall that a CGDMS S satisfy the Strong Open Set Condition (SOSC) if J ∩ Int(X) 6= ∅,
that is, ∪v∈V (Jv ∩ Int(Xv)) 6= ∅. Recall further that a matrix A is finitely primitive if there
exists a finite set Ω ⊂ E∗

A of words of the same length such that for all e, f ∈ E there is a
word ω ∈ Ω for which eωf ∈ E∗

A. From this point on we assume that all the systems we deal
with satisfy those two properties.

Infinite systems naturally break into two main classes called irregular and regular systems.
This dichotomy can be determined from the existence of a conformal measure or, equivalently,
the existence of a zero of the topological pressure function. Recall that the topological pressure
P (t), t ≥ 0, is defined as follows. For every n ∈ IN , set

P (n)(t) =
∑

ω∈En
A

‖ϕ′ω‖t,

where ‖ϕ′ω‖ := supx∈Xt(ω)
|ϕ′ω(x)|. Then

P (t) = lim
n→∞

1

n
logP (n)(t) = inf

n∈IN

1

n
logP (n)(t).

If the function ζ̃ : E∞
A → IR is given by the formula

ζ̃(ω) = log |ϕ′ω1
(π(σ(ω)))|,
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then P (t) = P (tζ̃), where P(tζ̃) is the classical topological pressure of the function tζ̃ when
E is finite (so the space E∞ is compact), and is understood in the sense of [5] and [9] when E
is infinite. The finiteness parameter θ of the system is defined by inf{t ≥ 0 : P (1)(t) <∞} =
inf{t ≥ 0 : P (t) < ∞}. It is easy to show that the pressure function is non-increasing on
[0,∞), that it is (strictly) decreasing, continuous and convex on [θ,∞), and that P (d) ≤ 0. Of
course, P (0) = ∞ if and only if E is infinite. The following characterization of the Hausdorff
dimension HD(J) of the limit set J was proved in [9], Theorem 4.2.13. For every F ⊂ E, we
write S|F for the subsystem {ϕe}e∈F of S, and JF for the limit set of S|F .

Theorem.

HD(J) = inf{t ≥ 0 : P (t) ≤ 0} = sup{HD(JF ) : F ⊂ E is finite} ≥ θ.

If P (t) = 0, then t is the only zero of the function P (t) and t = HD(J).

A system S was called regular provided there is some t ≥ 0 such that P (t) = 0. In fact, a
system is regular if and only if it admits a conformal measure. Recall that a Borel probability
measure m is said to be t-conformal provided m(J) = 1 and for every ω ∈ E∗

A and for every
Borel set B ⊂ Xt(ω)

m(ϕω(B)) =
∫

B
|ϕ′ω|t dm,

and for all incomparable words ω, τ ∈ E∗
A

m
(
ϕω(Xt(ω)) ∩ ϕτ (Xt(τ))

)
= 0.

There are natural subclasses of regular systems. Among others, a system is called cofinitely
regular provided every non-empty cofinite subsystem S ′ = {ϕe}e∈E′ (i.e. E ′ is a cofinite
subset of E) is regular. A finite system is clearly cofinitely regular, and it was shown in [9],
Theorem 4.3.4 that an infinite system is cofinitely regular exactly when the pressure is infinite
at the finiteness parameter.

Theorem. An infinite system S is cofinitely regular if and only if P (θ) = ∞ ⇔ P (1)(θ) =
∞⇔ {t ≥ 0 : P (t) <∞} = (θ,∞) ⇔ {t ≥ 0 : P (1)(t) <∞} = (θ,∞).

Throughout the rest of this paper, all systems under investigation are assumed to be
cofinitely regular.

3. Hölder families of functions, Pressure and Temperature

We adopt the notational convention that families of functions shall be denoted by upper-
case letters, while their members will be denoted by lowercase letters. Moreover, functions
and measures associated with the symbolic space E∞

A will wear a tilde ∼, with the notable
exception of the shift map σ.
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Throughout this paper, let S = {ϕe : Xt(e) → Xi(e) | e ∈ E} be a cofinitely regular CGDMS
satisfying the Strong Open Set Condition (SOSC) and having an underlying finitely primitive
edge incidence matrix A. Let θ be the finiteness parameter of S. Let u > θ. Let

Ψ =
{
ψe : Xt(e) → IR

∣∣∣ e ∈ E}
be a bounded Hölder family of functions. Let β be the order of that family. Hölder of order
β means that (cf. section 3.1 in [9])

Vβ(Ψ) := sup
n∈IN

Vn(Ψ) <∞,

where

Vn(Ψ) = sup
ω∈En

A

sup
x,y∈Xt(ω)

∣∣∣ψω1(ϕσω(x))− ψω1(ϕσω(y))
∣∣∣eβ(n−1).

Bounded simply means that

‖Ψ‖ := sup
e∈E

‖ψe‖ <∞.

Denote by ψ̃ : E∞
A → IR the potential function (also called amalgamated function) induced

by the family Ψ, which is defined by

ψ̃(ω) = ψω1(π(σω)).

According to Lemma 3.1.3 in [9], the function ψ̃ is bounded and Hölder continuous of order
β. Let also

Log =
{
log |ϕ′e| : Xt(e) → IR

∣∣∣ e ∈ E}
.

By Lemma 4.2.2 in [9], the family Log is Hölder of order α log s. Moreover, for any t > θ, the
family tLog is summable, that is ∑

e∈E

∥∥∥exp(t log ‖ϕ′e‖)
∥∥∥ <∞.

In particular, uLog is summable. Denote by ζ̃ : E∞
A → IR the amalgamated function induced

by the family Log, that is,

ζ̃(ω) = log |ϕ′ω1
(π(σω))|.

Then ζ̃ is a summable Hölder continuous function of order α log s. It follows from the above
definitions and properties that the family F = Ψ+uLog, that is, F = {fe : Xt(e) → IR | e ∈ E},
where

fe = ψe + u log |ϕ′e|,
is a summable Hölder family of functions of order γ = max{β, α log s}. The amalgamated

function f̃ : E∞
A → IR induced by the family F satisfies

f̃ = ψ̃ + u ζ̃
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and is a summable Hölder continuous function of order γ. Note also that F and f̃ are bounded
above by sup Ψ := supe∈E supx∈Xt(e)

ψe(x). Recall that the topological pressure P (F ) of F is

defined by

P (F ) = lim
n→∞

1

n
log

∑
ω∈En

A

exp
(

sup
x∈Xt(ω)

n∑
i=1

fωi
(ϕσiω(x))

)
.

By considering the family F−P (F ), we may assume without loss of generality that P (F ) = 0.

Equivalently, P (f̃) = 0 by Proposition 3.1.4 in [9], where

P (f̃) = lim
n→∞

1

n
logZn(f̃)

with

Zn(f̃) =
∑

ω∈En
A

exp
(
sup
τ∈[ω]

n−1∑
i=0

f̃(σiτ)
)
.

Since S is a CGDMS with an underlying finitely primitive matrix and F is a summable
Hölder family of functions, Theorem 3.2.3 and Proposition 4.2.5 in [9] assert that there exists
a unique F -conformal measure mF supported on J . In other words, for every ω ∈ E∗

A and for
every Borel set B ⊂ Xt(ω)

mF (ϕω(B)) =
∫

B
exp

(
Sω(F )− P (F )|ω|

)
dmF =

∫
B

exp(Sω(F ))dmF

and for all incomparable words ω, τ ∈ E∗
A

mF

(
ϕω(Xt(ω)) ∩ ϕτ (Xt(τ))

)
= 0.

