ERGODIC THEORY OF PARABOLIC HORSESHOES

MARIUSZ URBANSKI AND CHRISTIAN WOLF

ABSTRACT. In this paper we develop the ergodic theory for a horseshoe map f which is uniformly
hyperbolic, except at one parabolic fixed point w and possibly also on W*(w). We call f a parabolic
horseshoe map. In order to analyze dynamical and geometric properties of such horseshoes, by mak-
ing use of induced maps, we establish, in the context of o-finite measures, an appropriate version of
the variational principle for continuous potentials on subshifts of finite type. Staying in this setting,
we propose a concept of o-finite equilibrium states (each ”old” probability equilibrium state is a o-
finite equilibrium state). We then study the unstable pressure function ¢t — P(—tlog|D f|E"]|), the
corresponding finite and o-finite equilibrium states and their associated conditional measures. The
main idea is to relate the pressure function to the pressure of an embedded parabolic iterated function
system and to apply the developed theory of the symbolic o-finite thermodynamic formalism. We
prove, in particular, an appropriate form of the Bowen-Ruelle-Manning-McCluskey formula, the exis-
tence of exactly two o-finite ergodic conservative equilibrium states for the potential —t* log |D f|E"|
(where t* denotes the unstable dimension), one of which is the Dirac §-measure supported at the
parabolic fixed point and the other being atomless. We also show that the conditional measures of
this atomless equilibrium state on unstable manifolds, are equivalent to (finite and positive) packing
measures, whereas the Hausdorff measures vanish. As an application of our results we obtain a
classification for the existence of a generalized physical measure, as well as, a criteria implying the
non-existence of an ergodic measure of maximal dimension.
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1. INTRODUCTION

1.1. Motivation.

Even mild parabolic features in one dimensional non-invertible dynamics have a profound impact on
the dynamical and geometric character of the reference dynamical systems. Our goal in this paper
is to understand whether in the case of higher dimensional systems the presence of, even weakly,
parabolic points deeply affects the dynamics and, especially the geometry of the corresponding in-
variant set. We test this issue on one of the simplest, at least in our opinion, examples of parabolic
higher dimensional systems. Namely, we introduce the concept of a parabolic horseshoe, and in-
vestigate it in detail throughout the paper. Even though parabolic horseshoes can be derived by
slightly perturbing a hyperbolic horseshoe at one of its fixed points (see Example 1 in Section 5), the
phenomena we discover differentiate promptly our parabolic system from hyperbolic ones. The main
results are stated below in Subsection 1.2. In order to perform our analysis of a parabolic horseshoe,
we develop an appropriate form of thermodynamic formalism of o-finite measures, we borrow from
the theory of parabolic iterated function systems and develop the ”parabolic” approach to study
generalized physical measures and measures of maximal dimension, existing up to our knowledge,
so far only in hyperbolic contexts.

1.2. Statement of the main results.

Let f : S — R? be a parabolic horseshoe map of smooth type and let w € S be its parabolic fixed point
(see Section 5 for the definition and details). We call the set A ={x € S: f"(x) € S for all n € Z}
the parabolic horseshoe of f. Consider the potential ¢, : A — R defined by ¢, (z) = log|D f(x)|EY|.
We define the unstable pressure function by P*(t) = P(f|A, —t¢,) : R — R, where P(f|A,.) denotes
the topological pressure with respect to the dynamical system f|A. Our first result is a Bowen-
Ruelle-Manning-McCluskey type of formula for the unstable dimension of A. It compiles results
from Theorems 7.3 and 7.4.

Theorem 1.1. Let f : S — R? be a parabolic horseshoe map of smooth type. Then the unstable
dimension t* = dimg W¥(x) N A is independent of x € A. Moreover, t* is the smallest zero of the
unstable pressure function t — P"(t) and 0 < t* < 1.

Let H;(A) and P,(A) denote the t-dimensional Hausdorff respectively packing measure of a set A.
In the case of hyperbolic horseshoes and more generally for uniformly hyperbolic sets on surfaces it
is well-known that W _(z) N A has positive and finite t"-dimensional Hausdorff measure. The next
result (see Theorem 7.5 in the text) shows that alone the occurrence of one parabolic fixed point
can cause a drastic change on this phenomenon.

Theorem 1.2. Let f : S — R? be a parabolic horseshoe map of smooth type and let x € A. Then
Hpu(W™(2)NA) =0 and 0 < Pu(W(z) N A) < 0.
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Next, we discuss results concerning the equilibrium states of the potential —t*¢,,. In particular, we
consider finite as well as o-finite equilibrium states. Let pu,, denote the Dirac J-measure supported
on the parabolic fixed point w which is clearly an equilibrium state of the potential —t“¢,,. We show
in Theorem 8.3 that there exists a unique (up to a multiplicative constant) ergodic conservative
o-finite equilibrium state s of the potential —t“¢, which is distinct from pu,,. It turns out that the
question whether psu is finite is closely related to the behavior of f near w. Let § be defined as in
equation (5.1). Roughly speaking, the exponent (5 determines the rate at which orbits starting close
to w escape from w. The following theorem compiles results from Theorems 8.1 and 8.3 in the text.

Theorem 1.3. Let f : S — R? be a parabolic horseshoe map of smooth type. Then the following are
equivalent:

(i) g is finite, in which case P" is not differentiable at t*;

(ii) #* > 28/(8 + 1).

Since t* < 1, the measure pw being finite implies that § < 1. On the other hand, by equation
(5.1), 1 4+ B is an upper bound for the maximal possible regularity of f, i.e., f is at most of class
CB8. Therefore, if f is a C?-diffeomorphism then sy« is always an infinite measure. In order to
reasonably speak about o-finite equilibrium states, we develop in Section 3 an appropriate form
of a thermodynamic formalism: variational principle (Theorem 3.2) and equilibrium states (Defini-
tion 3.3) for o-finite measures on subshifts of finite type (keep in mind that our parabolic horseshoe
is topologically conjugate to the full shift on two elements).

We now discuss two applications of our results concerning the existence of certain natural invariant
measures of f. Recall that an ergodic invariant probability measure p is called a generalized physical
measure if its basin B(u) has the same Hausdorff dimension as the stable set of A (see Section 11
and [Wo] for more details). Applying Theorem 1.3 we are able to prove that the finiteness of the
equilibrium state us is equivalent to the existence of a generalized physical measure (see Theorem
11.2). In particular, there are parabolic horseshoes having no generalized physical measure (see
Corollary 11.3). This contrasts the case of hyperbolic surface diffeomorphisms which always have a
unique generalized physical measure (see [Wo]).

Another application concerns the existence of ergodic measures of maximal dimension. Given an
invariant probability measure p, we denote by dimg p the Hausdorff dimension of u (see (12.1) for
the definition). Assume now that p is ergodic. Following [BW1] we say that u is an ergodic measure
of maximal dimension if

dimg p = supdimpg v,
14

where the supremum is taken over all ergodic invariant probability measures v. These measures have
recently been intensively studied in the context of hyperbolic diffeomorphism in [BW1]. It turns out
that for hyperbolic sets on surfaces there always exists an ergodic measure of maximal dimension.
Moreover, this measure is, in general, not unique (see the example in [Ra]). In contrast to these
results, we show in Theorem 12.4 that for certain parabolic horseshoe maps there exists no ergodic
measure of maximal dimension.
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2. SYMBOL SPACE AND THE SHIFT MAP

In this section we recall some notions from symbolic dynamics. We will discuss simultaneously one-
sided and two-sided shift maps. We denote by Z be the set of all integers and by N ={0,1,2,3,...}
be the set of all non-negative integers. Given a countable, either finite or infinite set E and a function
A:E x E — {0,1}, called and incidence matrix, we define

Ef = {(w)d>: A =1 forallne N} and Ef~ = {(w,)T2: 4

—00 WnWn4+1

:1f0ralln€Z}.

WnWn+1
We refer to either of these sets as a shift or a symbol space. In the case when we do not want to
specify the shift space or also when it is clear from the context which shift space is meant, we write
Ey4 instead of Ef or E}~. Given any s € (0,1), the space E4 can be endowed with the metric
p = ps defined by

p((wn)m (Tn)n) _ Smin{nZO: WnFETp OT w,n;«éT,n}'

Here we use the common convention that st = 0. All the metrics ps, s € (0,1) are Holder
continuously equivalent and induce (the same) Tychonoff topology on E4. It is well-known that F 4
endowed with the Tychonoff topology is compact in the case when E is a finite set. The (left) shift
map o : F4 — FE4 is defined by the formula

U((xn)n)) = (Tnt1)n-

Note that in the case of EX*, the shift map is injective and in the case of E, the shift map performs
cutting off the zero-th coordinate. Let m < n and let w = (W, Wmt1, - ,wn) € Erm+l We call
w={r€Es:7j=wjforalm<j<n},
the cylinder generated by w. If w € F4 and m < n, we define
Wy, = (Wi, Wing1, -+ wn),

and, if m = 0, we frequently write w|™ instead of w|j. For every n > 1 a n-tuple 7 of elements of
in F is said to be A-admissible provided that A,, = 1 for all pairs of consecutive elements ab in
7. The number n is then called the length of 7 and is denoted by |r|. We denote by E’; the set
of A-admissible tuples of length n. We also put E% = (J,; E’t. Denote by II : E}:_ — EX the
projection from EX_ to E;{ defined by

() 7) = (wa)g™.

—00

If D C E then we write Dy for Dy, . Let g: E4 — R be a function. Given an integer n € N we
define the n-th partition function Z, (D, g) by

Zn(D,g) = Y eXp< sup (Sng(T))),

weD? TE[W]ND 4
where
n—1
Sng = E god’
Jj=0

In the case when D = E, then we simply write Z,(g) instead of Z,(E,g). A straightforward
argument shows that the sequence (log Z,, (D, f)), ¢y is subadditive. Therefore, we can define the
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topological pressure of g with respect to the shift map o : D4 — D4 by

1 1
Pp(g) = lim —log Z,(D,g) = inf {n log Z,(D,g) :n € N} . (2.1)

n—oo N

If D = E, then we simply write P(g) instead of Pg(g). Recall from [SU] that a function g : E4 — R
is said to be finitely acceptable if it is uniformly continuous and

sup(ghe]) - inf(g|[e]) < 00

for all e € E. The following fact, which will be needed in the next section, was proven in [SUJ.

Theorem 2.1. Ifg: E4 — R is finitely acceptable, then
P(g) = sup{Pp(g)},

where the supremum is taken over all finite subsets D of E.

In the case when F = {0,1,2,...,d — 1}, where d > 2, and the incidence matrix A consists of 1s
only, we rather use the notation

¥ =10,1,2,...,d -1} ={0,1,2,....d — 1}"
and
Y ={0,1,2,...,d— 1} ={0,1,2,...,d — 1}~

Similarly as above, in the case when we do not want to specify the shift space or also when is clear
from the context which shift space is meant, we write ¥, instead of Z:{ or Zjl'_.