Recall that Sω(F ) : Xt(ω) → IR is simply the ergodic sum

Sω(F )(x) =
n∑

i=1

fωi
(ϕσiω(x)).

Moreover, mF = m̃f̃ ◦ π−1, where m̃f̃ is the unique eigenmeasure of the conjugate Perron-
Frobenius operator L∗

f̃
. The existence and the uniqueness of m̃f̃ is guaranteed by Corol-

lary 2.7.5(a) in [9]. The measure m̃f̃ is also a Gibbs state for f̃ according to Corollary 2.7.5(b).

Furthermore, f̃ admits a unique σ-invariant Gibbs state µ̃f̃ according to Corollary 2.7.5(c).

This Gibbs state is completely ergodic. It is also the unique equilibrium measure for f̃ by
Theorem 2.2.9. As required by that theorem, note that f̃ ∈ L1(µ̃f̃ ), for ζ̃ ∈ L1(µ̃f̃ ) as shown
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in the following calculation:∫
|ζ̃| dµ̃f̃ =

∑
e∈E

∫
[e]
|ζ̃| dµ̃f̃ =

∑
e∈E

∫
[e]

∣∣∣log |ϕ′e(π(σω))|
∣∣∣ dµ̃f̃ (ω)

≤
∑
e∈E

∫
[e]

(
logK − log ‖ϕ′e‖

)
dµ̃f̃

= logK −
∑
e∈E

log ‖ϕ′e‖µ̃f̃ ([e])

≤ logK − C
∑
e∈E

log ‖ϕ′e‖ exp
(
sup fe

)
≤ logK − C

∑
e∈E

log ‖ϕ′e‖ exp
(
supψe + u sup log |ϕ′e|

)
≤ logK − Ce‖Ψ‖

∑
e∈E

log ‖ϕ′e‖ exp
(
u logK + u log ‖ϕ′e‖

)
≤ logK − CKue‖Ψ‖

∑
e∈E

‖ϕ′e‖u log ‖ϕ′e‖

= logK − CKue‖Ψ‖
∑
e∈E

‖ϕ′e‖u−δ ‖ϕ′e‖δ log ‖ϕ′e‖

≤ logK − Ce‖Ψ‖+u log KB
∑
e∈E

‖ϕ′e‖u−δ

<∞,

(3.1)

where 0 < δ < u− θ and −∞ < B := inf{‖ϕ′e‖δ log ‖ϕ′e‖ : e ∈ E} < 0, and where we used the
bounded distortion property (explaining the presence of K ≥ 1), the fact that m̃f̃ is a Gibbs

state for f̃ (hence the presence of C ≥ 1), that P (f̃) = 0, and that limx→0+ xδ log x = 0 (by
means of B).

Since any two Gibbs states for f̃ are boundedly equivalent, the measures µ̃f̃ and m̃f̃ are

boundedly equivalent and thus the measures µF := µ̃f̃ ◦π−1 and mF = m̃f̃ ◦π−1 are boundedly
equivalent. For this reason, µF is called the S-invariant version of mF .

Now, for every (q, t) ∈ IR2 define the family

Fq,t := qF + tLog = qΨ + (qu+ t)Log,

and its corresponding amalgamated function

f̃q,t = qf̃ + tζ̃ = qψ̃ + (qu+ t)ζ̃ .

It is easy to see that the Fq,t’s are Hölder families of functions of order γ (the order of F )

and that the f̃q,t’s are Hölder continuous functions of order γ (like f̃). Moreover, Fq,t and f̃q,t

are summable if and only if qu + t > θ. Hence for every (q, t) ∈ IR2 such that qu + t > θ,
there exists a unique Fq,t-conformal measure mFq,t supported on J . This measure is such
that mFq,t = m̃f̃q,t

◦ π−1, where m̃f̃q,t
is the unique eigenmeasure of the conjugate Perron-

Frobenius operator L∗
f̃q,t

. The measure m̃f̃q,t
is a Gibbs state for f̃q,t. Furthermore, f̃q,t admits



MULTIFRACTAL ANALYSIS FOR CONFORMAL GRAPH DIRECTED MARKOV SYSTEMS 9

a unique completely ergodic σ-invariant Gibbs state µ̃f̃q,t
. This Gibbs state is also the unique

equilibrium measure for f̃q,t. As the Gibbs states µ̃f̃q,t
and m̃f̃q,t

are boundedly equivalent, so

are the measures µFq,t := µ̃f̃q,t
◦ π−1 and mFq,t = m̃f̃q,t

◦ π−1. Note that f̃q,t ∈ L1(µ̃q,t), for

ζ̃ ∈ L1(µ̃q,t) as a calculation similar to (3.1) shows. Furthermore,

P
(
(qu+ t)Log

)
− |q| ‖Ψ‖ ≤ P (Fq,t) ≤ P

(
(qu+ t)Log

)
+ |q| ‖Ψ‖, (3.2)

where P ((qu + t)Log) = P (qu + t) (cf. section 2). We now state fundamental properties of
the pressure as a function of the two variables q and t.

Theorem 3.1. Let S = {ϕe : Xt(e) → Xi(e) | e ∈ E} be a cofinitely regular CGDMS satisfy-
ing the Strong Open Set Condition (SOSC) and having an underlying finitely primitive edge
incidence matrix A. Let θ be the finiteness parameter of S, and let u > θ. Then the pressure
function (q, t) 7→ P (q, t) := P (Fq,t) = P (f̃q,t), (q, t) ∈ IR2 satisfies the following properties.

(a) P (q, t) <∞ if and only if qu+ t > θ;
(b) If (q2−q1)(sup Ψ+u log s)+(t2−t1) log s ≤ 0, then P (q2, t2) ≤ P (q1, t1). In particular,

if sup Ψ ≤ −u log s, then P (q, t) is decreasing with respect to both variables q ∈ IR and
t ∈ IR.

(c) t 7→ P (q, t) is strictly decreasing on (θ − qu,∞);
(d) limt→∞ P (q, t) = −∞;
(e) limt→(θ−qu)+ P (q, t) = ∞;

(f) ∂P
∂t

(q, t) = −χµ̃q,t for every (q, t) ∈ IR2 such that qu+ t > θ, where χµ̃q,t := −
∫
ζ̃ dµ̃q,t

is the Lyapunov exponent of µ̃q,t;
(g) t 7→ P (q, t) is convex (and thereby continuous) on the interval (θ − qu,∞);

Proof. (a) This follows from (3.2) and the fact that P (t) := P (tLog) < ∞ if and only if
t > θ.
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(b) Let q1 ≤ q2, t1 ≤ t2. If q1u+ t1 ≤ θ, then P (q1, t1) = ∞ and the statement thus holds.

So suppose that q1u+ t1 > θ. Then the n-th partition function of f̃q2,t2 satisfies

Zn(f̃q2,t2) =
∑

ω∈En
A

exp
(
sup
τ∈[ω]

Snf̃q2,t2(τ)
)

=
∑

ω∈En
A

sup
τ∈[ω]

exp
(
Snf̃q2,t2(τ)

)

=
∑

ω∈En
A

sup
ρ∈E∞A :Aωnρ1=1

(
exp

(
Sn(q2ψ̃(ωρ))

)
|ϕ′ω(π(ρ))|q2u+t2

)

≤
∑

ω∈En
A

sup
τ∈[ω]

(
exp

(
Sn(q2ψ̃)(τ)

))
‖ϕ′ω‖q2u+t2

≤
∑

ω∈En
A

sup
τ∈[ω]

(
exp

(
Sn(q1ψ̃)(τ) + Sn((q2 − q1)ψ̃)(τ)

))
‖ϕ′ω‖q1u+t1‖ϕ′ω‖(q2−q1)u+(t2−t1)

≤ sn[(q2−q1)u+(t2−t1)]Kq1u+t1en(q2−q1) supΨ
∑

ω∈En
A

sup
τ∈[ω]

exp
(
Sn(q1ψ̃)(τ)

)
inf

x∈Xt(ω)

|ϕ′ω(x)|q1u+t1

≤ en(q2−q1) supΨsn[(q2−q1)u+(t2−t1)]Kq1u+t1
∑

ω∈En
A

sup
ρ∈E∞A :Aωnρ1=1

(
exp

(
Sn(q1ψ̃)(ωρ)

)
|ϕ′ω(π(ρ))|q1u+t1

)
= en(q2−q1) supΨsn[(q2−q1)u+(t2−t1)]Kq1u+t1Zn(f̃q1,t1).

Therefore

P (q2, t2) = lim
n→∞

1

n
logZn(f̃q,t2)

≤ (q2 − q1) sup Ψ + [(q2 − q1)u+ (t2 − t1)] log s+ lim
n→∞

1

n
logZn(f̃q1,t1)

= (q2 − q1) sup Ψ + [(q2 − q1)u+ (t2 − t1)] log s+ P (q1, t1).
(3.3)

Part (b) follows immediately.

(c) Letting q1 = q2 = q and t1 < t2 in (3.3) gives (c).

(d) This also follows from (3.3) by setting q1 = q2 = q, t1 > θ and t2 = t and letting t→∞.

(e) Let t > θ − qu. Then

Zn(f̃q,t) ≥
∑

ω∈En
A

exp(−nq inf Ψ)K−(qu+t)‖ϕ′ω‖qu+t

= exp(−nq inf Ψ)K−(qu+t)
∑

ω∈En
A

‖ϕ′ω‖qu+t.

Therefore
P (q, t) ≥ −q inf Ψ + P

(
(qu+ t)Log

)
= −q inf Ψ + P (qu+ t).
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Thus,

lim
t→(θ−qu)+

P (q, t) ≥ −q inf Ψ + lim
t→(θ−qu)+

P (qu+ t) = −q inf Ψ + P (θ) = ∞

since S is cofinitely regular.

(f) This follows from Proposition 2.6.13 in [9] and the fact that −χµ̃q,t =
∫
ζ̃ dµ̃q,t > −∞

whenever qu+ t > θ by a calculation similar to (3.1).

(g) This follows immediately from Proposition 2.6.14 in [9].

Observe that in the proof of part (e) of the above theorem P (θ) ≥ q inf Ψ suffices to
guarantee the existence of a zero for the pressure function t 7→ P (q, t). The assumption of
cofinite regularity on S ensures that the pressure function t 7→ P (q, t) has a zero for every
q ∈ IR.

Corollary 3.2. For all q ∈ IR there exists a unique T (q) ∈ (θ−qu,∞) such that P (q, T (q)) =
0. The function T (q) is called the temperature function.

In order to allege notation, let

f̃q = f̃q,T (q), Fq = Fq,T (q), m̃q = m̃f̃q,T (q)
, mq = mFq,T (q)

, µ̃q = µ̃f̃q,T (q)
, µq = µFq,T (q)

.

Now, let q ∈ IR. Recall that ζ̃ ∈ L1(µ̃q) and thus f̃ ∈ L1(µ̃q). Thereafter, let

α(q) =

∫
f̃ dµ̃q

−χµ̃q(σ)
=

∫
f̃ dµ̃q∫
ζ̃ dµ̃q

.

By the variational principle for pressure (cf. Theorems 2.1.6–2.1.8 in [9]), note that∫
f̃ dµ̃q ≤ P (f̃)− hµ̃q(σ) = −hµ̃q(σ) ≤ 0. (3.4)

Hence α(q) ≥ 0. Moreover,

α(q) ≤
∫
|ψ̃ + uζ̃| dµ̃q∫
|ζ̃| dµ̃q

≤ u+

∫
|ψ̃| dµ̃q∫
|ζ̃| dµ̃q

≤ u+
‖Ψ‖
− log s

.

Thus, 0 ≤ α(q) <∞.

Finally, we study some basic properties of the temperature function T (q).

Theorem 3.3. The temperature function q 7→ T (q) exhibits the following properties.

(a) The function T : IR→ IR is real-analytic;
(b) T (0) = HD(J) while T (1) = 0;
(c) T ′(q) = −α(q) < 0 for all q ∈ IR;
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(d) The function q 7→ T (q), q ∈ IR, is convex, meaning that T ′′(q) ≥ 0 for all q ∈ IR. This
function is not strictly convex if and only if µ̃f̃ is equal to µ̃−HD(J)ζ̃.

Proof. (a) By Proposition 2.6.13 in [9], ∂P
∂t

(q, t) =
∫
ζ̃ dµ̃q,t = −χµ̃q,t(σ) < 0 for every

(q, t) ∈ IR2 such that qu+ t > θ. In particular, this is true for all pairs (q, T (q)). Since T (q)
is uniquely determined by the condition P (q, T (q)) = 0, it follows from Theorem 2.6.12 in [9]
and the implicit function theorem that T is real-analytic on IR.

(b) Since S is regular, we have P (HD(J)Log) = 0, which means that T (0) = HD(J).

Moreover, since f̃1,0 = f̃ and P (F ) = P (f̃) = 0 by assumption, we deduce that P (1, 0) =

P (f̃1,0) = P (f̃) = 0, and from the uniqueness of T (1) it follows that T (1) = 0.

(c) It follows from the fact that P (q, T (q)) = 0 for all q ∈ IR and from Proposition 2.6.13
in [9] that

0 =
dP

dq
(q, T (q)) =

∂P

∂q
(q, T (q)) +

∂P

∂t
(q, T (q)) · T ′(q) =

∫
f̃ dµ̃q − χµ̃q(σ)T ′(q).

Hence

T ′(q) = −
∫
f̃ dµ̃q

−χµ̃q(σ)
= −α(q).

Having already observed that α(q) ≥ 0, we thus know that T ′(q) ≤ 0. In order to prove that

T ′(q) < 0, we need to show that
∫
f̃ dµ̃q 6= 0. But since

∫
f̃ dµ̃q ≤ −hµ̃q(σ) ≤ 0 by (3.4), it

suffices to show that hµ̃q(σ) > 0. This follows immediately from Theorem 2.5.2 in [9].
(d) Lemma 4.9.5 in [9] (with ∆1 replaced by IR) and its proof carry over to the current

setting without any change.

4. Multifractal analysis of the conformal measure mF over a subset of J

Let S = {ϕe : Xt(e) → Xi(e) | e ∈ E} be a cofinitely regular CGDMS satisfying SOSC
and having an underlying edge incidence matrix A which is finitely primitive. Let θ be the
finiteness parameter of S. Let also F be a family of functions of the form F = Ψ+uLog such
that P (F ) = 0, where Ψ is a bounded Hölder family of functions and u > θ.

We shall now develop the multifractal analysis of the conformal measure mF (or equiva-
lently, the invariant measure µF ) associated to the family F . We shall conduct this analysis
by means of balls and we shall restrict ourselves to a subset Jr of the limit set J of S. As we
shall see later, Jr is often a fairly large subset of J . By definition, Jr is the set of points of J
which are coded by the set of infinite admissible words

E∞
r =

{
ω ∈ E∞

A

∣∣∣ lim sup
n→∞

dist
(
π(σnω), ∂Xi(σnω)

)
> 0

}
.