3. VARIATIONAL PRINCIPLE AND o-FINITE EQUILIBRIUM STATES

Let (X, A, ) be a measure space, where p is a o-finite measure. Moreover, let T': X — X be
a measurable map which is p-invariant (that is, uo T~ = pu), ergodic and conservative (see [A]
for the definitions). Consider a fixed set F' € A with pu(F) > 0. Then the first return time
T:=71p:F —{1,2,...} U{oco} given by the formula

7(z) =min{k > 1: T"(z) € F}

is finite in the complement (in F') of a set of measure zero. Therefore, the first return map Tp : F — F
given by the formula

Tp(z) =TT (z)

is well-defined p-a.e. on F. If ¢ : X — R is a measurable function, we set

7(x)—1
¢p(x)= > ¢oT!(z), z€F.
j=0

The function ¢r is Ap-measurable, where Ap is the g-algebra of all subsets of F' that belong to A.
If in addition p(F) < oo, then it is well-known (see [A] for example) that the conditional measure
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pr on F defined by pup(B) = w(B)/(F), B € Ap, is Tp-invariant. Also if ¢ is p-integrable, that is
[ |¢ldp < 400, then ¢ is pp-integrable and

_ [ ¢du
/F¢quF = uF) (3.1)

We now shall provide a short proof of the following, essentially immediate, consequence of Abramov’s
formula.

Theorem 3.1. Let p be a o-finite measure on X, and let T : X — X be an ergodic, conservative
and p-invariant map. If E and F are measurable sets with 0 < p(E), u(F') < oo, then

(B (Tr) = p(F) by (Tr).-

Proof. Put D = EUF. Obviously 0 < u(D) < +oo. Let TE and TE be the first return maps
respectively to F and F' induced by the map Tp : D — D. It follows from Abramov’s formula that

MD(E)h(/LD)E(TED) = hMD(TD) = “D(F)h(uD)F(TPQ)' (3'2)
Since up(E) = p(E)/u(D), up(F) = p(F)/u(D), Ty = TR, Ty = TL (as E,F C D), and
(up)E = pE, (kD)F = pr, we may conclude that p(E)h,, (Tg) = p(F)h,, (TF). O

We denote this common value p(F)h,,. (Tr) by h,(T) and call it the entropy of the transformation
T with respect to the invariant measure y. Assume now that 7' : X — X is a continuous self-map
of a compact metric space X and ¢ : X — R is a continuous function. Then it is a consequence of
the well-known variational principle that

up {hm + [o- P(¢))du} 0,

where P(¢) denotes the topological pressure of the potential ¢, and the supremum is taken over all
ergodic T-invariant Borel probability measures on X. It therefore follows from (3.1) and Theorem 3.1
that

sup { by () + [ (0= P(&)wdur | =0 (33)

where the supremum is taken over all ergodic T-invariant Borel probability measures on X and all
Borel sets F' C X with p(F') > 0. Denote by M the family of all ergodic, conservative, o-finite and
T-invariant Borel measures on X for which

[ 16=P@du< .
In the context of subshifts of finite type we obtain the following stronger version of the variational

principle (3.3) which now also takes o-finite measures into account.

Theorem 3.2. Suppose that E # 0 is a finite set and let A : E x E — {0,1} be an irreducible
incidence matriz. If ¢ : B4 — R is a continuous function, then

sup { by (o) + [ (0= PO)rdur 4 €3G, 0.<uF) <0 0.
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Proof. In view of (3.3) it sufficient to demonstrate that

by (o2) + [ (6= P(@))pdpr <0 (3.4)

F

for every p € Mg and every Borel set F' C E4 with 0 < wu(F) < oo. In view of (3.1) and Theorem 3.1,
given p € M7 it suffices to find at least one set F' (with pu(F) € (0,00)) for which (3.4) holds. Since
the measure p is o-finite (and non-zero) there exists a Borel set Y C E4 with p(Y') € (0,00). Again,
since u is o-finite, it is upper regular, and in consequence, there is an open set G C E4 such that
Y C G and pu(G) < oco. Since G can be represented as a countable union of cylinder sets, there
exists a cylinder [w] with p([w]) € (0,00). Since the measure p is shift-invariant, we may assume
without loss of generality that [w] is an initial cylinder, that is, wwowi ...wy for some ¢ > 0. Let
F be the set of all those p € E4 that return to [w] infinitely often under the forward iteration
of the shift map o in the one-sided case, and under both, forward and backward, iteration in the
two-sided case. Obviously u(F) € (0,00). Clearly, for every k > 1 there exists a finite initial word
p) = p(()k)pgk) : ..pgfc) € E such that 7' (k) = [p(*)] and all the words p*), k > 1, are mutually

Uk

up—q = w- Let now

incomparable. In addition, p(k)|g = w and p)|
= {p®t k> 1.

Notice that F' coincides with the set E° of all infinite concatenations (from 0 to +oo in the one-
sided case and from —oo to +0o in the two-sided case) of elements from E,. Furthermore, the map
I : F — EZ° which ascribes to each element p € F' its unique representation as an infinite word over
the alphabet E,, is a homeomorphism, and I establishes conjugacy between or : F' — F and the
full shift map o : ES® — EZ°. That is, the following diagram commutes,

F %5 F
IJ JI
gr 2, Epx

or equivalently Joor = ool. In what follows we may assume without loss of generality that P(¢) = 0
and we may treat, via the conjugacy I the function ) = ¢r as defined on the full shift space E°.
Since the function ¢ : E4 — R is continuous, the function ¢ : ES° — R is finitely acceptable. Hence,
in view of Theorem 2.1,

P(y) = sup{ Pp (1)}, (3.5)

where the supremum is taken over all finite subsets D of E,,. For every n > 1 let D,, be the (finite)
set of all those elements in E,, whose length (when treated as elements in E°) is bounded above by
n. Then I71(DS°) is a compact subset of EY, the time of the first return from I-1(D) to I~1(D°)
of every element x € I~1(DS) is equal to 7#(x) < n, and the first return map o, : I-1(DF) —
I71(D®) is continuous. Let v be an arbitrary ergodic Borel probability o,-invariant measure on
I71(D®). Then the formula

n k ‘ n k .

v(B) = | >_v O\ (7HDF) | Y v D) BN e (D)

- j=1

k=0 k=0 j=1
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defines a Borel probability o-invariant measure on E4 such that 07-1pey = v. Now apllying the
classical version of the variational principle and Abramov’s formula along with (3.1), we obtain

D(I‘l(Dg")) <hy(an) —|—/ 7,/1> dv =hy(o) +/ ¢pdv < P(¢) = 0.
1=1(Dge) Ea
Consequently, h,(cy,) + [¥dr < 0, and applying the variational principle (to the continuous map
op 2 I7Y(DP) — I71(D2)) again, we conclude that P(o,,1) < 0. It thus follows from (3.5) that
P(¢) <0. Since ¢ : E® — R is continuous and [ [¢|dyu < 400, it now follows from Theorem 2.1.7
in [MU2] that h,,.(0F) + [r¥dur < P(¢) < 0. We are done. O

Passing to o-finite equilibrium states, we start with the following:

Definition 3.3. A o-finite measure u € MG, is said to be an equilibrium state for ¢ : E4 — R
provided that for every (or equivalently at least one) Borel set FF C E4 with u(F) € (0,00), we have

b (o) + / (6 — P(6))dpr = 0.

F

We now prove the following:

Theorem 3.4. Suppose that E is a finite set, A : E x E — {0,1} is an irreducible incidence
matriz and ¢ : E;{ — R is a continuous function. Then u € M%(EX_) is an equilibrium state for
¢oll: E;r — R if and only if oIt is an equilibrium state for ¢.

Proof. Using shift invariance of the measure u, we conclude that there exists a cylinder F' C Ej such
that 0 < p(F') < co. By a direct straightforward inspection, we verify the following three formulas:

(woIl™)p = ppg-1(y o T, (3.6)
T-1(F) = Tr o 11, (3.7)

and
¢ o1 (g = ¢r o IL. (3.8)

Using (3.1) and (3.8), we obtain

/¢Fd(u oIl M) = /¢quH1(F) oIl ! = /¢F o Ildpm-1(r)
(3.9)

= /¢OHH1(F)d#H1(F)-

Denote by « the partition of F' induced by the first return time. Then « is an (even topological)
generator of o, and therefore, using (3.1), we obtain

h(uol‘rl)F(UF) = h/infl(p>°H71 (JF) = hunfl(F)OH*1(0F7 o) = h:“‘H*HF) (O'Hfl(F), H_l(a)).

Since IT-!(a) is a generator for om-1(F), we may conclude that

h(#on—l)F(UF) = huH71<F> (Unfl(F)) .
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Adding side by side this equality and (3.9), we obtain

hon-1),(0F) + /¢Fd(ﬂ ol )p = by (on-1(my) + /¢ o Ilyp-1(pydpim-1(F)-

This inequality immediately implies that p € M%(FE ] ™) is an equilibrium state for ¢oIl : Ef~ — R
if and only if o ITI™! is an equilibrium state for ¢. g

Since it is evident that two potentials cohomologous up to a constant (in the class of continuous
functions) have the same equilibrium states, the following result is an immediate consequence of
Theorem 3.4.

Theorem 3.5. If ¢ : EA+ — R and ) : EXf — R are two continuous functions such that ¢oll and ¢
are cohomologous up to a constant in the class of continuous functions on EX_, then p € MUE(EX_)
is an equilibrium state for 1 if and only if po I~ is an an equilibrium state for ¢.

4. ONE-DIMENSIONAL PARABOLIC ITERATED FUNCTION SYSTEMS

The concept of a parabolic Cantor set was introduced in [U2]. The concept of a parabolic iterated
function system was formally introduced in [MU1]. Both concepts largely overlap and the object
dealt with in this and subsequent sections belongs to this overlap. We briefly summarize here the
definition of a parabolic iterated function following [MU1] and partially adopting it to the much
more concrete setting we will need in the sequel for our applications. Let A be a compact line
segment. Suppose that we have at least two and at most finitely many C't¢ maps ¢; : A — A,
1 € I, satisfying the following conditions:

(1) (Open Set Condition) ¢;(int(A)) N ¢;(int(A)) = 0 for all 7 # j.

(2) |¢(z)] < 1 everywhere except for finitely many pairs (i,z;), ¢ € I, for which z; is the unique
fixed point of ¢; and |¢}(z;)| = 1. Such pairs and indices ¢ will be called parabolic and the
set, of parabolic indices will be denoted by . All other indices will be called hyperbolic.

(3) Vn > 1Vw = (wy,wa, - ,wy) € I" if w, is a hyperbolic index or wy,_1 # wy,, then

¢w:¢wlo¢w2~-¢wn

extends in a C'*¢ manner to an open line segment V' and maps V into itself.