The words in this set code points of the limit set that behave tamely when a multifractal
analysis is carried out using balls, for infinitely many of their iterates are positively separated
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from the boundary of the phase space. The conformality of the measure mF can then be used
at those iterates to estimate the local dimension of mF from above. Before going any further,
we observe that E∞

r is a set of full measure.

Lemma 4.1. For every ergodic, σ-invariant Borel probability measure µ̃ on E∞
A with supp µ̃ =

E∞
A , we have µ̃(E∞

r ) = 1.

Proof. Let µ̃ be an ergodic, σ-invariant Borel probability measure on E∞
A with supp µ̃ =

E∞
A . Observe that E∞

r is completely σ-invariant, that is, σ−1(E∞
r ) = E∞

r = σ(E∞
r ). Thus, by

ergodicity of µ̃, we have that µ̃(E∞
r ) is 0 or 1. We shall now show that this latter possibility

always prevails. Since S satisfies SOSC, there exists x ∈ Jv∩Int(Xv) for some v ∈ V . Let ω ∈
E∞

A be such that π(ω) = x. Let also 0 < r < dist(x, ∂Xv). Note that for any τ ∈ E∗
A, we have

π([τ ]) ⊂ ϕτ (Xt(τ)). Since ϕω|k(Xt(ωk)) ⊂ B(π(ω), r) = B(x, r) for all k ∈ IN large enough, we
obtain that [ω|k] ⊂ π−1(B(x, r)) for some k ∈ IN . Then µ̃(π−1(B(x, r))) ≥ µ̃([ω|k]) > 0 since
supp µ̃ = E∞

A . It follows from Birkhoff’s Ergodic Theorem that the set of infinite admissible
words whose iterates’ images visit infinitely many times the ball B(x, r) has measure 1, that
is,

µ̃
({
τ ∈ E∞

A

∣∣∣σnτ ∈ π−1(B(x, r)) for infinitely many n’s
})

= 1.

Therefore µ̃(E∞
r ) = 1. (The same conclusion can be drawn by means of Poincaré’s Recurrence

Theorem.)

This lemma tells us that µ̃f̃ (E
∞
r ) = 1 and µ̃f̃q,t

(E∞
r ) = 1 for all (q, t) ∈ IR2 such that

qu + t > θ. In particular, µ̃q(E
∞
r ) = 1 for all q ∈ IR. This implies immediately that

µF (Jr) = µ̃f̃ ◦ π−1(π(E∞
r )) = 1, that is, the set E∞

r is a set of full µF -measure. Similarly,

µFq,t(Jr) = 1 for all (q, t) ∈ IR2 such that qu+ t > θ. In particular, µq(Jr) = 1 for all q ∈ IR.

In fact, Jr contains a rich family of subsets of full measure. To define these subsets, we
proceed as follows. For every ω ∈ E∞

A and r ≥ 0, let {nj(ω, r)} be the increasing sequence
of all positive integers n such that σnω ∈ π−1(Xi(σnω)\B(∂Xi(σnω), r)). This sequence may be
empty, non-empty and finite, or infinite depending on ω and r. However, for every ω ∈ E∞

r

the sequence {nj(ω, r)} is infinite for every 0 ≤ r < rmax(ω), where

rmax(ω) := lim sup
n→∞

dist
(
π(σnω), ∂Xi(σnω)

)
> 0.

Now, for every R ≥ 0 define the completely invariant set

E∞
rr (R) :=

{
ω ∈ E∞

r |R < rmax(ω) and lim
j→∞

Snj+1(ω,R)ζ̃(ω)− Snj(ω,R)ζ̃(ω)

Snj(ω,R)ζ̃(ω)
= 0

}
.

We claim that these subsets of E∞
r have all full measure.

Lemma 4.2. For every R ≥ 0 small enough, we have that µ̃(E∞
rr (R)) = 1 for all ergodic, σ-

invariant Borel probability measure µ̃ on E∞
A with supp µ̃ = E∞

A and such that
∫
ζ̃ dµ̃ > −∞.
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Proof. Let 0 ≤ R < D, where D = supx∈J dist(x, ∂X) := supv∈V supx∈Jv
dist(x, ∂Xv).

SOSC guarantees that D > 0. Let µ̃ be an ergodic, σ-invariant Borel probability measure
on E∞

A with supp µ̃ = E∞
A and such that

∫
ζ̃ dµ̃ > −∞. Since E∞

rr (R) is completely σ-
invariant, the ergodicity of µ̃ forces µ̃(E∞

rr (R)) to equal 0 or 1. We shall now prove that this
latter possibility always prevails. Since 0 ≤ R < D, there is x ∈ Jv\B(∂Xv, (R + D)/2) for
some v ∈ V . Let ω ∈ E∞

A be such that π(ω) = x. Then there is some k ∈ IN such that
π([ω|k]) ⊂ ϕω|k(Xt(ωk)) ⊂ B(π(ω), (D − R)/2) = B(x, (D − R)/2), or equivalently [ω|k] ⊂
π−1B(x, (D −R)/2). Then

µ̃
(
π−1(Xv\B(∂Xv, R))

)
≥ µ̃

(
π−1B(x, (D −R)/2)

)
≥ µ̃([ω|k]) > 0

since supp µ̃ = E∞
A . Applying Birkhoff’s Ergodic Theorem twice (once with the characteristic

function of the set π−1(Xv\B(∂Xv, R)) and once with the potential function ζ̃), we obtain
that the set{

ω ∈ E∞
r |R < rmax(ω), lim

j→∞

nj+1(ω,R)

nj(ω,R)
= 1 and lim

j→∞

Snj(ω,R)ζ̃(ω)

nj(ω,R)
=

∫
ζ̃ dµ̃ = −χµ̃(σ)

}
has measure 1. Writing nj instead of nj(ω,R) to allege notation, we have for every ω in this
set that

lim
j→∞

Snj+1
ζ̃(ω)− Snj

ζ̃(ω)

Snj
ζ̃(ω)

= lim
j→∞

nj+1

nj

1
nj+1

(
Snj+1

ζ̃(ω)− Snj
ζ̃(ω)

)
1
nj
Snj

ζ̃(ω)

= lim
j→∞

1
nj+1

Snj+1
ζ̃(ω)− nj

nj+1
· 1

nj
Snj

ζ̃(ω)

1
nj
Snj

ζ̃(ω)

=
−χµ̃(σ)− 1 · (−χµ̃(σ))

−χµ̃(σ)
= 0.

It follows immediately that µ̃(E∞
rr (R)) = 1.

This lemma reveals that µ̃f̃ (E
∞
rr (R)) = 1 and µ̃f̃q,t

(E∞
rr (R)) = 1 for all (q, t) ∈ IR2 such

that qu + t > θ. In particular, µ̃q(E
∞
rr (R)) = 1 for all q ∈ IR. This implies immediately

that µF (π(E∞
rr (R))) = 1, that is, the set E∞

rr (R) is a set of full µF -measure for all R ∈ IR.
Consequently, µFq,t(π(E∞

rr (R))) = 1 for all (q, t) ∈ IR2 such that qu + t > θ. In particular,
µq(π(E∞

rr (R))) = 1 for all q ∈ IR.

As an immediate corollary, we obtain that the completely invariant set

E∞
rr =

⋃
R>0

E∞
rr (R)

is a set of full measure.

Corollary 4.3. For every ergodic, σ-invariant Borel probability measure µ̃ on E∞
A with

supp µ̃ = E∞
A and such that

∫
ζ̃ dµ̃ > −∞, we have µ̃(E∞

rr ) = 1.
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We now recall a few basic definitions from multifractal analysis.

Let µ be a Borel probability measure on X. The pointwise or local dimension dµ(x) of µ
at x ∈ X is the power law behaviour (if any) of µ(B(x, r)) for small r > 0, that is,

dµ(x) = lim
r→0

log µ(B(x, r))

log r
.

We further define the lower and upper dimensions of µ at x ∈ X by

dµ(x) = lim inf
n→∞

log µ(B(x, r))

log r

and

dµ(x) = lim sup
n→∞

log µ(B(x, r))

log r
,

respectively. Denote the set of points of Jr at which the local dimension of a measure µ is
equal to α by

Jr,µ(α) = {x ∈ Jr | dµ(x) = α}.
Denote the Hausforff dimension of Jr,µ(α) by

fr,µ(α) = HD(Jr,µ(α)).

Now for every α ≥ 0, let

E∞
r (α) =

{
ω ∈ E∞

r : lim
n→∞

Snf̃(ω)

Snζ̃(ω)
= α

}
.

We shall now prove that for every q ∈ IR the measure µq confers full measure to the set of
points of Jr where the local dimension of the measure mF is α(q).

Theorem 4.4. The following statements hold.

(a) For every α ≥ 0, we have π(E∞
r (α) ∩ E∞

rr ) ⊂ Jr,mF
(α);

(b) µ̃q(E
∞
r (α(q)) ∩ E∞

rr ) = 1 for all q ∈ IR;
(c) µq(Jr,mF

(α(q))) = 1 for all q ∈ IR.

Proof. (a) Let x ∈ π(E∞
r (α) ∩ E∞

rr ). Then there is some ω ∈ E∞
r (α) ∩ E∞

rr such that
π(ω) = x. Therefore ω ∈ E∞

rr (R) for some 0 < R < minv∈V dist(Xv, ∂Wv). Let {nj}j∈IN :=
{nj(ω,R)}j∈IN be the increasing sequence of all n’s such that π(σnω) ∈ Xt(ωn)\B(∂Xt(ωn), R).
Let 0 < r ≤ K−1R|ϕ′ω|n1

(π(σn1ω))|. Let j ∈ IN be the unique natural number so that

K−1R|ϕ′ω|nj+1
(π(σnj+1ω))| < r ≤ K−1R|ϕ′ω|nj

(π(σnjω))|.

Since B(π(σnjω), R) ⊂ Wt(ωnj ), the conformality of the generators of the system ensures that

B(x, r) ⊂ B
(
π(ω), K−1R|ϕ′ω|nj

(π(σnjω))|
)
⊂ ϕω|nj

(
B(π(σnjω), R)

)
,
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where the last inclusion follows from relation (4.22) in [9]. Moreover, every y ∈ Jt(ωnj ) admits

a τ ∈ [ω|nj
] such that y = π(σnjτ), and for such y and τ we have Sω|nj

F (y) = Snj
f̃(τ). The

conformality of mF , the fact that B(π(σnjω), R) ⊂ Int(Xt(ωnj )), and the OSC then give

mF (B(x, r)) ≤ mF

(
ϕω|nj

(B(π(σnjω), R))
)

≤ mF

(
ϕω|nj

(Int(Xt(ωnj )))
)

= mF

(
ϕω|nj

(Int(Xt(ωnj ))) ∩ Ji(ω)

)
= mF

(
ϕω|nj

(
Int(Xt(ωnj )) ∩ Jt(ωnj )

))
≤ exp

(
sup

y∈Int(Xt(ωnj ))∩Jt(ωnj )

Sω|nj
F (y)

)
mF

(
Int(Xt(ωnj )) ∩ Jt(ωnj )

)
≤ exp

(
sup

τ∈[ω|nj ]

Snj
f̃(τ)

)
≤ B(f̃) exp

(
Snj

f̃(ω)
)
,

(4.1)

where B(f̃) is a constant of bounded variation for f̃ (see the bounded variation principle for
Hölder continuous potentials, Lemma 2.3.1 in [9]).

On the other hand, the conformality of the generators of the system guarantees that

B(x, r) ⊃ B
(
π(ω), K−1R|ϕ′ω|nj+1

(π(σnj+1ω))|
)
⊃ ϕω|nj+1

(
B(π(σnj+1ω), K−2R)

)
.

Moreover, every y ∈ Jt(ωnj+1 ) admits a τ ∈ [ω|nj+1
] such that y = π(σnj+1τ), and for such y

and τ we have Sω|nj+1
F (y) = Snj+1

f̃(τ). Then the conformality of the measure mF leads to

mF (B(x, r)) ≥ mF

(
ϕω|nj+1

(B(π(σnj+1ω), K−2R))
)

≥ mF

(
ϕω|nj+1

(
B(π(σnj+1ω), K−2R) ∩ Jt(ωnj+1 )

))
≥ exp

(
inf

y∈Jt(ωnj+1)

Sω|nj+1
F (y)

)
mF

(
B(π(σnj+1ω), K−2R) ∩ Jt(ωnj+1 )

)
≥ exp

(
inf

τ∈[ω|nj+1 ]
Snj+1

f̃(τ)
)
mF

(
B(π(σnj+1ω), K−2R)

)
≥ B(f̃) exp(Snj+1

f̃(ω)) MF (K−2R)

= MF (K−2R)B(f̃) exp(Snj+1
f̃(ω)),

(4.2)

where
MF (a) = inf

y∈J
mF (B(y, a)) > 0

and B(f̃) is a constant of bounded variation for f̃ (see the bounded variation principle for
Hölder continuous potentials, Lemma 2.3.1 in [9]).
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From the definition of nj, we also have that

log(K−1R) + log |ϕ′ω|nj+1
(π(σnj+1ω))| < log r ≤ log(K−1R) + log |ϕ′ω|nj

(π(σnjω))| < 0.
(4.3)

As µF and mF are boundedly equivalent, we deduce from (4.2) and (4.3) that

dmF
(x) = lim

r→0

logmF (B(x, r))

log r
≤ lim

j→∞

Snj+1
f̃(ω) + log(MF (K−2R)B(f̃))

log(K−1R) + log |ϕ′ω|nj
(π(σnjω))|

= lim
j→∞

Snj+1
f̃(ω) + log(MF (K−2R)B(f̃))

log(K−1R) + Snj
ζ̃(ω)

= lim
j→∞

Snj+1 f̃(ω)

Snj+1 ζ̃(ω)
+ log(MF (K−2R)B(f̃))

Snj+1 ζ̃(ω)

log(K−1R)

Snj+1 ζ̃(ω)
+

Snj ζ̃(ω)

Snj+1 ζ̃(ω)

= lim
j→∞

Snj+1 f̃(ω)

Snj+1 ζ̃(ω)
+ log(MF (K−2R)B(f̃))

Snj+1 ζ̃(ω)

log(K−1R)

Snj+1 ζ̃(ω)
+

(
1 +

(Snj+1−Snj )ζ̃(ω)

Snj ζ̃(ω)

)−1

=
α+ 0

0 + (1 + 0)−1
= α

since ω ∈ E∞
r (α) ∩ E∞

rr (R).

Similarly, we deduce from (4.1) and (4.3) that

dmF
(x) ≥ lim

j→∞

Snj
f̃(ω) + logB(f̃)

log(K−1R) + log |ϕ′ω|nj+1
(π(σnj+1ω))|

= α.

Hence dmF
(x) = α. This completes the proof of (a).