(4) If i is a parabolic index, then (), ¢in(A) = {z;} and the diameters of the sets ¢;n(A)
converge to 0. a

(5) 3s <1Vn>1Vw e I"if w, is a hyperbolic index or wy,_1 # wy, then ||¢|| < s.

(6) (Bounded Distortion Property) 3K > 1Vn > 1 Vw = (w1, ,wy) € ["Ve,y € V if w, is a
hyperbolic index or w,_1 # wy,, then

|9L(y)l
|90, ()]

< K.



10 MARIUSZ URBANSKI AND CHRISTIAN WOLF

We call such a system of maps F = {¢; : i € I} a l-dimensional subparabolic iterated function
system. If Q # (), we call the system F = {¢; : i € I} a 1-dimensional parabolic iterated function
system. From now on throughout the entire section we assume the system F to be parabolic.

The Bounded Distortion Property (6) is not obvious in the 1-dimensional case. But there is a natural
easily verifiable sufficient condition for this property to hold. Indeed, it was proved in [U1] and [U2]
that condition (6) (Bounded Distortion Property) follows from all conditions (1)-(5) enlarged by the
requirement that if ¢ is a parabolic element, then the map ¢; has the following representation in a
neighborhood of the the parabolic point x;:

bi(x) = x + alz — x| + o(|z — 2/ (4.1)

with some (; > 0 and with the sign ”—" if x — x; > 0 and the sign ”4” if x — x; < 0. It was also
proven in [Ul] and [U2] that for every parabolic element ¢ and every n > 0,

_Bi+1 _1
|G ()| =< (n+1)" % and |§jn(2) — 2 < (n+1) P

outside every fixed open neighborhood of z;. In particular

_Bit1 _1
Gy (2)] = (n+1)" 5 and |@n;(2) — 2| < (n+ 1) 7

for every parabolic element ¢ and every j € I\ {i} and all n > 0. Recall that the elements of the
set 1\ Q are called hyperbolic (see condition 2). We extend this name to all the words appearing
in conditions (5) and (6). By I* we denote the set of all finite words with alphabet I and by I*
all infinite sequences with elements in /. It follows from (3) that for every hyperbolic word w,
¢(V) C V. Note that our conditions insure that ¢/(z) # 0, for all ¢ and x € V. It has been proven
in [MU1] that for all w = (wp)n>0 € I°° the intersection (1),,~ ¢w, (A) is a singleton. Furthermore,

?}L%O sup{diam(¢,(A)) :w € I*,|w| =n)} = 0.

Thus we can define the coding map « : I*° — A, defining m(w) to be the only element of the
intersection (),,~q @w, (A), and this map is uniformly continuous. The limit set J = Jz of the
system F = {¢;}ier is defined to be 7(I°°). It turns out that Jr is compact and satisfies the
following invariance property:

J = Uier¢i(J).
Consider now the system F* generated by I* defined by
Fr={opmj:n>11€Q, i#jU{¢r: kel\Q}
It immediately follows from our assumptions that the following holds.

Theorem 4.1. The system F* is a hyperbolic (though with the infinite alphabet I*) conformal
iterated function system, i.e. F* has no parabolic elements.

JF* is called the hyperbolic iterated function system associated to the parabolic system F. The limit
set generated by the system F* is denoted by J*. A proof of the following lemma can be found in
MU1].

Lemma 4.2. The limit sets J and J* of the systems F and F* respectively differ only by a countable
set. More precisely, J* C J and J \ J* is countable.
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In this paper we will only be interested in the special case when I = {0,1} and ¢g(A)N¢p1(A) = 0.
Then the projection 7 : Z; — Jg is a homeomorphism, there is a well-defined map F' : Jg — Jg,
where F(x) = ¢; ' (2) if € ¢;(A), which has a C''*¢ extension ¢; * to each interval ¢;(V), and the
projection 7 : E; — Jg establishes a canonical conjugacy between the shift map o : E; — E; and
the map F': Jr — Jr. We will frequently invoke the results proven in [MU1] and [U2] concerning
the dynamics of the map F' and the geometry of the limit set Jz called a parabolic Cantor set in
[U2].

5. PARABOLIC SMALE’S HORSESHOES

In this section we describe the main object of interest in this paper, a parabolic horseshoe of smooth
type. Let S C R? be a closed topological disk whose boundary is smooth except a finitely many
(possibly none) points. We consider a C'*¢-diffeomorphism f : S — R? onto its image having the
following properties:

(a) The intersection f(.S) N S consists of two disjoint closed topological disks Ry and Rj.

(b) The closure f(S) \ S consists of three mutually disjoint topological disks Ra, R3, Ry4.

Furthermore, it is required that there exist two 1-dimensional mutually transversal foliations W*
and W* of SU f(5) consisting of smooth connected leaves with the following properties:
(¢c) If x € R;,i=0,1,2,3,4, then the sets W*(x) N R; and W*#(x) N R; are connected.
(d) For all points z,y € R;, i =0,1,2,3,4, W"(x) " W*(y) N R; is a singleton denoted by [z, y].
(e) For every point x € R;, i = 0,1,2,3,4, the map [-,-] : W5(z) N R; x W%(x) N R; — Ry,
(y, z) — [y, 2], is a homeomorphism.
(f) For every point € R;, i = 0,1, f(W"(z) N R;) = W¥(f(x)). If f(z) € R;, j =0,1,2,3,4,
then f~H(W*(f(z)) N R;) = W*(x).

For every point x € S we denote by Eg/ ° the tangent space of W¥/5(z) at 2. We use the notation
D, s f(z) for the derivative of the map f : Wu/s(2)NS — W¥/3(f(x)); hence Dyysf(x) = Df(:r)]Eg/s
for all x € S. Let w be the fixed point of f lying in Ry. We require that the following conditions
hold:

)
) If x € S then | D, f(z)| > 1. Moreover, if z € S\ W#(w), then |D, f(x)| > 1.
(ig Dy f(w) =1.

fHz) =z xalz/"t + o|2|7) (5.1)
in a sufficiently small neighborhood of 0 with some positive constants a and # and with the
sign 7 =" if > 0 and the sign "+ if z < 0.
We call a map f : S — R? satisfying properties (a) - (j) a parabolic horseshoe map.

Remark. We note that property (j) restricts the regularity of f, namely by (5.1) the map f is at
most of class C114. In particular, if 8 < 1, then f is not twice differentiable.
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It is easy to see that for every 7 € Z; ~, the intersection

+oo
N F (&)

n=—oo

is a singleton, which we denote by II(7). The map II : Z;_ — S is a homeomorphism on its image
H(E;*), which we denote by A. Hence,

A={zeS:f™x)e S foralneN}. (5.2)
Obviously, A is a compact f-invariant set, i.e. f(A) = A = f~(A). Moreover, the map
II: E;f — A

establishes a topological conjugacy between the shift map o : E;’ I Zé" “and f: A — A, ie., the
following diagram commutes:
o

PO — X
Hl ln
A

In the sequel we will frequently identify the cylinders on the symbol space E;_ and their images
under the homeomorphism II. Given a point x € R;, i = 0,1,2, 3,4, we put
Wige(z) = W?(2) N Ri.
These sets are called local stable manifolds. Given a point x € R;, i = 0, 1,2, 3,4, we define
W (x) = W (x) N R;.
For i € {0,1} we define
Wigi(x) = W*(2) N Rig1(2),

where the symbol ”"@” denotes the addition mod(2) in the group {0,1}. Given two points x,y € f(.5)
we denote by

Hyy: W () — WH(y)
the holonomy map along local stable manifolds. Moreover, we denote by
H": f(S) - W*%w)
the holonomy map from f(S) to W*(w) along local stable manifolds, that is,
H"(z) = Hy .

We define wyp = w and pick wy € A arbitrary having the property that f(W{(w)) = W"(w;). We say
that the parabolic horseshoe f : S — R? is of smooth type if the holonomy map H* : f(S) — W% (w)
and all the holonomy maps HY, : W"(z) — W*(y) are C'*¢, and in addition, the derivative along
unstable manifolds of the map f~!o Hp , + W"(w) — W"(w) has norm less than 1 at every poiny

of W"(w) except possibly at w. Given two points x,y € f(S) we denote by
H;,y : Wlf)c(x) - Wlf)c(y)
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the holonomy map along unstable manifolds. We say that the parabolic horseshoe f : S — R? has
a Lipschitz continuous unstable foliation if all the holonomy maps H; , : W§ () — W (y) are
Lipschitz continuous with a uniform Lipschitz constant.

The following example provides a parabolic horseshoe map f : S — R? of smooth type having a
Lipschitz continuous unstable foliation. In particular, the unstable and stable manifolds in Ry and
Ry are vertical and horizontal lines respectively.

Example 1. An Almost Linear Parabolic Horseshoe Map.

Let S C R? be a unit square and let h : S — R? be a linear horseshoe map with constant contraction
rate A\g < % and constant expansion rate A\, > 2, see Figure 1. Let w = (ws,w2) be the fixed point of
h contained in Ry. Let 6 > 0 such that (wi,ws + ), (w1,ws — ) € intS. Fix constants § > 0,a > 0
and n > 1. Let ¢ : [, 0] — [~6,d] be a C'T¢-diffeomorphism satisfying the following properties:

(i) @71 (t) = Ayt £ Ayalt|?*! for t sufficiently close to 0,
and with the sign ”—" if ¢ > 0 and the sign "+ if t < 0;
(ii) A\t < @/(t) < nfor all t € [-6,8] \ {0};
(i) ¢ (—8) = ¢/(6) = 1.

Let A5 C h(S) be defined as in Figure 1, that is, As = [a1, a2] X [b1, ba], where by = wy —0,by = wa+9
and az —a; = As. We define the map g : h(S) — h(S) by

(x1,w2 + @(xa —we)) if =z € As

g9(x) = (5.3)

for all # = (w1,79) € h(S). Clearly, g is a C'T-diffeomorphism which preserves vertical and
horizontal lines in Ry U R; = S N A(S). We now define the map f = g o h. It follows immediately
from the construction that f is a parabolic horseshoe map. In particular, property (5.1) holds.
Indeed (5.1) is a consequence of the facts that the foliations W"|Ry U Ry and W*¥| Ry U R; of f are
given by vertical and horizontal lines respectively and that pry(h™! (w1, 22)) = wa + A} (22 — wo) and
pry(gH(wi, 2)) = wo + ¢~ (z2 — wo) if o is sufficiently close to wy. Here pry denotes the projection
in R? on the 2-th coordinate. Moreover, it is easy to see that f is of smooth type and has a Lipschitz
continuous unstable foliation. A simple calculation shows that

|Dsf(z)] =X and 1< |D,f(x)] <nA, forall zeA. (5.4)
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Ry |
h g
1 — bs|— —
1
1
A A @ a -

Figure 1. An Almost Linear Parabolic Horseshoe Map f = go h

Remarks.

(i) We note that the diffeomorphism f is uniquely determined on S N A(S) once we have chosen the
constants a, 3,1, 0, Ay, As, the map ¢ and h. In particular, the contraction rate Ay € (0,1/2) can be
chosen independently of a, 3,71, 9, Ay, and .