(b) Let q ∈ IR. According to Birkhoff’s Ergodic Theorem and Corollary 4.3, there exists
Eq ⊂ E∞

rr such that µ̃q(Eq) = 1 and so that for all ω ∈ Eq we have

lim
n→∞

1

n
Snζ̃(ω) =

∫
ζ̃dµ̃q

and

lim
n→∞

1

n
Snf̃(ω) =

∫
f̃dµ̃q.

Therefore, for all ω ∈ Eq we get

lim
n→∞

Snf̃(ω)

Snζ̃(ω)
=

∫
f̃dµ̃q∫
ζ̃dµ̃q

= α(q).
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Hence Eq ⊂ E∞
r (α(q)) ∩ E∞

rr and thus µ̃q(E
∞
r (α(q)) ∩ E∞

rr ) ≥ µ̃q(Eq) = 1.

(c) Let q ∈ IR. Using part (a) with α = α(q) and part (b), we deduce that

µq

(
Jr,mF

(α(q))
)
≥ µ̃q ◦ π−1

(
π(E∞

r (α(q)) ∩ E∞
rr )

)
≥ µ̃q

(
E∞

r (α(q)) ∩ E∞
rr

)
= 1.

Let us now remind the reader about the Legendre transform. Let k be a strictly convex
function on an interval I (hence k′′ > 0 wherever this second derivative exists). The Legendre
transform of k is the function l defined by l(p) = max{p x − k(x)} wherever the maximum
exists. It can be proved that the domain of l is either a point, an interval or a half-line. It can
further be shown that l is strictly convex and that the Legendre transform is involutive. We
then say that the functions k and l form a Legendre transform pair. The following theorem
(see [16]) gives a useful characterization of a Legendre transform pair.

Theorem 4.5. Two strictly convex differentiable functions k and l form a Legendre transform
pair if and only if l(−k′(q)) = k(q)− qk′(q).

We shall now prove that fr,mF
(α) and T (q) form a Legendre transform pair. Recall that

T ′(q) = −α(q) by Theorem 3.3.

Theorem 4.6. For every q ∈ IR we have fr,mF
(α(q)) = qα(q) + T (q). In other terms,

fr,mF
(−T ′(q)) = T (q)− qT ′(q).

Proof. Using Theorem 4.4(a,b), Theorem 4.4.2 in [9], Theorem 2.2.9 in [9] which guarantees

that µ̃q is an (in fact, the unique) equilibrium state for f̃q, and the fact that P (q, T (q)) =

P (Fq) = P (f̃q) = 0 by definition of the temperature function T (q) in Corollary 3.2, we obtain

fr,mF
(α(q)) = HD(Jr,mF

(α(q))) ≥ HD(π(E∞
r (α(q)) ∩ E∞

rr )) ≥ HD(µ̃q ◦ π−1)

=
hµ̃q(σ)

χµ̃q(σ)
=
P (f̃q)−

∫
f̃q dµ̃q

χµ̃q(σ)
=
−

∫
f̃q dµ̃q

−
∫
ζ̃ dµ̃q

=

∫
(qf̃ + T (q)ζ̃) dµ̃q∫

ζ̃ dµ̃q

= q

∫
f̃ dµ̃q∫
ζ̃ dµ̃q

+ T (q) = qα(q) + T (q).

To prove the other inequality, fix x ∈ Jr,mF
(α(q)). Then there is ω ∈ E∞

r such that
π(ω) = x. Let 0 < R < min{K−1, rmax(ω)}. Let also {nj}j∈IN be any subsequence of the
increasing sequence {nj(ω,R)} of all n’s such that π(σnω) ∈ Xt(ωn)\B(∂Xt(ωn), R). For every
n ∈ IN we have

ϕω|n

(
B(π(σnω), R)

)
⊂ B

(
π(ω), KR|ϕ′ω|n(π(σnω))|

)
.
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Like (4.2), the conformality of mq and the bounded variation principle for f̃q give

mq

(
B(x,KR|ϕ′ω|n(π(σnω))|)

)
≥ mq

(
ϕω|n

(
B(π(σnω), R) ∩ Jt(ωn)

))
≥ exp

(
inf

τ∈[ω|n]
Snf̃q(τ)

)
mq

(
B(π(σnω), R)

)
≥Mmq(R)B(f̃q) exp

(
Snf̃q(ω)

) (4.4)

where B(f̃q) is a constant of bounded variation (see Lemma 2.3.1 in [9]). Hence

logmq

(
B(x,KR|ϕ′ω|n(π(σnω))|)

)
log(KR|ϕ′ω|n(π(σnω))|)

≤
log(Mmq(R)B(f̃q)) + Snf̃q(ω)

log(KR) + log |ϕ′ω|n(π(σnω))|

=
log(Mmq(R)B(f̃q)) + qSnf̃(ω) + T (q)Snζ̃(ω)

log(KR) + Snζ̃(ω)

=

log(Mmq (R)B(f̃q))

Snζ̃(ω)
+ q Snf̃(ω)

Snζ̃(ω)
+ T (q)

log(KR)

Snζ̃(ω)
+ 1

.

(4.5)

(So far the estimates are valid for all n ∈ IN .) Like (4.1), every y ∈ Jt(ωnj ) admits a τ ∈ [ω|nj
]

such that y = π(σnjτ), and for such y and τ we have Sω|nj
F (y) = Snj

f̃(τ). The conformality

of mF , the fact that B(π(σnjω), R) ⊂ Int(Xt(ωnj )), and the OSC then give

mF

(
B(x,K−1R|ϕ′ω|nj

(π(σnjω))|)
)

≤ mF

(
ϕω|nj

(B(π(σnjω), R))
)

≤ mF

(
ϕω|nj

(Int(Xt(ωnj )))
)

= mF

(
ϕω|nj

(Int(Xt(ωnj ))) ∩ Ji(ω)

)
= mF

(
ϕω|nj

(
Int(Xt(ωnj )) ∩ Jt(ωnj )

))
≤ exp

(
sup

y∈Int(Xt(ωnj ))∩Jt(ωnj )

Sω|nj
F (y)

)
mF

(
Int(Xt(ωnj )) ∩ Jt(ωnj )

)
≤ exp

(
sup

τ∈[ω|nj ]

Snj
f̃(τ)

)
≤ B(f̃) exp

(
Snj

f̃(ω)
)
,

where B(f̃) is a constant of bounded variation for f̃ (see the bounded variation principle for
Hölder continuous potentials, Lemma 2.3.1 in [9]). Thus,

logmF

(
B(x,K−1R|ϕ′ω|nj

(π(σnjω))|)
)

log(K−1R|ϕ′ω|nj
(π(σnjω))|)

≥
log(B(f̃)) + Snj

f̃(ω)

log(K−1R) + Snj
ζ̃(ω)

(4.6)
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Using (4.5) and (4.6), we deduce that

dmq(x) = lim
r→0

logmq(B(x, r))

log r
≤ lim sup

j→∞

logmq

(
B(x,KR|ϕ′ω|nj

(π(σnjω))|)
)

log(KR|ϕ′ω|nj
(π(σnjω))|)

≤ lim sup
j→∞

(
q
Snj

f̃(ω)

Snj
ζ̃(ω)

+ T (q)
)

= q lim sup
j→∞

log(B(f̃)) + Snj
f̃(ω)

log(K−1R) + Snj
ζ̃(ω)

+ T (q)

≤ q lim sup
j→∞

logmF

(
B(x,K−1R|ϕ′ω|nj

(π(σnjω))|)
)

log(K−1R|ϕ′ω|nj
(π(σnjω))|)

+ T (q)

= qα(q) + T (q).