(ii) The method of construction of an almost linear parabolic horseshoe map in Example 1 can be
generalized. Namely, let h be a hyperbolic (not necessarily linear) C''*¢-horseshoe map which has
the property that h as well as h~! is of smooth type. Then we can construct analogously to Example
1 a Ctre-diffeomorphism g : h(S) — h(S) such that f = goh is a parabolic horseshoe map of smooth
type with a Lipschitz (even C1*) unstable foliation.

6. HORSESHOE AND THE ASSOCIATED PARABOLIC ITERATED FUNCTION SYSTEM

In this section we introduce for a parabolic horseshoe map an associated parabolic iterated function
system on the unstable manifold of the parabolic fixed point. The goal is to do this in such a way that
the parabolic horseshoe and the parabolic iterated function system share many ergodic-theoretical
features. Let f be a parabolic horseshoe map of smooth type. We define wyg = w and pick w; € A
arbitrary having the property that f(W}(w)) = W*(w1). We introduce the 1-dimensional iterated
function system ® on W"(w) defined by the following two maps:

gi=froHY, W' (w) > Ww) C W*w), i=0,1. (6.1)

It is easy to check that the iterated function system ® = {¢g, $1} satisfies all the requirements
(in particular (4.1)) of a 1-dimensional parabolic iterated function system introduced in Section 4
except possibly item (2) (it may happen that |¢}(w)| = 1). We shall now demonstrate that after
a C* change of the Riemannian metric on W*(w), condition (2) is also satisfied and ® = {¢o, ¢1}
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becomes a parabolic iterated function system. The following formula immediately follows from the
definition of a smooth parabolic horseshoe.

|pi(x)| < 1 for all z € W*(w) \ {w} and |¢i(w)] <1, i=0,1. (6.2)

Since ¢1(¢1(w)), po(d1(w)) # ¢1(w), there exists a closed segment T C W"(w) with the following
properties:

M = sup{max{|¢y(z)], |¢1(x)| : = € T}. (6.3)
In view of (6.2), item (a) above, and the continuity of the functions = — |¢}(z)|, |#} ()|, we conclude
that

M <1. (6.4)
Therefore there exists a C*° function p : W*(w) — (0, 1] such that
M < p(x) <1 forall z € intT (6.5)
and
p(z) =1 forall x € W*w)\T. (6.6)

Consider the Riemannian metric p(z)dr on W*(w) and let |¢'(z)|, = p(g9(x))|g' (z)|/p(x) be the
norm of the derivative of a differentiable function g : W"(w) — W"(w) calculated with respect to
the Riemannian metric p(z)dz. We shall prove the following.

Lemma 6.1. We have |¢)(x)|, < 1 for allz € W"(w)\{w}, i = 0,1, |¢p(w)|, =1 and |¢y(w)], < 1.

Proof. The equality |¢y(w)|, = 1 is immediate. Consider an arbitrary point z € int7. Then both
¢o(x),P1(z) ¢ T by (a) and (c) respectively. Thus, using (6.2)-(6.3), we obtain for i = 0,1 that

|65(2) 0 = p(¢i (@) (2)]/ p(x) = |0(2)|/p(x) < MY ()] < 1.
Next we assume that € W*(w) \ intT. Then

|05(2)]o = p(¢i(2))]¢5(2)] < (). (6.7)

So, if © # w, then it follows from (6.2) that |¢}(x)|, < |¢}(x)] < 1. Hence, we are left to con-
sider the case when x w and ¢ = 1. It then follows from (b), (6.5), (6.2) and (6.2) that

16, () (61 ()] ()| < plern(w)) < 1. -

Therefore, as long as we are dealing with the iterated function system @ itself, we may assume
without loss of generality that ® is a parabolic iterated function system and, in particular, all the
considerations from Section 4 apply.

Similarly as in the case of the horseshoe A we will frequently identify in the sequel the cylinders on
the symbol space ¥5 and their images under the homeomorphism 7 : 35 — Jp. Note that

O = (HE) o f = HY o f i Wi(w) — WH(w), i =0,1 (6.8)
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and
H" = H“|Wu(wi). (6.9)

Wi W

We first prove a preliminary result.

Lemma 6.2. For all x € S and all n > 0 we have that (H" o f)¥(x) € S for all k = 0,1,...,n if
and only if f*(x) € S for all k =0,1,...,n. In this case we have

Wiee (H" o )" (@) = Wige(f" ().
Proof. We shall prove this lemma by induction with respect to n > 0, For n = 0 there is nothing to

prove. So, take n > 1 and suppose that our lemma is true for all non-negative integers less than n.
Assume that f*(z) € S for all k=0,1,...,n. Then

(H"o f)"(w) = H"o f((H" o /)"~ (x)) € H" o f(Wite(f""(2))) € H"(Wie(f"(2))) € Wike(f"(2)),
and, in particular, (H" o f)"(x) € S. We now assume that (H% o f)¥(x) € S for all k =0,1,...,n

Thus,
fr(x) = F(f" (@) € F(Wie((H" 0 )" (2)))
C Wige(f o (H" 0 /)" H(w)) = Wi (H" o f) o (H" 0 )"~} (2))
= Wiec(H" o f)"(2)).
This implies that f"(x) € S. The desired result now follows from the induction assumption. O

For all integers n > 0 and also for n = +00 we define
n
Sy = ﬂ f_k
k=0
and .
Son=1)r"9)
k=0
Next, we prove the following.

Lemma 6.3. Ifn >0 and x € Sy, then W _(x) C S,.

Proof. For n = 0 this is obvious because W}’ (2) C S = Sy for all z € S. So, suppose that our
lemma is true for some n > 0 and fix a point € S,,+1. Then = € S,, and in view of our inductive
hypothesis, W (z) C S,. Hence, f"*1 (W (z)) is well-defined and, as f"*!(z) € S, we get that
(W () € W (f"T(x)) C S. This completes the proof. O

We recall that Jg is the limit set of the iterated function system ®. The relation between this limit
set and the horseshoe A is given by the following.

Lemma 6.4. Jo = ANW*(w).

Proof. We shall show first by induction that Jg C S, for all n > 0. Indeed, if z € Jgp, then
z € po(W*(w))Up1(W"(w)) = Wi (w) UW(w) C S =Sy and our inclusion is proved for n = 0. So,
suppose that n > 1 and that Jp C S for all k =0,1,...,n — 1. Let us consider an arbitrary point
z € Jp. We write z = (1), where 7 € I*°. Then z € Jp C Sp—1 and z = ¢, (7(c(7))). Hence,

fr(z) = "o dn(nl(o(r) = fro fH o Hy,, (n(o(r)) = f*~ ' (Hy,,, ((a(1)))).
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Since Hj,, (m(0(7))) € Wi (n(o(7))) and since w(o(7)) € Jo C Sp—1, we may conclude from
Lemma 6.3 that Hj , (w(c(7))) € Sp—1. Thus, f"(z) € S, which implies that z € S,,. Therefore, the

inductive proof is complete, and we obtain that Jp C Sys. Since also Jp C Wi (w)UW (w) C S_w,
we therefore obtain that

Jo C W) N Stoe N S_oo = WH(w) N A. (6.10)

In order to prove the opposite inclusion we consider an arbitrary point z € A N W*(w). We shall
prove by induction that there exists an infinite word 7 = r7o ... € {0} x I°°, such that for every
n >0, z= ¢;,(x) for some x € W*(w). Indeed, for n = 0 we have z = ¢y(z) and z € W*(w). So,
suppose that for some n > 1, the word 7|, = 071 72...7, has been constructed. This means that
z = ¢, (z) with some z € W*(w). As z € A, we have f"(z) € S, and, in view of Lemma 6.2,

(Ho f)"(z) € S. Using (6.8) and (6.9), we therefore obtain that z = gzﬁ;'i(z) = (H"o f)"(z) € S.
And applying the last part of Lemma 6.2 along with the fact that f"*1(z) € S, we get that

fl@)=fo(H"o [)"(2) € F(Wie(f"(2))) C Wi (f"™(2)) C S.
Moreover,
f(@) € F(SNWH(w)) = f(Wy'(w) UWT' (W) = f(Wg'(w)) U f(Wi'(w)) = W (w) U W (w1),

and thus f(z) = H% . (y) with some i € {0,1} and y € W"(w). Consequently, z = f~1o HY , (y) =
®i(y). Thus z = ¢-(¢i(y)) = ¢+i(y), and the inductive proof is complete by putting 7,11 = i. Note
that z = (1) € Jg. This gives the inclusion W*(w)NA C Jg. Combining this with (6.10) completes

the proof. O

7. TOPOLOGICAL PRESSURES, UNSTABLE DIMENSION, HAUSDORFF AND PACKING MEASURES

Let f be a parabolic horseshoe map of smooth type. Since the holonomy maps along local stable
manifolds are smooth, it follows that

t* = dimy W (w) N A = dimg W%(x) N A

is independent of x € A. We call the quantity t“ the unstable dimension of the set A. The main goal
of this section is to establish a Bowen-Ruelle-Manning-McCluskey type of formula for t“. In order to
do this we will make use of Lemma 6.4, will introduce the topological pressure of several dynamical
systems and potentials, and will apply results from the thermodynamic formalism of parabolic
iterated function systems derived in [MU1] and [U2]. First we consider different pressure functions.
For all £ > 0 let P(t) denote the pressure function associated with the iterated function system ® as
defined in Section 4 (see [MU1], [U2] for details). Moreover, we define P"(t) = P(f, —tlog|D,f|),
where P(f,—tlog|D,f]) is the ordinary topological pressure of the potential —tlog|D,f|: A — R
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with respect to the dynamical system f|A. We claim that the following diagram commutes:
A L

H | | m (7.1)
Jo Hﬁ)f Jo
that is,
H"of=(H"of)oH". (7.2)

Indeed, if x € A, then W} (x) = W (H"(x)). This implies that W} (f(x)) = W (f(H"(x))), and
therefore H"(f(z)) = H(f(H"(x))), which proves the claim. We define

P(t)=P(H"o f,~tlog|D(H" o f)|) and P(t) = P(f,—tlog|D(H" o f)| o H").

Since H* o f : Jp — Jg is the dynamical system generated by the inverses ¢, 1 and gbfl, we
immediately obtain that

P(t) = P(t), t > 0. (7.3)

We now prove the following.

Lemma 7.1. For every t > 0, we have that P“(t) = P(t).
Proof. Since the diagram (7.1) commutes, we have that
P(t) > P(t). (7.4)

for all ¢ > 0. Differentiating both sides of equation (7.2) along the unstable manifolds, we get
(DyH" o f)-Dyf =D(H"o f)o H* - D,,H". This implies that

log [D(H" o f) o H"| — log |D,.f| = log |D,H" o f| — log | D, H"],

and consequently the potentials —tlog|D(H" o f) o H"| and —tlog|D,, f| are cohomologous for all
t > 0. Hence,

P(t) = P“(t), (7.5)
and combining this along with (7.4) and (7.3), we conclude that
PY(t) > P(t). (7.6)
Now we shall prove that )
P(t) = P(t)

for all t > 0. Indeed, fix € > 0. Since all the holonomy maps between all unstable manifolds along
local stable manifolds are continuous, it is easy to see that there is 6 € (0, ) such that if x,y € W*(w)
and dyyu(y)(z,y) < 9, then

(= H () < = (7.1
for all z € W}? (x). Since the diffeomorphism f : A — A contracts on stable manifolds uniformly and

since all these manifolds are "uniformly” smooth, there exists a universal constant ¢ > 0 such that
for every y € A there exists a set I, C W7 (y), which is (n, €)-spanning set for f[yu(,) and whose
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cardinality does not exceed ce~'. Now fix E, (), a minimal (n,d)-spanning set for the dynamical
system H“ o f : Jpg — Jp. We claim that the set

E,(e) = U I,
yE€En(e)
is (n,2¢)-spanning set for the dynamical system f : A — A. Indeed, consider an arbitrary point
z € A. Since E,(¢) is (n,d)-spanning for H* o f : Jp — Jp, there is y € E,(e) such that
druop(H"(2),y) < 6. Let z = [2,y]. Equation (7.7) yields,
dy(z,z) <e.
Also, there exists a point p € I, such that d(z,p) < e. Hence, d}(z,p) < 2¢ and our claim is
proved. Let ¢ = —tlog |(H" o f)'| where 1 : J — R. Define

n—1

Su(o H") = (o H") o fI

7=0
and let

n—1
Spp = Zz/;o (H" o f)’.
j=0
Since for every z € Jp C W*(w), H"(I,) = {y} and since the diagram (7.1) commutes, we obtain

S exp(Sa(oHY)(x) = > Y exp(Su(oHY)(2) = > > exp(Snth(H"(2)))

z€E(e) yEEy, () 2€1y yEE, (e) 2€1y
= > Y exp(Sav(y) < > #Iexp(Sav(y))
yEEn(E) ZEIy yEEn(a)
<ce ! Z €$p(5n1/1(y)).
YEEn(¢)
Therefore,

N u .. 1 ~
11nH_1>£f - log Z exp(Sn (¥ o H*)(z)) < hnnilcgf - log Z exp(Snth(y)).
T€E(e) yEEn(e)

Since the lower limit on the right-hand side of this inequality converges to P(t) if € \, 0 (as the sets
E, (e) were chosen to be minimal) and since the lower limit as £ \, 0 on the left-hand side is larger
than or equal to P(t), we get that P(t) > P(t). Finally, by using (7.3), (7.5), and (7.6), we may
conclude that P(t) = P%(t). O

Combining Lemma 7.1 and Bowen’s formula proven in [U2] (compare [MU1]) provides the following.

Proposition 7.2. The unstable dimension t* of A is the first zero of the pressure function t — P(t),
t>0.

As an immediate consequence of Proposition 7.2 and Lemma 7.1 we obtain the following.
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Theorem 7.3. The unstable dimension t* of A is the smallest zero of the unstable pressure function
t— Pu(t), t > 0.

Now, let us take more fruits of the results proven in [U2]. First, Theorem 6.5 from [U2] and
Lemma 6.4 give the following.

Theorem 7.4. The unstable dimension t* € (0,1).

Remark. Tt follows from work in [DV] that if f is a C?-diffeomorphism (which in particular implies
that 8 > 1), then ¢* > 1.

Let us denote by H;(A) respectively P,(A) the t-dimensional Hausdorff respectively packing measure
of the set A. Combining Theorem 7.4, Lemma 6.4, and Theorem 6.4 of [U2] provides the following.

Theorem 7.5. Hpu (W% (2) NA) =0 and 0 < Pu(W¥(2) NA) < 0o for all z € A.
We end this section with the following result.
Theorem 7.6. The unstable pressure function t — P"(t) is real-analytic on (0,t").

Proof. Consider the hyperbolic iterated function system ®* = {¢gn1}52, associated to the system
® as in Section 4. Consider the two-parameter family Gy s of the functions

ggzl(z) =tlog|d i (2)] —s(n+1):t,s € R, n >0, z € W*w).

With the terminology of Section 3 of [MU2] (see also [U3] and [HMU], where these were introduced)
we shall prove the following.

Lemma 7.7. For allt,s € R the family Gy s is Holder continuous. For all (t,s) € R x (0,400) the
family Gy 5 is summable.

Proof. The fact that the family Gy is Holder follows immediately from the sentence located just
B+1

beneath the proof of Theorem 8.4.2 in [MU2]. Since ||¢pn|| < (n+ 1)7% (see Lemma 2.3 in [U2]),

we see that if £ € R and s > 0, then

Zexp(sup(ggzl)) = Zexp(sup(tlog |1 ()] —s(n+1): 2 € W*(w)))

n>0 n>0
_B+1
_ Zefs(nJrl)Hgbé)ant - Z(n + 1) 5 tefs(n+1)
n>0 n>0
< 400.
This precisely means that our family Gy s is summable, and we are done. 0

Let g5 : {0"1 :n > 0} — R be the amalgamated function (see [MU2], comp. [U3] and [HMU]) of
the family {ggzl o - This function is given by the formula

9t.s(T) = g4 (m(04(7))) = tlog ¢l | — s|mol, (7.8)
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where o, : {071 :n > 0 — {071 : n > 0}V is the shift map associated with the iterated function
system ®* and m, : {0"1 : n > 0} — Jg, is the corresponding canonical projection. Summability
of the family G;, proven in Lemma 7.7 precisely means summability of amalgamated function g; s.
Holder continuity of this amalgamated function follows from Lemma 7.7 and Lemma 3.1.3 from

[MU2|. The following lemma is now an immediate consequence of Theorem 2.6.12 and Proposi-
tion 3.1.4, both from [MUZ2].

Lemma 7.8. The function (t,s) — P(Gts), (t,s) € R x (0,+00) is real-analytic in both variables t
and s, where the topological pressure P(Gy ) is defined in Section 3.1 of [MU2].

We now prove the conclusion of Theorem 7.6. Since the dynamical system H“ o f : Jp — Jg is
expansive, it follows from Theorem 3.12 in [DU] that for every ¢ > 0 there exists a Borel probability
measure m; supported on Jp and such that

ma(H" o f(A)) = /A PO o f)idmy (7.9)

for all Borel sets A C Jgp having the property H" o f|4 is one-to-one. Hence,
(o)) = [ e PO dm

for i = 0,1 and E, any Borel subset of Jp. In addition, my(¢o(W*(w)) N ¢1(W*(w))) = 0 as these
sets ¢o(W*(w)) and ¢1(W"(w)) are disjoint. We therefore get by a straightforward induction that

ma(ovn1 () = [ exolah )

and

me (Gon1 (W (w)) N gguy (W (w))) = 0
for all + > 0 and all n,k > 0 with n # k. We have replaced here P(t) by P*%(t) due to Lemma 7.1
and (7.3). If now ¢t € (0,t%), then P“(t) > 0 the family G,p( is Holder and summable due to

Lemma 7.7. So, looking at the definition of G;p(;)-conformal measures, i.e. formulas (3.5) and (3.6)
from [MU2], we see that m; is a unique G p(-conformal measure and that

P(gts) = P(Gipry) =0, t € (0,t%). (7.10)
Looking at Theorem 3.2.3, Corollary 2.7.5 and Proposition 2.6.13 from [MU2] and at the formula
(7.8), we conclude that for all ¢ € (0,t%),

OP(gts ~
é;)kt,P(t) = /|To,d,ut(7) # 0, (7.11)

where [it = fig, ) is the o-invariant Gibbs state proved to exist by Corollary 2.7.5 of [MU2]. Hence,
applying formula (7.11) (also using (7.10)) the proof follows by applying Lemma 7.8 and the Implicit
Function Theorem. O
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8. EQUILIBRIUM STATES

In this section we provide a complete description of all ergodic o-finite equilibrium states of the
potential —t“¢,,, where

¢" =log|Duf[: A =R,
with respect to the dynamical system f : A — A. We start our analysis with the potential —t%d,,,
where
Gu = log |D(H" o f)| : Jo — R

with respect to the dynamical system H"o f : Jo — Jg. Let fi,, be the Dirac -measure supported on
w. Let ms be the t“-conformal measure established in (7.9) with ¢ = ¢*. We note that P(t*) = 0.
It follows from Theorem 7.2 in [U2] that there exists a unique (up to a multiplicative constant)
ergodic o-finite H" o f-invariant measure fi;u on Jg equivalent to ms. The measure iz« is ergodic

and conservative. The following necessary and sufficient condition for the measure ji;u to be finite
was established in [U2].

Theorem 8.1. The measure [izu is finite if and only if
p

4 >2—.
g+1

We shall prove the following:

Theorem 8.2. The measures iz and fi, are the only ergodic equilibrium states of the potential
—t“ ¢ with respect to the dynamical system HY o f : Jp — Jo.

Proof. Since by Lemma 3.3 and Theorem 4.3 in [U2], P(—t“¢,) = 0 and since [ —t“¢,dfi, = 0,

it follows that the Dirac d-measure [i, is an equilibrium state of the potential —t“¢,. Next, we

demonstrate that iz is also an equilibrium state. We define
dﬁltu '

(8.1)

It follows from Theorem 7.2 in [U2] that p|gnyn) =< n + 1. Since in addition myu ([om1fp]) = (n+
B4l ,
1) 7" and since

(H"o £)/(2) = 1] < (B+1)2" < (n+ 1)
for all z € [0"1[3] (so log [(H" o f)'(2)| < (n + 1)7!), we may conclude that

Now notice that 0 < iz ([1]9]) < co. In order to see that fiz is an equilibrium state for —t%e, let us
induce the map H" o f on the cylinder [1/J]. Denote figuyjo) by fir. Consider the partition o of [119]
generated by the first return time. Obviously « is a generating partition for the measure fi; and the
first return map on [1]9]. Since for fij-a.e. point 7 € [1|9] there is an infinite sequence {k,}>°; of
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positive integers such that 73, = 1, and since i1 is equivalent to mtu|[1‘8} with the Radon-Nikodym
derivative bounded away from zero and infinity, we get that

A ([71571) = 7 ([7l"]) = exp(—t"Sk, ou(7)).

But [T|§"] = a"(7) and Sk, (—t“ggu) (T)S}L(—t“i)i)(ﬂ, where o™ is the n-th refined partition with
respect to the first return map on [1|8}, S} is the j-th ergodic sum with respect to the first return map
on [1]9], and —t*¢) = (—t“qgu)“”g}. So, i (B™(7)) = exp(—t”S}li)}L(T)). Applying now Shannon-
McMillan-Breiman Theorem and Birkhoff’s Ergodic Theorem (along with the observation that fi;
is ergodic because my« is), we get that hy, + f(—t“ggi)d/ll = 0, the equality that demonstrates that
fipu is an equilibrium state for —t“g?)u.