As dmq(x) ≤ qα(q) + T (q) for every x ∈ Jr,mF
(α(q)), we deduce that fr,mF

(α(q)) ≤ qα(q) +
T (q).

All of the above results give us an analog of Theorem 4.9.4 in [9].

Theorem 4.7. Let S = {ϕe : Xt(e) → Xi(e) | e ∈ E} be a cofinitely regular CGDMS satisfying
SOSC and having an underlying finitely primitive edge incidence matrix A. Let θ be the
finiteness parameter of S.Suppose that hµ̃q(σ)/χµ̃(σ) > θ. Then the following statements
hold.

(a) The number dµF
(x) exists for µF -a.e. x ∈ Jr and

dµF
(x) =

∫
f̃ dµ̃f̃∫
ζ̃ dµ̃f̃

.

(b) The function T : IR → IR is real-analytic, T (0) = HD(J), and T ′(q) < 0, T ′′(q) ≥ 0
for all q ∈ IR.

(c) For every q ∈ IR, we have fr,µF
(−T ′(q)) = fr,µF

(α(q)) = qα(q)+T (q) = T (q)−qT ′(q).
That is, fr,µF

(α) and T (q) form a Legendre pair of functions.

(d) If µ̃f̃ 6= µ̃HD(J)ζ̃ or, equivalently, if f̃ and HD(J)ζ̃ are not cohomologous modulo any

constant, then the function α 7→ fr,µF
(α), α ∈ (α1, α2) is real-analytic, where the

interval (α1, α2), 0 ≤ α1 ≤ α2 ≤ ∞, is the range of −T ′(q). Otherwise, T ′(q) = HD(J)
for every q ∈ IR.

Proof. (a) Using Theorem 3.3(b), notice that µ1 = µF . Thus, by Theorem 4.4(c), we have

µF (Jr,mF
(α(1))) = 1. Since α(1) =

∫
f̃ dµ̃f̃/

∫
ζ̃ dµ̃f̃ and since the measures µF and mF are

boundedly equivalent, we hence have that

µF

(
Jr,µF

(∫
f̃ dµ̃f̃/

∫
ζ̃ dµ̃f̃

))
= 1.
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Part (b) is essentially Theorem 3.3. Part (c) corresponds to Theorem 3.3 and Theorem 4.6.
Finally, part (d) is a consequence of Lemma 4.9.5 in [9] (with ∆1 = IR) and parts (c) and (b)
of the present theorem.

5. Multifractal analysis over J

5.1. Multifractal analysis over J under the Boundary Separation Condition. If S
satisfies the Boundary Separation Condition (BSC), that is, if

dist(∂X,∪i∈Iϕi(X)) > 0,

then E∞
r = E∞

A and thus Jr = J . Thus, section 4 gives us the multifractal analysis over J .
Indeed, denoting the set of points of J at which the local dimension of a measure µ is equal
to α by Jµ(α) and the Hausforff dimension of Jµ(α) by fµ(α), Theorem 4.7 reduces to the
following.

Theorem 5.1. Let S = {ϕe : Xt(e) → Xi(e) | e ∈ E} be a cofinitely regular CGDMS satisfying
SOSC and BSC, and having an underlying finitely primitive edge incidence matrix A. Let θ be
the finiteness parameter of S.Suppose that hµ̃q(σ)/χµ̃(σ) > θ. Then the following statements
hold.

(a) The number dµF
(x) exists for µF -a.e. x ∈ J and

dµF
(x) =

∫
f̃ dµ̃f̃∫
ζ̃ dµ̃f̃

.

(b) The function T : IR → IR is real-analytic, T (0) = HD(J), and T ′(q) < 0, T ′′(q) ≥ 0
for all q ∈ IR.

(c) For every q ∈ IR, we have fµF
(−T ′(q)) = fµF

(α(q)) = qα(q) + T (q) = T (q)− qT ′(q).
That is, fµF

(α) and T (q) form a Legendre pair of functions.

(d) If µ̃f̃ 6= µ̃HD(J)ζ̃ or, equivalently, if f̃ and HD(J)ζ̃ are not cohomologous modulo any

constant, then the function α 7→ fµF
(α), α ∈ (α1, α2) is real-analytic, where the

interval (α1, α2), 0 ≤ α1 ≤ α2 ≤ ∞, is the range of −T ′(q). Otherwise, T ′(q) = HD(J)
for every q ∈ IR.

An important family of CGDMSs (in fact, conformal IFSs (CIFSs)) which satisfies the
boundary separation condition are real continued fractions with the digit 1 deleted.

Example 5.2. Let −1/4 ≤ ε < 0. Set X = [−ε, 3/4]. Let S = {ϕn : X → X |n ∈ IN\{1}},
where

ϕn(x) =
1

n+ x
.

Then S is a cofinitely regular CIFS which satisfies both the strong open set condition and the
boundary separation condition.
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5.2. Multifractal analysis over J under other conditions. We shall now prove that
fmF

(α) and T (q) form a Legendre transform pair under some conditions. Recall that T ′(q) =
−α(q) by Theorem 3.3.

Theorem 5.3. Suppose there exists a countable set J0 ⊂ J such that for every x ∈ J\J0

there are ω ∈ E∞
A with π(ω) = x, a constant C = C(x, ω) > 0, an increasing subsequence

{nj}j∈IN = {nj(x, ω)}j∈IN of natural numbers and a sequence {rnj
}j∈IN = {rnj

(x, ω)}j∈IN of
positive real numbers such that

(1) mF (B(x, rnj
)) ≤ C exp(Snj

f̃(ω)) for all j ∈ IN ;
(2) 1 > rnj

≥ C‖ϕ′ω|nj
‖ for all j ∈ IN ;

(3) limj→∞ rnj
= 0.

Then fmF
(α(q)) = qα(q) + T (q) for all q ∈ IR.

Proof. Clearly, fmF
(α(q)) ≥ fr,mF

(α(q)) = qα(q) + T (q) using Theorem 4.6. We shall
now prove the other inequality. Since J0 is countable, it is sufficient to show that dmq(x) ≤
qα(q) + T (q) for every x ∈ JmF

(α(q))\J0. Accordingly, fix x ∈ JmF
(α(q))\J0. Let ω, C,

{nj}j∈IN and {rnj
}j∈IN be as above. For every n ∈ IN we have

ϕω|n

(
B(π(σnω), R)

)
⊂ B

(
π(ω), KR|ϕ′ω|n(π(σnω))|

)
.

Like in (4.4), the conformality of mq and the bounded variation principle for f̃q give

mq

(
B(x,KR|ϕ′ω|n(π(σnω))|)

)
≥Mmq(R)B(f̃q) exp

(
Snf̃q(ω)

)
where B(f̃q) is a constant of bounded variation (see Lemma 2.3.1 in [9]). Hence, as in (4.5),

logmq

(
B(x,KR|ϕ′ω|n(π(σnω))|)

)
log(KR|ϕ′ω|n(π(σnω))|)

≤
log(Mmq (R)B(f̃q))

Snζ̃(ω)
+ q Snf̃(ω)

Snζ̃(ω)
+ T (q)

log(KR)

Snζ̃(ω)
+ 1

. (5.1)

So far the estimates are valid for all n ∈ IN . Now, by assumptions (1) and (2) we obtain for
all j ∈ IN

logmF (B(x, rnj
))

log rnj

≥
log(C) + Snj

f̃(ω)

log rnj

≥
log(C) + Snj

f̃(ω)

log(C) + log ‖ϕ′ω|nj
‖

≥
log(C) + Snj

f̃(ω)

log(C) + log |ϕ′ω|nj
(ω)|

=
log(C) + Snj

f̃(ω)

log(C) + Snj
ζ̃(ω)

.