In order to prove that fi,, and fi;« are the only ergodic conservative equilibrium states for —t“d;u,
suppose that f is an ergodic conservative equilibrium state for —t“¢,, different from fi,,. Suppose that
it has an atom. Because of ergodicity and conservativity of [i, this measure must be supported on a
periodic orbit of o containing this atom. But then f is (up to a multiplicative constant) a probability
measure, h; = 0 and [ ¢,dji > 0 since ji # fi,. Consequently, hz + [(—t"d,)dji < 0 contrary to the
fact that i is an ergodic conservative equilibrium state for —t“qgu. So, [1 is atomless, and similarly
as in the proof of Theorem 3.2, there exists an initial cylinder F, with the first coordinate equal to
1, such that i(F) € (0,00). Let a be the countable partition of F' induced by the first return time.
We shall prove the following.

Claim 1. h;,(a) < co.

Proof. Suppose on the contrary that hj,(«) = oco. It then immediately follows from Shannon-
McMillan-Breiman Theorem that

—log(fr(a™(w
g loe(ar(@ W) (8.3)
n—oo n
for fip-a.e. w € F, say w € Fy. Since i € M_,, 5 , the function |pu| = —¢y is fi-integrable, and
therefore 0 < x := [ \d;u]dﬁp < 00. Thus, by Birkhoft’s Ergodic Theorem,
1 -
lim LSFGF(w) = x (8.4)
n—oo n

for fira.e. w € F, say w € Fy. Put F3 = Fy N Fy. Then ip(F3) = 1. Since ¢; is a hyperbolic element
of our parabolic iterated function system ®, it follows from item (b) of Section 4 and the definition
of measure fi;« that for every w € F and every n > 1, fijup(a"(w)) < exp(—t“qugu(w)). Therefore,
using (8.4), we get for all w € F3 and all n > 1 large enough, that

fizep(a™(w)) > exp(—t“(x + 1)n).
Combining this and (8.3), we see that for all w € F3,
i Fr(07()
n—o0 fiyup (0 (w))

Thus fip(F3) = 0 and this contradiction finishes the proof of Claim 1. O

=0.
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Let Jl{Fl : ' — [0,1] be the inverse of the (weak) Jacobian of the measure fir with respect to the
first return map op : F' — F, i.e

ir(B) = / TV o (ow|s)  dfir
or(B)

for every Borel set B C F such that T'|p is injective. Let L;, : L'(fir) — L'(jfir) be the Perron-
Frobenius operator associated to the measure jir. The operator E,]F is given by the formula

MFg Z

T€op, L(2)
Notice that for the measure [i;« we have
- p(2) / —u
Jb ()= 2L _|(HYo z 8.5
p,tuF( ) p(O'F(Z))|( f)F( ) ( )
and this Jacobian is a continuous function. Furthermore,
T g
Lors@) = Y 2D (o p)p() " g(a) (3.6)

angl(z)
and Lj,.,9 : F' — R is continuous for every continuous function g : F' — R. In particular,
ﬁﬂtqu =P,
and this equality holds throughout the whole set F. We now shall prove the following:

Claim 2. J;;(z) = ‘][:ti (z) for fip-a.e. z € F.
Proof. Since L, (1) = 1 and since Ly, (1) = 1, applying (8.6), we get

V= [ adir = [ i 30 ()L, @5 @ )

veor(2)
— [ a2 @)k e = [ o (51 w) I die
>1+ / log (5 (@) " Ty, Jdir > 1+ / log(Jpp- (poor) |(H" o Yl )dir  &7)
=1+ [tog(pn)di + [togpdir —1* [ospoor) — 1 [ tog (" o 1)rldir
1+ [log(p, e — ¢ [ Gir

Applying Claim 1 yields, [log(Js,)diar = hj, (o). Therefore, since P(—t“q@“) = 0 and since ji is
an equilibrium state of —t“¢", we conclude that the most right-hand sided formula in (8.7) is equal

to 1. Hence, the signs ”>" appearing in (8.7) must be all equal to the ”=" sign s. As a consequence,
Jﬂ_ JWIL -iir a.e. The proof of Claim 2 is complete. O

Since 0:(A) = F for allm > 1 and all A € o”, it immediately follows from Claim 2, (8.5), (8.1), and
the Bounded Distortion Property (item (6) in Section 4), that if ip(A) > 0, then fir(A) < fypup(A).
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Thus, the measure jiF is absolutely continuous with respect to the measure fiup(A), and since the
latter is ergodic, fir = fixur. Hence, fi = [i;«, and we are done. g

Let u, be the Dirac §-measure on A supported on w. The following, main result of this section,
provides a complete description of the structure of equilibrium states of the potential —t%¢,, : A — R,
where ¢, is given by the formula

¢u(x) = log | Dy f ()], (88)
with respect to the dynamical system f: A — A.

Theorem 8.3. There are exactly two (up to a multiplicative constant) ergodic equilibrium states for
the potential —t“¢,. Namely, u, and pu. Moreover, we have pyu o (H*) ™! = [ipu.

Proof. For the purposes of this proof we denote cylinders on Jg by [T|?]+, TeTI*U E;_ U E;

Since the functions —t%¢, o H* and —t"¢,, are cohomologous with respect to the dynamical system
J A — A, it follows from Corollary 3.5 that u is an equilibrium state for —t“¢, if and only if
po (H*)~!is an equilibrium state for —t%¢,. Let us assume that

po (H')™H =vo(H")™,

where p and v are some Borel o-finite f-invariant measures on A. Then, for every cylinder [w}],
k < n, we have

V((lf]) = v(o* (WD) = vl ™) = v o (B ([l ™) = o (B (i)
= p(wlg™*) = p(wlp]).

Hence v = u. Therefore, by using that ju,, o (H*)~! = fi,,, we obtain that in order to complete the
proof it suffices to show that there exists a o-finite ergodic and conservative f-invariant measure pisu
on A such that e o (H*)™! = fizu. Indeed, since fiu({w}) = 0, fizu can be treated as a Borel o-finite
measure on Jgp \ {w}. Let V be the vector space consisting of all real-valued continuous functions
with compact support defined on A \ (H*)~!(w) and the vector subspace M of V consisting of all
functions of the form go H", where g : Jg \ {w} — R is a continuous function with compact support.
Treating /i« as a positive linear functional on M, that is fiu(go H) = [ Jo\{w} gdfipu, it follows from
Theorem 2.6.2 in [E] that fi;u can be extended to a positive linear functional uj. on V. Given any
function ¢ € V define ¢* : A\ (H*)"}(w) — R by the formula

V() = sup{¢p(y) - H"(y) = H"(z)}.

We notice that ¢* > ¢ and ¢* € M. It follows from the proof of Theorem 2.6.2 in [E] that pj. can
be constructed in such a way that

i () < i (7). (8.9)
Now suppose that {1, : A\ (H*) 1 (w) — R}, is a sequence of continuous functions uniformly
converging to the function identically equal to zero and such that there is a compact set T C
A\ (H*)"!(w) containing the supports of all continuous functions 1), n > 1. Denoting by ¥}* :
Jo \ {w} — R the unique continuous function with the property that ¢} = 1** o H", we see that the
sequence {9} *}9° | converges uniformly to zero and that for every n > 1 the topological support of
the function }* is contained in H*(T'), which is a compact subset of Jg \ {w}. It therefore follows
from (8.9) that

lim () < lim () = lim i (") < 0.
n—oo n—oo n—oo
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Replacing v, by —t, and using that —lim, o pfu(y) = lim, o piu(—1y,), we may conclude
that limy,— oo pfu (¢n) < 0. Hence, limy, o0 ptju (¢n) = 0, and it follows from Riesz’s representation
theorem that the functional p}. can be identified with a Radon measure on A\ (H*)™!(w). Now let
7€{0,1}*\ {0": n > 0}. Fix j < k with kK — j = |7| — 1. We shall prove that for every n > |j|,

a0 o ([r[5]) = fue (715, (8.10)

Indeed, since pj. is an extension of fiz«, the invariance of the measure fi;« implies that

i oo (1) = st (Bt =it [ U Bl ) = 3 s (lrlht)
l=s+n fyi=3+n
= D due(pyrle™ ) = | U Brl5TT | = e (5E))
i=i4n =it

~ —n k* 1 ~ 7|—1
= fie 0 0 ([l 1) = e (715 ).-
This proves (8.10). Now let [, be the Banach space consisting of all bounded real sequences and

let L :ls — R be a Banach limit. It follows from (8.10) that if A is a Borel subset of one of the
cylinders of the form [071|¢], ¢ > 0, then {uju 0 07 (A)}%° € I, and we can define

pn(A) = L({jah 0 07" (A)}32,). (8.11)
We shall show first that for every ¢ > 0, formula (8.11) defines a Borel finite measure on [071[¢].
Obviously, () = 0 and py is monotone since L and pj. are. Now suppose that {Bj}72, is a
sequence of mutually disjoint Borel subsets of [071|]. Since L is a bounded operator, we therefore
obtain

()l @)
:L(i{,@uog—"( ) ZL ({ppuoo™ Z“t“ By).

Thus, ue is a Borel measure on [071|{], and its finiteness follows from (8.10). Since all the sets
[091|{], ¢ > 0, are mutually disjoint, the formula

pee(B) = 3 e (B 1 [0119)
q=0
defines a Borel measure on | J;2,[071[g] = A\ (H*)"!(w). Since all the measures g ([071]3]), ¢ > 0,
are finite, pwu is a o-finite measure. We now may extend pw on the entire set A by defining
pen (H*) " (w)) = 0. Now for every 7 € {0,1}*\ {0™ : n > 0}, by using (8.11) and (8.10), we obtain
that
pen o (H")H([I6]) = paee ([716]) = L (g 0 0 " ([TIED}n0) = e ([7I6]T),

where k = |7| — 1. Therefore, pizu o (H*)™! = jizu on Jg \ {w}. Since in addition psu o (H*)"H(w) =

fipu(w), we see that
Mgw © (Hu)il = ,&t“ (812)
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on the entire set Jp. Since for every ¢ > 0 and for every Borel set A C [091]|09] we have that

o~ 1(A) c [1[9) U [07T11]2T1], we may conclude that
pn(07H(A)) = pge (0 *1( ) [L§] U™t (4) N[0t ajgt)
= g (07 (A) VLR + e (01 (A) N[00 L]E)
—L({utuoo "o (A N ) F2o) + L({ge 0 0 (07 (A) N0 1)
= L({pgu 00 ™ (07 (A) N[1F]) + pgu 0 07" (07 (A) N[0T 11FH]) 102)