(5.2)
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Using (5.1) and (5.2), we deduce that

dmq
(x) = lim inf

r→0

logmq(B(x, r))

log r
≤ lim sup

j→∞

logmq

(
B(x,KR|ϕ′ω|nj

(π(σnjω))|)
)

log(KR|ϕ′ω|nj
(π(σnjω))|)

≤ lim sup
j→∞

(
q
Snj

f̃(ω)

Snj
ζ̃(ω)

+ T (q)
)

= q lim sup
j→∞

log(C) + Snj
f̃(ω)

log(C) + Snj
ζ̃(ω)

+ T (q)

≤ q lim sup
j→∞

logmF (B(x, rnj
))

log rnj

+ T (q)

= qα(q) + T (q).

As dmq
(x) ≤ qα(q) + T (q) for every x ∈ JmF

(α(q))\J0 and J0 is countable, we deduce that
fmF

(α(q)) ≤ qα(q) + T (q).

In the framework of Theorem 5.3, Theorem 4.7 reduces to the following.

Theorem 5.4. Let S = {ϕe : Xt(e) → Xi(e) | e ∈ E} be a cofinitely regular CGDMS satisfying
SOSC and BSC, and having an underlying finitely primitive edge incidence matrix A. Let
θ be the finiteness parameter of S.Suppose that the conditions of Theorem 5.3 are fulfilled.
Suppose also that hµ̃q(σ)/χµ̃(σ) > θ. Then the following statements hold.

(a) The number dµF
(x) exists for µF -a.e. x ∈ Jr and

dµF
(x) =

∫
f̃ dµ̃f̃∫
ζ̃ dµ̃f̃

.

(b) The function T : IR → IR is real-analytic, T (0) = HD(J), and T ′(q) < 0, T ′′(q) ≥ 0
for all q ∈ IR.

(c) For every q ∈ IR, we have fµF
(−T ′(q)) = fµF

(α(q)) = qα(q) + T (q) = T (q)− qT ′(q).
That is, fµF

(α) and T (q) form a Legendre pair of functions.

(d) If µ̃f̃ 6= µ̃HD(J)ζ̃ or, equivalently, if f̃ and HD(J)ζ̃ are not cohomologous modulo any

constant, then the function α 7→ fµF
(α), α ∈ (α1, α2) is real-analytic, where the

interval (α1, α2), 0 ≤ α1 ≤ α2 ≤ ∞, is the range of −T ′(q). Otherwise, T ′(q) = HD(J)
for every q ∈ IR.

There are interesting families of CGDMSs (in fact, even of CIFSs) which satisfy the con-
ditions imposed in Theorem 5.3. Among others, let us mention real continued fractions over
the interval [0, 1].
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Example 5.5. Let X = [0, 1]. Let S = {ϕn : X → X |n ∈ IN}, where

ϕn(x) =
1

n+ x
.

Then S is a cofinitely regular CIFS which satisfies the SOSC and conditions (1)–(3) of The-
orem 5.3 (but not the boundary separation condition). Moreover, writing

x =
1

x1 + 1
x2+...

we note that Jr = {x ∈ [0, 1] : lim infn→∞ xn < ∞} and thus J c
r = {x ∈ [0, 1] : limn→∞ xn =

∞}.

In fact, there is a larger class of one-dimensional CIFSs for which conditions (1)–(3) of
Theorem 5.3 are fulfilled. By one-dimensional, we simply mean that X is a subinterval of IR.

Theorem 5.6. Let S = {ϕn : X → X |n ∈ IN} be a one-dimensional CIFS satisfying the
following properties.

(i) ‖ϕ′n‖ is comparable to ‖ϕ′n+1‖, that is, there exists a constant C ≥ 1 such that

C−1 ≤
‖ϕ′n+1‖
‖ϕ′n‖

≤ C, ∀ n ∈ IN.

(ii) The generators ϕn, n ∈ IN , of S either all preserve orientation (i.e. ϕ′n > 0 for all
n ∈ IN) or all reverse orientation (i.e. ϕ′n < 0 for all n ∈ IN).

(iii) Either ϕn+1 > ϕn for all n ∈ IN or ϕn+1 < ϕn for all n ∈ IN .

Then all three conditions in Theorem 5.3 are met.

Proof. It follows from the bounded distortion property and (i) that

(CK)−1 ≤ |ϕn+1(X)|
|ϕn(X)|

≤ CK, ∀ n ∈ IN. (5.3)

Moreover, a rather straightforward calculation shows that the amalgamated function ζ̃ satisfies

sup
ω,τ∈E∞A :|ω1−τ1|=1

|ζ̃(ω)− ζ̃(τ)| ≤ log(CK) := D.

Now, let

J0 =
{
π(τ)

∣∣∣σkτ = 1∞ for some k ∈ IN
}
.

Clearly, J0 is countable. Let x ∈ J\J0 and ω ∈ IN∞ such that π(ω) = x. Let nj be the j-th
letter in the word ω which is not a 1. Thus, ωnj

6= 1. Let rnj
= |ϕωnj

(X)|/(CK). Therefore

rnj
≤ min{|ϕωnj−1(X)|, |ϕωnj

(X)|, |ϕωnj +1(X)|} by (5.3) and hence

B(x, rnj
) ∩ J ⊂

ωnj +1⋃
k=ωnj−1

ϕω|nj−1k(X) ∩ J.
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Then, since P (F ) = 0,

mF

(
B(x, rnj

)
)

≤
ωnj +1∑

k=ωnj−1

mF

(
ϕω|nj−1k(X)

)

≤
ωnj +1∑

k=ωnj−1

∫
J

exp
(
Sω|nj−1kF (y)− njP (F )

)
dmF

≤
ωnj +1∑

k=ωnj−1

exp
(
sup
y∈J

Sω|nj−1kF (y)
)

=

ωnj +1∑
k=ωnj−1

exp
(

sup
τ∈[ω|nj−1k]

Snj
f̃(τ)

)

≤ B(f̃)

ωnj +1∑
k=ωnj−1

exp
(
Snj

f̃(ω|nj−1kω|∞nj+1)
)

= B(f̃)

ωnj +1∑
k=ωnj−1

exp
(
Snj−1f̃(ω|nj−1kω|∞nj+1) + f̃(kω|∞nj+1)

)

= B(f̃)

ωnj +1∑
k=ωnj−1

exp
(
Snj−1f̃(ω|nj−1kω|∞nj+1)− Snj−1f̃(ω)

)
exp

(
Snj−1f̃(ω)

)
· exp

(
f̃(kω|∞nj+1)− f̃(ω|∞nj

)
)

exp
(
f̃(ω|∞nj

)
)

≤ B(f̃)

ωnj +1∑
k=ωnj−1

B(f̃) exp
(
Snj−1f̃(ω)

)
exp(|k − ωnj

|D) exp(f̃(ω|∞nj
))

≤ 3eD(B(f̃))2 exp
(
Snj

f̃(ω)
)
.

Thus, condition (1) in Theorem 5.3 is satisfied. Note also that condition (2) is fulfilled since

rnj
=

1

CK
|ϕωnj

(X)| ≥ 1

CK2
‖ϕ′ωnj

‖.

Finally, condition (3) is obviously satisfied, as
∑

j∈IN |ϕωnj
(X)| ≤ |X| <∞ and hence rnj

→ 0.
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