= L({piu 0 0~ V(A }720) = s (4).
Since in addition, by (8.12),

e (0 () 7 (@) = pos (HY 0 0) 7 (@) = pow (00 HY) 7 ()
— o (HY) (o™ () = fige (071 (@)) = 0 = o ((H") (),

we conclude that the measure py« is o(f)-invariant. So, we are left to show that the measure
pe is ergodic and conservative. To prove ergodicity assume that £ C A is a Borel set such that
o Y(E) = FE and pu(E) > 0. Let g be the measure on A given by the formula pg(A) = pw(ANE).
We notice that pp is f-invariant (as pu is) and f~Y(E) = E. Thus, pgo (H*)~! is a shift-invariant
measure on Jg. Since for every Borel set B C Jg,

pep o (H')"H(B) = ue((H")"H(B) N E) < p(H*)"(B)) = fun(B),

we see that the measure pp o (H*)~! is absolutely continuous with respect to fizu. Invoking now the
fact that fi;u is ergodic and conservative, we conclude that pg o (H*)~! is a constant multiple of fizu.
Normalizing ji;« appropriately we may assume without loss of generality that pg o (H*)™' = fizu.
Thus, pg o (H*)™! = pu o (H*)~1, and therefore (see the first part of the proof) ug = pyu. In
particuilar, pu (A\ E) = 0. This establishes the ergodicity of the measure pu. Now, since f: A — A
is invertible, Proposition 1.2.1 in [A] yields that pu is conservative. This completes the proof. [

9. CONDITIONAL MEASURES

Suppose that (X, .A,v) is a o-finite measure space. Suppose also that A is a sub-o-algebra of A. It
easily follows from the probabilistic case that for every v-integrable function g : X — R there exists
E(g|A) : X — R, a unique expected value of g with respect to the o-algebra A, i.e. an A-measurable

function for which
/E(g\A)dV:/ng
A A

for every set A € A. Let P = Pz be the measurable partition generated by the o-algebra A. The
canonical system {v*},¢cx of v conditional measures with respect to the o-algebra A (and partition
P) is given by the following formula:

vi(BNP(x)) = E(1p|A)(x) (9-1)

for every set B € A. We note that for v-a.e. = € X the value v*(B N P(z)) is independent of
the choice of a set B’ € A with the property that B’ N P(z) = BN P(z). Since v is o-finite, it
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easily follows from Martingale’s Convergence Theorem that if {An}22, is an ascending sequence of
sub-o-algebras of A, generating A, then

E(1p[A)(x) = lim B(1p]4,) () (9.2)

for v-a.e. x € X. We now consider the o-finite measure space (A, B, ), the partition P* of A into
unstable manifolds W} (x), z € A, i = 0,1, and the o-algebra B" generated by the partition P*. In
the language of the symbol space X3~ the unstable manifolds take on the form W (v) = [v|%]-
Without confusion we will frequently use either of the two languages: symbolic or ”differentiable”.
For every n > 0 let BY be the finite o-algebra generated by the cylinders [y|°,], v € X3 ~. Obviously,
{BE}o°, is an ascendlng sequence of sub-o-algebras generating B*. Applying (9.1) and (9.2), we see
that for every v € X3 and every 7 € {0,1}9, we have

e (1 ol cl) = 13 (1719 N o)) = E (i) B*) (1) = lim B (Lp9(By) ()
pe ([T 0 [v12,0)) pee (V120 71%0))

ST () e e (BI%)
g P (02arl6™) e (12Tl

n=oo (V2,06 e (Y2, IE1T)
where we could have written the second last equality sign since the measure g is shift-invariant
and we wrote the second equality sign because of Theorem 8.3. We recall that p = d“ . Using the

fact that P(t*) = P(t*) = 0, we further can write by making use of (7.9) that

Y ([ ’0 ‘q ]) lim qu, ‘(ZSKYIO - tup o ¢7|gn7dﬁtu ; qu) ’(b;'O_nT tudﬂtu
e - (L = m u 7~ )
t ool l—o0 n—oo qu> |¢7|0 “po ¢v|‘lndﬂt“ n—o00 qu) |¢;|gn | dfige

where, and we wrote the comparability sign using (8.2). We now assume that 7 # 07 and 7|, #
0|9 .. Let i > 0 be the least integer such that y_; = 1. Then the distortion property allows us to
continue as follows:

A

TP A
I (7 ]
7] e~ i t
Téo 7 19 1
~ hv T
- K(,jH(prTH -~ Ki,jmh([pOT‘gD7

where the constants KZ(J), KZ(]), K’ and K ; depend on ¢ and j = g — [, where [ last position of the
letter 1 in the word 7 = 1172... 7. Slnce the conformal measure ji;u is a constant multiple of packing
measure Ppu|j, (see Theorem 6.4 in [U2]), since the holonomy maps between unstable manifolds are

uniformly Lipschitz, and since H ([7]° ,,7|2]) = [y07|¢], we obtain that

= K¢ ||

We now may conclude that
g - K
Henlpge dnnig = KioPelpe nnp)
for all n > 0. Since in addition . ([7]°,,0%]) = P ([v]25,0°]) = 0 (also using that s is atomless),
and since ([7|%.] = [7]2.0°] U UnZ[1]%], we therefore have proven the following main result of
this section.
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Theorem 9.1. For every i = 0,1 and all x € AN R; the conditional measure pf. on the unstable
manifold W} (x) is equivalent to the packing measure P restricted to the manifold W (x).

10. DIMENSION OF THE HORSESHOE

In this section we establish formulas for the stable dimension and the dimension of the parabolic
horseshoe. In this and in the subsequent sections we consider probability measures rather than o-
finite measures. In particular, the notion of equilibrium states will be from this point on exclusively
used in the context of probability measures. Let f be a parabolic horseshoe map. We denote by
M the space of all Borel f-invariant probability measures on A endowed with weak* topology. This
makes M to a compact convex space. Moreover, we denote by Mgp C M the subset of ergodic
measures. Let € M. We define

M) = [ 10gIDufldi and AuGn) = [ tog]Duldn (10.1)

Note that A\, (u) and Ag(p) coincide with the p-average of the pointwise Lyapunov exponents of f.
It follows from properties (g), (h) and (i) of the parabolic horseshoe (see section 5) that

Au(p) >0 and As(p) <logy <0 (10.2)

for all 1 € M, where v < 1 is the constant in property (g) of the parabolic horseshoe. We say that
p € M is a hyperbolic measure if A, (1) > 0. In this case we refer to A, /s(11) as the positive/negative
Lyapunov exponent of p. Recall that u, denotes the Dirac-§ measure supported on the parabolic
fixed point w. We begin with a preliminary result.

Lemma 10.1. Let € M. Then p is a hyperbolic measure if and only if p # .

Proof. We first consider the case when p is ergodic. Obviously, if 1 = p, then A\, (p) = 0, and
is not hyperbolic. Assume now that u # u,. Therefore, Birkhoff’s Ergodic Theorem implies that
(W3 (w)) < 1, and since p is ergodic we obtain u(W#*(w)) = 0. Note that |D,f(x)| > 1 for all
x € A\ W?(w). Therefore, it follows from the definition of the Lyapunov exponent and the fact that
x +— D, f(x) is continuous that A\,(x) > 0. By using that As(v) < 0 for all ¥ € M we obtain that
w1 is hyperbolic. Finally, the case when g is not ergodic follows from the ergodic case by using an
ergodic decomposition of p. O

We define the stable pressure function P®: R — R by P*(t) = P(f|A,t¢s), where P5(f|A,.) is the
ordinary topological pressure of the dynamical system f|A and ¢s = log |Dsf| : A — R. Next we
establish a Bowen-Ruelle-Manning-McCluskey type of formula for the stable dimension of A.

Theorem 10.2. Let f a parabolic horseshoe map having a Lipschitz continuous unstable foliation.
Then t* < dimy Wi () NA does not depend on x € A. Moreover, t° is given by the unique solution

of

P*(t) =0, (10.3)
and 0 < t° < 1.
Proof. The proof is analogous to the case uniformly hyperbolic sets on surfaces, see [MM]. Therefore,

we provide only a sketch. First, note that since the unstable foliation is Lipschitz continuous, it
follows immediately that dimg W} (z) N A is independent of x € A. Observe that ¢ — t¢, is strictly
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decreasing. Therefore, P? is also strictly decreasing. Hence t* is well-defined. Note that b, (f) =0
and As(p,) < 0. In particular, u, is not an equilibrium state of ¢*¢°. On the other hand, f|A is
expansive, which implies that the entropy map v +— h,(f) is upper semi-continuous on M. Hence,
for every ¢ € C(A,R) there exists at least one equilibrium state. Let u be an ergodic equilibrium
state of t°¢°. It now follows from the definition of ¢* that ¢* = h,(f)/As(p). Applying a result of
Mendosa (see [Me, Theorem 1]) we deduce that t* < dimyg W} () N A. Finally, the proofs of the
inequalities dimyg W} (x) NA < t° <1 and ¢* > 0 are analogous to the case of uniformly hyperbolic
sets on surfaces (see [MM)]). O

Remarks.

(i) Similar to the case of uniformly hyperbolic surface diffeomorphisms one can show that the po-
tential t¢s has a unique equilibrium state for all ¢ > 0.

(ii) We note that Theorem 10.2 in particular applies to almost linear parabolic horseshoe maps (see
Example 1) as well as to the more general case of small perturbations of hyperbolic horseshoes of
smooth type which were discussed in part (ii) of the remark after Example 1.

Theorem 10.3. Let f be a parabolic horseshoe map of smooth type having a Lipschitz continuous
unstable foliation. Then dimyg A = t% 4 ¢°.

Proof. Let i = 0,1. We consider the set A; = AN R;. Given z € A; it follows from property (e) of
the parabolic horseshoe (see section 5) that

[‘, ] : WU(SC) NA; x WS(I‘) NA; — A;

is a homeomorphism. Moreover, since f is of smooth type and since the unstable foliation of f is
Lipschitz continuous, it follows that [-,-] as well as [-,:]~! are Lipschitz continuous and therefore
preserve Hausdorff dimension. Similar, as in the case hyperbolic sets on surfaces one can show that
dimy W*(z) N A; = dimgW#*(x) N A;. Using the formula for the Hausdorff dimension of products
we obtain dimgy W4 (x) N A; x W9 (z) N A; = dimyg W#(x) N A; + dimg WY (x) N A;. This completes
the proof. O

We define the stable set of A by
WH(A) = {:U €S:f"x)eSforallneN, lim dist(f*(z),A) = 0} : (10.4)

Similarly we define the unstable set W“(A) of A as the stable set of A with respect to f~!. It follows
immediately from the properties of the parabolic horseshoe that

welH(A) = | W (). (10.5)
TEA

Note that (10.5) is also a consequence of the Shadowing Lemma.

Theorem 10.4. Let f be a parabolic horseshoe map of smooth type having a Lipschitz continuous
unstable foliation. Then dimpg W*/“(A) = t*/5 +1 < 2.

Proof. We only proof the formula for the dimension of the stable set. The proof for the unstable
set is analogous. Note that by Theorem 7.4, t* < 1 which gives the right-hand side inequality.
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Combining that A has a local product structure with (10.5) implies that it suffices to prove that

dimp U )| =t"+1 (10.6)
yeW (z)NA

loc

for all z € A. Let € A. Set A, = W}%.(p) N A. Since A has a local product structure, there exists
a homeomorphism

H:Apx (-1,1) = ] Wi(y), (10.7)
yEA,

with the property that H(y x (=1,1)) = W} (y) for all y € A,. Moreover, since f is of smooth

type and since f has a Lipschitz continuous unstable foliation it follows that H as well as H ! are

Lipschitz continuous. Applying Theorem 10.2 completes the proof. O

11. GENERALIZED PHYSICAL MEASURES

Let f be parabolic horseshoe map of smooth type having a Lipschitz continuous unstable foliation.
In this section provide a classification for f having a generalized physical measure. Given p € M we
define the basin of u by

n—oo N 4

n—1
1
B(p) = {:c €S:fMzr)eSforallneN, lim — Zéfi(x) = u} . (11.1)
1=0

Here dyi(,) denotes the Dirac-6 measure on fi(x). The basin of u is sometimes also called the set of
future generic points of p, see [DGS] and [Ma]. A measure p € Mg is called a physical measure if
B(1) has positive Lebesgue measure. Obviously,

B(p) € W(A). (11.2)

Therefore, by Theorem 10.4 the map f can not have a physical measure. Following [Wo] we say that
p € Mg a generalized physical measure if B(u) is as large as possible in the sense that

dimg B(p) = dimg W?3(A). (11.3)
We now prove a formula for the Hausdorff dimension of the basin of a hyperbolic measure.
Proposition 11.1. Let p € Mg\ {uw}. Then

hyu(f)
Au(pt)

Proof. Note that by Lemma 10.1, A,(x) > 0; hence the right-hand side of (11.4) is well-defined. It
is easy to see that if y € f(.S) then

y € B(p) if and only if 3z € A with y € WS .(z). (11.5)

Combining (11.5) with property (e) of the parabolic horseshoe (see section 3) it follows that it is
sufficient to show that for each x € A,

dimpy B(p) =

+1. (11.4)

dimp U sz)c (y)
yEAL

+1, (11.6)
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where A, = Wt () NB(p). Pick x € A. The same methods used by Manning [Ma] in the context of
hyperbolic surface diffeomorphisms (see [Me] for the analogous result in the non-uniformly hyperbolic
setting) can be used to show that

: hu(f)
dimpg A, = <. 11.7
8= Nau) o
Therefore, (11.6) can be shown analogously as Theorem 10.4 by using the bi-Lipschitz continuous
homeomorphism H. O

Recall that ¢, = log|D,f| : A — R. We now present our main result about generalized physical
measures.

Theorem 11.2. Let f be a parabolic horseshoe of smooth type having a Lipschitz continuous unstable
foliation. Then the following are equivalent:

(i) f admits a generalized physical measure;
(ii) The potential —t"¢,, has more than one (finite) equilibrium state;
(iii) The potential —t"¢,, has precisely two ergodic (finite) equilibrium states;
(iv) P is not differentiable at t*;

)

(v) v > 28

B+1-
Proof. (i)=-(ii): Let p be a generalized physical measure of f. It follows from Theorem 10.4 and
Proposition 11.1 that t* = h,(f)/Au(r). Thus, p is an ergodic equilibrium state of the potential
—t“¢,. Using that p # p, implies (ii). The implication (ii)=-(iii) is a consequence of Theorem
8.3. Moreover, (iii)=-(iv) follows from [J, Corollary 1]. The implication (iv)=-(v) follows from [J,
Corollary 1] and Theorem 8.1. Finally, if (v) holds, then by Theorem 8.1 there exists an ergodic
equilibrium state p of the potential —t%¢, with pu # .. Hence, t* = h,(f)/Au(1), and we may
conclude from Theorem 10.4 and Proposition 11.1 that u is a generalized physical measure for f. [0

As an application of Theorem 11.2 we construct parabolic horseshoe maps with as well as without
generalized physical measures.

Corollary 11.3. There exists a parabolic horseshoe map having a generalized physical measure as
well as one having no generalized physical measure.

Proof. We first construct an example of a parabolic horseshoe map having a generalized physical
measure. Pick 0 < 8 < 1,7 > 1 and A, > 2 such that

log 2

°8 s 0
logn 4 log Ay B+1

Let f be a parabolic horseshoe map as defined in Example 1 with the corresponding constants 3, n

and \,. In particular, f is of smooth type and has a Lipschitz continuous unstable foliation. It
follows from (5.4) that

(11.8)

(V) <log Ay, +logn (11.9)
for all v € M. Let p denote the measure of maximal entropy of f, i.e. the unique measure satisfying
hu(f) = log2. Therefore, (11.9) and Theorem 1 in [Me| imply that t* > 2%. We now may
conclude from Theorem 11.2 that f has a generalized physical measure. The existence of a parabolic
horseshoe map having no generalized physical measure can be easily seen. Just pick any parabolic

horseshoe map f of smooth type having a Lipschitz continuous unstable foliation (for instance a
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map as in Example 1) with § > 1. Recall that t* < 1 (see Theorem 7.4); hence t* < 23/(5 + 1),
and therefore, Theorem 11.2 implies that f does not have a generalized physical measure. O

Corollary 11.4. The existence of a generalized physical measure is not a (topological) conjugacy
mvariant.

Proof. By Corollary 11.3 there exist parabolic horseshoe maps fr, & = 1,2 such that f; has a
generalized physical measure and fa does not have a generalized physical measure. Since fi|A; and
f|Ag are both topological conjugate to the shift map o : 35~ — X3, the result follows. 0

12. MEASURES OF MAXIMAL DIMENSION

In this section we discuss the existence of ergodic measures of maximal dimension for a particular
subclass of parabolic horseshoe maps. In particular, we provide a criteria which guarantees that no
ergodic measure of maximal dimension exists. Recall that in this section the notion of equilibrium
states is meant in the space of probability measures.

Let f : S — R? be a parabolic horseshoe map. We say that f has constant contraction rate if
there is 0 < ¢ < 1 such that |Dsf(x)| = ¢ for all z € A. For example the almost linear parabolic
horseshoe maps in Example 1 have constant contraction rate ¢ < 1/2. Given p € M we define the
Hausdorff dimension of u by

dimg g = inf{dimg A : u(A) = 1}. (12.1)
Following [BW1] we say that u € Mg is an ergodic measure of maximal dimension if
dimpy g = sup{dimg v : v € Mg} < 6(f). (12.2)

It follows from work in [BW2] that the definition of 6(f) in (12.2) is the same when the supremum
is taken over all (not necessarily ergodic) measures in M. Let u € M\ {p}. It follows from Young’s
formula [Y] (also using Lemma 10.1) that

if 1 is ergodic, then dimpy p = d(p), (12.3)
where

def 1 1
d(p) = hu(f) (W - W) .

We now define a one-parameter family of measures (Vt)te[o’tu] which will be crucial for the analysis
of measures of maximal dimension. For ¢ € [0,t") we define 14 to be the unique equilibrium state
of the potential —t¢,. Note that v, is well-defined. Indeed, P* is differentiable in [0,¢"). This is a
consequence of Theorem 7.6 and the fact that f|A has a unique measure of maximal entropy. Thus,
by [J, Corollary 1] the potential —t¢, has a unique equilibrium state. Next, we define vpu. In the
case when the potential —t“¢,, has more than one equilibrium state we define 14« to be the unique
hyperbolic ergodic equilibrium state of —t“¢,,. Otherwise, we define vju = p,,.

The results of this section will be based on a careful analysis of the dimension of the measures v4.
For simplicity we write h(t) = hy, (f) and A\, (t) = A\, (14) for all t € [0,¢"]. Thus,

PU(t) = h(t) — tAa(t). (12.4)

It follows from standard properties of the topological pressure (see for example [J]) that if P is

differentiable at ty then
dP"(to)

= = =\ (to). (12.5)
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We first prove a preliminary result.

Lemma 12.1. We have the following:
() If v = o, then P* € CH([0,t4]);
(ii) If vpu # pg, then P* € CL([0,t%)).

Proof. We already know that P“ is real-analytic on (0,t*) (see Theorem 7.6). Therefore, we only
have to consider ¢t = 0 and ¢ = t*“. Since vy is the unique measure of maximal entropy it follows
from [J] that P" is differentiable at 0. Similarly, if v« = p, then P" is differentiable at t*. We
claim that if vpu = p,, then P* is C' in a left neighborhood of t*. Let ¢, < t* with t, — t* for
n — oo. By (12.5) is suffices to show that A\"“(t,) — Ay (t") for n — co. By convexity of P* and
(12.5), Ay is decreasing. Thus, a = limy, o Ay () exists. By compactness of M there exists p € M
such that p is a weak™ cluster point of the measures v4,. Since A, is continuous on M we may
conclude that A\, (p) = a. Using that the entropy map v — h,(f) is upper semi-continuous on M
(also using (12.4)) we obtain that p is an equilibrium state of the potential —t“¢,; hence pu = v4u
which proves the claim. The proof of the statement that P* is C! in a right neighborhood of 0 is
entirely analogous. O

Since P" is real-analytic in (0,t"), (12.5) implies that A, is also real-analytic in (0,¢"). Hence, by
(12.4), h is also real-analytic in (0,¢"). Moreover,
dh(to) _ todAy (to)
dt dt
for all ¢ty € (0,t"). We now prove another preliminary result.

(12.6)

Lemma 12.2. The functions A\, and h are continuous in [0,t"]. Moreover,
{Au(t) £ €0, "]} = [Au(0), Ay (t")]. (12.7)

Proof. We first consider the case v4u = p,,. In this case (12.4), (12.5) and Lemma 12.1 imply that
the functions A\, and h are continuous in [0, t"]. Moreover, by (12.5), {\,(¢) : t € [0,¢"]} is a compact
interval; thus, (12.7) follows from the fact that ¢ — X, (¢) is decreasing in [0, t"].

Next, we consider the case vpu # u,,. Similarly as above, we can show that A, is continuous in
[0,t*). We now prove the continuity of A, at t*. Let ES(t") be the set of all equilibrium states of
the potential —t“¢,. It is well-known that ES(t*) is a compact convex set whose extreme points
are the ergodic measures in ES(t"), see e.g. [J]. Therefore, Theorem 8.3 implies that

ES({t") = {spw + (1 — s)ru : s € [0,1]}. (12.8)

Since \, is decreasing in [0, t") it follows that lim; .. A\, (t) exists. Since M is compact, there exist
a sequence (t,)nen converging to t* from the left and a measure p € M such that p is a weak™
limit of the sequence of measures (4, )nen. Since the entropy map is upper semi-continuous, we
may conclude from the continuity of A\, that p is an equilibrium state of the potential —t%¢,,. Thus,
p = Sty + (1 — s)vp for some s € [0,1]. We clai